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Abstract
This paper shows how the well-known Bornhuetter–Ferguson claims-reserving method can be extended
by applying fuzzy methods. The a priori information for the ultimate claims derives from market
statistics, organisational data, etc. and might contain vagueness. Likewise, the parameters of the claims
development pattern can be vague or are adapted, retrospectively, due to subjective judgement. With the
help of fuzzy numbers we develop new predictors for the ultimate claims. Furthermore, we quantify the
uncertainty of the ultimate claims for single and aggregated accident years.
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1. Introduction

Insurance companies are faced with the task to set up an adequate reserve for outstanding claims. As
reserves regularly make up a huge position on the liabilities side of a balance sheet of an insurance
company there is a high interest not to overestimate them. Likewise, the reserve needs to be high enough
to settle all future claims. Hence, neither overestimation nor underestimation of the reserve is preferable.

In the literature there are various purely computational and stochastic loss-reserving methods in non-life
insurance (see e.g. Kaas et al., 2008, chapter 10; Wüthrich & Merz, 2008). A popular technique which
also comprises a priori information is given by the Bornhuetter–Ferguson (BF) method (Bornhuetter &
Ferguson, 1972, see also Mack, 2000). For example, the a priori information can originate from market
statistics, expert opinions or the experience of similar portfolios. The BF method asks for a crisp
specification of both the estimation of the ultimate claims as well as of the payout pattern. Occasionally,
the estimation of the ultimate claims and/or the payout pattern underlie subjective judgements of the
reserving actuary. An indication of the estimated ultimate claims by an interval in which they range could
also be thinkable. By doing so, vagueness is added to the model.
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A possibility to handle such vague information is given by the methodology of fuzzy sets as presented
by Zadeh (1965). Vague information or quantities can appear in different situations in claims
reserving. If an actuary likes to model that not exactly 75% but ~75% of the claims in a payout
pattern are settled fuzzy sets can be an appropriate means.

The main goal of this paper is to consider both a priori information and vague information.
Accordingly, we enhance the classical BF method with fuzzy methods. For this purpose, we choose
triangular fuzzy numbers (TFNs) (e.g. Dubois & Prade, 1978, 1979) as they are easy to handle
arithmetically and still can map a large part of the actuary’s intuition about the uncertainty.

Originally, Heberle & Thomas (2014) introduced a comparable approach in the setting of the chain
ladder (CL) method. There, they model the development factors as TFNs and make an attempt to
quantify the uncertainty. The CL method is popular due to its simplicity, but in contrast to the BF
method it cannot utilise a priori information. However, we also aim to contrast results of both the
fuzzy Bornhuetter–Ferguson (FBF) and the fuzzy chain ladder (FCL) method in a numerical example.
It appears that the FBF method in contrast to the FCL method can lead to results in which the
vagueness of the predicted reserves is considerably lower. Therefore, the method gives the actuary a
better intuition about the predicted reserves.

Within the last years the theory of fuzzy sets has found its way into actuarial science (for a survey see
Shapiro, 2004). Nevertheless, there exist only few utilisations in claims reserving and – to our knowledge –
no comparable approaches. Most of the articles in this field make use of fuzzy regression (FR) instead.
As one of the first publications de Andrés Sánchez & Terceño Gómez (2003) apply the FR technique by
Tanaka & Ishibuchi (1992) to the London chain method in order to obtain incurred but not reported
reserves. De Andrés Sánchez (2006) utilises an FR method by Ishibuchi & Nii (2001) to yield a fuzzy
version of the claims-reserving scheme as given in Sherman (1984). The work of de Andrés Sánchez
(2007) merges FR and Taylor’s geometric separation method. De Andrés Sánchez (2012) consolidates FR
and Kremer’s two ways of ANOVAmodel. A hybrid fuzzy least squares regression technique as proposed
by Chang (2001) is applied to geometric separation method in Başer & Apaydin (2010).

Heberle & Thomas (2014) make use of TFNs and apply them to the CL claims-reserving method. They
model the development factors as TFNs and make an attempt to quantify the uncertainty. The CL method
is popular due to its simplicity, but in contrast to the BF method it cannot utilise a priori information.

The structure of the paper is as follows. In the next section, the classical BF and CL methods are
introduced. In section 3, a short introduction in fuzzy numbers and their arithmetic is provided. The
fuzzy extended version of the classical BF model, namely the FBF model, is presented in section 4. In
section 5, we derive claims reserves within the FBF model and in section 6 the model uncertainty is
discussed. The article ends with an example in section 7 and a conclusion in section 8.

2. BF and CL method

For both claims-reserving methods presented in sections 2.1 and 2.2 we assume that the data are
given in a claims development triangle.

In the progress of this paper we will denote by Ci,j cumulative claims made in relative accident year
i∈ {0,… , I} and relative development year j∈ {0,… , J}. At calendar year I we have the set of
observations DI ¼ fCi;j j i + j≤ Ig.
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Figure 1 shows the specifications introduced above. The observations given at time t = I are shown
in the upper left part of the triangle, whereas the lower right part needs to be predicted. The right
part in Figure 1 represents the a priori information needed in the BF model. It can derive from
expert knowledge, market statistics, organisational data, etc. and represents a priori estimators
for the ultimate claims, i.e. the last column of the development triangle. For simplicity’s sake
we assume that the data are given in a triangle, i.e. I = J, and that claims are settled after J years,
i.e. there are no more claims payments after J years. However, the model also holds true for
development trapezoids, i.e. I> J.

2.1. BF method

Although the BF method was initially introduced as a purely computational method, it can be set in a
stochastic framework (e.g. Mack, 2000; Verrall, 2004). It can be stated in the following way
(Wüthrich & Merz, 2008: 21).

Model Assumptions 2.1 (BF method) We assume for cumulative claims Ci,j:

∙ Cumulative claims Ci,j of different accident years i are independent.

∙ There exist parameters ν0,… , νI> 0 and a pattern γ0,… , γJ>0 with γJ = 1 such that for all
i∈ {0,… , I}, j∈ {0,… , J −1} and k∈ {1,… , J − j} we have

E½Ci;0� ¼ γ0νi (2.1)

E½Ci;j + k jCi;0; ¼;Ci;j� ¼ Ci;j + γj +k�γj

� �
νi (2.2)

The sequence (γj)j∈ {0,… , J} describes the claims development pattern. With Model Assumptions 2.1
we yield

E½Ci;j� ¼ γjνi and E½Ci;J� ¼ νi (2.3)

Figure 1. Left: development triangle at time t = I with observable cumulative claims Ci,j in the
upper left part; right: νi is only needed in the Bornhuetter–Ferguson model and is used as a priori
information for the ultimate claims. This a priori information is for example given by expert
knowledge.
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Under Model Assumptions 2.1 a predictor for the ultimate claims Ci,J is given bydCi;J
BF ¼ Ci;I�i + 1�γ̂I�ið Þν̂i for all i 2 1; ¼; I (2.4)

In equation (2.4), γ̂I�i is an estimator for γI − i and ν̂i is an a priori estimator for the expected ultimate
claim E[Ci,J]. In practice, ν̂i often derives from external information.

2.2. CL method

Among the most popular claims-reserving methods is the CL method due to its simplicity and
nonetheless often good results. Initially, it was introduced as computational technique but it can be
put into a probabilistic framework as proposed by Mack (1993).

Model Assumptions 2.2 (Distribution-free CL method) We assume for cumulative claims Ci,j:

∙ Cumulative claims Ci,j of different accident years i are independent.

∙ There exist parameters f0,… , fJ− 1>0 and variance parameters σ20; ¼; σ2J�1>0 such that

E Ci;j +1 jCi;j
� � ¼ fjCi;j (2.5)

VarðCi;j + 1 jCi;jÞ ¼ σ2j Ci;j (2.6)

holds true for all i∈ {0,… , I} and j∈ {1,… , J}.

The parameters fj are usually estimated by so-called CL estimators:

f̂j ¼
PI�j�1

i¼ 0
Ci;j +1

PI�j�1

i¼ 0
Ci;j

; j ¼ 0; ¼; J�1 (2.7)

With the help of the CL estimators predictions of the ultimate claims Ĉi;J ði ¼ 1; ¼; IÞ can be
derived.

A comparison of the BF and CL methods is conducted in Wüthrich & Merz (2008: 22 sqq.).
We yield that a prediction of the ultimate claim in the BF method is given by

dCi;J
BF ¼ Ci;I�i + 1�γ̂CLI�i

� �
ν̂i (2.8)

where

γ̂CLj ¼ γ̂j ¼
YJ�1

k¼j

f̂�1
k (2.9)

3. Fuzzy Numbers and Fuzzy Arithmetic

A possibility to model vague information is given by the theory of fuzzy sets (Zadeh, 1965).
In the following we will model the a priori information as fuzzy numbers which are a special
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case of fuzzy sets. As we only consider fuzzy sets over real numbers R we restrict the definition to this
case (Zadeh, 1965).

Definition 3.1 (Fuzzy set) A fuzzy set ~A over R is defined as

~A ¼ fðx; μ~AðxÞÞ jx 2 Rg (3.1)

where the membership function μ~A is given by μ~A : R ! ½0; 1�.

Remark 3.2 The membership function does not model probabilities as in probability theory but
explains to what extent an element belongs to the fuzzy set ~A.

In the following section, we are only dealing with TFNs which possess a triangular-shaped mem-
bership function. Their advantage lies in the fact that arithmetical operations are easy to conduct.
Moreover, they can be interpreted intuitively due to the simple structure of the membership function.
Therefore, we choose TFNs in our model, even though it is not limited to the case and can be also
modelled with fuzzy numbers with a differently shaped membership function. (For an introduction
into the concept of L-R fuzzy numbers to which the TFNs belong see e.g. Dubois & Prade (1980: 53
sqq.), for a definition of a TFN we refer to Hanss (2005: 46).)

Definition 3.3 (TFNs) A TFN is a fuzzy set over R with membership function μ~A given by

μ~AðxÞ ¼

x�a + la
la

if a�la ≤ x<a; la>0

a+ ra�x
ra

if a<x≤ a + ra; ra>0

1 if x ¼ a

0 otherwise

8>>>>><>>>>>:
(3.2)

for all a 2 R and la, ra≥0.

Remarks 3.4

∙ To simplify notation we will identify a TFN as given in Definition 3.3 with ~a ¼ ða; la; raÞ.
Then, we speak of a as the mode and la and ra as the left and right spread of the TFN,
respectively. An example is illustrated in Figure 2. The depicted TFN can be interpreted as
“approximately a”.

∙ A real (crisp) number a 2 R can be represented as ~a ¼ ða; 0; 0Þ.
∙ A TFN ~a ¼ ða; la; raÞ is said to be non-negative if and only if a− la≥ 0 and positive if and only if
a − la>0.

In the following Definition 3.5, we will introduce some basic arithmetic operations for TFNs
(Hanss, 2005: 55 sqq.).

Definition 3.5 (Fuzzy arithmetic) Let ~a ¼ ða; la; raÞ and ~b ¼ ðb; lb; rbÞ be positive TFNs. Then the
sum, difference, multiplication and inverse are defined in the following way:

~a � ~b ¼ ða; la; raÞ � ðb; lb; rbÞ ¼ ða + b; la + lb; ra + rbÞ (3.3)
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~a � ~b ¼ ða; la; raÞ � ðb; lb; rbÞ ¼ ða�b; la + rb; ra + lbÞ (3.4)

~a � ~b ¼ ða; la; raÞ � ðb; lb; rbÞ ¼ ðab; alb + bla�lalb; arb + bra + rarbÞ (3.5)

~a�1 ¼ 1
a
;

ra
aða + raÞ ;

la
aða�laÞ

� 	
(3.6)

Remarks 3.6

∙ Definition 3.5 is restricted to positive TFNs as we are only dealing with cumulative claims which
are assumed to be only positive.

∙ An exact membership function for the product of two TFNs can be derived with the help of
Zadeh’s extension principle which has been introduced in Zadeh (1975a, 1975b, 1975c). When
deriving the membership function using the L-R representation of TFNs the operation is not
necessarily closed due to the quadratic term (Dubois & Prade, 1980: 55; Hanss, 2005: 57).
Therefore, we use the definition defined above.

∙ Wagenknecht et al. (2001) derive upper and lower bounds for the exact multiplication of two
TFNs. The lower bound is given by ð~a � ~bÞlower ¼ ðab; alb + bla�lalb; arb + braÞ and the upper
bound is given by ð~a � ~bÞupper ¼ ðab; alb + bla; arb + bra + rarbÞ. The choice of the approximation
defined in (3.5) is conservative. In this context, conservative means that the resulting reserves are
(slightly) overestimated.
Wagenknecht et al. (2001) also derive upper and lower bounds for the exact inverse of a
TFN which are given by ð~a�1Þlower ¼ 1

a ;
ra

aða+ raÞ ;
la
a2

� �
and ð~a�1Þupper ¼ 1

a ;
ra
a2 ;

la
aða�laÞ

� �
. The choice of

the approximation in (3.6) leads to more conservative predictions in our context as well.

∙ Hanss (2005: 55 sqq.) discusses both the tangent as well as the secant approximation. As described
there we choose the secant approximation for the use with TFNs. In most literature only the
tangent approximation is discussed for the inverse, but for TFNs the secant approximation often
performs much better (Hanss, 2005: 61).

∙ Examples of the fuzzy arithmetic given in Definition 3.5 are shown in Heberle & Thomas (2014).

The aim of this paper is to derive a fuzzy version of the BF claims-reserving method. Thus, the goal is
to deduce a prediction for the claims reserve. An actuary cannot set up a “fuzzy” reserve as it is a
figure in the balance sheet of an insurance company. Figures in the balance sheet are crisp numbers
so that we need to make use of a defuzzification method. The concept of an expected value of an FN
is applied which was introduced by de Campos Ibáñez & González Muñoz (1989) and was also

Figure 2. An example of the triangular fuzzy number ~a ¼ ða; la; raÞ.
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considered, e.g. by de Andrés Sánchez (2007). We will speak of a an expected value of a TFN as it
has been denoted by this term in the literature (de Andrés Sánchez, 2006, 2007). We use the
expression in the knowledge that it is generally associated with random variables.

Definition 3.7 (Expected value of a TFN) (a) Let ~a ¼ ða; la; raÞ be a TFN and 0≤ β≤ 1. The expected
value of the TFN ~a (denoted by Eβð~aÞ) is given by

Eβð~aÞ ¼ a� 1�β

2
la +

β

2
ra (3.7)

(b) Eβð~a j �Þ denotes the expected value given a prior information. If the prior information is given by
a set of TFNs f~b;~c; ¼g, the TFNs shall be considered as crisp, i.e. {(b,0,0), (c,0,0),…}.

Remarks 3.8

∙ The reserving method we will introduce in section 4 yields TFNs. The concept of an expected value
of a TFN does not only offer a means to defuzzify the resulting reserve but the parameter β

provides the opportunity to assess the considered data. We refer to the parameter β as “decision-
maker risk parameter”. For higher values of β more weight is put on the right spread. That is,
higher values of the parameter β are chosen if the actuary thinks the a priori information (which is
often expert knowledge and therefore subjective) does not fit well to the considered claims
development triangle.

∙ In the following we will model claims reserves as TFNs such that a choice of β≥0.5 for a
symmetric TFN, i.e. for a TFN with spreads of equal length, leads to a uncertainty-averse manner
of reserving. For a symmetric TFN representing the reserve one would expect the crisp reserve to
be the mode, whereas a parameter of β≥ 0.5 leads to a reserve greater than the mode.

∙ The notation of a conditional expected value is introduced in Definition 3.7. It is assumed that
there is no more uncertainty in the sense of fuzziness about the given information.

We also need a measurement for the uncertainty of an FN since we like to measure the goodness of our
ultimate claims predictions. As in this paper TFNs are consulted to predict the ultimate claims we need a
comparable measure to the mean square error of prediction (MSEP) in the classical model as derived in
Alai & Wüthrich (2009). We use a measure of uncertainty proposed by Pal & Bezdek (1994).

Definition 3.9 (Uncertainty of a TFN) (a) Let ~a ¼ ða; la; raÞ be a TFN. The uncertainty of a TFN ~a
(denoted by Uncð~aÞ) is defined as

Uncð~aÞ ¼ 1
2
ðla + raÞ (3.8)

(b) Uncð~a j �Þ denotes the uncertainty of a TFN ~a given a prior information. If the prior information is
given by a set of TFNs f~b;~c; ¼g, the TFNs shall be considered as crisp, i.e. {(b,0,0), (c,0,0),…}.

Remarks 3.10

∙ As defined, the uncertainty of a TFN ~a ¼ ða; la; raÞ is independent of the mode a and depends only
on the support of ~a where the support is the subset of the real numbers in which the membership
function takes on positive values, i.e. here the interval (a− la, a+ ra) (Dubois & Prade, 1980: 10).
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∙ The uncertainty of a TFN ~a is defined as the area between the x-axis and the membership function
μ~a. In fact, it is the area between the membership function and the x-axis. Greater values of the
uncertainty Uncð~aÞ of a TFN ~a derive from larger areas between the membership function and the
x-axis. Analogously, the smaller the area the less uncertain the TFN is.

∙ The definition of the uncertainty is motivated by example 3 in Pal & Bezdek (1994) applied to the
TFNs given in Definition 3.3.

∙ The conditional uncertainty is motivated in analogy to the conditional expected value that there is
no more uncertainty about known information in a fuzzy sense.

4. The FBF Method

In this paper, we extend the classical BF method to a FBF method. This is done by the use of fuzzy
numbers, i.e. we assume that the a priori information νi (i = 0,… , I) as well as the parameters
γj (j = 0,… , J) are TFNs. Therefore, we denote these by ~νi ¼ ðνi; lνi ; rνiÞ and ~γj ¼ ðγj; lγj ; rγjÞ,
respectively. Our goal is to derive predictors for the ultimate claims ~Ci;J ði ¼ 1; ¼; IÞ, for the claims
reserves for single accident years ~Ri ði ¼ 1; ¼; IÞ as well as for aggregated accident years ~R and for

the uncertainty of the predicted ultimate claims for single accident years Unc ~̂Ci;J




DI

� �
(i = 1,… , I)

and for aggregated accident years Unc �I
i¼1

~̂Ci;J




DI

� 	
.

As a clarification, the FBF method introduced in this section models fuzziness and not randomness in
a stochastic sense. As the a priori information often derives from subjective knowledge in the form of
expert knowledge fuzziness is also present in models of claims reserving.

We make the following model assumptions.

Model Assumptions 4.1 (FBF model)

∙ There exist positive TFNs ~νi ði ¼ 0; ¼; IÞ and also positive TFNs ~γj ðj ¼ 0; ¼; JÞ such that

~Ci;0 ¼ ~γ0 � ~νi (4.1)

~Ci;j + k ¼ ~Ci;j � ð~γj +k � ~γjÞ � ~νi (4.2)

holds true for all i = 0,… , I, j = 0,… , J− 1 and k = J − j.

∙ The sums of incremental claims �I�j�1

i¼0
~Xi;j +1 with ~Xi;j +1 ¼ ~Ci;j +1 � ~Ci;j for all j∈ {0,… , J− 1} are

non-negative.

Remarks 4.2

∙ Since every real number a 2 R can also be denoted as a TFN ~a ¼ ða; 0; 0Þ, observable cumulative
claims (i + j≤ I) can be written as ~Ci;j ¼ ðCi;j; 0; 0Þ.

∙ As in our fuzzy model the uncertainty is always included in the fuzzy numbers and there is no need
for an error term in equations (4.1) and (4.2).

∙ The sum of incremental claims is assumed to be non-negative due to the choice of the following
Estimator 4.3. Hence, individual incremental claims can be negative so that adjustments of the
reserves in both directions (e.g. additional reserve or regress) are possible.
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Since the a priori information ~νi ði ¼ 0; ¼; IÞ has to be given in advance by ~̂νi, we only need an
estimator for the parameters ~γj ðj ¼ 0; ¼; JÞ with ~γJ ¼ 1. With these estimators we are able to predict
the ultimate claims ~Ci;J ði ¼ 1; ¼; IÞ by

~̂Ci;J ¼ Ci;I�i � ~̂γJ � ~̂γI�i

� �
� ~̂νi (4.3)

Since the parameters in the payout pattern are assumed to be TFNs we need estimators for the mode
as well as the left and right spreads. An actuary will choose TFNs with wider spreads if the available
data is vague. Comparably, he or she will opt for narrower width in the opposite situation.

In practice some actuaries tend to modify the estimated parameters in the payout pattern due to
subjective judgement. With the help of the FCL estimators we choose Estimator 4.3 as motivated by
equation (2.9). Hence, estimators for the mode and both spreads are given in (4.4). Here, the choice
of the estimators does not normally lead to symmetric spreads. In our model the sum of incremental
claims are assumed to be non-negative (cf. Model Assumptions 4.1) for technical reasons of the
choice of the FCL estimators (cf. (4.7)).

Estimator 4.3 (FBF estimator for the TFNs ~γj) The TFNs ~γj ¼ γj; lγj ; rγj
� �

( j = 0,… , J ) introduced in
Model Assumptions 4.1 are estimated by ~̂γj ¼ γ̂j; l̂γ̂j ; r̂γ̂j

� �
with

~̂γj ¼ �J�1

k¼ j

~̂f
�1
k (4.4)

for j = 0,… , J −1 and
~̂γJ ¼ ð1; 0; 0Þ (4.5)

Thereby, ~̂f k ¼ f̂k; l̂f̂k ; r̂f̂k

� �
is an estimator for the FCL factor ~fk ¼ fk; lfk ; rfk

� �
(k = 0,… , J− 1) and is

given by

f̂k ¼
PI�k�1

i¼ 0
Ci;k+ 1

PI�k�1

i¼0
Ci;k

(4.6)

and

l̂f̂k ¼ r̂f̂k ¼
PI�k�1

i¼ 0
Xi;k +1

PI�k�1

i¼ 0
Ci;k

(4.7)

where Xi,k+ 1 = Ci,k+ 1 −Ci,k for i = 0,… , I and k = 0,… , J− 1.

Remarks 4.4

∙ FCL factors are being used for the estimation of ~γj ðj ¼ 0; ¼; J�1Þ. For more details on the FCL
factors ~fk ¼ fk; lfk ; rfk

� � ðk ¼ 0; ¼; J�1Þ we refer to Heberle & Thomas (2014). In this method,
a priori information about the ultimate claims can also be considered.

∙ For a stronger analogy to the stochastic models (CL or BF) fuzzy random variables should be used.
Then, fuzziness as well as stochastic randomness can be modelled.
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∙ Although the FCL estimates ~̂f k are symmetric, i.e. l̂f̂k ¼ r̂f̂k holds true for all k = 0,… , J− 1, the
FBF estimates ~̂γj in general are not (except for ~̂γJ ¼ ð1; 0; 0Þ).

∙ The choice of Estimator 4.3 is motivated by the classical BF pattern estimates (Wüthrich & Merz,
2008: 23). It needs to be kept in mind that fuzzy set theory models vagueness, whereas stochastic
models consider stochastic randomness. Hence, there are situations in which the estimator for the
variance parameter yields 0, whereas the spreads are still not equal to 0.

∙ Similarly, to the FCL model the total spread of ~̂γj given by l̂γ̂j + r̂γ̂j can also be interpreted as
“uncertainty” of the FN ~γj.

∙ The FCL estimators ~̂f k ðk ¼ 0; ¼; J�1Þ are bounded below to 1 (see Remarks 2.6 in Heberle &
Thomas, 2014). In our FBF model this is obviously not the case for ~̂γj and also not necessary, but it
can easily be shown that the left border γ̂j�l̂γ̂j ðj ¼ 0; ¼; JÞ is not smaller than 0.

∙ In the FCL model (see Remarks 2.6 in Heberle & Thomas, 2014) the expected values E0:5ð~̂f jÞ for
j = 0,… , J− 1 equal the classical CL estimators as the FCL estimators are defined as symmetric
TFNs where the mode is given by the classical CL estimators. Here, we do not yield an equivalent
result for ~̂γj as the fuzzy product and fuzzy inverse (cf. equations (3.5) and (3.6)) do not maintain
the symmetric structure of the FCL estimators ~̂f j.

5. Claims Reserves

In equation (4.3), a predictor for the cumulative claims for accident years i = 1,… , I is given. This
one is used to derive a predictor for the claims reserves for single accident years. The claims reserves
~Ri ði ¼ 1; ¼; IÞ for single accident years are given by

~Ri ¼ ~Ci;J � ~Ci;I�i (5.1)

where ~Ci;I�i is observable, i.e. ~Ci;I�i ¼ ðCi;I�i; 0; 0Þ. Since, at time t = I only the observations DI are
available, the ultimate claims ~Ci;J ði ¼ 1; ¼; IÞ are unobservable and, therefore, the claims reserves
for single accident years have to be predicted. When replacing the magnitudes in equation (5.1) by
their estimates we yield a predictor for the claims reserves, i.e.

~̂Ri ¼ ~̂Ci;J � ~Ci;I�i; i ¼ 1; ¼; I (5.2)

Given the observations DI the ultimate claims ~̂Ci;J for accident year i = 1,… , I can be written as
(cf. equation (4.3))

~̂Ci;J ¼ Ci;I�i � 1 � ~̂γI�i

� � � ~̂νi (5.3)

Therefore, we can identify the predictor given in equation (5.2) in the following way:

~̂Ri ¼ 1 � ~̂γI�i

� � � ~̂νi (5.4)

The aggregated claims reserve ~R given by

~R ¼ �I
i¼1

~Ri (5.5)

can be estimated by

~̂R ¼ �I
i¼1

~̂Ri ¼ �I
i¼1

1 � ~̂γI�i

� � � ~̂νi (5.6)
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6. Prediction Uncertainty

6.1. Single accident years

In order to get a feeling for the accuracy of the prediction a measure needs to be introduced. In
classical reserving methods this is often done with the MSEP. Here, we use a similar approach as in
Heberle & Thomas (2014) which makes use of Definition 3.9 such that we yield an estimator for the
ultimate claim uncertainty as given in Estimator 6.1.

Estimator 6.1 (Ultimate claim uncertainty) Given the observations DI, the uncertainty of the ultimate
claim ~̂Ci;J for accident year i = 1,… , I is given by

Unc ~̂Ci;J




DI

� �
¼ 1

2
1�γ̂I�ið Þ l̂ν̂i + r̂ν̂i

� �
+ l̂γ̂I�i

+ r̂γ̂I�i

� �
ν̂i + l̂γ̂I�i

r̂ν̂i�r̂γ̂I�i
l̂ν̂i

h i
(6.1)

Proof: Given the observations DI the predicted ultimate claims ~̂Ci;J for accident year i∈ {1,…, I} are
given by

~̂Ci;J ¼ ~Ci;I�i � 1 � ~̂γI�i

� � � ~̂νi

¼ Ci;I�i; 0; 0
� � � 1 � γ̂I�i; l̂γ̂I�i

; r̂γ̂I�i

� �� �
� ν̂i; l̂ν̂i ; r̂ν̂i
� �

¼
�
Ci;I�i + 1�γ̂I�ið Þν̂i;

1�γ̂I�ið Þ̂lν̂i + r̂γ̂I�i
ν̂i�r̂γ̂I�i

l̂ν̂i ;

1�γ̂I�ið Þr̂ν̂i + l̂γ̂I�i
ν̂i + l̂γ̂I�i

r̂ν̂i
�

Then, the uncertainty Unc ~̂Ci;J




DI

� �
is given by Definition 3.9 applied to equation (6.2). □

6.2. Aggregated accident years

Since we are not only interested in the prediction uncertainty of single accident years we also derive

an estimator for the uncertainty of the aggregated ultimate claim �I
i¼1

~̂Ci;J given the observations DI.

As the aggregated ultimate claim is just the sum of the individual ultimate claims, i.e.

�I
i¼1

~̂Ci;J ¼ �I
i¼1

Ci;I�i � 1 � ~̂γI�i

� � � ~̂νi
� �

¼ �I
i¼1

�
Ci;I�i + 1�γ̂I�ið Þν̂i;

1�γ̂I�ið Þ̂lν̂i + r̂γ̂I�i
ν̂i�r̂γ̂I�i

l̂ν̂i ;

1�γ̂I�ið Þ̂rν̂i + l̂γ̂I�i
ν̂i + l̂γ̂I�i

r̂ν̂i
�

ð6:4Þ

the estimator of the uncertainty of the aggregated ultimate claims is straightforward.

(6.3)
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Estimator 6.2 (Uncertainty of the aggregated ultimate claims) Given the observations DI, the uncertainty

of the aggregated ultimate claims �I
i¼1

~̂Ci;J is given by

Unc �I
i¼1

~̂Ci;J





DI

� 	
¼
XI
i¼1

Unc ~̂Ci;J




DI

� �
(6.5)

Proof: Based on equation (6.4), we yield with Definition 3.9 and Estimator 6.1

Unc �I
i¼1

~̂Ci;J





DI

� 	
¼ Unc �I

i¼1

�
Ci;I�i + 1�γ̂I�ið Þν̂i;:

�
1�γ̂I�ið Þ̂lν̂i + r̂γ̂I�i

ν̂i�r̂γ̂I�i
l̂ν̂i ;

1�γ̂I�ið Þr̂ν̂i + l̂γ̂I�i
ν̂i + l̂γ̂I�i

r̂ν̂i
��

¼ Unc
XI
i¼1

Ci;I�i + 1�γ̂I�ið Þν̂i
� � 

;

XI
i¼1

1�γ̂I�ið Þ̂lν̂i + r̂γ̂I�i
ν̂i�r̂γ̂I�i

l̂ν̂i
� �

;

XI
i¼1

1�γ̂I�ið Þr̂ν̂i + l̂γ̂I�i
ν̂i + l̂γ̂I�i

r̂ν̂i
� �!

¼
XI
i¼1

1
2

1�γ̂I�ið Þ l̂ν̂i + r̂ν̂i
� �

+ l̂γ̂I�i
+ r̂γ̂I�i

� �
ν̂i

�
+ l̂γ̂I�i

r̂ν̂i�r̂γ̂I�i
l̂ν̂i
�

¼
XI
i¼1

Unc ~̂Ci;J




DI

� �
□

Remark 6.3 In comparison to the MSEP for aggregated accident years in classical reserving methods
there are no covariance terms in equation (6.5). In fact, the uncertainties of different accident years
cannot offset each other. One possibility to model dependencies as well would be to change over to
the theory of fuzzy random variables.1

7. Example

For our example we apply the paid run-off triangle and as a priori information we use the last
observed diagonal in the incurred run-off triangle both given in Dahms (2008). We like to keep in
mind that the example presented in Dahms (2008) considers randomness, whereas fuzziness is
addressed here. Consequently, the results cannot be compared without difficulty. Since we are
dealing with fuzzy a priori information we assume that the values are not sharp but only approx-
imate values. By doing so, vagueness is added to the a priori information. The paid run-off triangle is
given in Table 1 and the a priori information is shown in Table 2.

1 There are two views on fuzzy random variables introduced by Kwakernaak (1978, 1979) as well as Puri &
Ralescu (1986). An overview of the use of fuzzy random variables in an insurance context is given in Shapiro
(2009).
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Table 1. Observed cumulative claims payments Ci,j.

Development year j

Accident year i 0 1 2 3 4 5 6 7 8 9

0 1,216,632 1,347,072 1,786,877 2,281,606 2,656,224 2,909,307 3,283,388 3,587,549 3,754,403 3,921,258
1 798,924 1,051,912 1,215,785 1,349,939 1,655,312 1,926,210 2,132,833 2,287,311 2,567,056
2 1,115,636 1,387,387 1,930,867 2,177,002 2,513,171 2,931,930 3,047,368 3,182,511
3 1,052,161 1,321,206 1,700,132 1,971,303 2,298,349 2,645,113 3,003,425
4 808,864 1,029,523 1,229,626 1,590,338 1,842,662 2,150,351
5 1,016,862 1,251,420 1,698,052 2,105,143 2,385,339
6 948,312 1,108,791 1,315,524 1,487,577
7 917,530 1,082,426 1,484,405
8 1,001,238 1,376,124
9 841,930
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The a priori information usually originates from expert knowledge and the spreads need to be chosen
by the actuary. On the one hand, vagueness rises the more values for a given accident year need to be
predicted (Model Assumptions 4.1 and Estimator 4.3), on the other hand large absolute values can
accommodate a higher vagueness. The actuary will choose the spreads under these considerations.
The left and right spreads in Table 2 are increasing for later accident years i∈ {1,… , 9}. This is only
an example of how membership functions could be assigned. For i = 0 there is no spread as no
cumulative claims need to be predicted.

In Table 3, the estimated FCL factors ~̂f j ¼ f̂j; l̂f̂j ; r̂f̂j

� �
(j = 0,… , J− 1) as well as the estimated

parameters of the FBF method ~̂γj ¼ γ̂j; l̂γ̂j ; r̂γ̂j
� �

(j = 0,… , J) are given computed with Estimator 4.3
and the estimator for the FCL factors are given in Heberle & Thomas (2014). Both are written down
in three lines; the first line refers to the mode and in the second and third one the left and right
spread, respectively, are given.

With the help of the estimated parameters ~̂γj ðj ¼ 0; ¼; J�1Þ we are able to fill up the observed devel-
opment triangle given in Table 1 using equation (4.2). The filled development triangle is shown in Table 4.

The predicted FBF reserves ~̂R
FBF
i ði ¼ 0; ¼; IÞ as well as the aggregated FBF reserve ~̂R

FBF
are pre-

sented in Table 5 and compared with the corresponding FCL reserves ~̂R
FCL
i ði ¼ 0; ¼; IÞ and ~̂R

FCL
.

In the first column the mode of the fuzzy reserve is given and in the second and third column the left

Table 2. Given a priori information ~νi ¼ νi; lνi ; rνið Þ.

i νi lνi rνi

0 3,921,258 0 0
1 2,919,955 100,000 100,000
2 3,257,827 200,000 200,000
3 3,413,921 300,000 300,000
4 3,298,998 400,000 400,000
5 3,702,427 500,000 500,000
6 3,704,113 600,000 600,000
7 4,408,097 700,000 700,000
8 4,132,757 800,000 800,000
9 3,045,376 900,000 900,000

Table 3. Estimated fuzzy chain ladder ~̂f j
� �

and fuzzy Bornhuetter–Ferguson ~̂γj

� �
factors for j = 0,… , J− 1.

Development year j

0 1 2 3 4 5 6 7 8 9

f̂j 1.2343 1.2904 1.1918 1.1635 1.1457 1.1013 1.0702 1.0760 1.0444 –

l̂f̂j 0.2343 0.2904 0.1918 0.1635 0.1457 0.1013 0.0702 0.0760 0.0444 –

r̂f̂j 0.2343 0.2904 0.1918 0.1635 0.1457 0.1013 0.0702 0.0760 0.0444 –

γ̂j 0.2984 0.3683 0.4753 0.5664 0.6590 0.7550 0.8315 0.8898 0.9574 1
l̂γ̂j 0.1928 0.2132 0.2301 0.2272 0.2088 0.1737 0.1324 0.0926 0.0391 0
r̂γ̂j 0.7016 0.6317 0.5247 0.4336 0.3410 0.2450 0.1685 0.1102 0.0426 0

Note: The estimated fuzzy parameter in the payout pattern for j = J is given by ~̂γJ ¼ ð1;0; 0Þ.

Jochen Heberle and Anne Thomas

316

https://doi.org/10.1017/S1748499516000117 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499516000117


Table 4. Filled run-off triangle with observed cumulative claims Ci,j (i+ j≤ I) and predicted cumulative claims ~̂Ci;j ði + j>IÞ.

Development year j

~̂Ci;j 0 1 2 3 4 5 6 7 8 9

Ĉ0;j 1,216,632 1,347,072 1,786,877 2,281,606 2,656,224 2,909,307 3,283,388 3,587,549 3,754,403 3,921,258
l̂Ĉ0;j

0 0 0 0 0 0 0 0 0 0
r̂Ĉ0;j

0 0 0 0 0 0 0 0 0 0

Ĉ1;j 798,924 1,051,912 1,215,785 1,349,939 1,655,312 1,926,210 2,132,833 2,287,311 2,567,056 2,691,304
l̂Ĉ1;j

0 0 0 0 0 0 0 0 0 124,248
r̂Ĉ1;j

0 0 0 0 0 0 0 0 0 122,268

Ĉ2;j 1,115,636 1,387,387 1,930,867 2,177,002 2,513,171 2,931,930 3,047,368 3,182,511 3,402,877 3,541,502
l̂Ĉ2;j

0 0 0 0 0 0 0 0 469,974 358,990
r̂Ĉ2;j

0 0 0 0 0 0 0 0 480,982 342,357

Ĉ3;j 1,052,161 1,321,206 1,700,132 1,971,303 2,298,349 2,645,113 3,003,425 3,202,572 3,433,496 3,578,763
l̂Ĉ3;j

0 0 0 0 0 0 0 830,740 684,258 575,338
r̂Ĉ3;j

0 0 0 0 0 0 0 918,446 687,522 542,255

Ĉ4;j 808,864 1,029,523 1,229,626 1,590,338 1,842,662 2,150,351 2,402,587 2,595,030 2,818,181 2,958,558
l̂Ĉ4;j

0 0 0 0 0 0 1,124,603 1,032,680 904,473 808,206
r̂Ĉ4;j

0 0 0 0 0 0 1,296,392 1,103,948 880,798 740,421

Ĉ5;j 1,016,862 1,251,420 1,698,052 2,105,143 2,385,339 2,740,732 3,023,814 3,239,791 3,490,230 3,647,773
l̂Ĉ5;j

0 0 0 0 0 1,696,126 1,602,149 1,503,996 1,366,302 1,262,434
r̂Ĉ5;j

0 0 0 0 0 1,955,127 1,672,045 1,456,068 1,205,628 1,048,085

Ĉ6;j 948,312 1,108,791 1,315,524 1,487,577 1,830,534 2,186,089 2,469,300 2,685,375 2,935,928 3,093,543
l̂Ĉ6;j

0 0 0 0 2,049,617 1,998,085 1,915,813 1,827,402 1,701,737 1,605,966
r̂Ĉ6;j

0 0 0 0 2,500,861 2,145,306 1,862,096 1,646,020 1,395,467 1,237,852

Ĉ7;j 917,530 1,082,426 1,484,405 1,886,218 2,294,356 2,717,486 3,054,522 3,311,663 3,609,835 3,797,406
l̂Ĉ7;j

0 0 0 2,851,831 2,848,685 2,785,518 2,685,958 2,579,367 2,428,119 2,313,000
r̂Ĉ7;j

0 0 0 3,453,681 3,045,544 2,622,414 2,285,378 2,028,236 1,730,064 1,542,493

Ĉ8;j 1,001,238 1,376,124 1,818,115 2,194,830 2,577,475 2,974,175 3,290,159 3,531,238 3,810,786 3,986,641
l̂Ĉ8;j

0 0 2,957,493 3,020,729 3,033,720 2,993,348 2,916,928 2,831,094 2,706,712 2,610,516
r̂Ĉ8;j

0 0 3,725,537 3,348,822 2,966,178 2,569,478 2,253,493 2,012,413 1,732,866 1,557,011

Ĉ9;j 841,930 1,054,861 1,380,559 1,658,155 1,940,121 2,232,444 2,465,289 2,642,937 2,848,932 2,978,517
l̂Ĉ9;j

0 2,025,490 2,157,918 2,233,720 2,277,732 2,288,701 2,268,946 2,236,152 2,182,128 2,136,587
r̂Ĉ9;j

0 3,315,686 2,989,988 2,712,392 2,430,426 2,138,103 1,905,258 1,727,609 1,521,614 1,392,029
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and right spread, respectively, are written down. The support of the fuzzy reserves ranges from

R̂i�l̂R̂i
to R̂i + r̂R̂i

. Thus, the reserve can take on very small values down to 0 but only with a very

small grade of membership since the slope of the membership function is small. The mode and the
left spread of the FBF reserve are a bit higher (except for accident years 2 and 3). However, the right
spreads of the FBF reserves are much smaller, especially for later accident years i∈ {0,… , I}. This is
due to the underlying arithmetic operations: in contrast to the FBF method we yield the FCL reserve
by various fuzzy multiplications. This is analogous to the classical case in which we can fill up the
development triangle by successively multiplying the last observation with the CL factors in the CL
method, whereas for the BF method there are less multiplications. The considered fuzzy multi-
plications in our example lead to larger spreads for the FCL reserves.

The expected aggregated reserve Eβ
~̂R
� �

for different choices of the “decision-maker risk parameter”

β as well as the prediction uncertainty Unc �I
i¼0

~̂Ci;J





DI

� 	
for aggregated accident years are presented

Table 5. Predicted fuzzy chain ladder (FCL) and fuzzy Bornhuetter–Ferguson (FBF) reserves for individual
accident years i∈ {0,… , I} and for aggregated accident years.

FCL reserves ~̂R
FCL
i FBF reserves ~̂R

FBF
i

Accident year i R̂i l̂R̂i
r̂R̂i

R̂i l̂R̂i
r̂R̂i

0 0.0 0.0 0.0 0.0 0.0 0.0
1 114,086.3 114,086.3 114,086.3 124,248.2 124,248.2 122,268.8
2 394,120.9 394,120.9 415,624.9 358,990.7 358,990.7 342,357.1
3 608,749.5 608,749.5 684,079.9 575,338.4 575,338.4 542,255.1
4 697,741.6 697,741.6 850,872.8 808,206.9 808,206.9 740,421.2
5 1,234,156.7 1,234,156.7 1,678,973.3 1,262,434.2 1,262,434.2 1,048,085.3
6 1,138,623.3 1,138,623.3 1,758,326.0 1,605,966.4 1,605,966.4 1,237,852.2
7 1,638,793.4 1,638,793.4 2,930,186.1 2,313,000.8 2,313,000.8 1,542,493.7
8 2,359,938.9 2,359,938.9 5,134,598.4 2,610,516.5 2,610,516.5 1,557,011.7
9 1,979,400.9 1,979,400.9 5,149,050.9 2,136,587.4 2,136,587.4 1,392,029.4

∑ 10,165,611.6 10,165,611.6 18,715,798.7 11,795,289.5 11,795,289.5 8,524,774.5

Table 6. Expected reserves and uncertainties for different choices of the “decision-maker risk
parameter” β∈ [0, 1].

Parameters FCL FBF

β Eβð ~̂RFCLÞ Eβð ~̂RFBFÞ
0.1 6,526,876 6,913,648
0.25 8,692,982 8,437,653
0.5 12,303,158 10,977,661
0.75 15,913,335 13,517,669
0.9 18,079,440 15,041,674

Unc
PI
i¼1

~̂C
FCL
i;J





DI

� 	
Unc

PI
i¼1

~̂C
FBF
i;J





DI

� 	
14,440,705 10,160,032

Note: FCL, fuzzy chain ladder; FBF, fuzzy Bornhuetter–Ferguson.
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in Table 6. As expected, the expected aggregated reserve is higher, the larger the parameter β. The
expected aggregated reserve for the FCL model exceeds the FBF reserve for nearly all choices of the
parameter β. This is due to the fact that the expected value puts more weight on the right spread, the
higher β. Hence, the FCL model leads to more pessimistic predictions for this example.

Obviously, the uncertainty is lower for the FBF method since the total spread of the aggregated
reserve is narrower. Hence, the FBF method leads to more stable results in this example.

8. Conclusion

Fuzzy set theory offers instruments to model uncertainty. The a priori estimators in a classical BF
method can originate from market statistics, expert knowledge, etc. Thus, they might be
associated with uncertainty. The presented FBF method offers an approach to model this uncertainty
as well as uncertainties with the payout pattern. Therefore, we have followed a similar approach as
in Heberle & Thomas (2014). Wider spreads of the a priori information stand for more uncertain
information.

The FCL method also provides an opportunity to model uncertainty in a claims-reserving context.
However, if a priori information for the ultimate claims is available, it makes sense to incorporate
this. It can be handled by the introduced FBF method. A characteristic of the FCL model is that the
prediction uncertainty of the reserves rises rapidly for later accident years. This can be avoided here
due to the used arithmetic operations. The FBF method applies more fuzzy sums and less fuzzy
multiplications. Therefore, as can be seen in the presented example in section 7, the FBF method can
result in more stable predictions. However, compared with the FCL method the parameters in the
FBF method are not symmetric.

The uncertainty is modelled in this paper with TFNs. Of course, the choice is not limited to this case,
but the uncertainty can also be modelled with FNs with a completely different shaped membership
function as e.g. Gaussian or exponential membership functions. Situations are thinkable in which
these functions are more suitable. Nonetheless, the computational effort is higher so that in this
method the benefits of the easily interpretable TFNs are utilised.

Moreover, in current situations the quantification of the claims development result is of crucial
importance. So far it is to our knowledge not considered in a fuzzy context and can be of great
interest for further research.
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