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Effect of wall suction on rotating disk
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This research investigates the effect of uniform suction on the absolute instability of
Type I cross-flow modes in the boundary layer on a rotating disk. Specifically, it is
designed to investigate whether wall suction would transform the absolute instability
into a global mode, as first postulated in the numerical simulations of Davies &
Carpenter (J. Fluid Mech., vol. 486, 2003, pp. 287–329). The disk is designed so
that with a suction parameter of 0.2, the radial location of the absolute instability
critical Reynolds number, RecA = 650, occurs on the disk. Wall suction is applied
from Re = 317 to 696.5. The design for wall suction follows that of Gregory &
Walker (J. Fluid Mech., 1960, pp. 225–234) where an array of holes through the
disk communicate between the measurement side of the disk and the underside of
the disk which is inside of an enclosure that is maintained at a slight vacuum. The
enclosure pressure is adjustable so that a range of suction or blowing parameters can
be investigated. The holes in the measurement surface are covered by a compressed
wire porous mesh to aid in uniformizing the suction on the measurement surface
of the disk. The mesh is covered by a thin porous high-density polyethylene sheet
featuring a 20 µm pore size which provides a smooth finely porous surface. A
companion numerical simulation is performed to investigate the effect that the size
and vacuum pressure of the underside enclosure have on the uniformity of the
measurement surface suction. Temporal disturbances are introduced using the method
of Othman & Corke (J. Fluid Mech., 2006, pp. 63–94). The results document the
evolution of disturbance wavepackets in space and time. These show a temporal
growth of the wavepackets as the location of the absolute instability is approached
which is in strong contrast to the temporal evolution without suction observed by
Othman and Corke. The results appear to support the effect of wall suction on the
absolute instability postulated by Thomas (PhD thesis, 2007, Cardiff University, UK)
and Thomas & Davies (J. Fluid Mech., vol. 663, 2010, pp. 401–433).

Key words: absolute/convective instability, boundary layer stability, rotating disk

1. Introduction
The mean flow over a rotating disk represents a canonical three-dimensional

boundary layer flow which exhibits a cross-flow instability. With the rotating disk,

† Email address for correspondence: tcorke@nd.edu
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Effect of wall suction on rotating disk absolute instability 705

there are two types of convective instabilities that can appear which are designated as
Types I and II. The Type I instability originates from the cross-flow component in the
boundary layer. The Type II instability arises from centrifugal and Coriolis forces over
the rotating disk. Faller (1991) showed that the Type II instability has a lower critical
Reynolds number than the Type I instability, namely Rec = 49 versus 285 (without
wall suction) (Malik, Wilkinson & Orzag 1981). Although the Type II instability is
amplified first, its lower amplification rate makes the more amplified Type I instability
the dominant mechanism of turbulence transition on the rotating disk.

The Type I instability leads to the growth of stationary and travelling waves that
spiral outward towards the edge of the disk. The growth and spatial characteristics
of the Type I cross-flow modes are predicted well by linear stability theory, which
indicates that the travelling Type I modes are the most amplified. However, the
initial amplitudes of stationary cross-flow modes are exceedingly sensitive to surface
imperfections (roughness), and therefore, as a result, can be the dominant mechanism
for transition to turbulence. The stationary cross-flow modes appear as co-rotating
vortices that spiral out from the centre of the disk. The flow visualization of Kohama,
Kobayashi & Takamadate (1980) provides an excellent example of the stationary
cross-flow modes in a rotating disk boundary layer.

Malik et al. (1981) showed that the azimuthal mode number, n, of Type I cross-
flow modes on a rotating disk increases with Reynolds number according to the linear
relationship

n= βRe, (1.1)

where β=0.0698 is the most amplified azimuthal wavenumber and Re is the Reynolds
number, defined as

Re= r
(ω
ν

)1/2
, (1.2)

where r is the local radius on the disk, ω is the angular velocity at the surface of the
disk at radius r and ν is the kinematic viscosity of the air over the disk. For a fixed
rotation speed, therefore, r∝ Re.

One of the first experimental investigations of Type I cross-flow modes on a
rotating disk was performed by Smith (1946). Gregory, Stuart & Walker (1955)
followed up with an experimental and theoretical investigation. Utilizing a china-clay
surface visualization technique, they revealed two critical radii, one within which the
flow was purely laminar, and the other outside which the flow was fully turbulent.
In between, they recorded the presence of 28–31 spirals equally spaced around the
disk, with a spiral angle of 14◦. The outboard radius where the boundary layer was
turbulent was at Re' 530.

Surface visualization techniques such as china clay generally reveal stationary
cross-flow modes. Wilkinson & Malik (1985) traced the origin of stationary cross-flow
modes to minute dust particles randomly placed on the surface of the disk. This
affected the transition Reynolds number, lowering it from a maximum of 556 on a
‘clean’ disk to 530 on a ‘less clean’ disk.

Corke & Knasiak (1998) and Corke & Matlis (2006) exploited the sensitivity
of the stationary cross-flow modes to surface roughness by depositing arrays of
ink dots on the disk surface to enhance a narrow band of azimuthal and radial
wavenumbers. The measured velocity fluctuation time series were decomposed into
stationary and travelling components, and their development was documented in the
linear and nonlinear growth stages leading up to turbulence. In the nonlinear stage,
they documented a resonant phase locking between pairs of stationary and travelling

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

73
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.735


706 J. Ho, T. C. Corke and E. Matlis

modes, and low-azimuthal-wavenumber stationary modes, 36 n6 5, that were evident
at transition in the classic rotating disk flow visualization of Kohama et al. (1980).
This is further discussed by Corke, Matlis & Othman (2007).

Lingwood (1995) was the first to discover the absolute instability of travelling
cross-flow modes on the rotating disk while performing linear stability analysis that
included Coriolis and streamline curvature effects. She predicted a critical Reynolds
number for the absolute instability of RecA = 513. This was later corrected to be
RecA = 507.3 (Lingwood 1997), which was verified in numerical flow simulations by
Davies & Carpenter (2003) and Pier (2003). These indicated that a critical Reynolds
number (or critical radius for a given rotation speed) existed at which disturbances
grew temporally, leading to an unbounded linear response and presumably turbulent
transition.

Although the existence of the absolute instability of the boundary layer over a
rotating disk is not in dispute, its role in transition to turbulence remains a question.
Lingwood (1995) observed that the transition location in a number of experiments
based on flow visualization was within ±3 % of the absolute instability critical radius.
Lingwood therefore surmised that the absolute instability was responsible for the onset
of turbulence in this flow. However, as pointed out in the careful low-disturbance
experiments of Wilkinson & Malik (1985), transition occurred as high as Re= 556, or
approximately 9 % higher than RecA . This result suggested that the absolute instability
is not the cause of transition to turbulence in the rotating disk boundary layer.

Lingwood (1996) performed an experimental study designed to capture the temporal
growth associated with the absolute instability. This involved introducing unsteady
disturbances into the boundary layer and following their development in space and
time. The unsteady disturbance was a short-duration air pulse that emanated from
a hole in the disk surface. The pulse occurred once every disk rotation, with every
passage of the hole in the disk over the air source. The location of the pulse was
just outboard of the minimum critical radius for Type I cross-flow modes. Lingwood
followed the evolution of the azimuthal velocity fluctuations with a hot-wire sensor
placed at different radial and azimuthal distances from the air pulse. Ensemble
averages of the time series, correlated with the azimuthal position of the air pulse,
revealed wavepackets. When the leading and trailing edges of the wavepackets were
presented in terms of their Reynolds number (radius) and time (azimuthal position
with respect to the disk rotation speed) they revealed a tendency for an accelerated
advancing of the trailing edge. Unfortunately Lingwood’s measurements stopped short
of the critical radius of the absolute instability. However, Lingwood extrapolated the
growth of the wavepacket and suggested that the growth was tending towards pure
temporal. She took this to be evidence that the transition to turbulence was the result
of the absolute instability.

A different picture has emerged following numerical simulations by Davies &
Carpenter (2003). They solved the linearized Navier–Stokes equations for conditions
of the rotating disk flow using the velocity–vorticity method introduced by Davies
& Carpenter (2001), in which they introduced a small impulsive disturbance. When
assuming a spatially inhomogeneous flow, the numerical results initially agreed
well with those of Lingwood (1995). However, instead of the unlimited temporal
growth that one would expect from an absolute instability at RecA , the temporal
growth saturated. Based on this, Davies & Carpenter (2003) surmised that the
absolute instability was not the mechanism of transition to turbulence, and instead
the transition was due to the earlier growing Type I modes.

Following Lingwood (1996), Othman & Corke (2006) experimentally investigated
the absolute instability of the rotating disk boundary layer. Rather than introducing
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temporal disturbances through a hole in the disk, they utilized an air pulse through a
hypodermic tube that was located outside the boundary layer. This avoided the effect
of having a hole in the disk surface which was observed by Wilkinson, Malik & Orzag
(1981) to create a stationary disturbance wedge that could locally modify the mean
flow. In addition, because the external air pulses used by Othman and Corke were not
triggered at a particular disk rotation position, they de-emphasized imperfections in the
disk surface (roughness and waviness) that would emerge in the ensemble-averaged
velocity time series used to correlate the development of disturbance wavepackets.

Othman & Corke (2006) utilized a hot-wire sensor that was placed at different
radial and azimuthal locations to follow the growth of azimuthal velocity disturbances
in space and time. The results for a low-amplitude pulse revealed that the spreading
of the disturbance wavepacket did not continue to grow in time as RecA was
approached. Rather, the spreading of the trailing edge of the wavepacket decelerated
and the wavepacket amplitude asymptotically approached a constant value. This result
supported those of Davies & Carpenter (2003).

Pier (2003) conducted a secondary instability analysis for the rotating disk flow that
was perturbed by finite-amplitude cross-flow vortices that were expected to develop
through the absolute instability mechanism. He showed that the perturbed flow was
itself absolutely unstable, thus providing a possible explanation for the absence of
a dominant temporal frequency due to the primary absolute instability in physical
experiments. The higher initial amplitude case of Othman & Corke (2006) was aimed
at examining the effect of the finite-amplitude disturbances. The wavepackets in that
case displayed an abrupt increase in the maximum amplitude just beyond RcA that
was not present at the lower initial amplitude, which suggested that the development
was not purely convective. Although the most amplified frequencies appeared to
be weakly nonlinear, the higher frequencies which were expected to be absolutely
unstable continued to show linear characteristics with the higher initial amplitude.
Therefore, the conditions did not appear to satisfy those needed to excite a global
instability.

In an effort to explain the variability of the results on the role of the absolute
instability on transition, Healey (2010) performed investigations of the linearized
complex Ginzburg–Landau equation to model the propagation of a wavepacket
through a weakly inhomogeneous unstable medium which applied to the rotating
disk boundary layer. The results demonstrated that as a result of strong detuning of
the absolute frequency, an absolutely unstable wave is only absolutely unstable over
a finite range of radii, whereupon it reverts back to a convectively unstable wave.
As suggested by Davies, Thomas & Carpenter (2007), this detuning exerts a strong
stabilizing influence. However (Healey 2010) went on to indicate that boundaries
(like the edge of a finite disk) can strongly affect the global modes, and suggested
a correlation between the Reynolds numbers at transition and that at the edge of
the disk.

In order to investigate this further, Imayama, Alfredsson & Lingwood (2013)
performed rotating disk experiments with different edge configurations which included
an open edge and a non-rotating extension of the disk surface. The edge Reynolds
number was varied by changing the disk r.p.m. The mean azimuthal velocity profiles
were found to be affected at radii that were within 5 mm (10 boundary layer units) of
the disk edge. Otherwise, their general conclusion was that Healey’s (2010) suggested
correlation between the disk edge and transition Reynolds numbers was weak, if
present at all.

Pier (2013) weighed in on this issue with an experimental investigation which
emphasized measurements in the region closely surrounding the edge of the disk.
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A particular emphasis was placed on defining the onset of natural velocity fluctuations.
Not surprisingly, the edge of the disk was found to be a strong source of fluctuations.
With regard to the onset of transition, the results possibly pointed towards a weakly
stabilizing edge effect predicted by Healey (2010), which Pier also points out could be
a negligible effect. Thus Pier concludes that Healey’s theory cannot be confirmed, and
also any attempt to compare data obtained through different experiments and transition
criteria cannot be justified. Such criteria have been the subject of investigations by
Siddiqui et al. (2013) and Imayama, Alfredsson & Lingwood (2014).

Motivated by this exchange, Appelquist et al. (2015) performed a linearized Navier–
Stokes simulation of the boundary layer over the rotating disk to seek to document
global instability growth. In addition to radial outward travelling modes, it investigated
disturbances from the edge of a finite disk that could propagate radially inward. They
concluded that there is a linear global instability provided that the Reynolds number
at the edge of the disk is sufficiently larger than the critical Reynolds number for the
onset of absolute instability. In this, presumably the velocity disturbances produced at
the edge of the disk feed the instability.

The first theoretical study of suction on a rotating disk was performed by Stuart
(1954). Stuart showed that the boundary layer thinned with the addition of suction,
defined by a suction parameter, a=−vz0/

√
νω, where −vz0 is the wall-normal velocity

at the disk surface. He observed that the radial and azimuthal flow decreased with
increasing suction. However, he indicated that there was no significant change in
the shape of the azimuthal or radial velocity profiles, so that he expected that the
region of laminar flow would not be increased. Later, Dhanak (1992) performed a
theoretical investigation on the effects of uniform suction on the stability of a rotating
disk. He obtained exact linear equations governing the development of infinitesimal
disturbances to the steady flow on a rotating disk. A parallel-flow approximation was
used to determine the effect of suction on the instability. This indicated that suction
had a stabilizing effect. The wave angle of spiral instability waves was shown to
decrease with increasing suction.

The first theoretical investigation on the effect of suction on the absolute instability
of a rotating disk boundary layer was performed by Lingwood (1997). Using linear
stability analysis, she calculated the critical radii at which the onset of absolute
instability occurs for different values of suction. Based on this, she concluded that
suction had a stabilizing effect on the stationary and travelling Type I modes, and
stationary Type II modes. With regard to the absolute instability, wall suction increased
RecA , for example from 507.3 for a = 0 to 803.0 for a = 0.4. Wall blowing would
similarly decrease RecA .

Thomas (2007) and later Thomas & Davies (2010) also performed theoretical
investigations of the effect of suction on the rotating disk boundary layer. They solved
the problem assuming both parallel and non-parallel flows. The parallel-flow solutions
matched those of Lingwood (1997). However, the non-parallel-flow simulations
resulted in somewhat unexpected behaviour whereby disturbances placed within the
region of absolute instability exhibited temporal growth and radial inward propagation.
They observed that the flow was globally stable when a 6 0, and very clearly
globally unstable when a= 1. Verification of globally unstable flow at lower suction
parameters was more difficult for them to assess because of prohibitively long
simulation times, although they determined that with a= 0.5 the flow was most likely
globally unstable.

Gregory & Walker (1953) performed an early experimental study on the effect of
wall suction on a rotating disk. Their disk was 36 in. in diameter, of which 28 in.
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Effect of wall suction on rotating disk absolute instability 709

was porous. The disk had 0.5 in. diameter holes drilled through in an evenly spaced
azimuthal ring pattern. These holes communicated between the measurement side
of the disk and an enclosure on the underside of the disk. The enclosure was
7 ft × 7.5 ft × 1 ft deep. The measurement side of the disk was covered by a
perforated aluminium sheet with 30 0.125 in. diameter holes per square inch. This
was then covered by a metal woven wire cloth that was dry-mounted onto the
perforated aluminium sheet. The other surface of the disk consisted of a dural skin
that was 0.0625 in. thick. It included 72 evenly spaced 0.004 in. wide radial slits
that were cut in the dural skin between the 3 and 14 in. radius circles. Suction was
applied by lowering the pressure in the enclosure.

Gregory and Walker used a hot-wire anemometer and a microphone probe to
investigate the state of the boundary layer in their experiment. Using the slitted
surface disk at rotational speeds between 550 and 1250 r.p.m., they found that with a
suction parameter of a= 0.4, the turbulent transition Reynolds number increased from
524 to 632. This contradicted Stuart (1954), who postulated that there would be little
effect of suction on the boundary layer stability. The transition Reynolds number of
632 observed in this experiment was less than the RecA = 803 that would be expected
to occur with the a= 0.4 suction parameter. Therefore, this did not provide proof of
the global absolute instability with suction on the rotating disk.

Given this background, the object of our research was to experimentally investigate
the effect of wall suction on the growth of Type I travelling cross-flow instability
modes in the boundary layer on a rotating disk. Specifically, it was designed to
determine the effect that wall suction had on the absolute instability, and whether it
led to a globally unstable flow as postulated by Thomas (2007) and Thomas & Davies
(2010). The experimental approach would be designed to capture the temporal growth
of disturbance wavepackets that would be associated with the absolute instability at
RecA . This would involve introducing unsteady disturbances into the boundary layer
inboard of RecA , and following their development in space and time. We proposed to
utilize the technique of Othman & Corke (2006), which introduced the disturbances
from outside the boundary layer. The amplitudes of the disturbances would be
verified to satisfy the linear stability assumptions used in the analysis of the absolute
instability (Lingwood 1995; Thomas 2007; Thomas & Davies 2010). The spectral
content of the disturbances would be designed to cover the most amplified range of
Type I cross-flow modes and absolutely unstable modes. Comparisons would then be
made with the wavepacket development without suction, documented by Othman &
Corke (2006).

2. Experimental set-up

The experiment was designed to produce conditions on the rotating disk so that
the critical radius of the absolute instability with a particular suction parameter
would be on the disk. The location of the absolute instability is a function of the
suction parameter, a, which determines RecA . For a fixed disk diameter, the disk
r.p.m. determines the radius on the disk where RecA occurs. In our case, the diameter
of the disk was 62.23 cm (24.5 in.). At a chosen suction parameter of a = 0.2,
RecA = 650. A disk r.p.m of 826 was then chosen, which would place RecA at the
disk radius of rcA = 27.85 cm, which was 90 % of the disk radius. The rcA was then
33 mm from the edge of the disk, which was then six times further than the distance
where (Imayama et al. 2013) observed an effect on the mean velocity profile. In
addition, the wall suction extended beyond rcA to further minimize the possibility
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rcl

Porous wall

Parameter Conditions

Disk r.p.m. 826
86.5

a 0.2
650
27.85
–0.7

FIGURE 1. (Colour online) Rotating disk with wall suction design conditions.

of disturbances propagating inward from the disk edge. The disk conditions are
summarized in the table in figure 1(b). Figure 1(a) shows the region of the porous
surface where wall suction was applied relative to the two critical radii: (1) that
of the minimum critical Reynolds of the Type I cross-flow mode without suction,
RecI , and (2) the critical Reynolds number of the absolute instability for a = 0.2,
RecA . We note that the suction starts just outboard of RecI , and extends outboard
of RecA .

The rotating disk was fabricated from a 3.15 cm (1.25 in.) thick die-cast aluminium
plate. The design of the disk to allow uniform suction through the surface followed
the concept of Gregory & Walker (1960). Details of the design of the rotating disk
are presented in appendix A.

A traversing mechanism was used to move a hot wire through the boundary
layer over the disk. Two separate stepper motors controlled the placement of the
hot wire in the radial and wall-normal directions over the disk. The wall-normal
motion further utilized a Schaevitz 125 DC-EC linear variable differential transformer
to provide feedback on the position. The accuracy of the wall-normal motion was
1.43 × 10−4 mm. There was no feedback on the horizontal motion, but tests on the
motion concluded that its repeatability was within one motion step or 0.002 mm. The
accuracy and repeatability of both directions of motion were verified using a Keyence
LS-7600 high-precision digital micrometer.

The hot wire was operated in a constant-temperature mode using a Dantec 56C01
CTA unit. The overheat ratio used for the experiments was 1.5. The hot-wire sensor
consisted of a 0.00381 mm (0.00015 in.) diameter platinum-coated tungsten wire that
was soldered to the ends of the broaches. The broaches were more than 20 times
longer than the boundary layer thickness in order to minimize any passive effect of
the probe body on the flow.

For optimum resolution, the anemometer output was divided into AC and DC
signals. The AC signal was obtained by passing the analogue signal through a
band-pass filter with the high-pass frequency cutoff set to remove the DC (>0.1 Hz)
and the low-pass frequency cutoff set at one-half the sampling frequency to prevent
frequency aliasing. The filtered AC signal was amplified to use the full range of the
analogue-to-digital (A/D) converter and thereby minimize digital quantization error.
The DC containing signal was separately DC shifted and amplified. Following this
analogue conditioning, the AC and DC signals were input to the A/D converter in
the data acquisition and control computer (DAQ). Data acquisition and control was
performed by a United Electronic Industries DNA-PPC5 ethernet DAQ. This included
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Flexible tube connected to
pressure line

Normally
closed

solenoid
valve

Normally
open

solenoid
valve

0.2032 mm air jet

1.0

(a)

(b) Othman & Corke (2006)
Present paper0.8

0.6

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIGURE 2. (Colour online) Schematic of the air-pulse disturbance generator (a) and the
ensemble-averaged pulse duration with time normalized by the disk rotation period, T (b).

a 16-bit A/D and a 32-bit D/A converter. These were operated using specially
developed software that controlled the traversing mechanism, hot-wire anemometer
voltage acquisition and the generation of air pulses used in producing disturbance
wavepackets.

The hot wire was calibrated in a dedicated calibration jet facility. The calibration
was performed over the full range of velocities that encompassed the maximum disk
velocity. The velocity–voltage pairs from the hot-wire calibration were best-fitted to
a fourth-order polynomial which became the calibration relation between hot-wire
voltage and velocity in the disk experiments. The uncertainty of the calibration was
0.01 m s−1. The hot wire was oriented in the disk experiments to be primarily
sensitive to the azimuthal velocity component.

As mentioned above, the method for introducing temporal disturbances into the
boundary layer was based on that developed by Othman & Corke (2006). A schematic
of the system is shown in figure 2(a). A specially designed hypodermic tube was
positioned above the disk outside the boundary layer. The hypodermic tube had a
0.2 mm inside diameter and was part of an assembly that was rigidly held from a
mount on the traversing mechanism. Both the wall-normal and radial positions of
the hypodermic tube were adjustable. The air pulse came from a regulated pressure
source. Two solenoid valves controlled the duration of the pulse. One solenoid
valve was normally open and the other one was normally closed. Square-wave time
series were sent to the valves. The combination of the two square waves controlled
the duration of the air pulse. That control plus the source pressure level gave the
necessary control to produce linear amplitude disturbances in the boundary layer.
The ensemble-averaged velocity pulse duration for one disk rotation is shown in
figure 2(b). This was obtained by placing a hot-wire sensor near the exit of the
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FIGURE 3. Validation of simulation boundary layer profiles against the exact solution for
a solid rotating disk.

hypodermic tube. For all of the measurements, the distance of the air-pulse jet from
the disk surface was 4 mm, which corresponded to z∗= 9.3. Based on mean velocity
profiles at the radial location of the air-pulse jet, this corresponded to approximately
three times the boundary layer height.

2.1. Computational fluid dynamic simulation disk design
Prior to fabricating the disk, computational fluid dynamic (CFD) simulations were
performed to aid in the design of the suction system. The objective was to design
a system that could produce a region of uniform wall suction around the location of
RecA . The details of the simulation are presented in appendix B.

The simulation was performed for the disk spinning at 1500 r.p.m., corresponding to
ω= 157.1 s−1. This was an upper limit for the rotating disk set-up at which a suction
parameter of a= 0.4 located the RecA = 803 over the suction portion of the disk, at
rcA = 25.5 cm. In this case, for a= 0.4, vz0 =−2 cm s−1. This r.p.m. condition was
meant to represent a worst case with regard to any induced flow within the enclosure
that would influence the distribution of suction through the holes in the disk.

A first validation of the rotating disk simulation simply involved comparing the
resulting boundary layer mean velocity profiles against those of the exact solution
for a solid disk, without through holes. The result is shown in figure 3, where the
symbols represent the simulation results and the curves represent the exact solution
corresponding to the standard normalized radial, H, tangential (azimuthal), F, and
axial, G, velocity components. The simulation results and exact solution were found
to agree very well.

Following this validation with a solid disk, the simulation was used to investigate
the sensitivity of the radial pressure gradient over the measurement side of the disk
to the suction enclosure dimension. The disk in the simulation included the through
holes between the measurement and the underside of the disk. The wire mesh covering
over the holes was not included in this simulation. Two different enclosure sizes were
investigated: the first was 5 ft × 5 ft, which matched that of Gregory & Walker (1960),
and the second was twice as large (10 ft × 10 ft). Both enclosures had a depth of
15 in. The initial static pressure in the enclosure was set to be atmospheric. The results
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FIGURE 4. (Colour online) Simulation results of the effect of the under-disk enclosure
size on the radial distribution of wall-normal velocity through the holes through the disk
with rotation. The wire mesh covering was not included.

Wire mesh C2 (m−1)
1
α
(m−2) k

LFM-5 5.8× 107 6.76× 1011 8.4× 104

LFM-10 2.1× 107 3.04× 1011 3.2× 104

LFM-25 4.3× 106 1.11× 1011 7.4× 103

TABLE 1. The characteristics of the different wire mesh coverings investigated for the disk.

are shown in figure 4. The rotation of the disk caused a lowering of the pressure in the
enclosure which resulted in air being drawn through the holes from the measurement
side of the disk. The wall-normal velocity normalized by the maximum value, vz/vzmax ,
is shown as a function of the radial position on the disk. The simulation indicates
that doubling the size of the enclosure below the disk would not change the radial
uniformity by an appreciable amount. As a result, the smaller enclosure size was used
in the experiment.

As indicated previously, Gregory & Walker (1960) had used a porous wire mesh
to cover the suction holes in the disk. The simulation was then used to investigate
this aspect, in both the necessity and the degree of the added pressure drop over the
holes. Figure 5 shows the simulation results without the holes covered. This is for the
smaller 5 ft planform enclosure, and without active suction. The simulation indicates
fairly large passive suction with velocities ranging from 2 to 4 m s−1. In addition, the
simulation reveals some passive blowing that occurs in the radially inboard side of the
holes through the disk. Detailed analysis of this indicated a small separation bubble
near the top edge of the holes.

The results in figure 6 are for the same conditions as figure 5 except for the
addition of a pressure drop corresponding to a pressed wire mesh screen with the
characteristics of LFM-25 in table 1 placed over the holes. Immediately apparent in
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FIGURE 5. (Colour online) Radial distribution of wall-normal velocity at the disk surface,
with rotation and without active suction or a wire mesh covering.
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FIGURE 6. (Colour online) Radial distribution of wall-normal velocity at the disk surface,
with rotation, a wire mesh covering and suction with a= 0.4.

the results is a two-order-of-magnitude reduction of the passive suction velocity with
the addition of the pressure drop producing mesh covering. In addition, except at the
most outboard location, there is no passive blowing through the holes. This justifies
the use of the porous mesh covering by Gregory & Walker (1960).

In this simulation, the target vz0 =−2 cm s−1 resulted in RecA = 803. The simulation
indicated that that suction velocity was achievable, and that the suction velocity was
relatively constant near the target radius. This was the final step in solidifying the
design of the rotating disk with wall suction set-up.
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3. Experimental results
3.1. Basic flow with suction

The challenge in the experiment was to have surfaces on the measurement side of
the disk that were (1) porous, (2) smooth and (3) uniform in thickness. As discussed
in the introduction, the stationary cross-flow modes are highly receptive to surface
roughness. Wall suction, which thins the boundary layer, makes the requirement on
achieving a smooth surface critically important. Furthermore, wall suction increases
RecA , meaning that laminar flow needs to be maintained out to larger radii. The
uniformity of the thickness of the porous sheet covering the disk is important to allow
hot-wire measurements as close as possible to the disk surface. The requirement on
the thickness uniformity was a deviation of less than 0.13 mm in order to resolve
the peak in the cross-flow mode wall-normal eigenfunction that occurs at z∗ ' 1.5.

A number of porous measurement surfaces had been investigated. They consisted
of an uncovered compressed wire mesh, the same compressed wire mesh with
two different stretched fabric coverings, and the same compressed wire mesh that
was covered by a 1.6 mm thick sheet of porous high-density polyethylene. The
polyethylene sheet had a 20 µm pore size. The uncovered compressed wire mesh
surface was comparable to one of the surfaces used by Gregory & Walker (1960).

These different surfaces were examined in terms of (1) the ability to match
theoretical wall-normal velocity profiles with different suction parameters and (2) the
ability to maintain laminar flow out to the vicinity of the radius location of RecA . Of
these, the second became the greater challenge, since even minute surface roughness
could result in dominant stationary cross-flow modes that would lead to turbulent
transition inboard of the RecA location. This is presumed to be what occurred in the
suction experiments of Gregory & Walker (1960), in which transition was reported to
occur well inboard of what would have been RecA for their a= 0.4 suction parameter.

Of the four surfaces examined, only the polyethylene sheet was smooth enough to
maintain laminar flow out to a radius close to RecA = 650 with the desired suction
parameter of a = 0.2. Unlike the stretched fabric coverings, the polyethylene sheet
was semi-rigid and therefore could not be stretched over the disk surface. Instead, the
sheet was bonded to the solid centre portion of the disk, and clamped by a ring at the
outer edge of the disk. The outer clamping ring was the same as that shown with the
fabric covering in figure 23(d). An issue with the polyethylene sheet was that it was
not precisely uniform in thickness. As a result, there was a slight once-per-revolution
waviness of the surface of 0.08 mm. This did not appear to affect the character of the
cross-flow instability. However, it limited how close to the disk surface the hot wire
could be traversed. In general, measurements down to the location of the maximum
azimuthal velocity fluctuation, z∗ ' 1.5, were achievable.

Mean azimuthal velocity measurements were performed over the polyethylene sheet
that covered the disk in order to compare them with the theoretical velocity profile,
as well as previous measurements of Gregory & Walker (1960). In order to compare
with Gregory and Walker, the measurements were taken at the location on the disk
where Re = 319. To accomplish this, the disk r.p.m. was reduced to 600, which
corresponded to ω= 62.8 s−1. The results are shown in figure 7 for a desired a= 0.2
suction parameter. The wall coordinate and mean azimuthal velocity are presented
in similarity form, z∗ = z(ω/ν)1/2 and Uθ/(rω) respectively. The theoretical mean
azimuthal velocity profiles are shown by the different curves corresponding to different
suction parameters. These were found by the solution of the four ordinary differential
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FIGURE 7. (Colour online) Wall-normal profiles of the azimuthal velocity at Re= 319
for ω= 62.8 s−1 and a= 0.2.

equations governing the viscous mean flow over a rotating disk in similarity variables
(Schlichting 1968), namely

F2 −G2 + F′H − F′′ = 0, (3.1)
2FG+G′H −G′′ = 0, (3.2)
P′ +H′H −H′′ = 0, (3.3)

2F+H′ = 0, (3.4)

where
u= rωF(ζ ), v = rωG(ζ ), w=√νωH(ζ ), (3.5a−c)

p= p(z)= ρνωP(ζ ) (3.6)

and ζ = z(ω/ν)1/2. The standard boundary conditions were used, namely

ζ = 0: F= 0, G= 1, (3.7)
P= 0, H =−a; (3.8)

ζ =∞: F= 0, G= 0. (3.9)

The equations were solved using a Runge–Kutta–Gill integration between collocation
points. To facilitate this, values for F′(0) and G′(0) from Dhanak (1992) were used
based on the different suction parameters, a.

For the present results at Re = 319 in figure 7, the measured azimuthal velocity
profile follows the shape of the theoretical profile for the intended a= 0.2 reasonably
well. We note that some points fall between the a= 0.2 and a= 0 theoretical profiles.
As is evident, the differences between the two theoretical profiles, as well as that for
a= 0.4, are small. We did our best to fine tune the wall suction as much as possible
to be closest to the a= 0.2 profile. The unavoidable azimuthal thickness variation in
the polyethylene sheet covering the disk prevented measurements closer to the disk

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

73
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.735


Effect of wall suction on rotating disk absolute instability 717

Height of waviness

0.2 0.4 0.6 0.8 1.00

1

2

3

4

5

6

FIGURE 8. (Colour online) Wall-normal profiles of the azimuthal velocity at different
radial locations on the disk for ω= 86.5 s−1 and a= 0.2.

surface. The horizontal line marks the lowest height before which the hot wire would
touch some part of the disk surface. The comparable measured azimuthal velocity
profiles of Gregory & Walker (1960) were observed to deviate from the theoretical
profile closer to the disk surface. They observed that the profiles were fuller, indicating
a lower value of the shape factor for the azimuthal component. At least in the limited
profile extent of the present measurements, this was not the case.

The measured mean azimuthal velocity profiles at the radial locations corresponding
to 518 6 Re 6 620 for the rotating disk conditions that were listed in the table in
figure 1 are shown in figure 8. The radius Re = 518 is significant because that was
the location at which the air-pulse disturbances were introduced. The radius Re= 620
is slightly inboard of RecA = 650 which was expected with a= 0.2. Ideally, we wanted
to achieve a uniform suction parameter over all of the disk. However, this proved to
be difficult as the r.p.m. of the disk was increased. The simulation results that were
shown in figure 6, however, indicated that the change with radius would asymptote
in the vicinity of RecA . This was found to be the case, whereby the velocity profiles
stopped changing with increasing radius (Re), and converged to a single profile for
Re > 611. The process of setting the wall suction conditions was then to adjust the
pressure in the enclosure below the disk so that the mean azimuthal velocity profile in
the outer part of the boundary layer, z(ω/ν)1/2 > 2, matched the theoretical profile for
a= 0.2. With this, we focused on the outer part of the profile because the portion near
the disk surface appeared to lag in its radial development. A similar deviation from the
theoretical mean velocity profile nearer to the wall was observed by Gregory & Walker
(1960). We then examined the impact this would have on the stability characteristics
of the boundary layer.

3.2. Natural instability development with suction
The linear stability of the basic flow was documented through spectral analysis of the
azimuthal velocity fluctuations at different radial locations on the disk with the a= 0.2
suction parameter. This involved 2048-point fast Fourier transforms (FFTs), which for
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the 10 kHz sampling frequency provided a frequency resolution of 4.88 Hz, or for
stationary cross-flow modes an azimuthal mode number resolution of 1n' 0.36.

The velocity fluctuations were not decomposed into contributions due to stationary
and travelling Type I modes, as in Corke & Knasiak (1998). Consequently, the
measured velocity fluctuations included both stationary and travelling Type I
cross-flow modes. Since no attempts were made to separate the velocity fluctuations
into travelling and stationary components, it followed that the abscissae of the spectra
plots are in units of frequency and not normalized by the disk rotation frequency to
represent the stationary azimuthal mode number, n. Linear theory predicts that the
most amplified travelling modes move at approximately 85 % of the local disk surface
velocity. This had been experimentally substantiated in the wavenumber measurements
in a rotating disk boundary layer by Corke & Matlis (2006).

The instability mechanism in the boundary layer selectively amplifies the band of
frequencies it prefers. At radii supercritical of the Type I instability, (Re/RecI )> 1, we
expected to see a range of frequencies (mode numbers) that represented exponentially
growing and decaying cross-flow modes. We performed linear stability analysis of the
basic flow for various suction parameters corresponding to the mean azimuthal
velocity profiles that were shown in figure 8. This utilized a generic spectral
collocation code called ‘Linear.x’ that was developed by Herbert (1990). Based on the
theoretical mean profile shown in figure 8 for a = 0.2, we obtained RecI ' 365. For
the same conditions, using a linearized Navier–Stokes formulation, Dhanak predicted
RecI ' 375 (Dhanak 1992).

The mean velocity profiles at different radius Reynolds numbers that were shown in
figure 8 indicated that the suction parameter was higher at the inboard radii, Re< 611.
This would have an effect on the growth of disturbances in the boundary layer. To
examine this, we documented the radial growth of the maximum azimuthal velocity
fluctuations in the boundary layer that occurred at 400 and 450 Hz. This is shown
in figure 9. These frequencies were selected because they were in the most amplified
band of Type I cross-flow modes just prior to turbulent transition in the experiments
by Othman & Corke (2006), without wall suction.

The radial development of the azimuthal fluctuations at 400 and 450 Hz is presented
with log–linear axes in figure 9 to highlight exponential growth. The energy at these
frequencies is likely to consist of a combination of stationary and travelling cross-flow
modes. The amplitude development indicates two exponential growth regions. The
first extends to approximately Re ' 518. This has an extremely low dimensionless
amplification rate of αi = 0.0029 which is consistent with the initially higher suction
that existed at the inboard radii shown in figure 8. The second exponential growth
region exhibits a significantly higher amplification rate of αi = 0.0141. This region
corresponds to where the mean profile converges towards the theoretical profile for
a = 0.2. The measured amplification rate compares well with our linear stability
prediction for travelling cross-flow modes based on the theoretical profile for a= 0.2,
for which αi = 0.0122. We note that this amplification rate is approximately one-half
the theoretical linear amplification rate for a= 0, which was verified in the experiment
without suction by Othman & Corke (2006). This provides the first evidence that
the natural instability characteristics of the boundary layer approaching RecA were
consistent with linear theory predictions at our target a= 0.2 suction condition.

Plots of the power spectral density of the azimuthal velocity fluctuations for the
range 565 6 Re 6 620 are shown in figure 10. The amplitude axis of the spectra is
a log scale to better present the energy content over the frequency band of interest.
At each Reynolds number, the different curves correspond to different wall-normal
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FIGURE 9. Radial growth of the maximum azimuthal velocity fluctuation amplitude at
frequencies of 400 and 450 Hz for a rotating disk with ω= 86.5 s−1 and a= 0.2.

locations, ranging from z∗= 1.414 to z∗= 3.374. The spectra document an amplifying
band of frequencies between approximately 300 and 600 Hz, with the peak at
approximately 450 Hz. Based on these spectra, there is no indication of turbulent
transition at least up to Re= 620.

In order to determine whether the frequencies in this amplified band correspond to
linear Type I travelling cross-flow modes, the wall-normal amplitude distribution was
investigated. This is shown in figure 11 for the two frequencies of 400 and 450 Hz at
Re= 565 and 585, which were in the middle of the higher growth region in figure 9.
The curve in the plots is the linear theory azimuthal velocity fluctuation eigenfunction
for a = 0.2. The agreement between the measured wall-normal distribution and the
linear theory eigenfunction is reasonably good. This further indicates that the baseline
conditions just inboard of RecA were consistent with linear theory of Type I cross-flow
modes with a suction parameter of a= 0.2.

3.3. Temporal disturbance development with suction
Following the characterization of the basic flow and natural instability development
with suction, experiments were performed to document the space–time evolution of
controlled disturbance wavepackets that were introduced into the boundary layer on
the disk. The disk conditions were the same as with the previous results, namely
ω= 86.5 s−1 and a= 0.2.

Short-duration air-pulse disturbances were introduced at a fixed radius in order to
follow the development of wavepackets and discern their amplitude growth in space
and time. This utilized the air-pulse disturbance generator developed by Othman
& Corke (2006). The air pulses introduced disturbance wavepackets that featured a
broad range of frequencies that could be selectively amplified by the boundary layer.
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FIGURE 10. Power spectral density measured at Re= 565 (a), 585 (b) and 620 (c) for a
rotating disk with ω= 86.5 s−1 and a= 0.2.
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FIGURE 11. Wall-normal azimuthal velocity fluctuation eigenfunctions at two radii
corresponding to Re = 565 and 585 for frequencies of (a) 400 and (b) 450 Hz for a
rotating disk with ω= 86.5 s−1 and a= 0.2. The curve is based on linear stability theory.

The radial location of the air-pulse generator corresponded to a Reynolds number of
Re = 518. The hot wire was placed at different Reynolds numbers (radial locations)
and azimuthal locations relative to the air-pulser jet. The symbols in figure 12(b) show
the relative positions of the air-pulse generator and hot-wire measurement locations.
Figure 12(a) is a sketch of the expected wavepacket path spiralling out from the
air-pulse generator origin. The relative radial and azimuthal spacings between the
disturbance generator and the hot wire were used to document the temporal and
spatial growth of the disturbances that were introduced. The documentation of the
temporal growth was the key element in confirming the absolute instability.

The air pressure provided to the air-pulse generator was the same 28 p.s.i. as used
by Othman & Corke (2006). Figure 2 documented that this produced a very similar
temporal velocity pulse to their previous experiments. In addition, this supply pressure
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FIGURE 12. (Colour online) A schematic of the relative positions between the hot
wire and the air-pulse jet with expected wavepacket paths (a) and actual locations of
wavepacket ensemble measurements (b).

was verified by Othman and Corke to produce wavepackets that exhibited wall-normal
azimuthal velocity fluctuation distributions that matched linear theory eigenfunctions.

The sequence for acquiring the velocity time series with the air pulses consisted of
acquiring the hot-wire voltage time series for a time duration of four disk revolutions.
In a few cases that were mostly at more inboard radial locations, six disk revolutions
were acquired. The air pulse was initiated approximately 3 s after the start of data
acquisition. Therefore, data were acquired before and after the air pulse. The time in
the data series was subsequently referenced to the time at which the air pulse was
generated, which was recorded along with the velocity time series. The contiguous
time series at a given Re–θ location generally consisted of approximately 1000 air-
pulse events, corresponding to a total of approximately 4000 disk rotations.

Othman & Corke (2006) determined the leading and trailing edges of the
wavepackets generated by the air pulses by ensemble-averaging the time series
using the pulse initiation as a time reference. They subsequently employed a Hilbert
transform to determine the envelope of the peak velocity fluctuations within the
wavepacket.

A different approach was used in the present work to identify the wavepackets. This
involved matched filtering in which the time series following the first disturbance
pulse was correlated with the time series that followed from subsequent pulses.
Matched filtering is widely used in one-dimensional signal detection applications
such as radar and digital communications (Turin 1960; Thomas 1965) and in image
processing (Andrews 1970). In the present approach, matched filtering provides a
measure of the temporal correlation between the time series which can be used
to identify the bounds of the wavepackets. The correlations were performed in the
frequency domain using a digital FFT. The time series each corresponded to four
disk rotations. The matched-filter outputs were averaged over the approximately 1000
air-pulse events. No other filtering of the time series was performed.

Examples of the output from the matched filtering are shown in figure 13. This
figure shows disturbance wavepackets obtained by ensemble-averaging the time
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FIGURE 13. Examples of ensemble-averaged time series and the corresponding matched-
filter output based on azimuthal velocity fluctuations measured at (a) Re= 530, θ = 10◦
and (b) Re= 560, θ = 20◦.

series in the manner of Othman & Corke (2006), along with the corresponding
averaged matched-filter output. The height of the measurement from the disk surface
corresponded to z∗=1.414, which was the position nearest to the fluctuation amplitude
maximum in the azimuthal velocity wall-normal eigenfunction shown in figure 11
that could be reached with the hot wire.

The ensemble-averaged time series is made up of higher-frequency fluctuations that
are representative of the azimuthal velocity fluctuations associated with the growing
and decaying cross-flow modes excited by the air-pulse disturbance. The frequency
content of such wavepackets will be presented later in the paper. The matched-filter
output corresponds to the smooth curve that envelops the higher-frequency fluctuations.
This smooth curve best suits our objective of locating the leading and trailing edges
of the wavepackets as they evolve in space and time on the disk.

The evolution of the disturbance wavepackets as indicated by the matched-filter
envelopes is shown in figures 14–16. These figures show discrete azimuthal locations
relative to the air-pulse generator for 0.89 6 Re/RecA 6 1. This range of Reynolds
numbers was chosen to present because they encompass where the spreading of the
wavepacket departed from that found by Othman & Corke (2006) with a= 0.. At the
lower-Reynolds-number locations, the envelope of the wavepacket is evident over an
azimuthal extent of 10◦ 6 θ 6 40◦. As it evolves radially outward to higher Reynolds
numbers, the envelope of the wavepacket expands in time (number of disk rotations,
T). In addition, by the last two Reynolds number locations, the azimuthal extent shifts
towards larger angles of 20◦ 6 θ 6 70◦. This angular shift in the envelope of the
wavepacket reflects the manner in which the disturbances travel along a log spiral
from the disturbance source. We have attempted to represent the development of the
wavepacket envelope along the log-spiral trajectory based on the most amplified linear
mode in figure 17. Because of their discrete nature, the presented locations do not
exactly follow the log spiral. However, it does provide a sense of the motion and
spreading of the wavepacket envelope.

The wavepacket envelopes such as those shown in figures 14–16 were analysed
in order to identify their leading and trailing edges. This was performed in an
automated manner in which the output from the matched-filter operation was scanned
to determine the maximum and minimum values of the envelope, and the t/T location
of the envelope maximum. The leading edge of the envelope was found by searching
backwards in time from the location of the envelope maximum to the point at which
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FIGURE 14. Matched-filter output at Re/RecA = 0.89 (a,c,e,g,i) and 0.92 (b,d, f,h,j) for θ =
10◦ (a,b), 20◦ (c,d), 30◦ (e, f ), 40◦ (g,h) and 70◦ (i,j) locations from the air-pulse generator.
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FIGURE 15. Matched-filter output at Re/RecA = 0.93 (a,c,e,g,i) and 0.95 (b,d, f,h,j) for θ =
10◦ (a,b), 20◦ (c,d), 30◦ (e, f ), 40◦ (g,h) and 70◦ (i,j) locations from the air-pulse generator.

the value of the envelope was 5 % of the dynamic range (envelope maximum minus
envelope minimum). The trailing edge of the envelope was found by searching
forward in time from the location of the envelope maximum to the point at which
the value of the envelope was again 5 % of the dynamic range. The 5 % threshold
was based a determination of what was consistent with a visual inspection of the
envelopes. The results were not found to change significantly for thresholds between
4 % and 6 % of the dynamic range. The result of this analysis of the wavepackets is
shown in figure 18.

The open and closed symbols in figure 18 correspond to the leading and trailing
edges of the wavepackets respectively. The upward-arrow symbols signify data points
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FIGURE 16. Matched-filter output at Re/RecA = 0.99 (a,c,e,g,i) and 1.00 (b,d, f,h,j) for θ =
10◦ (a,b), 20◦ (c,d), 30◦ (e, f ), 40◦ (g,h) and 70◦ (i,j) locations from the air-pulse generator.
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FIGURE 17. Matched-filter output at increasing Reynolds numbers and azimuthal angles
which follow the approximate log-spiral path from the air-pulse generator of the most
amplified linear cross-flow mode: (a) Re= 540, θ = 10; (b) Re= 550, θ = 20; (c) Re= 560,
θ = 20; (d) Re= 580, θ = 40; (e) Re= 645, θ = 70.

where the location of the trailing edge was beyond the four-rotation-time-series limit,
that is t/T > 4. In order to compare with the previous wavepacket measurements of
Othman & Corke (2006), without disk suction, the Reynolds number is normalized
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FIGURE 18. (Colour online) Space–time map of leading-edge (LE) and trailing-edge
(TE) locations of disturbance wavepackets for a rotating disk with 86.5 s−1 and
a= 0.2. The solid red curve is the space–time map from Othman & Corke (2006) with
a= 0. The upward-arrow data points signify that the trailing-edge location exceeded the
four-disk-rotation-time-series limit. The dashed curve is an exponential fit to the TE data
from 0.88 6 Re/RecA 6 0.96 that was extrapolated to RecA = 1.0.

by RecA for two experiments. Without suction, RecA = 507, compared with 650 with
a= 0.2. Time is normalized by the disk rotation period, T .

The solid red curves in figure 18 correspond to the space–time development
of the wavepackets from Othman & Corke (2006) without disk suction. For the
leading edge of the wavepacket, we observe very good agreement in the space–time
development between the present experiment and that of Othman & Corke (2006). For
the trailing-edge development, there is good agreement between the two experiments
up to Re/RecA = 0.876 (Re= 570). Outboard of that location of the disk, we observe a
continual spreading of the wavepacket trailing edge that was not observed by Othman
and Corke without suction. The dashed curve is an exponential fit of the trailing-edge
data from 0.8766Re/RecA 6 0.962 that was then extrapolated to RecA = 1.0. The three
cases denoted by the upward-arrow symbols signify that the trailing-edge locations
exceeded the four-disk-rotation limit of the contiguous time series. Unfortunately,
the six-rotation-long time series taken at these Reynolds numbers were at azimuthal
angles of θ = 10◦, where, as indicated in figure 16, the matched filter did not return
a coherent wavepacket envelope. This either signifies that the wavepacket was not in
that location as it progressed along the log-spiral path, or that the velocity fluctuations
were zero, or that they were not correlated with the disturbance pulse. Further analysis
will come in examining the velocity fluctuation spectra.
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As is evident from the red curve for the wavepacket trailing-edge development
without suction (Othman & Corke 2006), the temporal spreading of the wavepackets
had asymptoted even as RecA was approached, which agreed with the simulation
observations of Davies & Carpenter (2003). In the present experiment with a
wall suction factor of a = 0.2, the temporal expansion of the trailing edge of the
wavepackets continued to increase exponentially with the Reynolds number, exceeding
by approximately a factor of two that without suction at the comparable Re/RecA .
We can only speculate on how far the trailing edge would have continued to expand
given that in three cases, and especially at Re/RecA >0.99, the four-rotation-time-series
limit was reached. Ideally, in the case of the existence of a global mode, we would
expect the trailing-edge spreading to achieve a vertical temporal slope. However,
the enhanced spreading of the wavepacket trailing edge in contrast to that without
suction documented by Othman & Corke (2006) suggests support for the predictions
of Thomas (2007) and Thomas & Davies (2010).

Another indication of the character of the disturbance wavepackets comes from
examining the frequency content of the velocity fluctuations associated with the
wavepackets. These were obtained from the same time series on which the matched
filtering was performed. Each record of the spectra consisted of the contiguous
four-rotation time series. The time series was digitally band-pass filtered in the
frequency domain using a specially designed finite impulse response (FIR) filter with
a low-pass cutoff of 200 Hz and a high-pass cutoff of 1200 Hz. This was intended
to highlight frequencies that are associated with the most amplified linear cross-flow
mode, which for our experimental conditions was near 400 Hz, and the most amplified
absolute instability mode, which was near 750 Hz. The resulting spectra were averaged
over approximately 1000 records, each triggered by the pressure pulse. The amplitude
of the spectra corresponds to the r.m.s. of the azimuthal velocity fluctuations with a
1 Hz bandwidth.

Figures 19 and 20 show spectra for the θ = 10◦, 20◦, 30◦, 40◦ and 70◦ locations
from the air-pulse generator for a subset of the Reynolds numbers of the wavepacket
envelopes that were shown in figures 14–16. Figure 19(a,c,e,g,i) is at the same
Reynolds number location (Re/RecA = 0.88) as the matched-filter amplitude envelopes
in figure 14(a,c,e,g,i). In the latter, the absence of a coherent wavepacket envelope at
θ = 70◦ coincides with very low velocity fluctuations observed in the spectrum at that
azimuthal location. Thus, we can surmise that the disturbance wavepacket produced
by the pressure pulse had not spread to that azimuthal position.

At Re/RecA = 0.93, the matched-filter amplitude envelopes in figure 15(a,c,e,g,i) still
do not reveal a coherent wavepacket. However, the corresponding spectra shown in
figure 19(b,d, f,h,j) reveal the influence of the pressure pulse at θ = 70◦, with energy
appearing in the most amplified linear theory band of frequencies.

The spectra for Re/RecA=0.99 and 1.00 are shown in figure 20. On comparing these
with the previous spectra, they immediately reflect the spatial growth in amplitude
of the velocity fluctuations associated with the pressure pulse. Another feature is
that the amplitude magnitude and frequency distribution is nearly uniform across the
azimuthal angle locations. This is revealing because the corresponding wavepacket
envelopes that were presented in figure 16 indicated that the velocity fluctuations
were not correlated with the disturbance pulse at the θ = 10◦ location. Since the
fluctuation amplitudes are not zero, this might indicate that the boundary layer has
undergone turbulent transition.

In order to further show the full evolution of the velocity fluctuations that emanate
from the disturbance air pulse, spectra like those presented in figures 19 and 20, but
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FIGURE 19. Spectra of azimuthal velocity fluctuations triggered on pressure pulses at
Re/RecA = 0.89 (a,c,e,g,i) and 0.93 (b,d, f,h,j) for θ = 10◦ (a,b), 20◦ (c,d), 30◦ (e, f ), 40◦
(g,h) and 70◦ (i,j) locations from the air-pulse generator.

at all of the measured radii, were compiled to produce the contour plots shown in
figure 21. These plots show the amplitudes in (Re, θ )-space at two frequencies of 450
and 750 Hz, which are representative of the most amplified linear cross-flow mode
and the predicted absolute instability mode respectively. The amplitudes have been
normalized by their minimum value and presented as log-level contours to highlight
exponential growth. The solid curve corresponds to a log spiral with a spiral angle of
ψ = 10.36◦ that is based on β = 0.0698 and the most amplified αr= 0.382 for a= 0.2.
Over the small-azimuthal-angle range, this looks almost linear. The log spiral is drawn
to originate from the location of the air-pulse generator, which was at Re= 518.

Close to the air-pulse generator, the disturbance is only felt at small azimuthal
angles from the generator. Therefore, the velocity fluctuations at larger angles are
much lower, at baseline levels. As illustrated by the previous plots, the disturbance
wavepacket forms and expands. This is evident in the contour plots by the rapid
azimuthal expansion of velocity fluctuation amplitudes that occurs at approximately
Re = 560 (Re/RecA = 0.86). Since this is reflective of the growth of the wavepacket,
this occurs for the full spectrum of velocity fluctuations, observed at both 450 and
750 Hz. Outboard of this radius, the amplitudes of the disturbances, reflected in
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FIGURE 20. Spectra of azimuthal velocity fluctuations triggered on pressure pulses at
Re/RecA = 0.99 (a,c,e,g,i) and 1.00 (b,d, f,h,j) for θ = 10◦ (a,b), 20◦ (c,d), 30◦ (e, f ), 40◦
(g,h) and 70◦ (i,j) locations from the air-pulse generator.

the two selected frequencies, grow steadily. The uniform spacing between contours
indicates that the growth is exponential. This continues out to RecA = 650 without an
indication of saturating.

This is further examined by plotting the growth in the fluctuation amplitudes at
the two selected frequencies while following the log-spiral trajectory. The result is
shown in figure 22. Here again the amplitude is normalized by the minimum value
at each frequency and presented as a log value to highlight exponential growth.
The initial azimuthal expansion of the disturbance wavepacket is again evident up to
Re/RecA =0.86. Outboard of that radius, the amplitudes at the two selected frequencies
grow exponentially, which is signified by the straight line fits to the data. We note
that there is a change in the slope of the linear fits which signifies a change in the
growth rate. The change in slope occurs at the same location, Re/RecA = 0.95, for both
of the selected frequencies. Prior to that radius, the growth rate at 450 Hz is larger
than that at 750 Hz, which is expected based on linear stability theory. However, at
Re/RecA = 0.95, the growth rates at both frequencies increase, and appear to be the
same. This suggests that the whole spectral band is increasing in amplitude, which
one might expect if the boundary layer was transitioning to turbulence. Is there
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FIGURE 21. Spatial amplitude distributions produced by the pulse generator shown as
contours of log(u′(θ)/u′(θ)min) for frequencies of 450 Hz (a) and 750 Hz (b). The solid
curve corresponds to a log spiral with a spiral angle of β = 0.0698 that originates from
the disturbance source.
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FIGURE 22. The spatial development of the normalized azimuthal velocity fluctuations
measured along log spirals in plots in figure 21. The lines correspond to a least-square
curve fit of the data to an exponential function.

a significance to the Re/RecA = 0.95 where this occurs? Based on the space–time
evolution of the disturbance wavepacket that was shown in figure 18, this is well
within the region of the exponential temporal spreading of the wavepacket trailing
edge, and of course close to the expected location of the absolute instability. Although
compelling, turbulent transition in itself does not guarantee the presence of a global
mode.
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4. Conclusions

The object of this work was to experimentally investigate the effect of wall suction
on the growth of Type I cross-flow instability modes in the boundary layer on a
rotating disk. More specifically, the focus was on the effect that wall suction had
on the absolute instability of the Type I cross-flow modes that was first predicted by
Lingwood (1995).

The present work grew out of the earlier rotating disk experiment by Othman
& Corke (2006), without wall suction, in which a deceleration of the temporal
spreading of linear disturbance wavepackets at the absolute instability location was
found. The same behaviour was observed by Davies & Carpenter (2003) in their linear
simulations, whereby they concluded that although the higher-frequency disturbances
were absolutely unstable, this did not produce a global mode. The later numerical
simulations of Thomas (2007) and Thomas & Davies (2010), however, indicated that
wall suction applied to the rotating disk boundary layer could transform the linear
absolute instability into a global instability.

The object of the present experiment was to develop a means of applying uniform
suction on the rotating disk with a suction parameter and disk rotation rate that
placed the critical Reynolds number of the absolute instability, RecA , at a radius on
the disk. The approach ultimately closely followed that of Gregory & Walker (1960).
The various elements in the design were examined in numerical simulations. These
were essential to the final design of the rotating disk set-up which included an array
of holes that allowed air to pass through the disk into an enclosure below the disk
that was held at a slight subatmospheric pressure, and a pressed-screen mesh that
covered the holes in the disk to add pressure drop which was needed to achieve the
target wall-normal velocity. Care was also taken to minimize any potential effects of
disturbance contamination from the outer edge of the disk. Such precautions included
having the top exterior surface of the box flush with the surface of the disk, similar
to the ‘plate-type’ edge condition of Imayama et al. (2013), having rcA 33 mm from
the disk edge, which was six times further than where the mean flow was affected
in Imayama et al. (2013), and finally having the wall suction extend beyond rcA .

The simulations predicted that the suction parameter at inboard radii would initially
overshoot our target value, but eventually asymptote to the target suction parameter
well enough inboard and outboard of the critical radius of the absolute instability.
These predictions were validated in the experiment, with the final conditions being a
rotation rate of ω= 86.5 s−1 and a suction parameter of a= 0.2, whereby RecA = 650
was at the 90 % disk radius location.

A number of porous measurement surfaces were investigated. These consisted of
an uncovered compressed wire mesh like that used by Gregory & Walker (1960),
the same compressed wire mesh covered by stretched silk fabric, or a 1.6 mm thick
sheet of porous high-density polyethylene having a 20 µm pore size. The two criteria
for the selection of the porous measurement surface were (1) the ability to match
theoretical wall-normal velocity profiles with different suction parameters and (2) the
ability to maintain laminar flow out to the vicinity of the radial location of RecA . Of
these, the second became the greater challenge, since even minute surface roughness
could result in dominant stationary cross-flow modes which would lead to turbulent
transition inboard of the RecA location. Ultimately, the polyethylene sheet was the
only covering that met these two criteria. An issue with the polyethylene sheet
was that it was not precisely uniform in thickness. As a result, there was a slight
waviness of the surface which did not appear to affect thecharacter of the cross-flow
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instability, but limited how close measurements could be made to the disk surface.
Measurements just above the azimuthal velocity wall-normal eigenfunction maximum
were achievable.

The documentation of the basic flow indicated that the natural boundary layer
stability was consistent with that expected on the rotating disk with a = 0.2.
This included a measured amplification rate of the largest amplitude frequency
of αi = 0.0141, which compared with αi = 0.0122 based on linear theory, and good
agreement with linear theory of the azimuthal velocity wall-normal eigenfunction.

The method of Othman & Corke (2006) was found to be successful in introducing
temporal disturbances from outside the boundary layer which developed into well-
defined wavepackets. The temporal character of the generated disturbances matched
well with those of Othman and Corke, which had been documented to satisfy linear
theory assumptions. The disturbances were introduced at a radius Re= 518 that was
inboard of the radius location of the absolute instability.

The space–time evolution of the wavepackets was documented with a hot wire
placed at increasing radii and azimuthal angles from the disturbance generator. A
different approach from that of Othman & Corke (2006) was used in the present
work to identify the wavepackets. This involved matched filtering in which the time
series following the first disturbance pulse was correlated with the time series that
followed from subsequent pulses. In the present approach, matched filtering provided
a measure of the temporal correlation between the time series which was used to
identify the bounds of the wavepackets. The correlations were performed in the
frequency domain using a digital FFT and encompassed four disk rotations. The
matched-filter outputs were averaged over approximately 1000 air-pulse events. No
other filtering of the time series was performed.

The leading and trailing edges of the disturbance wavepackets were identified using
an automated approach. Good agreement was found in the space–time development of
the wavepacket leading edge between the present experiment and that of Othman &
Corke (2006). Thus, the addition of wall suction on the rotating disk did not affect
the wavepacket leading-edge development.

For the wavepacket trailing-edge development, there was good agreement between
the two experiments (with and without suction) up to Re/RecA = 0.876. Outboard of
that location on the disk, an exponential spreading of the wavepacket trailing edge
occurred which was not observed by Othman and Corke without suction.

Examination of the spectra of the azimuthal velocity fluctuations associated with
the wavepacket indicated exponential growth that was consistent with linear theory
well into the region of exponential spreading of the wavepacket trailing edge. This
continued to Re/RecA = 0.95, outboard of which the growth rates of a broad range of
frequencies increased, and became the same. This increase in the broad-band spectral
amplitude suggests that the boundary layer was transitioning to turbulence. These
overall observations and contrast to the cases without wall suction appear to support
the predictions of Thomas (2007) and Thomas & Davies (2010).

Appendix A. Rotating disk design

The rotating disk was fabricated from a 3.15 cm (1.25 in.) thick die-cast aluminium
plate. The design of the disk to allow uniform suction through the surface followed
the concept of Gregory & Walker (1960). This involved drilling 360 1.27 cm (0.5 in.)
holes arranged in concentric circles through the disk to produce a region where the
wall suction would be applied. This is shown in the photograph in figure 23(a).
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(a)

(c)

(b)

(d)

FIGURE 23. (Colour online) Construction of the disk designed for suction, showing
the array of holes (a), the wire mesh (b), the cloth stretching device (c) and the final
disk (d).

The location of the holes starts at the radial location r = 14.29 cm. (5.625 in.) and
continues to r = 29.21 cm (11.5 in.). At the design disk rotation rate of 826 r.p.m.,
these radial locations correspond to Re= 317 and Re= 696.5. This gave the suction
portion of the disk inboard of RecA zero suction and that slightly outboard of RecA a
suction parameter of a= 0.2. The holes through the disk were covered with a sheet
of pressed wire mesh which added a specific amount of pressure drop to help to
uniformize the suction on the surface of the disk. The pressed wire mesh installed
on the disk is shown in the photograph in figure 23(b). A close-up view of the
pressed wire mesh is shown in figure 24. This surface was not smooth enough for
the flow to remain laminar before reaching the absolute instability critical radius with
a suction parameter of a= 0.2. Therefore, a smooth porous covering was required. A
number of smooth coverings were investigated. One was a stretched silk cloth. The
process of stretching the cloth covering over the disk is shown in the photograph
in figure 23(c). A special tensioning device was used to stretch the fabric directly
over the disk. The fabric was held taught by a clamping ring that attached to the
outer edge of the disk. The final disk assembly with the stretched cloth is shown
in figure 23(d).

The disk assembly and motor were enclosed in a sealed suction box. The
measurement side of the disk was open to the outside of the box. A schematic
drawing of the rotating disk with the suction box is show in figure 25. The photograph
in figure 26 shows the rotating disk assembly with the partially open suction box
which displays the internal set-up. Figure 27 shows the rotating disk assembly with
the fully constructed box and the motorized traversing mechanism that was used
for hot-wire measurements. The top exterior surface of the box was flush with the
surface of the disk. This was similar to the ‘plate-type’ edge condition of Imayama
et al. (2013). We expected this condition to produce lower edge disturbances than an
open edge.

Variable-speed vacuum pumps were used to lower the pressure in the box. This
caused the flow to be driven through the holes in the disk, which communicated
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FIGURE 24. Close-up view of the pressed wire mesh that covered the holes through the
rotating disk.

Disk

Disk platform

Motor 15.00

61.50

To suction pump

Motor mount

Box

FIGURE 25. Schematic of the rotating disk system with the low-pressure enclosure.

between the outside space and the space inside the box. The size of the box was
designed to produce a minimal internal flow circulation due to the rotation Von
Karman pump effect. Ideally, we expected the same theoretical zero pressure gradient
as existed on an unbounded rotating disk.
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FIGURE 26. (Colour online) Photograph of the rotating disk system with the low-pressure
enclosure partially open.

Hot-wire

Motorized traverse

Disk

FIGURE 27. (Colour online) Photograph of the rotating disk system with the low-pressure
enclosure closed.

Appendix B. Experimental set-up simulations

The objective of the simulations was to design the rotating disk system described in
appendix A which could produce a region of uniform wall suction around the location
of RecA . The simulations were performed using Fluent software. The simulations
modelled the free space above the rotating disk, the enclosure box below the disk,
the suction passages through the disk, and the pressed-screen mesh and any other
coverings that produced pressure drop through the suction passages. Figure 28 shows
the computational grid for the Fluent simulation. The mesh domain consisted of a
45◦ wedge with rotationally periodic boundary conditions which comprised structured
hexahedrals in the boundary layer and unstructured tetrahedrals in the far field, with
a total of 7 × 106 cells. The y+ value of the lowest cell in the boundary layer
was approximately 1. The computational formulation was a 3-D pressure-based

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

73
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.735


Effect of wall suction on rotating disk absolute instability 735

(a)

(b)

FIGURE 28. (Colour online) The 3-D structured/unstructured mesh used in the CFD
simulation of the rotating disk with suction (a), and a zoomed-in square region of the
computational mesh showing the passages through the disk into the lower enclosure
box (b).

incompressible segregated steady Reynolds averaged Navier–Stokes (RANS), with
a two equation eddy viscosity (k–ω) shear stress transport (SST) turbulence model.
Standard air properties of ρ = 1.225 kg m−3 and ν = 1.7894 × 10−5 m2 s−1 were
used.

In order to model a simple homogeneous porous material like the wire mesh
covering, an additional source term, Si, was added to the ith (x, y or z) momentum
equation, such that

Si =−
(
µ

α
vi +C2

1
2
ρvmagvi

)
, (B 1)

where C2 is the inertial resistance factor and 1/α is the viscous inertial resistance
factor. A simplified version of the momentum equation which relates the pressure drop
to the source term can be expressed as

∇p= Si, (B 2)

and assuming that the pressure drop is in only one direction, the pressure drop
simplifies to

∇p=−Si∇n, (B 3)

where ∇n is the thickness of the porous material.
In order to obtain the resistance factors, data on the pressure loss as a function of

the throughflow velocity were obtained for different solidities of the stainless steel
wire mesh. The values of the required coefficients in (B 1) were then determined.
Table 1 gives these values for three mesh solidities investigated in the study. The LFM
mesh designations are those of the manufacturer, Martin-Kurz Dynapore. In this table,
k is the ratio of the pressure drop and dynamic pressure, namely

k= P2 − P1
1
2ρV2

2 − 1
2ρV2

1
. (B 4)

To address the steep pressure gradients that are characteristic of swirling flows,
the PRESTO scheme was used for pressure discretization. This discretization is used
for flows with high swirl numbers, flows with porous media and high-speed rotating
flows. The simulations were started at zero rotational speed and allowed to converge;
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afterwards rotation was turned on. The under-relaxation parameters for pressure and
momentum were decreased slowly until the solution converged.
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