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Abstract: Previous work in studying interstellar exploration by one or several probes has focused primarily
either on engineering models for a spacecraft targeting a single star system, or large-scale simulations to
ascertain the time required for a civilization to completely explore the Milky Way Galaxy. In this paper,
a simulated annealing algorithm is used to numerically model the exploration of the local interstellar
neighbourhood (i.e. of the order of ten parsecs of the Solar System) by a fixed number of probes launched
from the Solar System; these simulations use the observed masses, positions and spectral classes of targeted
stars. Each probe visits a pre-determined list of target systems, maintains a constant cruise speed, and only
changes the direction fromgravitational deflection at each target. From these simulations, it is examined how
varying design choices – differing the maximum cruise speed, number of probes launched, number of target
stars to be explored, and probability of avoiding catastrophic system failure per parsec – change the
completion time of the exploration programme and the expected number of stars successfully visited. In
addition, it is shown that improving this success probability per parsec has diminishing returns beyond a
certain point. Future improvements to the model and possible implications are discussed.
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Introduction

In recent decades, research devoted to interstellar travel and
exploration has focused principally on two areas. The first is
predominantly aimed towards the design of a spacecraft
capable of going to nearby stars with current or near-future
technology (Bond et al. 1978; Forward 1985; Beals et al. 1988;
Landis 1999; Long et al. 2009). This has resulted in a creative
outpouring of possible methods to accelerate and decelerate
these crafts, as well as a means to communicate scientific data
back to the Solar System. On the other hand, there have been a
number of theoretical undertakings that examine the time
required to engage in an exploration of galactic scale (Bjørk
2007; Cotta and Morales 2009; Forgan et al. 2012). The
rationale behind this research, at least in part, is an attempt to
better understand the Fermi paradox of SETI. Surveys of this
type allow one to estimate the time to completely explore the
galaxy, giving an upper bound on the frequency of visits by
other civilizations to the Solar System. In particular, Bjørk
(Bjørk 2007) assumes that a single probe is initially sent out,
which launches a small (four or eight) set of sub-probes to
explore a given sector of the galaxy, with 40000 nearby stars
targeted. Once this exploration is complete, the sub-probes
return to their originating probe, which moves to a different
stellar neighbourhood to start again. Each sub-probe chooses
its next target by picking the nearest star not already visited.
This work is built upon by Cotta and Morales (Cotta &
Morales 2009), who use the same basic exploration model, but
use various optimization techniques to reduce the total travel
time of the sub-probes. After such a trial optimization, any

resulting tour reducing the path time is kept, and the procedure
is repeated. These heuristics give roughly a 10% decrease in the
time to explore a given section of the galaxy. Finally, Forgan,
Papadogiannakis and Kitching (Forgan et al. 2012) consider
the use of a single probe, again using the choice of the nearest
neighbouring star as the next target. However, unlike the other
works, Forgan et al. use gravitational slingshots from the
relative motion of probe and target star to progressively
increase the speed of the probe in two of their simulation
scenarios, resulting in large increase in that speed.
In this paper, the focus is on the middle ground between

these two extremes. It is assumed, in particular, that the
technological means and ability have been developed to launch
exploration probes to star systems within a few parsecs, but not
far enough intothe future that large portions of the MilkyWay
Galaxy – or even our local stellar neighbourhood – have been
explored. Note that Moir and Barr (Moir and Barr 2005)
develop results similar to those in this paper, although they
examined the possibility of a spacecraft using a cyclic trajectory
to travel to a few nearby stars, then return to the Solar System.
The possibility of self-replicating probes is not examined here,
so the number of probes is fixed by the quantity launched from
the Solar System. To start with, this reduces the number of
parameters to consider, namely the number of daughter probes
produced at each target system by the original arriving
spacecraft. This is not to make any argument for or against
self-replicating probes, merely to suggest that it is certainly
easier to make a probe capable of travelling to another star
system, than it is to build a probe that can do this and construct
perfect replicas of itself upon reaching that system. Thus, it is at
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least feasible to say the first exploration programme of the
type considered here will be of a fixed number of probes. An
alternate programme of self-replicating probes will be saved for
a companion paper to the present one.
Our exploration model makes the following additional

assumptions:
1. Probes change direction only by using gravitational

deflections at each target system. In multiple star systems,
the probe may use any of the stars present to optimize the
resulting course correction, although only one is used for
this deflection (this counts as a visit to the entire multiple
star system).

2. Each probe is accelerated up to a fixed cruise speed
while leaving the Solar System, and maintains this speed
throughout its assigned path. For simplicity, it is assumed
that the positions of the target systems are known in
advance, and their proper motions are neglected. Thus,
increases in probe speed due to gravitational assists are not
considered, as is done by Forgan et al. (2012).

3. At the time of launch, a given probe will be assigned one or
more systems to visit, and will travel through these systems
without stopping.

Also, unless another source is cited, the stellar data used –

specifically, the position coordinates, spectral types andmasses –
are from the Research Consortium on Nearby Stars database
(Research Consortium on Nearby Stars 2012), and only the
60 nearest systems to the Solar System at most are considered.
Our current lack of experience in launching and utilizing

interstellar probes means that the engineering model chosen is
up to the individual. There are two typical categories for such a
model:
. Large spacecraft: Examples of this include Project Daedalus,
its successor Icarus and the Longshot effort (Bond et al.
1978; Beals et al. 1988; Long et al. 2009). These are likely to
be more robust under the ravages of radiation damage and
collisions with interstellar matter (such as planetesimals
ejected from orbits around nearby stars), but are also more
expensive in time and resources to construct. On the other
hand, they are self-contained, and do not require additional
infrastructure beyond construction facilities.

. Small spacecraft: This class of interstellar probes includes the
‘starwisp’ probe, launched and powered using light beams
from devices remaining in the Solar System (Forward 1985;
Landis 1999). Since the power source does not movewith the
craft, these probes have very low mass, and thus can be
produced in great numbers. However, it is unclear how such
a lightweight construction will fare over interstellar travel for
a few decades, since there would be little to no allowance for
shielding against impact damage.

Owing to these considerations, a conservative choice is made –
the assumption is that all probes launched are ‘large’, although
some of the results presented below may apply to a choice of
‘small’ probe size.
One consequence of this choice is the need to use probes as

efficiently as possible, in order not to waste resources. If the
construction of a single probe requires a good deal of resources,
then the launch of a multi-probe exploration programme is

likely to be delayed, due to the need to assemble additional
resources to construct all probes. Suppose, for example, that a
single prototype probe is launched to a nearby star, and the
design successfully reaches its destination and returns quality
data about the target system. How long would it take to build
additional probes to examine other systems? If it is supposed
that the resource cost per probe as a fraction of either national
or world production is kept fixed, then the waiting time may be
significant – with the cost at a fixed percentage, an additional
N probe would not be completed until economic production
has grown by the same factor of N (see Millis (2011) and
references therein). Table 1 shows the waiting period necessary
to produce a certain additional number of probes, given an
annual growth rate in the appropriate measure – such as the
size of a national or world economy, energy production, or
other metrics. These values are obtained by a compounding-
type equation, namely Rprobe=R1(1+c)t, where c is the annual
growth rate in applicable resources, t the number of years,
Rprobe the resource to construct the desired number of probes
Nprobe and R1 the resource to complete the initial probe. It is
assumed that Rprobe/R1/Nprobe, i.e. there are no economies of
scale when building multiple probes. Note that since this refers
to the time to assemble resources for building all probes, it is
possible to either build these crafts either sequentially (so that
the launch time are staggered) or simultaneously. In either
case, since the total construction time listed in Table 1 are small
compared with the total travel times between stars, these
construction times are not included in the mission completion
time given in the Results section.

Gravitational deflections

Now the issue of gravitational deflections is taken up, by
considering hyperbolic orbits around a star (Moir & Barr
2005). This allows us to find the relationship between the
deflection angle between the incoming and outgoing legs of this
orbit, and the asymptotic speed of the probe travelling this
path. The following derivations are based on the well-known
theory of central force orbits (see, e.g. Marion & Thornton
1988). For any conic section, the equation relating the distance
r from the focus at a given angle θ is given by

α

r
= 1+ e cos θ. (1)

Table 1. Number of years after the launch of a single ‘large’
prototype probe to build an additional Nprobe probes, assuming
a range of annual growth rates in a relevant quantity, e.g.
energy production or financial means

Nprobe

Annual growth rate

1% 3% 5%

3 110 years 37.2 years 22.5 years
5 162 years 54.4 years 33.0 years
10 231 years 77.9 years 47.2 years
20 301 years 101 years 61.4 years
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Here, 2α is the latus rectum of the orbit and e is the orbit
eccentricity. Note that θ=0 is where the orbit has its closest
approach to the focus, so that the perihelion distance rp is
given by

rp = α

1+ e
. (2)

For gravitational deflections, the probe is on a hyperbolic orbit
through the target system, so e>1. As the spacecraft leaves this
system, it approaches r�∞ as the angle reaches θ�θ∞, the
angular position of the probe on the outgoing leg. The value of
θ/ is found from the conic section equation (1) by

θ1 = cos−1 − 1
e

( )
, (3)

with the total deflection Δθ=2θ∞−π (see Fig. 1). For our
purposes, it is more useful to have a relation between the
maximum cruise speed possible for a given deflection angle Δθ.
To do this, two equations for the semi-major axis of a
hyperbolic orbit are appropriate, namely

a = rp
e− 1

’ GMs

v21
,

where Ms is the mass of the object providing the gravitational
deflection (neglecting the probe’s mass) and υ∞ is the probe’s
speed as r�∞. Combining these relations, along with the
above equations (1) through (3), to eliminate eccentricity from

the relations, gives the result

v1 =
���������������������������
GMs

rp

( )
csc

Δθ
2

( )
− 1

[ ]√
. (4)

Thus, for a desired deflection Δθ to the next target star,
the maximum possible speed the probe can depend on the
geometric factor Δθ, and a constant

���������
GMs/rp

√
related to

the star itself. Any probe cruise speed υ4υ∞ will allow the
spacecraft to execute a corresponding angular deflection of Δθ.
This will be a factor in our results – it may be technologically
feasible to accelerate a probe for a wide range of cruise speeds,
but the probe will be limited to the maximum speed allowed by
the path mapped out for it between target stars, and so the
craft’s cruise speed will be bounded above by the smallest value
of υ∞ along its trajectory.
Turning next to how the constant

���������
GMs/rp

√
scales with

different stellar properties, writing it in terms of the Sun’s mass
M⊙ and radius r⊙ gives������
GMs

rp

√
= 4.368× 105

Ms

M⊙

( )1/2 rp
r⊙

( )−1/2
[ ]

ms−1

=[0.01457c] Ms

M

( )1/2 rs
r⊙

( )−1/2

. (5)

The perihelion distance is fixed by the need to limit the amount
of heat flux incident on the stellar probe due to stellar
radiation, which is related to the (bolometric) luminosity Ls of
the star and the desired maximum heat fluxHmax falling on the
spacecraft. As discussed in Moir & Barr (2005), bounding the
flux incident on the probe at small distances to the star helps to
limit the total heat load on the craft. Perihelion distance and
maximum heat flux are related by

rp =
���������

Ls

4πHmax

√
. (6)

To show which types of main-sequence stars provide the most
useful gravitational deflections, the empirical relation (Lang
1999)

Ls

L⊙

( )
= Ms

M⊙

( )α

(7)

is used between stellar luminosity Ls and mass Ms of a main-
sequence star, in terms of the comparable properties for the
Sun; the exponent α is determined from astronomical data to
be in the range α’4. Using the value of Hmax=7MWm−2 of
Moir and Barr, equations (5) through (7) give������
GMs

rp

√
= 4πG2HmaxMα

⊙
L⊙

( )1/4

M (2−α)/4
s

=[8.525× 10−4c] Ms

M⊙

( )(2−α)/4
. (8)

Since α>2 for main-sequence stars, then as mass decreases, the
maximum cruise speed υ∞ increases. Note that – although we
use the fixed value Hmax=7MW m−2 for maximum heat flux
throughout this work – improvements in radiation shielding of

Fig. 1. Plot of the hyperbolic orbit of a probe undergoing a
gravitational deflection due to massMs. The perihelion distance rp and
semi-major axis a of the orbit are shown, as well as the angular
deflection of the probe; the angle θ=0 is fixed by the perihelion point of
the spacecraft. The probe enters the target system from the upper left,
changes direction by Δθ, then leaves the system from the upper right.
From the diagram, one can see that the smaller angle between the
asymptotes of the hyperbola can be found in two ways – namely,
2π−2θ∞, and π−Δθ. Equating these together and solving for the
angular deflection gives Δθ=2θ∞−π.
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probes during close approaches may increase the relative size

of υ∞, as
���������
GMs/rp

√ /H1/4
max.

Less massive main-sequence stars produce less energy from
nuclear fusion for a given mass than the larger variety. Thus,
redder stars serve to provide the greatest angular change in a
probe trajectory from solely gravitational attraction, while
bluer stars provide the least. White dwarfs are even better,
since their radiant energy does not arise from nuclear fusion
and they have high mass densities, as their matter is
supported only by electron degeneracy. Brown dwarfs are
another favourable object class – although they are not as
dense as white dwarfs, they do not emit much radiation due
to their lack of nuclear fusion. Specific values of the constant���������
GMs/rp

√
are given for a variety of nearby objects in Table 2.

Note that the use of only gravitational assists means that
some systems may be targeted solely for their ability to
change a probe’s course. An example of this is van Maanen’s
Star, a solitary white dwarf that has a relatively high
constant; thus, although it may be of inherent astrophysical
interest, it also serves as a useful waypoint to create rather
large angular deflections. In addition, when a probe is
incident on a multiple star system, the usual best choice of
star to use for a gravitational deflection will be the reddest of
the stars present, if not a brown or white dwarf. For example,
as shown in Table 2, a much greater change results from
a close pass near Sirius B, rather than the brighter
Sirius A. However, this aspect can be problematic in other
situations, e.g. the α Centauri star system, where the best
choice for such a deflection – Proxima Centauri – lies at a
relatively large distance (*0.237 light years) from the other
two members of this triple star system. Since this is the sole
example in the selection of target stars considered here, for
simplicity, we count a probe visiting Proxima Centauri as one
to the entire α Centauri system.

Results

An efficient exploration programme is now sought, using a
fixed number of probes launched from the Solar System at the
same time, by simulating the results of different design choices.
By ‘efficiency’, the amount of time to complete the programme
is minimized in some sense. For example, with ta the time for
probe a to complete its portion of the mission, our efficiency
metric could be the largest of the values ta, or the sum of the
completion times ∑ata; for the sake of definitiveness, the
simulations presented below will minimize the Euclidean norm
of all ta, e.g. an objective function

C = min
∑
α

t2α. (9)

This measure is aimed at producing probe travel times ta that
are roughly comparable in size. The possible variables of the
programme include how many probes Nprobe are launched as
part of the exploration programme, the cruise speed for each of
the probes (which may not be the same for all spacecrafts), the
probability p of each probe successfully travelling a given
parsec, and the total number of target systems Ntarget. These
variables are now discussed in turn. Building a substantial
number of probes would require significant economic
resources. Thus, an exploration programme of a large space-
craft would seek to minimize Nprobe as much as possible, while
trying simultaneously increasing the number of targets Ntarget

successfully reached in the shortest feasible time. The probe
cruise speed is bounded by the path chosen for each path; a
separate consideration is whether the spacecraft can be actually
accelerated up to a given velocity. Thus, the specific parameter
used in the simulations is the maximum possible cruise speed υp
the probes can use. Specifically, this means the probes can use
any path, where for all angular deflections Δθ the maximum
speed υ∞ – given by relation (4) between them – does not

Table 2. Values of the constant
���������
GMs/rp

√
for a variety of nearby stars, brown dwarfs and white dwarfs, where Ms is the mass of

the object and rp is the perihelion distance for the interstellar probe, determined by using equations (5) and (6) with a maximum
desired heat flux of 7.00MWm−2. Mass and luminosity data for each star taken from the references listed; for Procyon B,
Proxima Centauri, Sirius B and van Maanen’s Star, the luminosity was derived from the Stefan–Boltzmann law, using the radii
and effective temperatures provided in the references. The range in the values for the brown dwarfs ε Indi Ba and Bb represent
observational uncertainty in the mass of those objects

Star name
Stellar
classification

���������
GMs/rp

√
(fraction of c)

Sirius A (Libert et al. 2005) A1V 5.32×10−4

Fomalhaut (Mamajek 2012) A3V 5.77×10−4

Procyon A (Bruntt et al. 2010) F5IV-V 6.30×10−4

α Centauri A (Bruntt et al. 2010) G2V 8.00×10−4

α Centauri B (Bruntt et al. 2010) K1V 9.81×10−4

Barnard’s Star (Dawson & De Robertis 2004) M4V 1.38×10−3

Proxima Centauri (Demory et al. 2009) M5.5V 1.44×10−3

Sirius B (Holbert et al. 1998, Libert et al. 2005) DA2 2.17×10−3

e Indi Ba (King et al. 2009) T1 3.01−3.32×10−3

e Indi Bb King et al. 2009) T6 3.62−4.09×10−3

Procyon B (Provencal et al. 2002) DQZ 4.38×10−3

van Maanen’s Star (Gatewood & Russell 1974;
Burleigh et al. 2008)

DZ7 5.62×10−3
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exceed υp. In other words, the parameter υp serves to bound the
search space of possible paths. However, the largest signifi-
cance of this is on the travel time of the probe; although a probe
with a large cruise speed will not be physically able to make a
large angular change in its path, it can conceivably recover this
by going faster along its trajectory.
Finally, the chance of a catastrophic failure of a probe is

considered, leading to its inability to complete its mission. For
the following, it is assumed that the probability p of a probe
completely failing for a given parsec of its path is independent
of it failing along any other parsec distance. This is justified by
the following. Since the probe has a constant cruise speed, the
time of flight is directly proportional to the distance travelled.
This means that intrinsically time-related failures – such as
critical systems onboard the probe – will have a path distance
relation just as much as physical phenomena associated with
the trajectory itself – e.g. the probability for the probe shielding
to fail due to a high-energy impact of cosmic dust. It is assumed
that the time-dependent and distance-dependent failure modes
have similar probability distributions, so that the net effect is
that the success probability p for a craft moving at a constant
speed is a probability distribution per parsec.
Varying the parameter p will change the expected number of

target systems successfully reached, and the time it takes to do
so – either the time per probe, or the time to complete the entire
exploration programme. These results are arrived at by using a
simulated annealing algorithm (Kirkpatrick et al. 1983) to
choose the best path for each probe. Although this does not
guarantee the optimal routes for a multi-probe exploration
programme, it does provide a solution that is relatively good in
a short amount of computational time. Further details about
the algorithm, and its effectiveness compared with the exact

optimal solutions and other heuristic approaches, are given in
the Appendix. An example simulation is demonstrated in
Fig. 2.
The first property of exploration probes considered is the

upper bound υp on their cruise speed. For the large probes
considered here, this speed will depend on the method of
launch from the Solar System – is the method of propulsion
onboard, or are other methods, e.g. beamed propulsion, used?
Without getting into particulars, the effect of varying the given
cruise speed has on the mean time for each probe to complete
its exploration programme is examined. As seen in Table 2,
values of

���������
GMs/rp

√
for various stellar types sets the scale of

probe cruise speeds in the range 10−2c–10−4c. A probe
exceeding this range may have shorter travel time, but also a
more limited selection of stars to aim towards after leaving
a target system, since the required course deflection may not
be possible at its cruise speed. In other words, a desired
exploration path for a given probe is likely to fix a maximum
possible cruise speed to be of the order of 10−2c. This varies
according to the number of probes Nprobe – if more probes are
launched for a fixed number of target systems, each probe has
to visit fewer systems, leading to less stringent limitations on
cruise speed. Thus, in Fig. 3, for Nprobe=3 and Nprobe=8, the
travel time plateaus around υp=0.01c, but for Nprobe=20,
the travel time decreases until about υp=0.02c. For the sake of
definitiveness, the maximum cruise speed of all probes is set to
υp=0.01c in the remainder of this paper.
Next, the effect of increasing the total number of probes

Nprobe on the travel time of each probe is studied; for
Ntarget=60, the minimum, mean and maximum travel time
for the collection of probes are shown in Fig. 4. Recall that the
objective function used is the Euclidean norm (9) of all probe
completion times, so various other measures of the travel times
are reported in Fig. 4 as a different viewpoint on the solutions
arrived at. Somewhat surprisingly, all three of these measures
are roughly linear in this log–log plot, meaning that t/ pk,
for some power k. Note that for most simulations used to
obtain a scaling law of this type, Nprobe≪Ntarget, since for

Fig. 2. An example of a simulated exploration programme, for
Ntarget=20 andNprobe=5, so that all star systems within 3.68 pc of the
Solar System are surveyed. Lines represent the path of a probe from
one system to another; the Solar System is the central node with five
paths emerging from it. The first probe completes its mission after
1289 years, the last after 3931 years.

Fig. 3. Mean travel time for each probe in a collection of probes, as a
function of the cruise speed υp for each probe. Three possible choices of
the number of probes launched from the Solar System given, for a total
of Ntarget=60 systems are visited by the collection.
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comparatively large number of probes, the simulated anneal-
ing algorithms would not assign any target systems to a small
percentage of the spacecraft; simulations with these results
were discarded. Simulations over a large variety of choices for
υp, Nprobe and Ntarget were run; specifically, υp ranged from
10−3–10−2c, Ntarget took values of multiples of tens within the
range [10, 60], and values of Nprobe were all multiples of four
such that the simulation algorithm gave assigned paths to all
probes. From these simulations, it was found that the mean
travel time for each probe is given by the scaling law

tmean /N0.935+0.0208
target υ−0.942+0.0152

p N−1.04+0.0213
probe . (10)

For minimum and maximum times,

tmin /N1.30+0.0262
target υ−0.921+0.0192

p N−1.27+0.0268
probe (11)

and

tmax /N1.01+0.00974
target υ−0.929+0.00714

p N−0.797+0.00998
probe , (12)

respectively. All of these relations were found by using a
multiple linear regression on the logarithms of the variables;
the coefficient of determination R2 for all three equations
exceeds 0.934. From these relations, all time scales are seen to
be inversely proportional to the maximum speed of probes; at
least roughly, staying within our chosen range υp40.01c,
doubling this maximum speed causes the mean time for each
probe to complete its mission to be halved. The dependence of
the time on the number of target stars and probes has a wider
variance. Specifically, doubling Ntarget reduces the minimum
time for a probe to complete its mission by 58.5%, but the
maximum time only by 42.4%. Finally, although it is not
included in the equations listed above, the various times t scale
with the heat flux Hmax incident on the probe at perihelion as
t/Hmax

1/4 , as seen by the form (8) of the constant
���������
GMs/rp

√
and

verified by numerical simulations.
Up until this point, all results presented have assumed that

probes successfully carry out their assigned missions without
mishap. Obviously, this is a simplifying assumption, since
there would be a non-zero probability of catastrophic failure

for each probe. The probability of the probe successfully
travelling an additional parsec along its path is denoted as p.
Therefore, supposing the distance between systems i and j in
parsecs is given by dij, the probability for a probe to
successfully cross this distance is given by pdij , while the
probability of catastrophic failure is 1− pdij . Now the expected
number kNl of systems visited by the collection of probes is
sought. Since all probes are independent, the expected number
of systems kNl visited by all probes is simply the sum ∑akNal of
systems visited by each probe a. With ka systems for probe a to
visit, the expected number of systems visited is defined as

kNal =
∑ka
n=0

npn, (13)

where pn is the probability of reaching a maximum of n systems
out of the ka possible, with ∑n pn=1. The value pn is computed
using a formal power series in a variable x, where the
coefficient of the xn term will indicate the probability of n
being the expected number of systems successfully visited. The
probability of the probe going from system i to system j thus is
represented by the linear function

(1− pdij ) + pdij x,

while the outcome of going from i� j�k is given by the
combination of two such functions, namely

(1− pdij ) + pdij x[(1− pdjk ) + pd jk x] = (1− pdij )
+ pdij (1− pd jk )x+ pdij pd jk x2.

(14)

Again, each coefficient on the right-hand side of equation (14)
gives the probability for each value of the expected number of
systems visited. In particular, the constant value 1− pdij gives
the chance that no systems are visited, since it shows the
probability that the probe does not successfully travel from i to
j. The term linear in x gives the probability that one system is
reached, since the probe reaches system j – with chance pdij –
but not system k – with chance 1− pdjk . Finally, the quadratic
term shows the probability of reaching both system j

Fig. 4. Minimum, mean and maximum travel times for probes
exploring a total of Ntarget=60 systems, as a function of the total
number of probes Nprobe used in the exploration program.

Fig. 5. Cumulative time to visit a given number of systems, in units of
kiloyears, with either Nprobe=3,8, or 20 probes used to explore a total
of Ntarget=60 systems.
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(probability pdij ) and system k (probability pdjk ). Note that this
probability is the same as pdjk+d jk , i.e. the parameter p rises to
the power of the total distance travelled along the probe’s path.
Thus, if the distance di is defined as the distance along the path
of the probe, from the Solar System (node 0) to system i, then
the function fa(x) giving the expected number of systems visited
by probe a is

fa(x) = (1− pd1 ) + pd1 (1− pd2 )x+ · · · + pdka−1 (1− pdka )xka−1

+ pdka xka =
∑ka−1

n=0

pdn (1− pdn+1 )xn
[ ]

+ pdka xka ,

where d0=0. The last term in the series is different than the
others, since it is irrelevant if the probe survives past the last
targeted system on its path. In order to arrive back at the
expected number kNal given by (13), note that

kNal = dfa
dx

|x=1.

To find the expected number kNl of systems visited by all
probes, by the chain rule for derivatives,

kNl = d
dx

∏
fa(x)

[ ]
x=1

.

Using this procedure, the variation in the expected number of
systems visited for particular choices of Ntarget and Nprobe are
shown in Fig. 6. The probabilities p used in computing these
results were chosen as p=0.995k, for integer values of k. Thus,
there may be differences with the discussion following in the
case of 0.995<p<1. However, for all cases calculated with
p=0.995, kNl * Ntarget, so it is likely that the dependence of
the expected number of visited systems onNprobe is almost non-
existent for such high success probabilities.
One interesting result is how increasing the numberNprobe of

probes launched has limited utility beyond a certain value. To
show a particular instance of this, suppose a probe design is
chosen where the probability of success per parsec is 0.90; the
resulting expected number of systems visited, given a particular
number of systems Ntarget targeted, is shown in Table 3. In
particular, increasing the desired number of systems actually
visited requires large number of extra probes. For example, for
Ntarget=20, one has to double the number of probes from
Nprobe=8 to Nprobe=16 to gain only one additional visited
system. For the choice of Ntarget=60, the results improve
somewhat – doubling the number of probes fromNprobe=16 to
Nprobe=32 results in a 70% increase in the expected number of
systems visited – but further increases beyond Nprobe=32 do

Fig. 6. Graphs of the expected number of systems kNl visited by a collection of probes launched from the Solar System, as a function of the
probability p to successfully cross each parsec without a catastrophic failure. Each plot corresponds to a different number of total systemsNtarget to
be visited; within the plot, difference choices for the number of probes Nprobe launched is given.
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not give any appreciable gain beyond *15 systems. To
express this in a different form, suppose Nprobe=60 systems are
targeted, and one wishes to see what success probability p is
necessary to ensure probes arrive at a minimum of kNl=10
systems; these probabilities are given in Table 4. Consider
the situation where one starts with a projected programme
of Nprobe528, but would rather launch fewer probes by
expanding engineering effort to increase the probe success
probability p. Table 4 shows that, at first, small changes in p are
needed to reduce Nprobe, but that diminished returns occur as
Nprobe decreases below Nprobe416.

Discussion

In this paper, the characteristics of a future programme is
looked at for exploring the local interstellar neighbourhood
with a fixed number of probes, each of which travels at a
constant cruise speed and uses only gravitational deflections to
change the direction. When designing such a programme, one
crucial metric is the amount of time it takes for the entire
programme to be completed, or at least the average time for a
typical probe to finish its pre-programmed trajectory. These
values depend on the maximum possible speed of probes, the
number of systems targeted, and the number of probes sent out
to do the exploring. Roughly speaking, doubling the number of
probes or the speed of those probes serves to halve the amount
of time to finish the desired exploration, while the completion
time is proportional to the target list – doubling the targets will
approximately double the time to visit them. The latter is
somewhat surprising, considering that twice the number of
targets will fill a volume roughly 21/3’1.26 times as large.
These conclusions are codified in the scaling laws (10) through
(12). A second important factor to examine is how the
probability of success alters the expected number of targets
visited by functioning spacecraft. Somewhat surprisingly,
increasing the number of probes launched will increase this
expected number only up to a certain amount; further probes
will not significantly change the sample of star systems
explored.
This study set out to examine how to optimize an

exploration programme based on ‘large’ spacecraft, such as a
fleet of Daedalus-class probes. As such, the scaling laws
obtained focus on how to maximize the results of such a
programme. However, it is worth commenting here about

considerations for an alternate choice, using a much larger
number of ‘small’ probes, such as a mass-produced collection
of solar sails or other beamed-propulsion concepts. It is
intuitively likely that if multiple probes are sent out along the
same path, with each probe having its own success probability
p per parsec, that the expected number of systems reached by
these probes will be higher than for a single probe. Stated
differently, this means the effective success probability peff of
these multiple probes should be larger than p. Although this
question has not been extensively studied, preliminary
comparisons show that this intuition is true, and that the
ratio (peff−p)/p is in the range 0.01–0.1, depending on the
number of extra probes sent along the same trajectory.
Next, future avenues of expanding this model are men-

tioned. One further direction to consider is the inclusion of the
motion of stars relative to the Solar System. Looking only at
radial velocities, i.e. the component of a star’s relative motion
towards or away from the Solar System, many of these are of
the order of 10−4c, within the range of probes in our
mathematical model. Thus, over the course of the simulated
interstellar exploration programmes, there can be significant
changes in both the distances between stars and the relative
order of the distances between systems (Matthews 1994). This
has two consequences for the scenario in this paper. The first is
that the relative distance between star systems may change
between the time the probes are launched, and when a
particular system is reached by one of the spacecrafts. This
adds a wrinkle not taken into account in the algorithm
presented here, namely the possibility it may be advantageous
to change the order that star systems are visited in order to use

Table 3. Expected number kNl of systems visited as a function
of the number of systems Ntarget targeted and the number of
probes Nprobe launched, for a fixed success probability per
parsec of p=0.90

Ntarget

Nprobe

4 8 12 16 24 32

20 3.13 6.46 6.88 7.67 – –

40 2.75 5.14 8.54 9.65 11.6 12.9
60 1.79 4.89 5.81 9.19 12.7 15.7

Table 4. Probability p of probe success per parsec necessary
to ensure the expected number of systems kNl=10 when
Ntarget=60 systems are visited

Nprobe p

4 0.971
8 0.940
12 0.930
16 0.906
20 0.891
24 0.883
28 0.867
32 0.865
36 0.863

Table 5. Number of exact solutions featuring systems not on
the target list, compared with the total number of choices for
the target list, for Ntarget systems out of a possible 11 targets
(Cartin 2012)

Ntarget

Solutions with
additional systems

Total number of
target list choices

4 66 330
5 109 462
6 107 462
7 24 330
8 24 165
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a favourable alignment. Note that this does not specifically
refer to a decreasing distance between two targets, but also
whether there is a decrease in the necessary angular deflection
for a transit between three targets in sequence, allowing the
probe to have a larger cruise speed for its entire journey. The
second result of including relative motions is the possibility
of increasing the cruise speed of a probe by a fortuitous
gravitational assist at a target star (Forgan et al. 2012),
although a decrease may happen as well. Both of these factors
would serve to increase the needed complexity of the
programme design algorithm used in the simulations, since
the cruise speed of all probes and the positions of the target
systems would be dynamic variables in the search for optimal
paths. As detailed in Appendix A, the current simulated
annealing algorithm looks for good paths by sampling random
choices, evaluating the cruise speed and time for completion
after the choice is made. However, if the target systemsmove in
the simulation, then the cruise speed would depend on the
positions of stars because of the necessary angular deflections,
but the positions of a given star system when a probe reaches it
can only be calculated when the time the probe arrives there is
known, which depends on the probe’s cruise speed. The result
is that the cruise speed for a given path would have to be
optimized, leading to extra calculations in the algorithm.
Finally, the implications are mentioned for the possibility of

probes from extraterrestrial civilizations to visit the Solar
System. As the results obtained here focus on optimizing the
exploration of a certain volume of interstellar space, there are
many instances where probes move back towards the Solar
System as they complete their mission. Thus, the progress of
probes does not match a wavefront always propagating away
from their origin (such as that modelled by Newman & Sagan
(1985), so it is somewhat difficult to extrapolate these values
beyond the scenarios considered. This can be seen in Fig. 5,
showing the cumulative time to complete the programme as
a function of total number of targets Ntarget. Although these
times are roughly linear for most of Ntarget values, there is a
marked change around Ntarget’55 for Nprobe=3 probes. This
alteration in behaviour may occur for larger number of probes,
only at greater choices of Ntarget. This question can only be
decided by explicitly carrying out the required simulations.
However, it is viable to say that the exploration programme of
a nearby civilization would reach the Solar Systemwithin a few
tens of kiloyears. Another issue is that, for all simulations
presented here, it is assumed that all systems within a certain
distance threshold are targeted by probes, but this is certainly
not the only choice. In particular, if a civilization is only
interested in stars of a similar spectral class to their own, there
is a chance that their interstellar exploration may not pick our
Sun as a target. However, the Solar System may still be visited
by an alien probe, solely for the possibility of a favourable
angular deflection provided by the Sun between two target
systems. Indeed, examining exact solutions using a branch-
and-bound method, for a total of 11 systems and a selection of
Ntarget<11, many of the obtained solutions include multiple
systems not on the target list (Cartin 2012), included only for
navigational purposes. A comparison of the number of

solutions with extra systems to the total number of target
lists possible is given in Table 5. Using relation (6) for the
perihelion rp of the probe as a function of maximum desired
heat flux Hmax, we find that

rp = (0.037AU)
����������������������
Ls

L⊙

( )
1MWm−2

Hmax

( )√
(15)

Thus, for an extraterrestrial probe using the Sun for gravita-
tional deflection, rp=0.014 AU, well within the orbit of
Mercury, and thus easily observed from Earth. This suggests
the question of whether there are favourable routes for probes
travelling through our Solar System using only gravitational
deflections – in other words, if probes of this nature moving
through the Solar System in between nearby stars might be
more likely to travel along a small number of trajectories.
Computing these paths,and targeting the resulting sectors of
the celestial sphere for SETI observations, makes for an
interesting future project.
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Appendix. Simulation algorithms

The algorithm used to compute the simulations presented in
this paper is detailed here, along with a discussion of simpler
heuristic methods, and a comparison of these methods to exact
solutions. All numerical results shown use the standard
numerical technique of simulated annealing in order to arrive
at close to optimal solutions for large datasets in a reasonable
amount of time. Obtaining exact optimal solutions requires
more computational effort, for example, by a branch-and-
bound search through likely candidates. However, using
simpler methods than simulated annealing may allow for
decent solutions obtained in even faster time; note that many
of the previous efforts (Bjørk 2007; Cotta & Morales 2009;
Forgan et al. 2012) use these heuristic methods to obtain
results, although Cotta and Morales supplement these with
various improvement techniques. Below, the simulated anneal-
ing algorithm used in this paper is detailed, as well as the two
heuristic methods, and compare these results with those of
exact solution obtained by a branch-and-bound method. The
interested reader may turn to Dasgupta, Papadimitriou and
Vazirani (Dasgupta et al. 2008) for further information about
these algorithmic methods.
Simulated annealing is a technique inspired by the physical

process of controlling heating and cooling of a material in
order to form large-sized crystals (Kirkpatrick et al. 1983). The
process starts with an initially random solution, and its fitness –
i.e. the value of the given objective function – is evaluated. This
is compared with the fitness of ‘nearby’ solutions, where the
initial solution is changed slightly by a random process. If the
new solution is better, it is kept in lieu of the original solution.
This is analogous to the heated material, where atoms may
shift around at large temperatures and improve the crystalline
structure, removing defects. However, it is possible that the
shift may increase the energy of the material system, for
increases less than a temperature-dependent function. The
higher the temperature, the more these jumps are allowed. In a
similar manner, the simulated annealing algorithm may keep
marginally worse solutions, in order to test the solution space
for deeper minima of the objective function. As the

temperature decreases, these possible shifts are not as large,
as it is hoped that the material has reached a local minimum in
its free energy. Similarly, for the simulated annealing process,
the amount of change allowed to the current solution
decreases, based on a decreasing parameter analogous to
temperature. In practice, multiple trials of the algorithm are
necessary to ensure that a reasonable swath of solution space is
searched effectively.
The particular version of the algorithm used here is detailed

in the pseudocode in Algorithm 6. In order to find the best
path, the simulated annealing algorithm is run for a number of
trials, typically Trials=60. The objective functionC used is the
Euclidean norm ∑ata

2, with ta the time it takes for probe a to
complete its particular mission. For n=Ntarget target systems,
each path is stored as an array giving a permutation of integers
in the range [1, n] – the order in which the probe visits each
system i after it leaves the source node i=0.When there is more
than one probe Nprobe=P considered, these additional probes
are assigned numbers in the range [n+1, n+P−1] and the path
array is a permutation of [1, n+P−1]; the upper bound is
n+P−1 since the source node i=0 also counts as a ‘probe’
node. The extra nodes are taken to have the same position as
the source node for purposes of calculating the objective
function of the overall probe collection. Since all probes are
ignored after they visit the last target system on their list, there
is no contribution to the objective function for portions of the
path array going from a target system to a ‘probe’ node. A trial
starts with a random permutation of these integers; nearby
solutions are obtained with ListSwitch by switching two of the
numbers in the path array, and stored in the array tempList.
The results of each individual trial are stored in the temporary
list tempMinPath, and compared with the overall minimum
norm path minPath; if tempMinPath has a lower objective
function, it is kept as the new best solution. In this
implementation, the temperature schedule used is 1/log
(k+1), for step k of the algorithm, up to a maximum of
(n+1)2 steps. This choice gives reasonably good results in a
short period of time.
As stated before, the simulated annealing algorithm is

not guaranteed to calculate the optimal solution, but is a
method to quickly arrive at one that is close to optimal. To find
the exact optimal solution, one must use other techniques
such as brute-force search or a branch-and-bound method;
the use of the latter in the interstellar exploration programme
will be detailed in a future paper. On the other hand, one
can use heuristic techniques which arrive at potential
solutions even more quickly than simulated annealing, at
the cost of larger differences with the cost of the solution
compared to the optimal one. Below are detailed two possible
heuristic greedy algorithms each probe can use to decide
which star system to visit next; as with the simulated annealing
algorithm, they pre-calculate the path, and require the knowl-
edge of coordinates and stellar characteristics of all possible
targets.
1. Fastest speed: For each leg of the journey, coming from

system i to system j, the next system k after j is chosen for the
largest possible cruise speed out of all possibilities i� j�k.
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This depends only on the deflection angle for the trajectory
i� j�k.

2. Shortest time: As the probe arrives at system j after the leg
i� j, the next system k is chosen so that the leg j�k has the
shortest possible travel time of all possible targets. Note that
this is a function both of the deflection angle for the path
i� j�k and the distance from j to k.

In both cases, as the path is assembled from each portion,
the allowed cruise speed may be reduced, because the required
angular deflection at a given system may decrease the speed
upper bound. As these two algorithms do not test that many
choices, compared to the simulated annealing algorithm,
they are both much faster to compute. However, there is a
corresponding decrease in optimality. To show this explicitly,

the simple case of Nprobe=1 and small number of target stars
(Ntarget414) is considered. In Table 6, the simulated annealing
and heuristic algorithms detailed above are compared with the
exact results, and the percent excess in time for the single probe
to complete its mission are given. One can see that both fare
rather poorly compared with the optimal solution, and even
the simulated annealing algorithm, which works rather well for
these test cases.

Table 6. Estimation errors in time for a single probe
(Nprobe=1) to complete its mission for the simulated
annealing algorithm, and two heuristic greedy algorithms –
fastest speed and shortest time – compared with the exact
optimal solutions obtained using a branch-and-bound
algorithm, with Ntarget given in the table. For the simulated
annealing algorithm, a total of 60 trials were used. When there
are eight or less target star systems, the exact and simulated
annealing solutions agree. Each of the three algorithms are as
described in the Appendix

Ntarget Simulated annealing% Fastest speed% Shortest time%

9 5.30 80.2 3.93
10 24.6 123 18.5
11 14.2 17.7 117
12 7.29 130 105
13 17.8 145 45.7
14 18.0 72.4 53.0

Algorithm A. 1. Simulated annealing (�ri)
minTime �∞
minPath �{}
for i � 1 to Trials

do

probeTrials � MAKERANDOMTRAIL(n+ P)
Eold � OBJECTIVEFUNCTION(proberTrail)
kmax � (n+ 1)2
tempMinTime � 1
tempMinPath � {}
for k � 1 to kmax

do

templist � LISTSWITCH(probeTrail)
Enew � OBJECTIVEFUNCTION(probeTrail)
T � 1/ log(k + 1)
if exp[(Eold − Enew)/T] . RANDOM()

then probeTrail�templist
Eold�Enew

{
if Enew , tempMinTime

then tempMinTime�Enew
tempMinpath�tempList

{




if tempMinTime , minTime

then minTime�tempMinTime
minPath�tempMinPath

{




output(minPath)
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