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1. Introduction

In [6], Hughes defined a class of groups that act by homeomorphisms on compact ultra-
metric spaces. Let X be a compact ultrametric space. A finite similarity structure (FSS)
SimX on X assigns to each pair of balls B1, B2 ⊆ X a finite set SimX(B1, B2) of sur-
jective similarities from B1 to B2. The sets SimX(B1, B2) are required to have certain
additional properties, such as closure under compositions and under restrictions to sub-
balls. (A complete list of the required properties appears in Definition 2.5.) Given an
FSS, one defines an associated group Γ (SimX): it is the group of homeomorphisms of X

that locally resemble elements of SimX . We will call the groups Γ (SimX) FSS groups.
Perhaps the best-known example of an FSS group is Thompson’s group V . Section 2
contains a review of FSS groups.

Hughes [6] proved that all FSS groups have the Haagerup property. His argument
even established the stronger conclusion that all FSS groups act properly by isometries
on CAT(0) cubical complexes. This greatly extended earlier results [3] that showed that
V has the Haagerup property.

The results of [6] left many open questions about the new class of FSS groups. In
this paper, guided by previous work on Thompson’s group V and related groups, we
will establish a finiteness property for some FSS groups. Brown [2] proved that V has
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type F∞. It seems natural to expect some more general class of FSS groups to have type
F∞ as well. Our main theorem states a fairly general sufficient condition for an FSS
group to have type F∞. Recall that a group has type F∞ if there is a K(Γ, 1)-complex
having a finite n-skeleton for each n � 0.

Theorem 1.1 (Main Theorem). Let X be a compact ultrametric space together
with an FSS SimX that is rich in simple contractions and has at most finitely many
SimX -equivalence classes of balls of X. If Γ is the FSS group associated with SimX , then
Γ is of type F∞.

This theorem is proved as Theorem 6.5 below. Thompson’s group V is covered by the
theorem above, and our method of proof can be considered a generalization of Brown’s
original argument. The strategy can be briefly sketched as follows. We show that every
FSS group Γ acts on a certain simplicial complex K, which we call its similarity complex.
Under the hypothesis that there are finitely many SimX -equivalence classes of balls (see
Definition 3.2), we show that the complex K will be filtered by Γ -finite subcomplexes.
If the FSS SimX is also rich in simple contractions (see Definition 5.11), then one can
argue that the connectivity of the Γ -finite subcomplexes tends to infinity. The fact that
Γ has type F∞ then follows from well-established principles. The proof of Theorem 1.1
occupies §§ 3–6.

Section 6 also contains a proof that for an arbitrary FSS group Γ , the similarity
complex K is a model for EFin = EΓ , the classifying space for proper Γ actions.

2. Groups defined by FSSs

2.1. Review of FSSs

We begin with a review of FSSs on compact ultrametric spaces, as defined in [6].

Definition 2.1. An ultrametric space is a metric space (X, d) such that d(x, y) �
max{d(x, z), d(z, y)} for all x, y, z ∈ X.

If (X, d) is a metric space, x ∈ X, and r > 0, then B(x, r) = {y ∈ X | d(x, y) � r}
denotes the closed ball about x of radius r. In an ultrametric space, closed balls are open
sets. In a compact ultrametric space, closed balls are also open balls (perhaps with a
different radius). Moreover, in an ultrametric space, if two balls intersect, then one must
contain the other.

Throughout this paper, a ball in X means a closed ball in X.

Definition 2.2. If λ > 0, then a map g : X → Y between metric spaces (X, dX) and
(Y, dY ) is a λ-similarity provided that dY (gx, gy) = λdX(x, y) for all x, y ∈ X.

Definition 2.3. A homeomorphism g : X → Y between metric spaces is a local sim-
ilarity if, for every x ∈ X, there exists r, λ > 0 such that g restricts to a surjective
λ-similarity g| : B(x, r) → B(gx, λr). In this case, λ is the similarity modulus of g at x

and we write sim(g, x) = λ. A local similarity embedding is a local similarity onto its
image.
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Convention 2.4. For a local similarity g, the similarity modulus sim(g, x) is uniquely
determined by g and x, except for the case in which x is an isolated point of X. In that
case, we will always take sim(g, x) = 1. Likewise, if g : X → Y is a map between metric
spaces and X = {x} is a singleton, then g will only be referred to as a λ-similarity for
λ = 1.

The group of all local similarities of a metric space X onto X is denoted by LS(X)
and is a subgroup of the group of self-homeomorphisms on X.

Let (X, d) be a compact ultrametric space. Usually, the metric will not be mentioned
explicitly.

Definition 2.5. An FSS for X is a function SimX that assigns to each ordered pair
B1, B2 of balls in X a (possibly empty) set SimX(B1, B2) of surjective similarities B1 →
B2 such that, whenever B1, B2, B3 are balls in X, the following properties hold.

(1) (Finiteness) SimX(B1, B2) is a finite set.

(2) (Identities) idB1 ∈ SimX(B1, B1).

(3) (Inverses) If h ∈ SimX(B1, B2), then h−1 ∈ SimX(B2, B1).

(4) (Compositions) If h1 ∈ SimX(B1, B2) and h2 ∈ SimX(B2, B3), then we have that
h2h1 ∈ SimX(B1, B3).

(5) (Restrictions) If h ∈ SimX(B1, B2) and B3 ⊆ B1, then

h | B3 ∈ SimX(B3, h(B3)).

In other words, SimX is a category whose objects are the balls of X and whose mor-
phisms are finite sets of surjective similarities together with a restriction operation.

Definition 2.6. If B is a ball in X, then an embedding h : B → X is locally determined
by SimX provided that, for every x ∈ B, there exists a ball B′ in X such that x ∈ B′ ⊆ B,
h(B′) is a ball in X, and h | B′ ∈ SimX(B′, h(B′)).

Definition 2.7. The FSS group Γ = Γ (SimX) associated with SimX is the set of all
homeomorphisms h : X → X such that h is locally determined by SimX .

Properties (2)–(5) of Definition 2.5 imply that Γ (SimX) is indeed a group. In fact, it is
the maximal subgroup of the homeomorphism group of X consisting of homeomorphisms
locally determined by SimX . Moreover, Γ (SimX) is a subgroup of the group LS(X).

Definition 2.8. A subgroup of Γ (SimX) is said to be a group locally determined by
SimX .
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2.2. Examples of FSS groups

We recall standard alphabet language and notation. An alphabet is a non-empty finite
set A. Finite (perhaps empty) n-tuples of A are words. We typically write a word as a
string of letters from A. The set of all words is denoted by A∗ and the set of infinite
words is denoted by Aω; that is,

A∗ =
∞∐

n=0

An and Aω =
∞∏
1

A.

The set of non-empty words is denoted by A+; that is, A+ =
∐∞

n=1 An. If u ∈ A∗, then
|u| = n means u ∈ An. If u ∈ A∗ with u �= ∅ and n is a non-negative integer, then
un := uu · · ·u (n times) ∈ A∗ and ū := uuu · · · ∈ Aω.

Let TA be the tree associated with A. The vertex set of TA is A∗. Two words v, w are
connected by an edge if and only if there exists x ∈ A such that v = wx or vx = w. The
root of TA is ∅. Thus, Aω = Ends(TA, ∅), the end space of the tree TA with root ∅, and
so comes with a natural ultrametric d making Aω compact. That is, if x = x1x2x3 · · ·
and y = y1y2y3 · · · are in Aω, then

d(x, y) =

{
0 if x = y,

e1−n if n = min{k | xk �= yk}.

Remark 2.9. The metric balls in Aω are of the form wAω, where w ∈ A∗.

We may assume that A is totally ordered. There is then an induced total order on Aω,
namely, the lexicographic order.

Let A = {a1, a2, . . . , ad} and let Σd be the symmetric group on A. There is an action
of Σd on A∗ given by σ(x1 · · ·xn) = σ(x1) · · ·σ(xn); this action induces an action of Σd

on the tree TA. Indeed, there is an action of Σd on Aω given by

σ(x1x2x3 · · · ) = σ(x1)σ(x2)σ(x3) · · · .

Notation 2.10. Let H be a subgroup of Σd.

Definition 2.11. If w1, w2 ∈ A∗, then let Sim(w1A
ω, w2A

ω) consist of all homeomor-
phisms h : w1A

ω → w2A
ω for which there exists a σ ∈ H such that h(w1x) = w2σ(x) for

all x ∈ Aω. Then Sim is the FSS for Aω determined by H.

Remark 2.12. The following are some observations related to Definition 2.11.

(1) Sim is an FSS for Aω.

(2) The element σ ∈ H is uniquely determined by h ∈ Sim(w1A
ω, w2A

ω).

(3) Even though w1 and w2 are not uniquely determined by h, the integer |w2|−|w1| is
the natural logarithm of the similarity modulus of h at each point of w1A

ω. Hence,
|w2| − |w1| is uniquely determined by h. Moreover, h, together with either w1 or
w2, uniquely determines the other.
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(4) If p, q ∈ A∗ are such that h| ∈ Sim(w1pAω, w2qA
ω), then h| is given by w1px �→

w2qσ(x) for all x ∈ Aω and |p| = |q|.

(5) Sim(w1A
ω, w2A

ω) contains the unique order-preserving similarity, which is given
by w1x �→ w2x for all x ∈ Aω.

Remark 2.13. If Γ = Γ (Sim) is the FSS group associated with Sim, then Γ is
isomorphic to the Nekrashevych–Röver groups Vd(H). See [6] for comments about the
groups of Nekrashevych [7] and Röver [8]. For example, note that, in the special case
H = {1}, the group Vd(H) is Gd,1, which is a Higman–Thompson group.

3. The similarity complex associated with an FSS

Throughout this section, X will denote a non-empty, compact, ultrametric space with
an FSS Sim = SimX on X.

Note that the image of a local similarity embedding f : B → X, where B is a ball in
X, is a finite union of mutually disjoint balls in X (see [6, Lemma 2.4]).

We begin by recalling the zipper as defined in [6]. Consider the set

S := {(f, B) | B is a ball in X and

f : B → X is an embedding locally determined by Sim}.

Define an equivalence relation on S by declaring that (f1, B1) and (f2, B2) are equiv-
alent provided that there exists h ∈ Sim(B1, B2) such that f2h = f1 (in particular,
f1(B1) = f2(B2)). The verification that this is an equivalence relation requires the Identi-
ties, Compositions, and Inverses properties of the similarity structure. Equivalence classes
are denoted by [f, B]. Let E be the set of equivalence classes of pairs (f, B) ∈ S. Thus,

E := {[f, B] | (f, B) ∈ S}.

The zipper is

Z := {[f, B] ∈ E | f(B) is a ball in X and f ∈ Sim(B, f(B))}.

Note that an element [f, B] ∈ Z is uniquely determined by the ball f(B). In fact,
[f, B] = [inclf(B), f(B)], where inclY : Y → X denotes the inclusion map. Thus,

Z = {[inclB , B] ∈ E | B is a ball in X}.

In particular, Z can be identified with the collection of all balls in X.
We now begin the construction of a complex on which Γ acts.

Definition 3.1. Let k be a positive integer. A pseudo-vertex v of height k is a set

v = {[fi, Bi] | 1 � i � k},

where [fi, Bi] ∈ E for each i = 1, . . . , k and such that {fi(Bi)}k
i=1 is a collection of

disjoint subsets of X. The height of v is denoted by ‖v‖ = k. The image of v is
im(v) :=

⋃k
i=1fi(Bi) ⊆ X.
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Note that the image of a pseudo-vertex v is well defined. Note also that the set of
pseudo-vertices of height 1 is {{[f, B]} | [f, B] ∈ E}. That is, with a slight abuse of
notation, E is the set of pseudo-vertices of height 1.

Definition 3.2. The Sim-equivalence class of a ball B in X is

[B] := {A ⊆ X | A is a ball and Sim(A, B) �= ∅}.

The Identities, Inverses, and Compositions properties imply that Sim-equivalence is
an equivalence relation on the set of all balls in X.

Definition 3.3. The second coordinate of a pseudo-vertex v = {[f, B]} of height
1 is the Sim-equivalence class [B]. The set of second coordinates of a pseudo-vertex
v = {[fi, Bi] | 1 � i � k} of height k is the set {[Bi] | 1 � i � k}.

Note that this is well defined; that is, if [f, B] = [f ′, B′], then [B] = [B′].

Definition 3.4. A vertex v of height k is a pseudo-vertex

v = {[fi, Bi] | 1 � i � k}

of height k such that X =
∐k

i=1fi(Bi), where
∐

denotes disjoint union. The set of all
vertices of all heights is denoted by K0.

Note that a pseudo-vertex v is a vertex if and only if im(v) = X. Note also that
every homeomorphism γ : X → X locally determined by Sim represents a vertex [γ, X]
of height 1.

Definition 3.5. A pseudo-vertex v is positive if each element of v is in the zipper Z.

Remark 3.6. As noted above, there is a bijection from the zipper Z to the set of
balls in X. That bijection induces a bijection from the set of positive vertices to the set
of partitions of X into balls. This bijection sends a positive vertex v = {[fi, Bi]}k

i=1 to
the partition {fi(Bi)}k

i=1. The inverse of this bijection sends a partition {Bi}k
i=1 of X

into balls to the positive vertex {[inclBi
, Bi]}k

i=1.

Definition 3.7. If v is a pseudo-vertex and [f, B] ∈ v with B containing more than
one point, then the simple expansion of v at [f, B] is the pseudo-vertex

w = {[g, A] ∈ v | [g, A] �= [f, B]} ∪ {[f |A, A] | A is a maximal proper sub-ball of B}.

Moreover, v is the simple contraction of w at

{[f |A, A] | A is a maximal proper sub-ball of B}.

In this situation, we write v ↗ w and w ↘ v.

If v is a pseudo-vertex and [f, B] ∈ v with B containing exactly one point (which is
to say, B does not contain a proper sub-ball), then the expansion of v at [f, B] is not
defined.
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Remark 3.8. If v and w are pseudo-vertices such that v ↗ w, then the following
hold.

(1) ‖v‖ < ‖w‖.

(2) v is a vertex if and only if w is a vertex.

(3) If v is positive, then w is positive.

Remark 3.9. Simple expansions are well defined in the following sense. If [f1, B1] =
[f2, B2] ∈ v, then

{[f1|A1, A1] | A1 is a maximal proper sub-ball of B1}
= {[f2|A2, A2] | A2 is a maximal proper sub-ball of B2}.

(This follows from the fact that a surjective similarity B1 → B2 carries maximal proper
sub-balls of B1 to maximal proper sub-balls of B2 and from the Restrictions property of
Sim.) The converse need not be true. That is, if w is a pseudo-vertex and u ⊆ w, then it
might be the case that there is more than one pseudo-vertex that is a simple contraction
of w at u. However, if v is a simple contraction of w at u, then u is uniquely determined:
if v is also a simple contraction of w at u′, then u = u′.

Remark 3.10. Let v and w be pseudo-vertices such that im(v) ∩ im(w) = ∅. The
following observations are immediate.

(1) v ∪ w is a pseudo-vertex and ‖v ∪ w‖ = ‖v‖ + ‖w‖.

(2) If v ↗ v′, then im(v′) ∩ im(w) = ∅ and v ∪ w ↗ v′ ∪ w.

(3) If v and w are positive, then so is v ∪ w.

Definition 3.11. If v and w are pseudo-vertices, then write v � w if and only if
there is a finite sequence of simple expansions v = v1 ↗ v2 ↗ · · · ↗ vn = w. The
pseudo-vertex w is an expansion of v, and v expands to w.

Lemma 3.12. The set of pseudo-vertices is partially ordered by �.

Proof. The relation is clearly reflexive. It is antisymmetric because if w is an expan-
sion of v, then ‖v‖ < ‖w‖. The relation is transitive because it is defined to be the
transitive closure of a reflexive, antisymmetric relation. �

The following remark is an immediate consequence of Remark 3.10 (2) and the defini-
tions.

Remark 3.13. If v, w, v′, w′ are pseudo-vertices such that im(v) ∩ im(w) = ∅, v � v′

and w � w′, then im(v′) ∩ im(w′) = ∅ and v ∪ w � v′ ∪ w′.

Remark 3.14. The only pseudo-vertices that are maximal with respect to � are
those of the form {[fi, Bi] | 1 � i � k}, where Bi is a singleton for each i = 1, . . . , k. In
particular, if X has no isolated points, then there are no maximal pseudo-vertices.
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Remark 3.15. If v, w are pseudo-vertices, v � w and [f, B] ∈ w, then there exists a
unique [g, A] ∈ v such that f(B) ⊆ g(A).

Definition 3.16. If v = {[fi, Bi] | 1 � i � k} is a pseudo-vertex, then the complete
expansion of v is the pseudo-vertex

expansion(v) := {[fi|A, A] | 1 � i � k and A is a maximal, proper sub-ball of Bi,

or A = B if Bi is a singleton}.

Remark 3.17. If v is a pseudo-vertex of height 1, then v ↗ expansion(v). It follows
from Remark 3.10 (2) that if v = {[fi, Bi] | 1 � i � k} is a pseudo-vertex of height k,
then

v ↗ expansion{[f1, B1]} ∪ {[fi, Bi] | 2 � i � k} ↗ · · ·

↗
k⋃

i=1

expansion{[fi, Bi]} = expansion(v).

In particular, v � expansion(v).

Definition 3.18. Let B be a ball in X. Inductively define a sequence {Bi}∞
i=0 of

partitions of B into sub-balls as follows. First, B0 = {B}. Assuming i > 0 and Bi has
been defined, a sub-ball A of B is in Bi+1 if and only if there exists a ball C ∈ Bi such
that A is a maximal proper sub-ball of C, or C is a singleton and A = C. The sequence
{Bi}∞

i=0 is the ball hierarchy of B.

Suppose that (f, B) ∈ S and let {Bi}∞
i=0 be the ball hierarchy of B. Observe that if

i � 1 and A ∈ Bi, then the Restrictions property implies that (f |A, A) ∈ S. For each
x ∈ B, let D((f, B), x) denote the smallest non-negative integer i such that there exists
A ∈ Bi with x ∈ A, f(A) a ball, and f |A ∈ Sim(A, f(A)). The integer D((f, B), x) is
called the depth of (f, B) at x. Note that if y ∈ A, then D((f, B), y) = D((f, B), x) (since
any two balls are either disjoint or one contains the other). Thus, D((f, B), ·) is a locally
constant function on X.

Definition 3.19. If (f, B) ∈ S, then the depth of [f, B] ∈ E is

D[f, B] := max{D((f, B), x) | x ∈ B}.

Note that D[f, B] is well defined; that is, it is independent of the representative of
[f, B] ∈ E in S.

Definition 3.20. If v = {[fi, Bi] | 1 � i � k} is a pseudo-vertex, then the depth of v

is
depth(v) := max{D[fi, Bi] | 1 � i � k}.

Remark 3.21. If v is a pseudo-vertex, then the following hold.

(1) depth(v) = 0 if and only if v is positive.

(2) depth(expansion(v)) � depth(v), with equality if and only if depth(v) = 0.
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Lemma 3.22. Every pseudo-vertex expands to a positive pseudo-vertex. In particular,
for every vertex v ∈ K0, there exists a positive vertex w such that v � w.

Proof. If k = depth(v), then it follows from Remarks 3.17 and 3.21 that v := v0 �
v1 � · · · � vk, where vi := expansion(vi−1) for 1 � i � k, and that depth(vk) = 0. Thus,
w := vk is the desired positive pseudo-vertex.

The second statement of the lemma follows from the first, together with the observation
that the expansion of a vertex is a vertex. �

Lemma 3.23. If B is a ball in X and P is a partition of B into sub-balls, then the
positive pseudo-vertex {[inclB , B]} expands to the positive pseudo-vertex {[inclA, A] |
A ∈ P}.

Proof. Observe first that if B′ is a sub-ball of B, and B′′ ∈ P is a sub-ball of B′,
then there is P ′ ⊆ P partitioning B′. The proof of the lemma is by induction on the
cardinality of P. If |P| = 1, then P = {B} and there is nothing to prove. Assume |P| > 1
and that the statement is true for partitions of smaller cardinality. Let {Bi}∞

i=0 be the ball
hierarchy of B and let N = max{i > 0 | P ∩ Bi �= ∅} and choose C ∈ P ∩ BN . Note that
C �= B. Let D be the smallest sub-ball of B such that C �= D and C ⊆ D. Note that C

is a maximal proper sub-ball of D. By the observation above, P contains a partition PD

of D. By the definition of N , PD is the partition of D into maximal proper sub-balls.
Clearly, C ∈ PD and |PD| > 1. Let P ′ = P \ PD ∪ {D}. Since P ′ is a partition of B by
balls and |P ′| < |P|, the inductive assumption implies that {[inclB , B]} expands to the
pseudo-vertex w = {[inclA, A] | A ∈ P ′}. The proof is now complete upon observing that
the simple expansion of w at [inclD, D] is the pseudo-vertex {[inclA, A] | A ∈ P}. �

Definition 3.24. The similarity complex associated with Sim is the simplicial com-
plex K = KSim obtained from (K0,�). Thus, an n-simplex of K is an ascending chain
(v0, v1, . . . , vn) of distinct vertices v0 < v1 < · · · < vn.

Note that the vertices of an n-simplex of K are totally ordered by �. Note also that
K �= ∅ because it contains the positive vertex {[idX , X]} of height 1.

Proposition 3.25. The partially ordered set (K0,�) is a directed set. Hence, K is
contractible.

Proof. By Lemma 3.22, (K0,�) is a directed set if any two positive vertices have an
upper bound. If v1 and v2 are positive vertices, then there are partitions P1 and P2 of
X into balls such that vi = {[inclB , B] | B ∈ Pi} for i = 1, 2. Let P = {B1 ∩ B2 | B1 ∈
P1, B2 ∈ P2, and B1 ∩B2 �= ∅}. Thus, P is a common refinement of P1 and P2, and P is
a partition of X into balls. Moreover, P contains a partition of any ball in P1 or in P2.
Lemma 3.23 implies that if i = 1 or 2 and B ∈ Pi, then the pseudo-vertex {[inclB , B]}
expands to the pseudo-vertex {[inclA, A] | A ∈ P and A ⊆ B} for i = 1, 2. Remark 3.10
implies that both v1 and v2 expand to the vertex {[inclA, A] | A ∈ P}. This completes
the proof of the first statement of the proposition. The second statement follows from
the well known fact that the complex obtained from a directed, partially ordered set is
contractible (see [5, Proposition 9.3.14, pp. 210]). �
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Example 3.26. Let X = {x1, . . . , xn} be a finite ultrametric space in which the
distance between any two distinct points is 1. Note that {xi} (for i ∈ {1, . . . , n}) and X

itself are the only balls in X. For a pair of balls B1, B2 ⊆ X, we define SimX(B1, B2) as
follows:

(1) SimX({xi}, {xj}) = {φij}, where φij is the only possible map φij : {xi} → {xj};

(2) SimX(X, X) = {idX}.

It is straightforward to check that SimX is an FSS, and that Γ (SimX) = ΣX , the
symmetric group on X. There are exactly n! + 1 vertices:

• if φ ∈ ΣX , then {[φ, X]} is a vertex of height 1; since SimX(X, X) = {idX},
{[φ1, X]} �= {[φ2, X]} if φ1 �= φ2, and so there are n! vertices of this type;

• the remaining vertex is {[φii, {xi}] | 1 � i � n}.

Every vertex of the form {[φ, X]} expands to {[φii, {xi}]}. It follows that K may be
identified with the cone on ΣX ; that is,

K = (ΣX × I)/∼,

where I denotes the unit interval and (φ1, t1) ∼ (φ2, t2) if t1 = t2 = 0. The action of
Γ (SimX) on K under this identification is the same as the natural action of ΣX on its
cone.

On the other hand, we might set SimX(X, X) = ΣX (in place of (2) above). The result
is still an FSS. In this case, there are just two vertices, {[idX , X]} and {[φii, {xi}] | i ∈
{1, . . . , n}}, and K may be identified with the unit interval. We still have Γ (SimX) = ΣX ,
but the action of Γ (SimX) on K is now trivial.

Various intermediate constructions are possible, depending on the size of the group
SimX(X, X).

Note that up to this point we have not used the Finiteness property of the Sim struc-
ture.

4. Local finiteness of the sublevel complexes

We continue to use the same notation as in the previous section. In particular, X denotes
a non-empty, compact ultrametric space with an FSS Sim. Moreover, K denotes the
similarity complex associated with Sim.

The goal of this section is to filter K by subcomplexes that are locally finite if the set
of Sim-equivalence classes of balls in X is assumed to be finite (see Proposition 4.6).

Definition 4.1. For n ∈ N, the sublevel complex K�n is the subcomplex of K spanned
by all vertices of height less than or equal to n.

Lemma 4.2. Suppose that B is a ball in X, w is a pseudo-vertex, and Pw,B denotes
the set of all pseudo-vertices v of height 1 such that the second coordinate of v is [B]
and such that v ↗ w. Then Pw,B is finite.
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Proof. Write w = {[fi, Bi] | 1 � i � k}. We may assume that Pw,B is not empty so
that there is an element in Pw,B of the form [f, B]. The fact that [f, B] ↗ w implies that
there are exactly k maximal proper sub-balls of B, say B̂1, . . . , B̂k, indexed so that if f̂i =
f |B̂i, then [f̂i, B̂i] = [fi, Bi] for i = 1, . . . , k. Let Sw,B = {(g, B) ∈ S | [g, B] ∈ Pw,B}.

Since the function Sw,B → Pw,B , defined by (g, B) �→ [g, B], is surjective, it suffices to
show that Sw,B is finite. Let Σk be the set of all permutations of {1, . . . , k}. The proof
will be completed by defining an injection

Ψ : Sw,B →
∐

σ∈Σk

k∏
i=1

Sim(B̂i, Bσ(i)).

Given (g, B) ∈ Sw,B , we know that

{[gi, B̂i] | 1 � i � k} = {[fi, Bi] | 1 � i � k},

where gi = g|B̂i. It follows that there exists a unique σ ∈ Σk such that [gi, B̂i] =
[fσ(i), Bσ(i)] for i = 1, . . . , k. Thus, f−1

σ(i)gi ∈ Sim(B̂i, Bσ(i)) and we can define

Ψ(g, B) = (f−1
σ(1)g1, . . . , f

−1
σ(k)gk) ∈

k∏
i=1

Sim(B̂i, Bσ(i)).

To see that Ψ is injective, suppose we have another element (h, B) ∈ Sw,B and Ψ(h, B) =
Ψ(g, B). It follows that f−1

σ(i)gi = f−1
σ(i)hi for each i = 1, . . . , k, where hi = h|B̂i. Thus,

g = h and (g, B) = (h, B). �

Remark 4.3. Note that the previous argument relied on the Finiteness property of
the similarity structure.

Lemma 4.4. If v is a pseudo-vertex, then v has only finitely many immediate succes-
sors.

Proof. This is clear because v contains only finitely many elements at which a simple
expansion may be performed. �

In the next result, we will begin using the assumption that the set of Sim-equivalence
classes of balls in X is finite. This assumption will be required for the main result,
Theorem 6.5.

Lemma 4.5. If w is a pseudo-vertex and the set of Sim-equivalence classes of balls in
X is finite, then w has only finitely many immediate predecessors.

Proof. An immediate predecessor of w is a pseudo-vertex v such that there is an
elementary expansion v ↗ w. Thus, there is a subset w′ ⊆ w and a pseudo-vertex v′ ⊆ v

of height 1 such that v′ ↗ w′ and w\w′ = v\v′. There are only finitely many possibilities
for w′ (since w has only finitely many subsets). Once w′ is fixed, there are only finitely
many possibilities for the second coordinate of v′ (by the assumption of the finiteness of
the set of Sim-equivalence classes of balls). Finally, once w′ and the second coordinate
of v′ are fixed, there are only finitely many possibilities for v′ by Lemma 4.2. �
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Proposition 4.6. If the set of Sim-equivalence classes of balls in X is finite and n ∈ N,
then the sublevel complex K�n is locally finite.

Proof. It follows from Lemmas 4.4 and 4.5 that any vertex v of K�n is contained in
at most finitely many ascending chains of vertices in K�n. That is to say, v is in only
finitely many simplices of K�n. �

Remark 4.7. The complex K is usually not locally finite. In fact, the following are
equivalent:

(1) K is finite;

(2) K is locally finite;

(3) X is finite.

Proof. If X is not finite, then, since X is compact, there exists a sequence of balls
X = B1 ⊇ B2 ⊇ B3 ⊇ · · · such that Bi+1 is a maximal proper sub-ball of Bi for each
i ∈ N. Define vertices v1 < v2 < v3 < · · · inductively as follows. Let v1 = {[inclB1 , B1]}.
If i > 1 and vi has been defined so that [inclBi , Bi] ∈ vi, let vi+1 be obtained from
vi by a simple expansion at [inclBi

, Bi]. Then v1 is a vertex of the simplex spanned by
{v1, . . . , vn} for every n ∈ N, showing that K is not locally finite.

On the other hand, if X is finite, then it is rather obvious that K is finite: if X has
cardinality n, then there are only finitely many partitions of X and each has cardinality
less than or equal to n, there are only finitely many collections of at most n balls, and
only a finite number of functions between any two subsets of X. This shows that there
are only finitely many vertices of K. �

5. Connectivity of the descending links

We continue to use the same notation as in the previous two sections. In particular, X

denotes a non-empty, compact, ultrametric space with an FSS Sim. Moreover, K denotes
the similarity complex associated with Sim.

The goal of this section is to prove, under the assumptions in the Main Theorem 1.1,
that the descending link of a vertex in K is highly connected depending on the height of
the vertex (see Corollary 5.22). The main technical result is Theorem 5.20.

Definition 5.1. A pseudo-vertex v is contracting if there exists [f, B] ∈ E such that
v = {[f |A, A] | A is a maximal proper sub-ball of B}.

Note that v is contracting if and only if there exists [f, B] ∈ E such that B is not a
singleton and v = expansion{[f, B]}. Note also that every simple contraction of a vertex
v takes place at a subset w of v, where w is a contracting pseudo-vertex.

Definition 5.2. For 1 � i � k, let vi be pseudo-vertices each obtained by simple
contractions of a pseudo-vertex v at contracting pseudo-vertices wi ⊆ v. Then v1, . . . , vk

are obtained from v by pairwise disjoint simple contractions if wi ∩ wj = ∅ whenever
i �= j.

https://doi.org/10.1017/S001309151400011X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151400011X


Finiteness properties 391

We note that, by the final line of Remark 3.9, the property of being obtained from v

by pairwise disjoint simple contractions is well defined.

Lemma 5.3. Suppose v, w and y are pseudo-vertices, v � w, [f, B] ∈ v, and [f, B] /∈ w.
If {[f, B]} ↗ y, then z := (v \ {[f, B]}) ∪ y is a pseudo-vertex and z � w.

Proof. The fact that f(B) = im(y) implies that z is a pseudo-vertex. Now choose
a sequence of simple expansions v = v1 ↗ v2 ↗ · · · ↗ vn = w and let m be the
greatest integer such that [f, B] ∈ vm. It follows that vm+1 = (vm \ {[f, B]}) ∪ y and
v \ {[f, B]} � vm \ {[f, B]}. Thus, z � vm+1 � w. �

A pseudo-vertex q̂ is a maximal lower bound for v1, . . . , vk if q̂ is a lower bound for
v1, . . . , vk, and if q̂ < q, then q is not a lower bound for v1, . . . , vk. By contrast, q̂ is
the greatest lower bound for v1, . . . , vk if q̂ is a lower bound for v1, . . . , vk, and if q is
another lower bound for v1, . . . , vk, then q � q̂. A greatest lower bound is maximal, but
the converse need not hold in arbitrary partially ordered sets.

Lemma 5.4. Let q̂ be a maximal lower bound for v1, . . . , vk. If [g, A] ∈
⋂k

i=1 vi, then
[g, A] ∈ q̂.

Proof. Remark 3.15 implies that there exists a unique [ĝ, Â] ∈ q̂ such that g(A) ⊆
ĝ(Â). We note that, since ĝ(Â) ∩ g(A) �= ∅ and v1, . . . , vk, q̂ are pseudo-vertices, either
[ĝ, Â] = [g, A] or [ĝ, Â] /∈ vi for all i = 1, . . . , k. Let y be such that [ĝ, Â] ↗ y. If [ĝ, Â] /∈ vi

for all i = 1, . . . , k, then Lemma 5.3 implies that q′ := y ∪ (q̂ \ {[ĝ, Â]}) � vi, for all
i = 1, . . . , k. Since q̂ ↗ q′, this contradicts maximality of q̂. Therefore, [ĝ, Â] = [g, A] and
[g, A] ∈ q̂. �

Lemma 5.5. Let v be a pseudo-vertex containing distinct contracting pseudo-vertices
w1, . . . , wk and let vi be a pseudo-vertex obtained from a simple contraction of v at wi

for 1 � i � k.

(1) The pseudo-vertices v1, . . . , vk have a lower bound if and only if v1, . . . , vk are
obtained from v by pairwise disjoint simple contractions.

(2) If the pseudo-vertices v1, . . . , vk have a lower bound, then they have a greatest lower
bound.

Proof. For notation that will be used throughout the proof, choose [fi, Bi] ∈ E such
that [fi, Bi] ∈ vi, and if ui := {[fi, Bi]}, then ui ⊆ vi and ui ↗ wi for 1 � i � k. Note
that v \ wi = vi \ ui for 1 � i � k.

To prove the ‘if’ part of the first statement, the assumption is that wi∩wj = ∅ whenever
i �= j. Define a pseudo-vertex

v̂ =
[
v\

k⋃
i=1

wi

]
∪

k⋃
i=1

ui.
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It follows that v̂ � vj for 1 � j � k as is amply illustrated for the case j = k:

v̂ ↗
[
v\

k⋃
i=2

wi

]
∪

k⋃
i=2

ui ↗
[
v\

k⋃
i=3

wi

]
∪

k⋃
i=3

ui ↗ · · · ↗ [v \ wk] ∪ uk = vk,

where the 	th simple expansion in the sequence above uses u� ↗ w�.
To prove the ‘only if’ part of the first statement, it suffices to consider the case k = 2.

Suppose z is a lower bound of v1 and v2. The goal is to show w1 ∩ w2 = ∅. Suppose
on the contrary that there exists [f, B] ∈ w1 ∩ w2. Since u1 ↗ w1 and u2 ↗ w2,
it follows that there exist maximal proper sub-balls, B̂1 ⊆ B1 and B̂2 ⊆ B2, such that
[f1|B̂1, B̂1] = [f, B] = [f2|B̂2, B̂2]. Since z � v and [f, B] ∈ v, it follows from Remark 3.15
that there exists a unique [h, C] ∈ z such that f(B) ⊆ h(C). Now, since z � vi and
[fi, Bi] ∈ vi (i = 1, 2), it follows from Remark 3.15 that there are unique [hi, Di] ∈ z

(i = 1, 2) such that fi(Bi) ⊆ hi(Di) (i = 1, 2). Since [h1, D1], [h2, D2], [h, C] ∈ z and z is
a pseudo-vertex, we must have that any two of h1(D1), h2(D2), h(C) are either identical
or disjoint. We have hi(Di) ∩ h(C) �= ∅ for i = 1, 2, however (since f(B) is a subset
of both). It follows that h1(D1) = h2(D2) = h(C), and so fi(Bi) ⊆ h(C) for i = 1, 2.
Since z expands to vi (i = 1, 2) and fi(Bi) ⊆ h(C), there exist sub-balls C1, C2 ⊆ C

such that [h|Ci , Ci] = [fi, Bi] (i = 1, 2). Since vi (i = 1, 2) expands to v, there exist
sub-balls Ĉ1 ⊆ C1 and Ĉ2 ⊆ C2 such that [h|Ĉ1, Ĉ1] = [f, B] = [h|Ĉ2, Ĉ2]. In particular,
h(Ĉ1) = f(B) = h(Ĉ2), from which it follows that Ĉ1 = Ĉ2.

We will now show that Ĉ1 is a maximal proper sub-ball of C1. There exists g ∈
Sim(B, B̂1) such that f1g = f . There exists ĥ ∈ Sim(B1, C1) such that hĥ = f1. Since
B̂1 is a maximal proper sub-ball of B1, ĥ(B̂1) is a maximal proper sub-ball of C1. Now,
hĥ(B̂1) = f1(B̂1) = fg−1(B̂1) = f(B) = h(Ĉ1). Thus, ĥ(B̂1) = Ĉ1 and Ĉ1 is a maximal
proper sub-ball of C1 as claimed. Likewise, Ĉ2 is a maximal proper sub-ball of C2. Since
Ĉ1 = Ĉ2, it follows that C1 = C2 (in an ultrametric space a ball is a maximal proper
sub-ball of at most one ball). Therefore, [f1, B1] = [f2, B2]; that is, u1 = u2 and w1 = w2,
contradicting the assumption that w1 and w2 are distinct.

To prove the second statement, assuming v1, . . . , vk have a lower bound (equivalently,
they are obtained from v by pairwise disjoint simple contractions), we will show that
the pseudo-vertex v̂ defined above is the greatest lower bound of v1, . . . , vk. Let q̂ be
a maximal lower bound for v1, . . . , vk. Let i ∈ {1, . . . , k} be arbitrary. We claim that
ui ⊆ q̂. Since q̂ � vi and ui = {[fi, Bi]} ⊆ vi, Remark 3.15 implies that there is a unique
[f̂i, B̂i] ∈ q̂ such that fi(Bi) ⊆ f̂i(B̂i). Suppose, for a contradiction, that i �= j, but
[f̂i, B̂i] ∈ vj . Since wi ∈ vj , we have

expansion{ui} = {[fi|B′
l
, B′

l] | B′
l is a maximal proper sub-ball of Bi} ⊆ vj .

Clearly, each fi(B′
l) is a proper subset of f̂i(B̂i). Since vj is a pseudo-vertex and [fi|B′

l
, B′

l],
[f̂i, B̂i] ∈ vj , we have a contradiction. Thus, [f̂i, B̂i] /∈ vj if i �= j. Now, if [f̂i, B̂i] /∈ vi,
then, by Lemma 5.3, the simple expansion q̃i of q̂ at [f̂i, B̂i] satisfies q̃i � vj for all
j ∈ {1, . . . , k}, violating maximality of q̂. Thus, ui ⊆ q̂. It follows that [fi, Bi] ∈ q̂ for
i = 1, . . . , k.
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Lemma 5.4 implies that z ⊆ q̂. Since im(u1 ∪ · · · ∪ uk ∪ z) = im(v̂), we must have
q̂ =

⋃k
i=1ui ∪ z = v̂. �

Definition 5.6. Let v be a vertex.

(1) The descending link of v, denoted by lk↓(v), is the subcomplex of K spanned by
{v′ ∈ K0 | v′ < v}.

(2) The complex below v, denoted by B(v), is the subcomplex of K spanned by {v′ ∈
K0 | v′ � v}.

Note that the set of vertices of B(v) is a directed set; in fact, it has a greatest element
v. Thus, B(v) is contractible.

Definition 5.7. The nerve complex associated with a pseudo-vertex v, denoted by Nv,
is the abstract simplicial complex of which a vertex is a pseudo-vertex obtained from v

by a simple contraction and a k-simplex is a set of the form {v0, . . . , vk}, where v0, . . . , vk

are pseudo-vertices obtained from v by pairwise disjoint simple contractions.

Remark 5.8. The reason for the nerve terminology is the following alternative inter-
pretation of Nv for the case in which v is a vertex. Recall that in general, if U is a cover of a
space, then the nerve of U is the simplicial complex, denoted by N(U), whose vertices are
the elements of U and such that a collection {U0, . . . , Un} of vertices spans an n-simplex
of N(U) if and only if

⋂n
i=0Ui �= ∅. Let v1, . . . , vn be the complete list of distinct vertices

that can be obtained from v by simple contractions; that is, vi ↗ v for 1 � i � n.
Note that U = {B(v1), . . . , B(vn)} is a cover of lk↓(v) by subcomplexes. Moreover, a
k-element subset {B(vi1), . . . , B(vik

)} of U has a non-empty intersection if and only if
vi1 , . . . , vik

have a lower bound. By Lemma 5.5, this means that {B(vi1), . . . , B(vik
)}

has a non-empty intersection if and only if vi1 , . . . , vik
are obtained from v by pairwise

disjoint simple contractions. Therefore, Nv is the nerve of the cover U .

Proposition 5.9. If v is a vertex, then lk↓(v) is homotopy equivalent to Nv.

Proof. Let v1, . . . , vn be the complete list of distinct vertices that can be obtained
from v by simple contractions. Using the alternative interpretation of Nv in Remark 5.8
and a standard fact about nerves of covers (which may be found in [5, Proposition
9.3.20]), it suffices to show that

⋂k
j=1B(vij ) is contractible whenever it is non-empty. The

intersection is non-empty precisely when the vertices vi1 , . . . , vik
have a lower bound. In

that case, Lemma 5.5 implies that the vertices have a greatest lower bound. That is to
say,

⋂k
j=1B(vij )

0 has a greatest element, and in particular, it is a directed set. Therefore,
the intersection

⋂k
j=1B(vij ) is contractible. �

Recall that a simplicial complex M is a flag complex if every finite subset of vertices
of M that is pairwise joined by edges spans a simplex.

Lemma 5.10. If v is a pseudo-vertex, then Nv is a flag complex.
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Proof. Let v0, . . . , vk be vertices of Nv such that any pair spans a 1-simplex of Nv.
Thus, v0, . . . , vk are pseudo-vertices obtained from v by pairwise disjoint simple contrac-
tions. That is to say, {v0, . . . , vk} is a k-simplex of Nv. �

We will need to assume the following property in order to establish our main finiteness
result, Theorem 1.1.

Definition 5.11. The space X together with Sim is rich in simple contractions if
there exists a constant C0 > 0 such that, if k � C0 and v is a pseudo-vertex of height k,
there exists a pseudo-vertex w ⊆ v with ‖w‖ > 1 and a simple contraction of v at w.

Note that the condition ‖w‖ > 1 in the definition above is redundant because it is
implied by the definition of a simple contraction.

The property of Definition 5.11 is the one that we will need in our proof; however,
the following property, which is a bit more cumbersome to state, is easier to verify and
implies rich in simple contractions.

Definition 5.12. The space X together with Sim is rich in ball contractions
if there exists a constant C0 > 0 such that if k � C0 and (B1, . . . , Bk) is a
k-tuple of balls of X, then there exists a ball B ⊆ X such that if MB :=
{A | A is a maximal, proper sub-ball of B}, then |MB | > 1 and there is an injection
σ : MB → {(Bi, i) | 1 � i � k} such that [A] = [Bi] whenever σ(A) = (Bi, i).

Proposition 5.13. If X together with Sim is rich in ball contractions, then it is rich
in simple contractions.

Proof. Let C0 be the constant given in Definition 5.12; we will show that Defini-
tion 5.11 is satisfied with the same constant. Let v = {[fi, Bi] | 1 � i � k} be a
pseudo-vertex of height k � C0. Let B ⊆ X be a ball such that |MB | > 1 and there
exists an injection σ : MB → {(Bi, i) | 1 � i � k}. Let σ1 and σ2 denote the first and
second coordinates of σ, respectively; that is, if σ(A) = (Bi, i), then σ1(A) = Bi and
σ2(A) = i. For each A ∈ MB , choose hA ∈ Sim(A, σ1(A)). Define f : B → X by setting
f |A = fσ2(A) ◦ hA : A → X for each A ∈ MB . Let w = {[fi, Bi] | i ∈ im(σ2)}. Then
w ⊆ v is a pseudo-vertex and ‖w‖ > 1. Define u = {[f, B]} ∪ v \ w. Clearly, u is obtained
from a simple contraction at w. �

Example 5.14. We let A = {a1, . . . , ad} be a finite alphabet, and consider, for arbi-
trary H � Σd, the FSS for Aω from Definition 2.11.

We claim that Aω, with the given Sim structure, is rich in ball contractions with
C0 = d. Suppose k � d and (B1, . . . , Bk) is a k-tuple of balls in Aω. We can write
(B1, . . . , Bk) = (u1A

ω, . . . , ukAω) for appropriate words u1, . . . , uk ∈ A∗. We consider
MAω = {aiA

ω | ai ∈ A}. Let σ : MAω → {(uiA
ω, i) | 1 � i � k} be defined by

σ(aiA
ω) = (uiA

ω, i). This map is injective, and clearly Sim(aiA
ω, uiA

ω) �= ∅, so [aiA
ω] =

[uiA
ω].

Lemma 5.15. If the set of Sim-equivalence classes of balls in X is finite, then there
exists a constant C1 such that ‖v‖ � C1 whenever v is a contracting pseudo-vertex.

https://doi.org/10.1017/S001309151400011X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151400011X


Finiteness properties 395

Proof. Let [B1], . . . , [Bn] be the set of Sim-equivalence classes of balls in X. Let Ni be
the number of maximal, proper sub-balls of Bi for 1 � i � n. Define C1 := max{Ni | 1 �
i � n}. If v is a contracting pseudo-vertex, then there exist i ∈ {1, . . . , n} and [f, Bi] ∈ E
such that v = expansion{[f, Bi]}. Thus, ‖v‖ � Ni. �

Hypothesis 5.16. The following two conditions are satisfied.

(1) There exist at most finitely many Sim-equivalence classes of balls of X, and C1 > 0
is the constant given by Lemma 5.15.

(2) The space X together with Sim is rich in simple contractions and C0 > 0 is the
constant in Definition 5.11.

For the proof of Theorem 5.20 we need the following three results concerning connec-
tivity in simplicial complexes.

Recall that the star of a vertex v in a simplicial complex M , denoted by st(v, M), or
st(v) if M is understood, is the subcomplex of M consisting of all the simplices containing
v, together with the faces of these simplices. The link of a vertex v in a simplicial complex
M , denoted by l(v, M) or l(v), consists of all simplices in st(v, M) that do not contain v.

A reference for the following well known result is [1, Theorem 10.6, pp. 1850].

Theorem 5.17 (Nerve Theorem). Let M be a simplicial complex and let {Mi}i∈I

be a family of subcomplexes such that M =
⋃

i∈IMi. If every non-empty intersection
Mi1 ∩ · · · ∩ Mit is (k − t + 1)-connected, then M is k-connected if and only if the nerve
of the cover {Mi}i∈I is k-connected.

Lemma 5.18. Suppose v1, . . . , vn are vertices in a flag complex M . If
n⋂

i=1

st(vi, M) �= ∅ but
n⋂

i=1

l(vi, M) = ∅,

then
⋂n

i=1st(vi, M) is a simplex.

Proof. By the flag property, it suffices to show that any two vertices of
⋂n

i=1st(vi, M)
are adjacent. If u, w are vertices of

⋂n
i=1st(vi, M), then, since the intersection of the links

is empty, u, w ∈ {v1, . . . , vn}. It follows that w ∈ st(u, M), which is to say, u and w are
adjacent. �

The following result is due to Farley [4, Lemma 6]. We only require the second item;
however, we state both parts in order to clarify the statement in [4].

Lemma 5.19 (Farley). Let M be a non-empty finite flag complex.

(1) Assume that k � 0 and for any collection S of vertices of M such that |S| � 2,⋂
v∈S

l(v) is (k − |S| + 1)-connected.

Then M is k-connected.

(2) Assume that n � −1. If S is any collection of vertices of M and
⋂

v∈S l(v) is
n-connected, then so is

⋂
v∈Sst(v).
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We are now ready for the main technical result of this section.

Theorem 5.20. If Hypothesis 5.16 is satisfied, v is a pseudo-vertex, k � −1 is an
integer, and

‖v‖ � (2k + 2)C1 + C0,

then Nv is k-connected.

Proof. The proof is by induction on k. We begin with the case k = −1. Then
‖v‖ � C0. Thus, there exists a pseudo-vertex w ⊆ v and a simple contraction of v at w.
Let v1 be a pseudo-vertex resulting from such a simple contraction. Hence, v1 is a vertex
of Nv; that is, Nv �= ∅, which is to say, Nv is (−1)-connected.

Now consider the case k = 0; then ‖v‖ � 2C1 + C0. To show that Nv is 0-connected,
let v1, v2 be vertices of Nv. Thus, there exist pseudo-vertices w1, w2 ⊆ v such that vi is
obtained from a simple contraction of v at wi for i = 1, 2. Thus, w1, w2 are contracting
pseudo-vertices and ‖wi‖ � C1 for i = 1, 2. Hence, ‖v \ (w1 ∪ w2)‖ � C0 and so there
is a pseudo-vertex w ⊆ v \ (w1 ∪ w2) and a pseudo-vertex v′

3 resulting from a simple
contraction of v \ (w1 ∪ w2) at w. It follows that v3 := v′

3 ∪ w1 ∪ w2 is a pseudo-vertex
such that v3 ↗ v. Therefore, since w1 ∩ w = ∅ = w2 ∩ w, {v1, v3} and {v2, v3} are
1-simplices of Nv showing that v1 and v2 are in the same component.

Now suppose that k > 0 and that the nerve complex Nw is 	-connected whenever w

is a pseudo-vertex, −1 � 	 < k and ‖w‖ � (2	 + 2)C1 + C0. We continue to let v

be a pseudo-vertex with ‖v‖ � (2k + 2)C1 + C0. We will show that Nv is k-connected
by appealing to the Nerve Theorem 5.17. Let v1, . . . , vn be the distinct pseudo-vertices
obtained from v by simple contractions (since ‖v‖ � C0, n � 1). Thus, v1, . . . , vn are
the vertices of Nv and Nv =

⋃n
i=1st(vi,Nv). To apply the Nerve Theorem 5.17, we must

verify the following two items.

(1) If ∅ �= {i1, . . . , it} ⊆ {1, . . . , n} and S := st(vi1 ,Nv) ∩ · · · ∩ st(vit
,Nv) �= ∅, then S

is (k − t + 1)-connected.

(2) The nerve of the cover {st(vi,Nv)}n
i=1 is k-connected.

We begin by introducing some notation. For 1 � i � n there is wi ⊆ v such that vi is
obtained from v by a simple contraction at wi. By the choice of constants, ‖wi‖ � C1

for 1 � i � n.
We now begin the verification of item (1). If t = 1, then S is a star, which is contractible.

Now assume that t � 2. If l(vi1 ,Nv)∩· · ·∩ l(vit ,Nv) = ∅, then Lemma 5.18 implies that S

is a simplex. Hence, we may assume that l(vi1 ,Nv) ∩ · · · ∩ l(vit
,Nv) �= ∅. Lemma 5.19 (2)

implies that it suffices to show that l(vi1 ,Nv)∩· · ·∩l(vit
,Nv) is (k−t+1)-connected. If t �

k+2, then −1 � k−t+1, and there is nothing to prove (since l(vi1 ,Nv)∩· · ·∩l(vit
,Nv) �= ∅

by hypothesis). Thus, we may assume that t � k +1. Define u := v \ (wi1 ∪ · · · ∪wit
) and

estimate the height of u:

‖u‖ � (2k + 2)C1 + C0 − tC1 = (2k − t + 2)C1 + C0.

Since t � k + 1, ‖u‖ � C0 and Nu �= ∅.

https://doi.org/10.1017/S001309151400011X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151400011X


Finiteness properties 397

We now show that l(vi1 ,Nv)∩· · ·∩ l(vit
,Nv) is isomorphic to Nu. We begin by showing

that Nu is isomorphic to a subcomplex N ′
u of Nv. If y is a pseudo-vertex obtained from

u by a simple contraction at w ⊆ u, then let y′ := y ∪ (v \ u). Thus, y′ ↗ v, and
so y′ is a vertex of Nv. Define a simplical map Nu → Nv by y �→ y′. This induces an
isomorphism of Nu onto its image N ′

u. We now show that l(vi1 ,Nv)∩· · ·∩l(vit ,Nv) = N ′
u.

Let vm be obtained from v by a simple contraction at wm. For 1 � j � t, the vertex
vm of Nv is in l(vij ,Nv) if and only if {vij , vm} is a 1-simplex of Nv. Thus, vm is in
l(vij ,Nv) if and only if vij and vm are obtained from v by disjoint simple contractions.
Therefore, vm ∈ l(vi1 ,Nv) ∩ · · · ∩ l(vit

,Nv) if and only if wm ⊆ u. It follows that N ′
u and

l(vi1 ,Nv) ∩ · · · ∩ l(vit ,Nv) are both subcomplexes of Nv with the same sets of vertices.
Since they are both full subcomplexes, they are equal. (Recall that a subcomplex A of
a complex B is full if A is the largest subcomplex of B having A0 as its 0-skeleton. It
is obvious that N ′

u is a full subcomplex of Nv. In general, the link of a vertex in a flag
complex is a full subcomplex. Moreover, intersections of full subcomplexes are full.)

Define 	 := k − t + 1. To finish the verification of item (1), we need to show that Nu is
	-connected. Since t � 2, we have 	 < k. Therefore, we will be able to invoke the inductive
hypothesis to conclude that Nu is 	-connected if it is true that ‖u‖ � (2	 + 2)C1 + C0.
We continue from the estimate above:

‖u‖ � (2k − t + 2)C1 + C0

= (2(	 + t − 1) − t + 2)C1 + C0

= (2	 + t)C1 + C0

� (2	 + 2)C1 + C0,

which completes the verification of item (1).

For the verification of item (2), let M denote the nerve of the cover {st(vi,Nv)}n
i=1

of Nv. To show that M is k-connected, it suffices to prove that the (k + 1)-skeleton
of M is isomorphic to the (k + 1)-skeleton of the n-simplex. Thus, we need to show
that if 1 � t � k + 2, then any collection of t vertices of M spans a (t − 1)-simplex
in M . To this end, let ∅ �= {i1, . . . , it} ⊆ {1, . . . , n}, 1 � t � k + 2, and show that
S := st(vi1 ,Nv) ∩ · · · ∩ st(vit ,Nv) is non-empty. As above, let u := v \ (wi1 ∪ · · · ∪ wit).
The estimate of the height if u (using 1 � t � k + 2) is

‖u‖ � (2k + 2)C1 + C0 − tC1 = (2k − t + 2)C1 + C0 � (k + 1)C1 + C0 � C0.

This implies that there exists a pseudo-vertex w ⊆ u and a simple contraction of u at w.
Let y be the resulting pseudo-vertex. Thus, y ↗ u and y ∪ (wi1 ∪ · · · ∪ wit) ↗ v. Hence,
ŷ := y∪(wi1 ∪· · ·∪wit) is a vertex of Nv. Since w is disjoint from wi1 ∪· · ·∪wit , it follows
that, for 1 � j � t, {vij

, ŷ} is a 1-simplex of Nv and, in particular, ŷ ∈ st(vij
,Nv). Thus,

ŷ ∈ S and S �= ∅, as desired. �

Corollary 5.21. Suppose Hypothesis 5.16 is satisfied. If v is a vertex of K such that

‖v‖ � (2k + 2)C1 + C0,

then l↓v is k-connected.
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Corollary 5.22. Suppose Hypothesis 5.16 is satisfied. There is a function f : N →
N∪{0,−1} such that limn→∞ f(n) = ∞, and if v is a vertex, then l↓v is f(‖v‖)-connected.

6. The zipper action of an FSS group on the similarity complex

Throughout this section, X will denote a compact ultrametric space with an FSS Sim =
SimX and Γ = Γ (Sim) will be the FSS group associated with Sim.

The goal of this section is to define an action of Γ on the similarity complex and use
this action, together with Brown’s finiteness criterion [2], to prove the Main Theorem 1.1
(see Theorem 6.5). We also show that the similarity complex K is a model for EΓ , the
classifying space for proper Γ actions (see Proposition 6.11).

We begin by recalling the action of Γ on E as defined in [6]. The zipper action is the
left action Γ � E defined by γ[f, B] = [γf, B]. The fact that [γf, B] ∈ E follows from
the Compositions and Restrictions properties of the similarity structure.

Remark 6.1. The zipper action Γ � E extends to an action of Γ on the set of all
pseudo-vertices as follows. If γ ∈ Γ and v = {[fi, Bi] | 1 � i � k} is a pseudo-vertex,
then γv := {[γfi, Bi] | 1 � i � k}. The following facts are easily verified.

(1) Height is Γ -invariant; that is, if γ ∈ Γ and v is a pseudo-vertex, then ‖γv‖ = ‖v‖.

(2) K0 is Γ -invariant; that is, if g ∈ Γ and v is a vertex, then gv is a vertex.

(3) If v ↗ w, where v and w are pseudo-vertices and γ ∈ Γ , then γv ↗ γw.

(4) If γ ∈ Γ permutes the vertices of an n-simplex Δ of K, then γ fixes each vertex of
Δ.

It follows that the partial order on pseudo-vertices is preserved by the Γ -action. Hence,
there is an induced simplicial action Γ � K. Each of the actions of Γ on pseudo-vertices,
on vertices and on K are called the zipper action.

The next task is to characterize orbits under the zipper action.

Lemma 6.2. Let v = {[fi, Bi] | 1 � i � k} be a pseudo-vertex. If the pseudo-
vertex w = {[f̂i, B̂i] | 1 � i � 	} is in the Γ -orbit of v, then k = 	 and there exists a
permutation σ of {1, . . . , k} such that Sim(Bi, B̂σ(i)) �= ∅ for i = 1, . . . , k. If v is a vertex,
then the converse holds.

Proof. Assume first that w = γv for some γ ∈ Γ . The fact that height is Γ -invariant
(see Remark 6.1) implies that k = 	. Since the sets γv = {[γfi, Bi] | 1 � i � k}
and w = {[f̂i, B̂i] | 1 � i � k} are equal, there exists a permutation σ such that
[γfi, Bi] = [f̂σ(i), B̂σ(i)] for each i = 1, . . . , k. The definition of the equivalence relation
immediately implies that Sim(Bi, B̂σ(i)) �= ∅ for i = 1, . . . , k.

Conversely, if v is a vertex, choose hi ∈ Sim(Bi, B̂σ(i)) for each i = 1, . . . , k. Define
γ ∈ Γ by γ|fi(Bi) = f̂σ(i)hif

−1
i : fi(Bi) → f̂σ(i)(Bσ(i)). Since v and w are vertices, X =∐k

i=1 fi(Bi) =
∐k

i=1 f̂σ(i)(B̂σ(i)) and so γ is a homeomorphism on X. Since Γ is the
maximal group of homeomorphisms locally determined by Sim, it follows that γ ∈ Γ .
Clearly, γv = w. �
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We next show that the zipper action has finite vertex stabilizers.

Lemma 6.3. The isotropy group of any vertex of K under the zipper action is a finite
subgroup of Γ .

Proof. Let v = {[fi, Bi] | 1 � i � k} be a vertex of height k, where representatives
(fi, Bi) ∈ S, 1 � i � k, have been chosen for each member of v. Let Γv be the isotropy
subgroup of Γ fixing v. Let Σk be the set of permutations of {1, . . . , k}. The proof will
be completed by defining an injection

Ψ : Γv →
∐

σ∈Σk

k∏
i=1

Sim(Bi, Bσ(i)).

Given that γ ∈ Γv, v = γv = {[γfi, Bi] | 1 � i � k} implies that there exists
a unique σ ∈ Σk such that [γfi, Bi] = [fσ(i), Bσ(i)] for 1 � i � k. It follows that
f−1

σ(i)γfi ∈ Sim(Bi, Bσ(i)) for 1 � i � k. Define

Ψ(γ) = (f−1
σ(1)γf1, . . . , f

−1
σ(k)γfk) ∈

k∏
i=1

Sim(Bi, Bσ(i)).

To see that Ψ is injective, suppose that we are given another element β ∈ Γk and
Ψ(γ) = Ψ(β). It follows that γ|fi(Bi) = β|fi(Bi) for 1 � i � k. Thus, γ = β since
X =

∐k
i=1 fi(Bi). �

We next show that the zipper action restricted to sublevel sets is cocompact if the set
of Sim-equivalence classes of balls in X is finite.

Proposition 6.4. If the set of Sim-equivalence classes of balls in X is finite and n ∈ N,
then the sublevel set K�n is Γ -finite; that is, Γ \ K�n is a finite complex.

Proof. By Proposition 4.6, it suffices to show that Γ \ K0
�k is finite for each k =

1, 2, 3, . . . . Let [B1], . . . , [Bl] be the distinct Sim-equivalence classes of balls in X. For a
vertex v ∈ K0, define

n[Bi](v) = |{[f̂ , B̂] ∈ v | [B̂] = [Bi]}|.

Let φ̃ : K0 →
∏l

i=1(N ∪ {0}) be defined by φ̃ = n[B1] × · · · × n[Bl]. By Lemma 6.2, φ̃

descends to a well-defined injection φ on the quotient; that is, φ : Γ \K0 →
∏l

i=1(N∪{0}).
Fixing a height k, we get an injection

φk : Γ \ K0
�k →

l∏
i=1

(N ∪ {0}),

where the entries of an element in the image of φk must add up to k. There are
(
k+l−1

k

)
distinct ordered l-tuples of non-negative integers which add up to k, so

|Γ \ K0
�k| �

(
k + l − 1

k

)
.

�
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We can now prove the Main Theorem 1.1, which is restated here.

Theorem 6.5 (Main Theorem). If Hypothesis 5.16 is satisfied, then Γ is of type
F∞.

Proof. This is a standard application of Brown’s criterion for finiteness. See [5, § 7.4]
for an exposition, and [5, Exercise, pp. 179] for the result we need.

We refer to the original statement from [2, Corollary 3.3(a)]. Note that the similarity
complex K is a contractible Γ -complex (Proposition 3.25; Remark 6.1), it is filtered by
the Γ -finite Γ -complexes K�n (Proposition 6.4; Remark 6.1 (1)), and the stabilizer of
each vertex is finite (Lemma 6.3). The final point to check is that the connectivity of the
pair (K�n+1, K�n) tends to infinity as n tends to infinity. We may assume that there are
vertices of height n+1, so K�n+1 �= K�n. The complex K�n+1, up to homotopy, is K�n

with a collection {Ci}i∈I of cones attached along their bases, each of which is homo-
topy equivalent to the descending link of a vertex of height n + 1. By Corollary 5.22, the
connectivity of such descending links tends to infinity with n, and it follows (from elemen-
tary Mayer–Vietoris and van Kampen arguments) that the connectivity of (K�n+1, K�n)
tends to infinity as well. Therefore, Γ has type F∞.

See [4] for an illustration of how to put these ingredients together in a related context.
�

Corollary 6.6. The groups Vd(H) have type F∞ for all d ∈ N and H � Σd.

Proof. We fix A = {a1, . . . , ad}. Recall that Σd denotes the symmetric group on A.
We choose H � Σd. We equip the space Aω with the FSS Sim from Definition 2.11. By
Remark 2.13, Vd(H) is the FSS group associated with Sim. By Example 5.14, Aω, with the
given FSS, is rich in ball contractions with constant C0 = d. Since there is only one Sim-
equivalence class [B] of balls, and B has d maximal proper sub-balls, Hypothesis 5.16 (1)
is satisfied with C1 = d. Thus, Vd(H) has type F∞ by Theorem 6.5. �

Example 6.7. The action Γ � K is usually not free. In fact, a vertex v = {[fi, Bi] |
1 � i � m} will have a non-trivial stabilizer in either of the following cases:

(1) if [Bi] = [Bj ] for some [fi, Bi] �= [fj , Bj ] with i, j ∈ {1, . . . , m}, or

(2) if the group SimX(Bi, Bi) �= {idBi} for some [fi, Bi] ∈ v.

For (1), suppose that [Bi] = [Bj ] and [fi, Bi] �= [fj , Bj ]. We choose h ∈ SimX(Bi, Bj) and
define a homeomorphism g : X → X as follows. If k �= i, j, then g|fk(Bk) = idfk(Bk). We
set g|fi(Bi) = fjhf−1

i and g|fj(Bj) = fih
−1f−1

j . These assignments completely determine
g on all of X, since {f1(B1), . . . , fm(Bm)} is a partition of X. The map g : X → X

is continuous since the partition {f1(B1), . . . , fm(Bm)} is made up of open (and also,
therefore, closed) sets, and g is continuous on each piece. The map g is bijective since it
induces a bijection on the partition {f1(B1), . . . , fm(Bm)}, and g also maps any element
of the partition bijectively to another such element. Lastly, g is locally determined by
SimX since it is locally determined by SimX on each piece fi(Bi), i = 1, . . . , m. It
follows that g ∈ Γ (SimX). One easily checks that [gfk, Bk] = [fk, Bk] for k �= i, j,
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[gfi, Bi] = [fj , Bj ] and [gfj , Bj ] = [fi, Bi]. Thus g · v = v. On the other hand, g is not
the identity, since g(fi(Bi)) ∩ fi(Bi) = fj(Bj) ∩ fi(Bi) = ∅.

For (2), suppose that ψ ∈ SimX(Bi, Bi), where ψ �= idBi
. We define g ∈ Γ (SimX)

such that g|fk(Bk) = idfk(Bk) when k �= i, and g|fi(Bi) = fiψf−1
i . By reasoning similar

to that from (1), g is a non-trivial element of Γ (SimX), g · v = v, and g �= idX since
g|fi(Bi) = fiψf−1

i �= idfi(Bi).

Example 6.8. The quotient Γ \ K is usually not locally finite. In fact, the following
are equivalent:

(1) Γ \ K is finite.

(2) Γ \ K is locally finite.

(3) X is finite.

Proof. It is clear that (1) implies (2). If X is finite, then K is finite by Remark 4.7,
so Γ \ K will also be finite. If X is infinite, then the argument from Remark 4.7 shows
that there is an infinite chain of vertices v0 < v1 < v2 < · · · . Any two of these vertices
are adjacent in K, and at different heights. Since the action of Γ preserves height by
Remark 6.1, the vertex v0 is adjacent to infinitely many vertices in the quotient Γ \ K.
Thus Γ \ K is not locally finite. �

6.1. The similarity complex as a classifying space

We now show that the similarity complex K is a classifying space with finite isotropy;
that is, K is a model for EFinΓ , where Γ is the FSS group associated with the given FSS
and Fin denotes the family of finite subgroups of Γ .

Definition 6.9. If Γ is any group, then a family F of subgroups of Γ is a non-empty
collection of subgroups that is closed under conjugation by elements of Γ and passage to
subgroups. If Γ is any group, then we let Fin denote the family of finite groups.

Definition 6.10. Let X be a Γ -CW complex (where ‘CW’ indicates ‘closure-finite
weak topology’). Suppose that if c ⊆ X is a cell of X, then γ ·c = c if and only if γ fixes c

pointwise. Let F be a family of subgroups of Γ . We say that X is an EFΓ -complex if

(1) X is contractible;

(2) whenever H ∈ F , the fixed set Fix(H) = {x ∈ X | γ · x = x for all γ ∈ H} is
contractible;

(3) whenever H �∈ F , Fix(H) is empty.

Proposition 6.11. K is a model for EFin = EΓ ; that is, the fixed set by the action
on K of a subgroup G of Γ is empty if G is infinite, and contractible if G is finite.

Proof. It follows from Lemma 6.3 that the fixed set of an infinite subgroup of Γ is
empty. Assume that G is a finite subgroup of Γ . We first claim that there is a positive
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vertex v̂ such that the orbit G · v̂ contains only positive vertices. For a vertex v, we let
expansionk(v) denote the result of applying the expansion function (Definition 3.16) to
v k times. By Lemma 3.22, there is, for each vertex vg = {[g, X]} (g ∈ G), a positive
integer ng such that expansionng (vg) is positive. Since G is finite, it follows that there is
an N ∈ N such that expansionN (vg) is positive for all g ∈ G. This immediately implies
that the orbit G · expansionN (vidX

) consists of positive vertices, proving the claim with
v̂ = expansionN (vidX

).
The usual partial order � on vertices has the property that any two positive vertices

v1, v2 have a least upper bound; that is, there is ṽ ∈ K0 such that ṽ � v1, v2, and if
v′ ∈ K0 is such that v′ � v1, v2, then v′ � ṽ. (In fact, if v1 = {[inclBi , Bi] | 1 � i � m}
and v2 = {[inclB̂j , B̂j ] | 1 � j � n}, then ṽ = {[inclBi∩B̂j , Bi ∩ B̂j ] | Bi ∩ B̂j �= ∅, 1 �
i � m, 1 � j � n} is the required vertex.) The least upper bound is necessarily unique.

It follows from an entirely straightforward argument that any finite collection of posi-
tive vertices has a (unique) least upper bound in K0. Now, since G · v̂ consists of positive
vertices, G must fix the least upper bound of G · v̂ by the uniqueness of the least upper
bound. Therefore, the fixed set of G is non-empty.

We now show that the fixed set of G is contractible. It is enough to show that the
set of fixed vertices is directed. Note that if v, w are vertices, g ∈ Γ , gv = v, and
expansion(v) = w, then gw = w. Thus, given vertices v1, v2 such that gvi = vi (i = 1, 2,
g ∈ G), we can use Lemma 3.22 to find positive vertices v′

1, v′
2 such that gv′

i = v′
i and

vi � v′
i (i = 1, 2, g ∈ G). We let ṽ be the least upper bound of {v′

1, v
′
2}. Since v′

1 and
v′
2 are fixed by G, ṽ must also be fixed by G due to the uniqueness of the least upper

bound. Thus v1, v2 � ṽ, and all three vertices are fixed by G, so the set of fixed vertices
is directed. �
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8. C. E. Röver, Constructing finitely presented simple groups that contain Grigorchuk

groups, J. Alg. 220(1) (1999), 284–313.

https://doi.org/10.1017/S001309151400011X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151400011X

