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0 < α < 1 by showing that certain sets of well-approximable p-adic numbers are
Salem sets. We construct measures supported on these sets that satisfy essentially
optimal Fourier decay and upper regularity conditions, and we observe that these
conditions imply that the measures satisfy strong Fourier restriction inequalities. We
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1. Introduction

1.1. Basic notation

For x ∈ Rd and r > 0, |x| = max1�i�d |xi| and B(x, r) =
{
y ∈ Rd : |x− y| � r

}
.

Throughout, p denotes a fixed but arbitrary prime number and Qp is the field of p-
adic numbers. The basics of Qp are reviewed in § 2.1. For x ∈ Qp, |x|p is the p-adic
absolute value of x. For x ∈ Qd

p and r > 0, |x|p = max1�i�d |xi|p and B(x, r) ={
y ∈ Qd

p : |x− y|p � r
}
. The ring of integers of Qp is Zp = B(0, 1). The Fourier

transform of a measure μ on Rd or Qd
p is denoted μ̂. Fourier analysis on Qd

p is
reviewed in § 2.2. The expression X � Y means X � CY for some positive constant
C whose value may depend on p, but not on any other parameters. The expression
X �α Y has the same meaning, except the constant C is permitted to depend also
on a parameter α. The expression X ≈ Y means both X � Y and Y � X.
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1.2. Salem sets and Fourier dimension: the real setting

It is well-known (see, e.g., [17,27]) that the Hausdorff dimension dimH(A) of a
Borel set A ⊆ Rd can be expressed in terms of the average Fourier decay of measures
on A:

dimH(A) = sup
{
α ∈ [0, d] :

∫
Rd

|μ̂(ξ)|2|ξ|α−ddξ <∞ for some μ ∈ P(A)
}
, (1.1)

where P(A) denotes the set of Borel probability measures on Rd with compact
support contained in A.

The Fourier dimension dimF (A) of a set A ⊆ Rd is defined in terms of the
pointwise Fourier decay of measures on A:

dimF (A) = sup

{
β ∈ [0, d] : sup

0 �=ξ∈Rd

|μ̂(ξ)|2|ξ|β <∞ for some μ ∈ P(A)

}
.

The Fourier dimension of a Borel set is always less than or equal to its Hausdorff
dimension. In general, they are not equal. In Rd with d � 2, subsets of hyper-
planes must have Fourier dimension 0, but the Hausdorff dimension may be any
number between 0 and d− 1. For d = 1, the middle-thirds Cantor set in R has
Fourier dimension 0 and Hausdorff dimension ln 2/ ln 3. Some subtle properties of
Fourier dimension are studied by Ekström, Persson, and Schmeling [16] and Fraser,
Orponen, and Sahlsten [19].

A set whose Fourier and Hausdorff dimensions are equal is called a Salem set.
Points, spheres, and balls in Rd are Salem sets of dimension 0, d− 1, and d,

respectively. Salem sets are named for Raphaël Salem [37], who proved the existence
of Salem sets in R of every dimension 0 < α < 1 via a construction of Cantor sets
with random contraction ratios. Kahane [24] proved the existence of Salem sets in
Rd of every dimension 0 < α < d by considering trajectories of Brownian motion
and more general stochastic processes. There are many other random constructions
of Salem sets in Rd (see [7,12,15,26,38]).

The random constructions of Salem sets mentioned above are unsatisfactory in
that they do not give explicit Salem sets. At best, they give families whose members
are (with respect to some measure) almost all Salem sets.

Kaufman [25] was the first to give a construction of explicit Salem sets in R
of every dimension 0 < α < 1. His construction comes from number theory and is
(arguably) simpler than the random constructions mentioned above.

For τ ∈ R, the set of τ -well-approximable real numbers is

E(τ) =
{
x ∈ [−1, 1] : |qx− r| � max(|q|, |r|)−τ for infinitely many (q, r) ∈ Z2

}
.

A classic application of Dirichlet’s pigeonhole principle is that E(τ) = [−1, 1] when
τ � 1. Jarńık [22] and Besicovitch [6] proved that E(τ) has Hausdorff dimension
2/(1 + τ) when τ > 1. Much further work has been done on metric properties of
E(τ) and various generalizations of it. For details, we direct the reader to the recent
works [2,4,5], and references therein.

Kaufman [25] proved
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Theorem 1.1 (Kaufman). For every τ > 1, E(τ) is a Salem set of Hausdorff and
Fourier dimension 2/(1 + τ). Moreover, there exists a Borel probability measure μ
supported on E(τ) such that

|μ̂(ξ)| � |ξ|−1/(1+τ) ln(1 + |ξ|) ∀ξ ∈ R, ξ �= 0.

All known constructions of explicit Salem sets in Rd of dimension α /∈
{0, d− 1, d} are based on Kaufman’s construction. Bluhm [8] and Hambrook
[20] generalized Kaufman’s construction to show that some sets closely related
to E(τ) are also Salem sets in R. Bluhm [8] also observed that the radial set{
x ∈ Rd : |x| ∈ E(τ)

}
(here and nowhere else | · | is the Euclidean norm on Rd)

is a Salem set of dimension d− 1 + 2/(1 + τ) when τ > 1. Hambrook [21] general-
ized Kaufman’s construction to give explicit Salem sets in R2 of every dimension
0 < α < 2.

1.3. Salem sets and Fourier dimension: the p-adic setting

Hausdorff dimension in Qd
p is defined exactly as it is in any metric space (see [27]).

The formula (1.1) still holds (except Rd is replaced by Qd
p, and |ξ| is replaced by

|ξ|p) because the proof is based on Frostman’s lemma (which holds in any locally
compact metric space, see [27]) and properties of the Riesz potential (which still
hold in Qd

p, see [40]). Papadimitropoulos [34] gives the details in case d = 1; the
proof for d � 2 is similar. The definitions of Fourier dimension and Salem set are
as above (with the replacements mentioned).

Papadimitropoulos [36] (see also [34,35]) adapted Salem’s [37] random Cantor-
type construction to prove the existence of Salem sets in Qp of every dimension
0 < α < 1.

Our first main result, theorem 1.2 below, gives explicit Salem sets in Qp of every
dimension 0 < α < 1. It is a p-adic version of theorem 1.1.

For τ ∈ R, the set of τ -well-approximable p-adic numbers is

W (τ) =
{
x ∈ Zp : |xq − r|p � max(|q|, |r|)−τ for infinitely many (q, r) ∈ Z2

}
.

The set W (τ) is a p-adic analogue of E(τ). Note that the set E(τ) is unchanged
if max(|q|, |r|)−τ is replaced by |q|−τ in the definition. However, if the analogous
replacement is made in the definition of W (τ), the set obtained equals Zp for all τ .

For τ � 2, W (τ) = Zp by Dirichlet’s pigeonhole principle. For τ > 2, Melničuk
[29] (see also [10]) proved W (τ) has Hausdorff dimension 2/τ .

Our first main result is

Theorem 1.2. For every τ > 2, W (τ) is a Salem set of Hausdorff and Fourier
dimension 2/τ. Moreover, there exists a Borel probability measure μ supported on
W (τ) such that

|μ̂(ξ)| � |ξ|−1/τ
p ln2(1 + |ξ|p) ∀ξ ∈ Qp, ξ �= 0.

Our two other main results, theorems 1.5 and 1.7, improve theorem 1.2 in different
ways.
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1.4. Upper regularity and Fourier restriction

To discuss our first improvement to theorem 1.2, we state a general Stein-Tomas
restriction theorem.

Theorem 1.3 (Mockenhaupt-Mitsis-Bak-Seeger). Let 0 < α, β < d. Let μ be a
Borel probability measure on Rd such that

|μ̂(ξ)| �β |ξ|−β/2 ∀ξ ∈ Rd, ξ �= 0, (1.2)

μ(B(x, r)) �α r
α ∀x ∈ Rd, r > 0. (1.3)

Then, whenever 1 � q � 1 + β/(4d− 4α+ β),

‖f̂‖L2(μ) �α,β,q ‖f‖Lq(λ) ∀f ∈ Lq(λ) ∩ L1(λ), (1.4)

where λ denotes Lebesgue measure on Rd.

Note that (1.3) is called an upper regularity or Frostman condition, and (1.4) is
called a Fourier restriction inequality (see [28,39] for further background).

Theorem 1.3 was proved by Mockenhaupt [32] and Mitsis [30] for the range
1 � q < 1 + β/(4d− 4α+ β). The endpoint was proved by Bak and Seeger [3].

Papadimitropoulos [34] extended Kaufman’s [25] proof of theorem 1.1 to obtain

Theorem 1.4 (Papadimitropoulos). For every τ > 1, E(τ) is a Salem set with
Hausdorff and Fourier dimension 2/(1 + τ). Moreover, there exists a Borel proba-
bility measure μ supported on E(τ) such that

|μ̂(ξ)| � |ξ|−1/(1+τ) ln(1 + |ξ|) ∀ξ ∈ R, ξ �= 0, (1.5)

μ(B(x, r)) � r2/(1+τ) ln(1 + r−1) ∀x ∈ R, r > 0, (1.6)

and, whenever 1 � q < 1 + 1/(2(1 + τ) − 3),

‖f̂‖L2(μ) �q,τ ‖f‖Lq(λ) ∀f ∈ Lq(λ) ∩ L1(λ), (1.7)

where λ denotes Lebesgue measure on R.

Note that Papadimitropoulos actually proved a version of theorem 1.4 with
slightly weaker versions of (1.5) and (1.6). However, by modifying the proof slightly
and using the reduction technique of § 3.1 below, one may obtain theorem 1.4 as
stated.

By theorem 1.3, (1.7) follows from (1.5) and (1.6). The main innovation of
theorem 1.4 over theorem 1.1 is the upper regularity property (1.6).

Theorem 1.3 also holds in the p-adic setting; replace Rd by Qd
p and |ξ| by |ξ|p in the

statement. The proof is translated from the real to the p-adic setting by replacing
bump functions with indicator functions in a straightforward way. See Papadim-
itropoulos [34] (or [35]) for details in the range 1 � q < 1 + β/(4d− 4α+ β). For
the endpoint, as in [3], one appeals to the powerful abstract interpolation theorem
of Carbery, Seeger, Wainger, and Wright [11, § 6.2].
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Our second main result (and first improvement to theorem 1.2) is a p-adic version
of theorem 1.4.

Theorem 1.5. For every τ > 2, W (τ) is a Salem set with Hausdorff and Fourier
dimension 2/τ . Moreover, there exists a Borel probability measure μ supported on
E(τ) such that

|μ̂(ξ)| � |ξ|−1/τ
p ln2(1 + |ξ|p) ∀ξ ∈ Qp, ξ �= 0, (1.8)

μ(B(x, r)) � r2/τ ln2(1 + r−1) ∀x ∈ Qp, r > 0, (1.9)

and, whenever 1 � q < 1 + 1/(2τ − 3),

‖f̂‖L2(μ) �q,τ ‖f‖Lq(λ) ∀f ∈ Lq(λ) ∩ L1(λ), (1.10)

where λ denotes the Haar measure on Qp with λ(Zp) = 1.

By the p-adic version of theorem 1.3, (1.10) follows from (1.8) and (1.9). The
main innovation of theorem 1.5 over theorem 1.2 is the upper regularity property
(1.9).

Mockenhaupt [32] (see also [31]) proved a version of theorem 1.4 for the sets
and measures constructed by Salem [37]. Mockenhaupt and Ricker [33] then used
this theorem to establish an optimal extension of the Hausdorff-Young inequality
on the torus T (which may be identified with [−1, 1]). Papadimitropoulos [36] (see
also [34,35]) proved a version of theorem 1.5 for the sets and measures given by
his p-adic analogue of Salem’s construction. Papadimitropoulos used that theorem
in a manner similar to that of Mockenhaupt and Ricker to establish an optimal
extension of the Hausdorff-Young inequality on Zp.

1.5. Multiple dimensions

Our second improvement to theorem 1.2 generalizes it to multiple dimensions.
For m, n ∈ N, we identify the m× n matrix whose ij-th entry is xij with the

point

x = (x11, . . . , x1n, . . . , xm1, . . . , xmn).

We first consider a multi-dimensional generalization of E(τ). For τ ∈ R, we define

E(m,n, τ) ={
x ∈ [−1, 1]mn : ‖xq − r‖p � max(|q|, |r|)−τ for infinitely many (q, r) ∈ Zn × Zm

}
.

By Minkowski’s theorem on linear forms, E(m, n, τ) = Rmn when τ � n/m. Bovey
and Dodson [10] showed that the Hausdorff dimension of E(m, n, τ) is m(n− 1) +
(m+ n)/(1 + τ) when τ > n/m. The n = 1 case was done earlier by Jarńık [23]
and Eggleston [14].

We mentioned above that Hambrook [20] generalized Kaufman’s construction
to show that certain sets in R closely related to E(τ) are Salem sets. In the same
paper, Hambrook also considered E(m, n, τ) and proved a version of the following
theorem.
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Theorem 1.6 (Hambrook). For every τ > n/m, there exists a Borel probability
measure μ supported on E(m, n, τ) such that

|μ̂(ξ)| � |ξ|−n/(1+τ) lnn(1 + |ξ|) ∀ξ ∈ Rmn, ξ �= 0.

Technically, theorem 1.6 as stated does not appear in [20]. However, the proof of
theorem 1.2 of [20] is easily modified to obtain theorem 1.6. Theorem 1.6 is not
strong enough to determine whether E(m, n, τ) is a Salem set. However, it does
imply that the Fourier dimension of E(m, n, τ) is at least 2n/(1 + τ).

We now consider a p-adic analogue of E(m, n, τ) that is a multi-dimensional
generalization of W (τ). For τ ∈ R, we define

W (m,n, τ) ={
x ∈ Zmn

p : ‖xq − r‖p � max(|q|, |r|)−τ for infinitely many (q, r) ∈ Zn × Zm
}
.

Dirichlet’s pigeonhole principle implies W (m, n, τ) = Zmn
p when τ � (m+ n)/m.

Abercrombie [1] showed that the Hausdorff dimension of W (m, n, τ) is m(n− 1) +
(m+ n)/τ when τ > (m+ n)/m.

Our third main result (and second improvement to theorem 1.2) is a p-adic version
of theorem 1.6.

Theorem 1.7. For every τ > (m+ n)/m, there exists a Borel probability measure
μ supported on W (m, n, τ) such that

|μ̂(ξ)| � |ξ|−n/τ
p lnn+1(1 + |ξ|p) ∀ξ ∈ Qmn

p , ξ �= 0.

Theorem 1.7 is not strong enough to determine whether W (m, n, τ) is a Salem set.
However, it does imply that the Fourier dimension of W (m, n, τ) is at least 2n/τ .

By modifying the proof in a straightforward way, it is possible to generalize
theorem 1.7 even further along the lines of theorem 1.2 of Hambrook [20]. However,
for simplicity, we do not pursue this here.

1.6. Problems for future study

Problem 1.8. For d � 2, construct Salem sets in Qd
p of every dimension 0 < α < d.

The existence of such sets is unknown. Kahane’s [24] stochastic constructions and
Bluhm’s [7] Cantor-type construction of Salem sets in Rd are good candidates for
adaptation to the p-adic setting.

Problem 1.9. Determine the Fourier dimension of W (m, n, τ) when τ > (m+
n)/n and mn > 1. As mentioned above, the Hausdorff dimension of W (m, n, τ) is
known to be m(n− 1) + (m+ n)/τ , and theorem 1.7 implies the Fourier dimension
of W (m, n, τ) is at least 2n/τ . By improving on the method of the present paper,
perhaps it is possible to show that dimF W (m, n, τ) � m(n− 1) + (m+ n)/τ ,
hence proving that W (m, n, τ) is Salem. Note that this would also resolve prob-
lem 1.8. On the other hand, it would be interesting to obtain an upper bound on
dimF W (m, n, τ) that is strictly less than the Hausdorff dimension, as such upper
bounds appear to be difficult. The analogous problem for E(m, n, τ) is also open.
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Problem 1.10. Prove an analogue of theorem 1.5 for W (m, n, τ). In other words,
prove theorem 1.7 with an analogue of the upper regularity property (1.9) (an
analogue of (1.10) would follow immediately from the p-adic version of theorem
1.3). The analogue of the upper regularity property (1.9) would take the form

μ(B(x, r)) � rα ∀x ∈ Qmn
p , r > 0.

In the case m > n = 1, the best possible exponent α is α = (m+ 1)/τ . The method
of proof of theorem 1.5 can be extended to obtain this, but we must assume τ >
(m+ 1)/m+ 1 − 1/m2. In full range τ > (m+ 1)/m, we are only able to obtain
α = m/τ . The case n > 1 is completely open. The analogous problem for E(m, n, τ)
is also interesting to consider.

Problem 1.11. Prove versions of theorems 1.2, 1.5, and theorem (1.7) in the setting
of an arbitrary ultrametric local field. Note that every local field is isomorphic to
either R, C, Qp (for some prime p), a finite extension of Qp (for some prime p),
or the field of formal Laurent series over some finite field, and R and C are not
ultrametric. Papadimitropoulos [34,35] extended Salem’s [37] random Cantor-type
construction to prove, for any ultrametric local field K, the existence of Salem sets
of every dimension 0 < α < 1 in K. Moreover, Papadimitropoulos [34,35] proved a
version of theorem 1.5 in K for the sets and measures produced by his construction.

1.7. Structure of the paper

In § 2, we review the definition and basics properties of the p-adic numbers as
well as the necessary elements of Fourier analysis on the p-adics. In §§ 3 and 4, we
prove theorems 1.5 and 1.7, respectively. Theorem 1.2 is an immediate corollary of
both theorem 1.5 and 1.7.

1.8. Remarks on the proofs

The proof of theorem 1.5 is a reasonably straightforward adaptation of Papadim-
itropoulos ’s [34] proof of theorem 1.4, which in turn is an extension of Kaufman’s
[25] proof of theorem 1.1, from the real to the p-adic setting. In essence, the adapta-
tion strategy is to replace a bump function that is 1 on [−1, 1] = B(0, 1) ⊆ R by the
indicator function of Zp = B(0, 1) ⊆ Qp. The details, however, are not completely
straightforward. In establishing (1.8), we encounter (in the proof of lemma 3.3
below) a non-trivial exponential sum. We estimate the exponential sum by a method
inspired by theorem 1 in Cilleruelo and Garaev’s paper [13]. No such obstacle is
encountered in the real setting. Establishing (1.9) is also somewhat different than
in the real setting because of the unusual geometry of the p-adic numbers.

Note that the reduction technique of § 3.1 below, while simple, appears to be new.
It allows us to obtain the strong Fourier decay and upper regularity inequalities
(1.8) and (1.9) without the averaging technique of Kaufman [25]. Using Kaufman’s
averaging technique would make proving (1.9), even in a weaker form, significantly
more complicated. Papadimitropoulos [34] did not use Kaufman’s averaging argu-
ment to prove his version of theorem 1.4, which (as we mentioned above) has weaker
forms of (1.8) and (1.9).
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The proof of theorem 1.7 is a generalization of the proof of theorem 1.5 (without
the upper regularity property (1.9)), following the ideas of [20].

2. The field Qp of p-adic numbers

2.1. Definition and basic properties

Every non-zero x ∈ Q can be expressed uniquely in the form x = pMa/b where
a, b, M are integers with a and b coprime to p and b � 1. The p-adic absolute
value of x is defined to be |x|p = p−M . We define |0|p = 0. The completion of Q
with respect to the p-adic absolute value is the field of p-adic numbers Qp. Every
non-zero x ∈ Qp can be expressed uniquely in the form

x =
∞∑

j=M

cjp
j , (2.1)

where M ∈ Z, cj ∈ {0, 1, . . . , p− 1}, and cM �= 0. We call (2.1) the p-adic expan-
sion of x. The p-adic absolute value of x is |x|p = p−M . This extends the definition
of the p-adic absolute value from Q to Qp. It is sometimes helpful to know that
|x|p � |x|−1 for all non-zero x ∈ Z.

The p-adic norm of x ∈ Qd
p is |x|p = max1�i�d |xi|p.

The closed ball with radius r > 0 and centre a ∈ Qd
p is B(a, r) ={

x ∈ Qd
p : |x− a|p � r

}
. Since the p-adic norm takes values in

{
pk : k ∈ Z

} ∪ {0},
it follows that B(a, r) =

{
x ∈ Qd

p : |x− a|p � pk
}

=
{
x ∈ Qd

p : |x− a|p < pk+1
}

whenever pk < r � pk+1, and that the indicator function 1B(a,r) is continuous.
Analogous statements hold for the open ball B(a, r−) =

{
x ∈ Qd

p : |x− a|p < r
}
.

The p-adic norm satisfies a strong form of the triangle inequality:

|x− y|p � max(|x|p, |y|p) ∀x, y ∈ Qp, with equality whenever |x|p �= |y|p.

This inequality is called the ultrametric inequality. It may also be called the acute
isosceles triangle inequality because it means precisely that for each x, y ∈ Qd

p the
two largest of |x|p, |y|p, |x− y|p are equal.

The ultrametric inequality implies two important properties of balls in Qd
p. First,

for all a, a′ ∈ Qd
p and all 0 < r � r′, B(a, r) ∩B(a′, r′) �= ∅ if and only if B(a, r) ⊆

B(a′, r′). In other words, two balls intersect if and only if the larger contains the
smaller. The second property is that, for all integers j < k, every ball in Qd

p of
radius pk is the union of pd(k−j) balls of radius pj . Indeed, for every x ∈ Qd

p, we
have B(x, pk) =

⋃
y B(x+ yp−k, pj), where the union is over all y ∈ Qd

p such that
yi ∈

{
0, 1, . . . , pk−j − 1

}
for i = 1, . . . , d. From these properties, it follows that

every ball in Qd
p is compact; hence, Qd

p is locally compact.
The closed unit ball in Qp, B(0, 1) = {x ∈ Qp : |x|p � 1}, is called the ring of

p-adic integers and is denoted Zp. Thus Zd
p = B(0, 1) =

{
x ∈ Qd

p : |x|p � 1
}
.

For nonzero x ∈ Qp with p-adic expansion (2.1), the p-adic fractional part of x is
defined to be {x}p =

∑−1
j=M cjp

j . We define {0}p = 0. For nonzero x ∈ Qp with p-
adic expansion (2.1), the p-adic integral part of x is defined to be [x]p =

∑∞
j=0 cjp

j .
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We define [0]p = 0. Notice x = {x}p + [x]p for all x ∈ Qp. Moreover, x ∈ Zp if and
only if {x}p = 0, which is the case if and only if [x]p = x. For all x ∈ R, define

e(x) = e−2πix.

For all x, y ∈ Qp, {x}p + {y}p differs from {x+ y}p by an integer, and so

e({x}p + {y}p) = e({x+ y}p). (2.2)

We identify Qp/Zp with the set {x ∈ Qp : [x]p = 0} ⊆ Q ∩ [0, 1).

2.2. Fourier analysis on Qd
p

We review here the necessary elements of Fourier analysis on Qd
p. The books by

Folland [18] and Taibleson [40] are excellent general references on the subject.
The additive group (Qd

p, +) is a commutative locally compact Hausdorff topolog-
ical group. We denote by λ the unique Haar measure on Qd

p that assigns measure
pdk to every closed ball of radius pk, k ∈ Z. Integration with respect to λ is indicated
by dx. The Haar measure satisfies the following scaling property: d(ax) = |a|dp dx
for all a ∈ Qp. The Haar measure on Qd

p is the d-fold product of the corresponding
Haar measure on Qp.

The characters on a commutative locally compact Hausdorff topological group
are the continuous homomorphisms from the group to the unit circle in C (which
is a group under multiplication). By (2.2), x �→ e({x · s}p) is a character on Qd

p for
every fixed s ∈ Qd

p. In fact, every character on Qd
p is of this form.

If f : Qd
p → C is integrable, the Fourier transform of f is

f̂(s) =
∫

Qd
p

e({x · s}p)f(x) dx ∀s ∈ Qd
p.

If μ is a finite Borel measure on Qd
p, the Fourier transform of μ is

μ̂(s) =
∫

Qd
p

e({x · s}p) dμ(x) ∀s ∈ Qd
p.

The Haar measure on Zd
p is the restriction of the Haar measure on Qd

p. Every
character on Zd

p has the form x �→ e({x · s}p) for some s ∈ (Qp/Zp)d. If f : Zd
p → C

is integrable, the Fourier transform of f is

f̂(s) =
∫

Zd
p

e({x · s}p)f(x) dx ∀s ∈ (Qp/Zp)d.

If μ is a finite Borel measure on Zd
p, the Fourier transform of μ is

μ̂(s) =
∫

Zd
p

e({x · s}p) dμ(x) ∀s ∈ (Qp/Zp)d.

We now present two lemmas that we will need. The first is a simple calculation.
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Lemma 2.1. For every k ∈ Z, a ∈ Qd
p, and s ∈ Qd

p, we have∫
B(a,p−k)

e({s · x}p) dx =
{
p−dke({s · a}p) if |s|p � pk

0 if |s|p > pk.
(2.3)

Proof. By a change of variable,∫
B(a,p−k)

e({s · x}p) dx = p−dke({s · a}p)
∫

B(0,1)

e(
{
pks · x}

p
) dx,

so it will suffice to prove (2.3) when a = 0 and k = 0. As the d > 1 case follows
from the d = 1 case, we will also assume d = 1. If |s|p � 1, then {sx}p = 0 for all
x ∈ B(0, 1), and so

∫
B(0,1)

e({sx}p) dx = 1. Now suppose |s|p > 1. By first making
a change of variable and then using that B(−1, 1) = B(0, 1), we get∫

B(0,1)

e({sx}p) dx = e({s}p)
∫

B(−1,1)

e({sx}p) dx = e({s}p)
∫

B(0,1)

e({sx}p) dx.

Therefore, since e({s}p) �= 1, we must have
∫

B(0,1)
e({sx}p) dx = 0. �

The second lemma says that the Fourier transform of a finite Borel measure on
Qd

p with support contained in Zd
p is completely determined by its values at points

s ∈ (Qp/Zp)d.

Lemma 2.2. Let μ be a finite Borel measure on Qd
p with support contained in Zd

p.
Then

μ̂(s) = μ̂(({s1}p, . . . , {sd}p)) ∀s ∈ Qd
p,

and (consequently) μ̂ is constant on balls of radius 1.

Proof. We assume d = 1. The proof when d > 1 is similar. Let s ∈ Qp. If x ∈ Zp,
then x[s]p ∈ Zp, and hence e({x[s]p}p) = 1. Combining this observation with (2.2)
gives

μ̂(s) = μ̂({s}p + [s]p) =
∫

Zp

e({x{s}p}p)e({x[s]p}p) dμ(x) = μ̂({s}p).

�

3. Proof of theorem 1.5

3.1. Reduction

We show here that to prove theorem 1.5 it suffices to prove the following seemingly
weaker theorem.
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Theorem 3.1. Let g be a non-negative non-decreasing function defined on (0, ∞)
such that limx→∞ g(x) = ∞. For every τ > 2, there exists a Borel probability
measure μ supported on W (τ) such that

|μ̂(ξ)| � |ξ|−1/τ
p ln2(1 + |ξ|p)g(|ξ|p) ∀ξ ∈ Qp, ξ �= 0. (3.1)

μ(B(x, r)) � r2/τ ln(1 + r−1)g(r−1) ∀x ∈ Qp, r > 0. (3.2)

We emphasize that the constant implied by � does not depend on g.

We prove theorem 3.1 in § 3.2.

Proof that theorem 3.1 implies theorem 1.5. Let τ > 2. For each k ∈ N, theorem 3.1
gives a probability measure μk supported on W (τ) that satisfies (3.1) and (3.2) with
μ and g(t) replaced by μk and ln1/k(1 + t), respectively. By Prohorov’s theorem
(see [9, vol.2, p.202]), the sequence (μk)∞k=1 has a subsequence (μkj

)∞j=1 which
converges weakly (that is, in distribution) to a probability measure μ. Therefore
μ̂(ξ) = limj→∞ μ̂kj

(ξ) for all ξ ∈ Qp, and μ(B(x, r)) = limj→∞ μkj
(B(x, r)) for all

x ∈ Qp, r > 0 (because B(x, r) is both open and closed). It follows that μ satisfies
(1.8) and (1.9) because limk→∞ ln1/k(1 + t) = 1 for any fixed t > 0. This proves
theorem 1.5. �

3.2. Proof of theorem 3.1

Let τ > 2. Let g be any non-negative non-decreasing function defined on (0, ∞)
such that limx→∞ g(x) = ∞. For each M ∈ N, define

QM =
{
q ∈ Z :

1
2
pM � q < pM , |q|p = 1, q prime

}
,

RM =
{
r ∈ Z : 0 � r < pM

}
.

Note thatQM is non-empty unless p = 2 andM = 1. For everything that follows, we
make the standing assumption that M � 2 if p = 2. For each q ∈ QM and r ∈ RM ,
define the function φq,r on Zp by

φq,r(x) = p�τM�1B(0,1)(p−�τM�(xq − r)) ∀x ∈ Zp.

For each M ∈ N, define the function FM on Zp by

FM (x) = |QM |−1|RM |−1
∑

q∈QM

∑
r∈RM

φq,r(x) ∀x ∈ Zp.

Choose a strictly increasing sequence of non-negative integers (Mk)∞k=0 such that
for all k ∈ N

�τMk−1� < Mk, (3.3)

p�τMk−1� < g(pMk), (3.4)

k−1∏
i=1

p�τMi�

|QMi
||RMi

| < g(pMk). (3.5)
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Let ψ0 be any non-negative function on Zp such that

ψ̂0(0) = 1, (3.6)

ψ̂0(s) = 0 for all s ∈ Qp/Zp with |s|p > p�τM0�, (3.7)

ψ0(x) = 0 for all x ∈ Zp with |x|p � p−�τM1� or |x|p = 1, (3.8)

‖ψ0‖∞ <∞. (3.9)

In light of lemma 2.1, we may choose, for example,

ψ0 = (p−1 − p−2)−1(1B(0,p−1) − 1B(0,p−2)).

For each k ∈ N, define the measure μk on Zp by

dμk(x) = ψ0(x)FM1(x) · · ·FMk
(x) dx.

For convenience in lemma 3.4 below, we define dμ−1(x) = dμ0(x) = ψ0(x) dx.
To construct the measure μ and prove that it satisfies (3.1), we need the following

sequence of lemmas.

Lemma 3.2. For all M ∈ N, q ∈ QM , r ∈ RM , and s ∈ Qp/Zp,

φ̂q,r(s) =
{
e({rs/q}p) if |s|p � p�τM�

0 if |s|p > p�τM�

Lemma 3.3. For all M ∈ N and s ∈ Qp/Zp,

F̂M (s) = 1 if s = 0 (3.10)

F̂M (s) = 0 if 0 < |s|p � pM (3.11)

|F̂M (s)| � |s|−1/τ ln2(|s|p) if pM < |s|p � p�τM� (3.12)

F̂M (s) = 0 if |s|p > p�τM� (3.13)

Lemma 3.4. For all integers k � 0 and all s ∈ Qp/Zp,

μ̂k(s) = 1 if s = 0 (3.14)

μ̂k(s) = μ̂k−1(s) if 0 < |s|p � pMk (3.15)

|μ̂k(s)| � |s|−1/τ ln2(|s|p)g(|s|p) if pMk < |s|p � p�τMk� (3.16)

μ̂k(s) = 0 if |s|p > p�τMk� (3.17)

Lemma 3.2 is an immediate corollary of lemma 2.1. The proofs of lemmas 3.3
and 3.4 are given in §§ 3.3 and 3.4, respectively.

Note that (3.14) implies that each μk is a probability measure. By Prohorov’s
theorem (see [9, vol. 2, p. 202]), the sequence (μk)∞k=1 has a subsequence that
converges weakly (that is, in distribution) to a probability measure μ. Though μ
is technically a measure on Zp, it extends to a measure on Qp by defining μ(A) =
μ(A ∩ Zp) for A ⊆ Qp.
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Since

supp(FMk
) =

{
x ∈ Zp : |xq − r|p � p−�τMk� for some (q, r) ∈ QMk

×RMk

}
for any k ∈ N, and since (3.3) implies that QMk

×RMk
and QMk′ ×RMk′ are

disjoint for any two k, k′ ∈ N, we have

supp(μ) ⊆
∞⋂

k=1

supp(FMk
) ⊆W (τ).

By (3.7) and (3.15)–(3.17),

|μ̂(s)| � sup
k∈N

|μ̂k(s)| � |s|−1/τ
p ln2(|s|p)g(|s|p) ∀s ∈ Qp/Zp, s �= 0.

An application of lemma 2.2 shows that μ satisfies (3.1).
Now we move on to proving (3.2).
Since μ is a probability measure supported on Zp, and since every closed ball in

Zp can be written in the form B(x, p−�) with x ∈ Zp and 	 ∈ Z, 	 � 0, it suffices
to prove

μ(B(x, p−�)) � p−2�/τ ln(1 + p�)g(p�) ∀x ∈ Zp, 	 ∈ Z, 	 � 0.

We can reduce things further. If x ∈ Zp and 0 � 	 � �τM0�, then

μ(B(x, p−�)) � 1 � p2�τM0�/τp−2�/τ � p−2�/τ ln(1 + p�)g(p�),

and we are done. Thus we can assume �τMj−1� < 	 � �τMj� for some integer j � 1.
Moreover, since μ is the weak limit of a subsequence of (μk)∞k=1 and B(x, p−�)
is both open and closed, we know μ(B(x, p−�)) is the limit of a subsequence of
(μk(B(x, p−�)))∞k=1. Therefore, to prove (3.2), it suffices to prove

Lemma 3.5. For all x ∈ Zp and j, 	 ∈ N with �τMj−1� < 	 � �τMj� there is a
k0(x, j, 	) > 0 such that

μk(B(x, p−�)) � p−2�/τ ln(p�)g(p�) (3.18)

for all integers k � k0(x, j, 	).

We will prove lemma 3.5 with k0(x, j, 	) = j.
We introduce the following definitions. For k ∈ N, Pk = FM1 · · ·FMk

and any ball
of the form B(r/q, p−�τMk�) with (q, r) ∈ QMk

×RMk
will be called a k-ball.

We will need the following four lemmas.

Lemma 3.6. If (q, r), (q′, r′) ∈ QM ×RM with r/q �= r′/q′, then∣∣∣∣rq − r′

q′

∣∣∣∣
p

> p−2M .
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Proof. Since |q|p = |q′|p = 1, rq′ �= r′q, and 0 � r, q, r′, q′ < pM , we have∣∣∣∣rq − r′

q′

∣∣∣∣
p

= |rq′ − r′q|p � |rq′ − r′q|−1
> p−2M .

�

Lemma 3.7. For every M ∈ N,

FM (x) � p�τM�

|QM ||RM | ∀x ∈ Zp, p−�τM� < |x|p < 1. (3.19)

Proof. Fix x ∈ Zp with p−�τM� < |x|p < 1. Since

FM (x) =
1

|QM ||RM |
∑

(q,r)∈QM×RM

p�τM�1B(r/q,p−�τM�)(x),

it suffices to prove that the sum can have most one non-zero term. Thus, seek-
ing a contradiction, suppose there are two pairs (q, r) �= (q′, r′) in QM ×RM such
that x ∈ B(r/q, p−�τM�) ∩B(r′/q′, p−�τM�). This implies |r/q − r′/q′|p � p−�τM�.
Then lemma 3.6 gives r/q = r′/q′. Since (q, r) �= (q′, r′), we must have q �= q′. Then,
because q and q′ are primes, the number r/q = r′/q′ must be an integer. Fur-
thermore, since 0 � r, r′ < pM and 1/2pM � q, q′, we have either r/q = r′/q′ = 0
or r/q = r′/q′ = 1. Thus x ∈ B(0, p−�τM�) or x ∈ B(1, p−�τM�). Both possibilities
contradict that p−�τM� < |x|p < 1. �

Lemma 3.8. Let x ∈ Zp and j, 	 ∈ N with 	 � �τMj�. Let J be the number of j-balls
that intersect B(x, p−�). Then:

(a) J � max
{
1, p2Mj−�

}
(b) J � max

{
1, pMj−�

} |QM |

Proof. We prove (a) by considering two cases.
Case: 	 � 2Mj . If two distinct j-balls B(r/q, p−�τMj�) and B(r′/q′, p−�τMj�)

intersect B(x, p−�), then |r/q − r′/q′|p � p−�, which contradicts lemma 3.6. Thus
J � 1.

Case: 	 < 2Mj . Then B(x, p−�) is a union of p2Mj−� balls of radius p−2Mj . By
lemma 3.6, any ball of radius p−2Mj intersects (hence contains) at most one j-ball.
Thus J � p2Mj−�.

Now we turn to the proof of (b). Suppose (q, r) ∈ QMj
×RMj

. Note that
B(x, p−�) intersects the j-ball B(r/q, p−�τMj�) if and only if |r/q − x|p � p−�,
which (because |q|p = 1) is the case if and only if r ≡ qx (mod p�). Therefore J is
less than or equal to the number of (q, r) ∈ QMj

×RMj
such that r ≡ qx (mod p�).

The proof is completed by noting that, for any q ∈ QMj
(in fact, for any q ∈ Z), the

number of integers r with r ≡ qx (mod p�) and 0 � r < pMj is � pMj−� if Mj � 	
and is � 1 if Mj � 	. �
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Lemma 3.9. Let j, k ∈ N with j � k. If B is a j-ball such that B ∩ supp(Pk) �= ∅,
then B ∩ supp(Pk) is a union of at most

k∏
i=j+1

|QMi
|pMi−�τMi−1�

k-balls.

Proof. Let B be a j-ball such that B ∩ supp(Pk) �= ∅. The proof is by induction
on k.

Base Step: k = j. Since supp(FMj
) is a union of j-balls, the same is true of

supp(Pj). Since intersecting j-balls are equal, B ∩ supp(Pj) = B.
Inductive Step: k > j. Note B ∩ supp(Pk) is the union of all k-balls contained in

B ∩ supp(Pk−1). Since supp(Pk) ⊆ supp(Pk−1), we have B ∩ supp(Pk−1) �= ∅. By
the inductive hypothesis, B ∩ supp(Pk−1) is a union of at most

k−1∏
i=j+1

|QMi
|p(Mi−�τMi−1�)

(k − 1)-balls. Let B(r′/q′, p−�τMk−1�) be any such (k − 1)-ball. It suffices to show
that B(r′/q′, p−�τMk−1�) contains � |QMk

|p(Mk−�τMk−1�) k-balls. This follows from
lemma 3.8(b) by taking 	 = �τMk−1�. �

Now we are ready to prove lemma 3.5, which (as we noted above) implies (3.2).

Proof of lemma 3.5. Let x ∈ Zp and let j, k, l ∈ N with �τMj−1� < 	 � �τMj� and
k � j. Let B1, . . . , BJ be the collection of all j-balls that intersect B(x, p−�). These
balls are disjoint and contained in B(x, p−�). Since supp(Pk) ⊆ supp(Pj), and since
supp(Pj) is a union of j-balls, we have

μk(B(x, p−�)) =
J∑

i=1

μk(Bi) =
J∑

i=1

∫
Bi∩supp(Pk)

ψ0(x)FM1(x) · · ·FMk
(x) dx.

First using (3.8), (3.9) and lemma 3.7, and then using lemma 3.9, |RM | = pM , and
the fact that k-balls have Haar measure p−�τMk�, we obtain

μk(B(x, p−�)) � ‖ψ0‖∞
k∏

i=1

p�τMi�

|QMi
||RMi

|
J∑

i=1

∫
Bi∩supp(Pk)

dx

� ‖ψ0‖∞
J

|QMj
||RMj

|
j−1∏
i=1

p�τMi�

|QMi
||RMi

| .

Now we consider three cases and use (3.5), lemma 3.8, |QM | ≈ pM/ ln(pM ), and
|RM | = pM .
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Case: 2Mj < 	 � �τMj�. We get

μk(B(x, p−�)) � ‖ψ0‖∞
1

|QMj
||RMj

|g(p
Mj ) ≈ p−2Mj ln(pMj )g(pMj )

Since 	 � �τMj� � 1 + τMj , we have p−2Mj � p2/τp−2�/τ � p−2�/τ . Thus (3.18)
follows immediately.

Case: Mj < 	 � 2Mj . We get

μk(B(x, p−�)) � ‖ψ0‖∞
p2Mj−�

|QMj
||RMj

|g(p
Mj ) ≈ p−� ln(pMj )g(pMj )

Since τ > 2, we have p−� < p−2�/τ . Thus (3.18) follows immediately.
Case: �τMj−1� < 	 � Mj . We get

μk(B(x, p−�)) � ‖ψ0‖∞
|QMj

|pMj−�

|QMj
||RMj

| ·
p�τMj−1�

|QMj−1 ||RMj−1 |
g(pMj−1)

≈ p�τMj−1�−2Mj−1−� ln(pMj−1)g(pMj−1).

Since τ > 2 and τMj−1 < 	, we have

�τMj−1� − 2Mj−1 � 1 + τMj−1

(
1 − 2

τ

)
� 1 + 	− 2	

τ
.

Thus (3.18) follows immediately. �

3.3. Proof of lemma 3.3

Proof. Let M ∈ N and s ∈ Qp/Zp. For |s|p > p�τM�, lemma 3.2 implies (3.13). For
|s|p � p�τM�, lemma 3.2 gives

F̂M (s) = |QM |−1|RM |−1
∑

q∈QM

∑
0�r<pM

e({rs/q}p). (3.20)

Setting s = 0 yields (3.10). From now on, assume 0 < |s|p � p�τM�. So |s|p = p� for
some 	 ∈ {1, . . . , �τM�}. We will study the sum over r in (3.20). Fix q ∈ QM . Since
|q|p = 1, we have |s/q|p = |s|p = p�. Thus the p-adic expansion of s/q has the form

s

q
=

∞∑
i=−�

cip
i, ci ∈ {0, 1, . . . , p− 1} , c−� �= 0. (3.21)

Evidently 0 < {s/q}p < 1, and so e({s/q}p) �= 1. Because of (2.2), we have the
geometric summation formula

∑
0�r<pM

e({rs/q}p) =
1 − e(

{
spM/q

}
p
)

1 − e({s/q}p)
. (3.22)

If |s|p � pM , we have
{
spM/q

}
p

= 0, hence the sum in (3.22) is zero. Applying this
observation to (3.20) proves (3.11).
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Now only (3.12) remains to be proved. Assume pM < |s|p = p� � p�τM�. For all
z ∈ R, |1 − e(z)| = 2| sin(πz)| = 2 sin(π‖z‖) � π‖z‖, where ‖z‖ = mink∈Z |z − k| is
the distance from z to the nearest integer. Hence the sum in (3.22) satisfies∣∣∣∣∣∣

∑
0�r<pM

e({rs/q}p)

∣∣∣∣∣∣ � min

{
1

‖ {s/q}p ‖
, pM

}
. (3.23)

In light of (3.21),

‖ {s/q}p ‖ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{s/q}p =

−1∑
i=−�

cip
i if {s/q}p � 1/2

1 − {s/q}p = 1 −
−1∑

i=−�

cip
i if {s/q}p > 1/2.

Combining (3.20), (3.23), and the fact that p−� � ‖ {s/q}p ‖ < 1 leads to

|F̂M (s)| � |QM |−1|RM |−1
�∑

k=1

∑
1/2pM �q<pM

|q|p=1, q prime

p−k�‖{s/q}p‖<p−k+1

min
{
pk, pM

}
. (3.24)

For fixed 1 � k � 	, we now estimate the number of terms in the sum over q in
(3.24). This estimate is similar to the proof of theorem 1 in Cilleruelo and Garaev’s
paper [13]. Consider any prime q with 1/2pM � q < pM , |q|p = 1, and p−k �
‖ {s/q}p ‖ < p−k+1. Define N = ‖ {s/q}p ‖p�q. Note that N is a positive integer

� pM+�−k+1. If {s/q}p � 1/2, then N =
(
s/q − [s/q]p

)
p�q ≡ sp� (mod p�). Simi-

larly, if {s/q}p > 1/2, thenN =
(
1 − s/q + [s/q]p

)
p�q ≡ −sp� (mod p�). Therefore

q is a prime � 1/2pM that divides a positive integer N with N � pM+�−k+1 and
N ≡ ±sp� (mod p�). The number of positive integers N with N � pM+�−k+1 and
N ≡ ±sp� (mod p�) is � max

{
pM−k+1, 1

}
. And the number of primes q � 1/2pM

that divide a given positive integer N is � lnN/ ln pM . Therefore the number of
terms in the sum over q in (3.24) is

� max
{
pM−k+1, 1

} ln pM+�−k+1

ln pM
.

Thus (3.24) implies

|F̂M (s)| � |QM |−1|RM |−1
�∑

k=1

min
{
pk, pM

}
max

{
pM−k+1, 1

} ln pM+�−k+1

ln pM
.

Since pM < |s|p = p� � p�τM�, |QM | � pM/ ln pM , and |RM | = pM , we obtain
(3.12). �
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3.4. Proof of lemma 3.4

Proof. Let s ∈ Qp/Zp. The proof is by induction on k. The case k = 0 follows
immediately from (3.6) and the definition dμ0 = dμ−1 = ψ0 dx. Assume k � 1. The
inductive hypothesis is that (3.14)–(3.17) hold with k replaced by k − 1. By the
usual argument with the Fourier inversion theorem (see [18, p.102] or [40, p. 120])
and Fubini’s theorem, we have

μ̂k(s) = ̂FMk
μk−1(s) =

∑
t∈Qp/Zp

F̂Mk
(s− t)μ̂k−1(t). (3.25)

If the summand F̂Mk
(s− t)μ̂k−1(t) is non-zero, then we must have |t|p � p�τMk−1�

by the inductive hypothesis, and either

t = s or pMk < |s|p = |s− t|p � p�τMk�

by (3.3) and lemma 3.3. Therefore, if |s|p > p�τMk�, every term of the sum in
(3.25) is zero, and μ̂k(s) = 0. This proves (3.17). On the other hand, if |s|p � pMk ,
then only the t = s term contributes to the sum, and μ̂k(s) = F̂Mk

(0)μ̂k−1(s) =
μ̂k−1(s). This proves (3.15) and, using the inductive hypothesis, (3.14). Only
(3.16) remains to be proved. Suppose pMk < |s|p � p�τMk�. For all t ∈ Qp/Zp

with F̂Mk
(s− t)μ̂k−1(t) �= 0 we must have |s|p = |s− t|p, and so (3.12) gives |F̂Mk

(s− t)| � |s|−1/τ ln2(|s|p). By the inductive hypothesis, |μ̂k−1(t)| � μ̂k−1(0) = 1 for
all t ∈ Qp/Zp. By counting digits, the number of t ∈ Qp/Zp with |t|p � p�τMk−1� is
exactly p�τMk−1�; hence, the sum in (3.25) has at most p�τMk−1� non-zero terms.
Putting it all together, we get

|μ̂k(s)| � p�τMk−1�|s|−1/τ
p ln2(|s|p).

Finally, applying (3.4) gives (3.16). �

4. Proof of theorem 1.7

4.1. Reduction

To prove theorem 1.7, it suffices to prove the following seemingly weaker theorem.

Theorem 4.1. Let g be a non-negative non-decreasing function defined on (0, ∞)
such that limx→∞ g(x) = ∞. For every τ > (m+ n)/m, there exists a Borel
probability measure μ supported on W (m, n, τ) such that

|μ̂(ξ)| � |ξ|−n/τ
p lnn+1(1 + |ξ|p)g(|ξ|p) ∀ξ ∈ Qmn

p , ξ �= 0.

We emphasize that the constant implied by � does not depend on g.

The proof that theorem 4.1 implies theorem 1.7 is analogous to the proof in § 3.1
that theorem 3.1 implies theorem 1.5.
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4.2. Proof of theorem 4.1

Let τ > (m+ n)/m. Let g be any non-negative non-decreasing function defined
on (0, ∞) such that limx→∞ g(x) = ∞. For each M ∈ N, define QM and RM as in
§ 3.2. Then

Qn
M =

{
q ∈ Zn :

1
2
pM � qj < pM , |qj |p = 1, qj prime ∀1 � j � n

}
,

Rm
M =

{
r ∈ Zm : 0 � ri < pM ∀1 � i � m

}
.

Note thatQM is non-empty unless p = 2 andM = 1. For everything that follows, we
make the standing assumption that M � 2 if p = 2. For each q ∈ Qn

M and r ∈ Rm
M ,

define the function φq,r on Zmn
p by

φq,r(x) = pm�τM�1B(0,1)(p−�τM�(xq − r)) ∀x ∈ Zmn
p .

For each M ∈ N, define the function FM on Zmn
p by

FM (x) = |Qn
M |−1|Rm

M |−1
∑

q∈Qn
M

∑
r∈Rm

M

φq,r(x) ∀x ∈ Zmn
p .

Choose a strictly increasing sequence of non-negative integers (Mk)∞k=0 such that
for all k ∈ N

�τMk−1� < Mk, (4.1)

pmn�τMk−1� < g(pMk). (4.2)

Let ψ0 be any non-negative function on Zmn
p such that

ψ̂0(0) = 1, (4.3)

ψ̂0(s) = 0 for all s ∈ (Qp/Zp)mn with |s|p > p�τM0�. (4.4)

In light of lemma 2.1, we may choose, for example, ψ0 = 1B(0,1). For each k ∈ N,
define the measure μk on Zmn

p by

dμk(x) = ψ0(x)FM1(x) · · ·FMk
(x) dx.

For notational convenience in lemma 3.4 below, we define dμ−1(x) = dμ0(x) =
ψ0(x) dx. For each s ∈ (Qp/Zp)mn, define

D(s) =
{
q ∈ Zn : {sij/qj}p = {sij′/qj′}p ∀1 � i � m, 1 � j, j′ � n

}
.

The proof proceeds by the following sequence of lemmas.

Lemma 4.2. For all M ∈ N, q ∈ Qn
M , r ∈ Rm

M , and s ∈ (Qp/Zp)mn,

φ̂q,r(s) =

⎧⎪⎨⎪⎩e
(

m∑
i=1

{risi1/q1}p

)
if |s|p � p�τM� and q ∈ D(s)

0 otherwise
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Lemma 4.3. For all M ∈ N and s ∈ (Qp/Zp)mn,

F̂M (s) = 1 if s = 0 (4.5)

F̂M (s) = 0 if 0 < |s|p � pM (4.6)

|F̂M (s)| � |s|−n/τ lnn+1(|s|p) if pM < |s|p � p�τM� (4.7)

F̂M (s) = 0 if |s|p > p�τM� (4.8)

Lemma 4.4. For all integers k � 0 and all s ∈ (Qp/Zp)mn,

μ̂k(s) = 1 if s = 0 (4.9)

μ̂k(s) = μ̂k−1(s) if 0 < |s|p � pMk (4.10)

|μ̂k(s)| � |s|−n/τ lnn+1(|s|p)g(|s|p) if pMk < |s|p � p�τMk� (4.11)

μ̂k(s) = 0 if |s|p > p�τMk� (4.12)

Unlike lemma 3.2, lemma 4.2 is not quite an immediate corollary of lemma 2.1.
The proof of lemma 4.3 is a generalization of the proof of lemma 3.3. The proofs of
lemmas 4.2 and 4.3 are given in §§ 4.3 and 4.4, respectively. We omit the proof of
lemma 4.4 because it is virtually identical to the proof of lemma 3.4 in § 3.4.

The rest of the proof of theorem 4.1 proceeds as in § 3.2, so we omit it.

4.3. Proof of lemma 4.2

Proof. Let M ∈ N, q ∈ Qn
M , r ∈ Rm

M , and s ∈ Qp/Zp be given. Define the function
φr on Zm

p by

φr(x) = pm�τM�1B(0,1)(p−�τM�(x− r)) ∀x ∈ Zm
p .

By lemma 2.1, for all k ∈ (Qp/Zp)m,

φ̂r(k) =
{
e({r · k}p) if |k|p � p�τM�

0 if |k|p > p�τM� (4.13)

By Fourier inversion (see [18, p. 102] or [40, p. 120]),

φr(x) =
∑

k∈(Qp/Zp)m

φ̂r(k)e(−{k · x}p) ∀x ∈ Zm
p .

Therefore, since |qj |p = 1 for all 1 � j � n,

φq,r(x) = φr(xq) =
∑

k∈(Qp/Zp)m

φ̂r(k)e(−{k · xq}p) ∀x ∈ Zmn
p .
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By Fubini’s theorem,

φ̂q,r(s) =
∑

k∈(Qp/Zp)m

φ̂r(k)
∫

Zmn
p

e({s · x}p)e(−{k · xq}p) dx (4.14)

=
∑

k∈(Qp/Zp)m

φ̂r(k)
m∏

i=1

n∏
j=1

∫
Zp

e({xij(sij − kiqj)}p) dxij .

Fix k ∈ (Qp/Zp)m. By lemma 2.1,∫
Zp

e({xij(sij − kiqj)}p) dxij =
{

1 if |sij − kiqj |p � 1
0 otherwise

Note that, since ki ∈ Qp/Zp and |qj |p = 1, |sij − kiqj |p � 1 is equivalent to ki =
{sij/qj}p. Thus (4.14) gives

φ̂q,r(s) =
{
φ̂r({s11/q1}p , . . . , {sm1/q1}p) if q ∈ D(s)
0 otherwise

To complete the proof, use (2.2), (4.13), and the fact that for all 	 � 0 and y ∈ Qp,
we have |y|p � p� if and only if | {y}p |p � p�. �

4.4. Proof of lemma 4.3

Proof. Let M ∈ N and s ∈ (Qp/Zp)mn. Choose 1 � i0 � m and 1 � j0 � n such
that |si0j0 |p = |s|p. For |s|p > p�τM�, lemma 4.2 implies (4.8). For |s|p � p�τM�,
(2.2), lemma 4.2, and the definition of D(s) give

F̂M (s) = |Qn
M |−1|Rm

M |−1
∑

q∈Qn
M∩D(s)

m∏
i=1

∑
0�ri<pM

e({risij0/qj0}p) (4.15)

Setting s = 0 yields (4.5).
From now on, assume 0 < |s|p � p�τM�. So |s|p = p� for some 	 ∈ {1, . . . , �τM�}.

We will study the sum over ri0 in (4.15). Fix q ∈ Qn
M ∩D(s). Since |qj0 |p = 1, we

have |si0j0/qj0 |p = |si0j0 |p = |s|p = p�. Thus the p-adic expansion of si0j0/qj0 has
the form

si0j0

qj0
=

∞∑
i=−�

cip
i, ci ∈ {0, 1, . . . , p− 1} , c−� �= 0. (4.16)

Evidently 0 < {si0j0/qj0}p < 1, and so e({si0j0/qj0}p) �= 1. Because of (2.2), we
have the geometric summation formula

∑
0�ri0<pM

e({ri0si0j0/qj0}p) =
1 − e(

{
pMsi0j0/qj0

}
p
)

1 − e({si0j0/qj0}p)
. (4.17)

If |s|p � pM , we have
{
pMsi0j0/qj0

}
p

= 0; hence, the sum in (4.17) is zero. Applying
this observation to (4.15) proves (4.6).

https://doi.org/10.1017/prm.2018.115 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.115


1286 R. Fraser and K. Hambrook

Now only (4.7) remains to be proved. Assume pM < |s|p = p� � p�τM�. For all
z ∈ R, |1 − e(z)| = 2| sin(πz)| = 2 sin(π‖z‖) � π‖z‖, where ‖z‖ = mink∈Z |z − k| is
the distance from z to the nearest integer. Hence the sum in (4.17) satisfies∣∣∣∣∣∣

∑
0�ri0<pM

e({ri0si0j0/qj0}p)

∣∣∣∣∣∣ � min

{
1

‖ {si0j0/qj0}p ‖
, pM

}
. (4.18)

We will also need that∣∣∣∣∣∣
∑

0�ri<pM

e({risij0/qj0}p)

∣∣∣∣∣∣ � pM ∀1 � i � m. (4.19)

In light of (4.16),

‖ {si0j0/qj0}p ‖ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{si0j0/qj0}p =

−1∑
i=−�

cip
i if {si0j0/qj0}p � 1/2

1 − {si0j0/qj0}p = 1 −
−1∑

i=−�

cip
i if {si0j0/qj0}p > 1/2.

Combining (4.15), (4.18) (4.19), and the fact that p−� � ‖ {si0j0/qj0}p ‖ < 1 leads
to

|F̂M (s)| � |Qn
M |−1|Rm

M |−1
�∑

k=1

∑
q

p(m−1)M min
{
pk, pM

}
, (4.20)

where the inner sum runs over all q ∈ Qn
M ∩D(s) such that p−k � ‖ {si0j0/qj0}p ‖

< p−k+1. We claim (q1, . . . , qn) �→ qj0 is an injection from Qn
M ∩D(s) to the set{

qj0 ∈ Z :
1
2
pM � qj0 < pM , |qj0 |p = 1, qj0 prime

}
.

This claim follows from the following two observations. First, for each q ∈ Qn
M and

1 � j � n, we have {si0j0/qj0}p = {si0j/qj}p if and only if |si0j0/qj0 − si0j/qj |p �
1 if and only if |qj − qj0si0js

−1
i0j0

|p � |s−1
i0j0

|p = p−� if and only if qj ≡ qj0si0js
−1
i0j0

(mod p�). Second, for any given b ∈ Qp, there can be at most one integer a satisfying
a ≡ b (mod p�) and 1/2pM � a < pM � p�. Applying the claim to (4.20) yields

|F̂M (s)| � |Qn
M |−1|Rm

M |−1
�∑

k=1

∑
qj0

p(m−1)M min
{
pk, pM

}
, (4.21)

where the inner sum runs over all qj0 ∈ QM such that p−k � ‖ {si0j0/qj0}p ‖
< p−k+1. Arguing as in the proof of lemma 3.3 in § 3.3, we see that for each fixed
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1 � k � 	 the number of terms in the sum over qj0 in (4.21) is

� max
{
pM−k+1, 1

} ln pM+�−k+1

ln pM
.

Thus (4.21) implies

|F̂M (s)| � |Qn
M |−1|Rm

M |−1
�∑

k=1

p(m−1)M min
{
pk, pM

}
max

{
pM−k+1, 1

} ln pM+�−k+1

ln pM
.

Since pM < |s|p = p� � p�τM�, |Qn
M | ≈ pnM/(ln pM )n, and |Rm

M | = pmM , we obtain
(4.7). �
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23 V. Jarńık. über die simultanen diophantischen Approximationen. Math. Z., 33 (1931),
505–543.

24 J.-P. Kahane. Some random series of functions, 2nd edn, volume. 5, of Cambridge Studies
in Advanced Mathematics (Cambridge: Cambridge University Press, 1985)
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