
Workflow agents versus expert systems: Problem solving
methods in work systems design

WILLIAM J. CLANCEY,1,2 MAARTEN SIERHUIS,3 AND CHIN SEAH4

1NASA Ames Research Center, Moffett Field, California, USA
2Florida Institute for Human and Machine Cognition, Pensacola, Florida, USA
3Carnegie Mellon University Silicon Valley, NASA Ames Research Center, Moffett Field, California, USA
4Stinger Ghaffarian Technologies, NASA Ames Research Center, Moffett Field, California, USA

(RECEIVED December 1, 2008; ACCEPTED January 15, 2009)

Abstract

During the 1980s, a community of artificial intelligence researchers became interested in formalizing problem solving
methods (PSMs) as part of an effort called “second-generation expert systems.” We provide an example of how we are ap-
plying second-generation expert systems concepts in an agent-based system for space flight operations, the orbital commu-
nications adapter mirroring system (OCAMS), which was developed in the Brahms multiagent framework. Brahms mod-
eling language provides an ontology for simulating work practices, including groups, agents, activities, communications,
movements, and geographic areas. Activities are a behavioral unit of analysis to be contrasted with tasks, a functional unit of
analysis. Problem solving occurs in the context of activities in the service of tasks; appropriate PSMs depend on the context:
which people/roles are participating, what tools are available, how the results will be evaluated, and so forth. A work prac-
tice simulation facilitates designing workflow tools that appropriately interact with the physical and organizational context
in which work occurs. OCAMS was developed using a simulation-to-implementation methodology, in which a prototype
workflow tool was embedded in a Brahms simulation of how people would use the tool. The reusable components in a
workflow system like OCAMS include entire “problem solvers” (e.g., a planning subsystem), interoperability frameworks,
and agents that inspect and change the world. Thus, a tool kit for building workflow tools requires more than a library of
PSMs, which play a relatively small role in the overall multiagent, systems-integration architecture. Our research concern
has shifted to situations that may arise that are outside the OCAMS’ capability. In practical decision making, people must
reflect on the validity of their models. As programs becoming actors in the workplace, we need to develop systems that help
people to understand the limitations of the models that drive the automated operations, which means in part detecting when
the formalizations in the system are inadequate.

Keywords: Model-Based Automation; Problem Solving Agent; Situated Cognition; Work Practice Simulation; Work
Systems Design

1. INTRODUCTION

We can foresee two beneficial effects. The first and most
obvious will be the development of knowledge systems
that replicate and autonomously apply human expertise. . . .
As an inevitable side effect, knowledge engineering will
catalyze a global effort to collect, codify, exchange, and
exploit applicable forms of human knowledge. (Hayes-
Roth et al., 1983, p. xii)

During the 1980s, a community of computer scientists work-
ing in the area of artificial intelligence (AI) became interested

in formalizing problem solving methods (PSMs) in an effort
called “second-generation expert systems” (2nd GES; David
et al., 1993). The idea was in the air as soon as the first collec-
tion of expert systems was in hand, representing competing
frameworks at the San Diego Workshop on Building Expert
Systems in 1980. The question was posed, “(Can we) identify
the subcomponents of these tools that would provide a tool-
building tool-kit”? (Hayes-Roth et al., 1983, p. 345).

The 2nd GES effort initially involved analyzing the expert
systems built in the 1970s to abstract their design and operation.
These efforts included general reasoning-based formalisms
(e.g., Representation Language Language; Hayes-Roth et al.,
1983, p. 314) and toolkits called “skeletal systems” (p. 286).
The motivations included producing higher level frameworks
that would make building expert systems (called “knowledge

Reprint requests to: William J. Clancey, Intelligent Systems Division, M/S
269-3, NASA Ames Research Center, Moffett Field, CA 94035, USA.
E-mail: william.j.clancey@nasa.gov

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2009), 23, 357–371. Printed in the USA.
Copyright # 2009 Cambridge University Press 0890-0604/09 $25.00
doi:10.1017/S0890060409990059

357

https://doi.org/10.1017/S0890060409990059 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990059

acquisition”) more efficient, making the programs more robust
and powerful (by incorporating general principles rather than
many isolated facts and heuristics), facilitating explanation of
reasoning to users (especially in instructional applications),
and facilitating reuse of the constructs in developing other
expert systems (by developing modeling languages).

The 2nd GES analytic effort was also influenced by and
occurring as part of the simulation of human problem solving
in psychology (Newell & Simon, 1972), which showed the
power of a production rule formalism for automating reason-
ing, that is, for programmatically manipulating a model of
systems and processes in the world. Analysis of human prob-
lem solving protocols showed that there were patterns, called
“methods,” by which people applied and configured finer-
grained “operators” (e.g., legal moves on a game board) in
a process called “search in a problem space.” Analyzing doz-
ens of programs in different domains, ranging from medicine
to physics, and spanning a variety of system-manipulation
tasks (e.g., troubleshooting, design, control), 2nd GES re-
searchers identified these additional patterns:

† All expert systems are “model based”: symbolic repre-
sentations of AI programming, specifically in expert
systems, introduce a new modeling method to science
and engineering, namely, a means of modeling pro-
cesses qualitatively (Clancey, 1985, 1986, 1989) in con-
trast to purely numeric programming.

† Domain models (taxonomies, causal networks, defini-
tions) should be represented separately from the proce-
dures that manipulate them, thus facilitating explanation
and reuse (Clancey & Letsinger, 1981).1

† Solving particular problems (e.g., diagnosing a patient)
involves creating situation-specific2 models, a process
that was explicated particularly well in the blackboard
architecture (Hayes-Roth et al., 1983, p. 308; Nii, 1986a,
1986b) by the explicit posting and comparison of model
components (Clancey, 1992).

† Processes for manipulating models can be abstracted on
different levels, ranging from graph operators to entire
frameworks for doing diagnosis, design, and so forth
(Clancey, 1985; Clancey & Barbanson, 1993).

Researchers summarized the conclusions of 2nd GES re-
search in different ways, partly because we worked in differ-
ent domains, with different purposes, and preferred different
formalisms. Consolidating our work was complicated be-
cause we were generalizing from a variety of representational
formalisms for modeling objects and processes in different

domains (e.g., symptom–treatment rules in medicine vs.
function–structure diagrams in electronics), as well as a
variety of procedural methods (aka “control structures”) for
manipulating models for different modeling purposes (e.g.,
design, diagnosis, control). Alternative frameworks for orga-
nizing modeling languages and methods are provided by
Chandrasekaran and Johnson (1993) and Clancey (1992).

Depending on theoretical and practical objectives, different
analytic perspectives will be preferred and useful. However,
the motivations of 2nd GES were broadly shared and not
much in dispute, and the problem of completely modeling
all of the entities and processes of a chosen domain (e.g., in
classification and causal models) seemed tractable. Instead,
the debate and ambiguities concerned how to abstract and
describe the representation languages and model manipula-
tion procedures in the expert system, that is, to identify,
describe, and formalize the PSMs.

1.1. Abstraction in software engineering

More than two decades later, software engineering has not
been transformed into a process of assembling PSMs from
a library, as some had imagined. Has there been a failure to
appreciate the benefits of a PSM library or was the vision
(see opening quotation) of autonomous expert systems and
global knowledge bases incomplete?

Software libraries are important and useful today. Useful
modeling abstractions (e.g., XBRL) require less metadescrip-
tion than we expected after seeing the advantages of systems
like Representation Language Language. However, the built-
in display, interactivity, and networking constructs available
(e.g., for programming on mobile phones) were only a glim-
mer in our minds when we first used window–menu–mouse
systems in the 1970s.

Nevertheless, building complex programs remains a craft;
as researchers we are still aspiring to create libraries of mod-
eling components, as a Holy Grail of system building in given
domains, such as spaceflight operations. The appropriate
“grain size” for PSMs (or software reuse more generally) is
perhaps more variable and larger than we expected. Some
programs use a specialized modeling language (e.g., a science
database); some carry out high-level modeling tasks (e.g.,
spacecraft scheduling tools); others mediate between such
programs (e.g., “middleware” that relates spacecraft telemetry
to an interpretive model). In some respects, our experience
confirms the perspective of Newell and Simon (1972), re-
stated by McDermott (1988), that the reusable component
or method is an encompassing computational process, a
self-contained package that today we call a “software agent”
(e.g., see Bonasso et al., 1997). For example, Choo and Skura
(2004, p. 4) describe a toolkit of such relatively high-level
components for developing simulations of space operations:

SciBox uses the data analysis components from [the Sys-
tem Independent] layer to build data analysis packages spe-
cific to space operation simulations but not specific to any

1 Medical AI researchers were also influenced in the 1970s by the efforts
of the medical community to develop a Systematized Nomenclature of
Medicine, an ontology project dating to the mid-1960s.

2 “Situation-specific” refers to a particular case, setting, or scenario. It
should not be confused with “situated cognition,” which refers to how people
are conceiving and thus coordinating their identity, values, and activities in
an ongoing process enabled by higher order consciousness (Clancey,
1997a, 1999).

W.J. Clancey et al.358

https://doi.org/10.1017/S0890060409990059 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990059

particular space mission. Examples of SciBox software
components are common mathematical algorithms used
in celestial mechanics and astronomy, map projection, co-
ordinate transformation, and scheduling and commanding.

1.2. A systemic view of problems and methods

In contrast, a more complicated story can be told that relates
the role of PSMs in software engineering to how people de-
veloping practical tools for the workplace now interpret the
phrase “problem solving method.” In short, the nature of
what constitutes a problem, how problems are solved in prac-
tice, and how methods are articulated and shared has ad-
vanced remarkably since the social scientists became in-
volved in this research in the 1980s (e.g., Greenbaum &
Kyng, 1991; Shalin, 2005). In a workplace, PSMs are now
understood to be frequently interactive (e.g., getting assis-
tance) rather than purely mental operations.3 Work “tasks”
(e.g., medical diagnosis; Vicente, 1997) are role defined
and integrated in physically and organizationally located
activities4 (Clancey, 2002). Available resources and urgen-
cies determine who is allowed to participate in handling a
situation (i.e., whose knowledge is employed), and conse-
quently, what methods are used (e.g., compare the diagnostic
responsibilities of a nurse to a physician in a clinic, contrasted
with the tools used by a medic on a battlefield). Furthermore,
although much routine work can be formalized and automated,
dealing with problematic situations often involves a degree of
improvisation, in which policies and procedures are reinter-
preted or worked around (Wynn, 1991; Dourish & Button,
1998). Together, these considerations mean that if an expert
system is to be autonomous in the sense of operating without
negotiating interpretations and methods with people (see the
opening quote), then it must deal only with highly routine
tasks5 or be designed as a tool that can understand and adapt
to the flow, rhythm, and changing priorities of human activities
(Clancey, 2005).6

What are the implications of this practice-based perspective
on problem solving for PSM research? Are PSMs (exemplified
by the 2nd GES effort) relegated to a relatively minor role in
software engineering? Or might PSMs be reconceived to
incorporate the constraints of interactivity and improvisation
imposed by practical operational environments? We explore
these questions in this paper, examining our experience in de-
veloping spaceflight operations systems for NASA.

1.3. Challenges to explicating the new perspective

Explicating how ideas about problem solving have changed
in cognitive science over the past 30 years is difficult for sev-
eral reasons. First, pivotal assumptions that were tacit in the
AI community in the 1970s might seem bizarre to younger re-
searchers today, notably the idea that expert systems would be
standalone (“autonomous”) problem solvers (see opening
quotation) or the idea that knowledge engineers would sys-
tematically collect and catalog global knowledge (e.g., CYC).
We did not anticipate in the 1970s how personal computers
and networked operations would provide different opportuni-
ties for automation. For example, a NASA (1980) report pre-
pared by AI scientists, in a study group chaired by Carl Sagan
and Raj Reddy, details roles for machine intelligence in the
planned space station. However, obviously biased by the
vision of interplanetary probes and laboratories, the report
wrongly concluded that data distribution, science data collec-
tion, monitoring, and control sequencing would be irrelevant
to the space station (p. 11). The report also omits “file manage-
ment” from all mission categories, yet this is a central concern
today, whether one is operating a rover on Mars or assisting a
crew on the Station. Networking, physically and consequently
socially, has radically changed how applications interoperate,
how people interact with computers and each other, and how
difficult problems are solved (e.g., scientist networks; Gewin,
2008). In particular, files (including programs, logs, photo-
graphs, and spreadsheets) are more important than streamed
telemetry for transmitting data among instruments, applica-
tions, and people.

Second, subcommunities of “knowledge system researchers”
have always had different motivations and methods, so we must
speak from own experience and knowledge and be wary of
generalizing about the field. For example, in the 1980s, Intelli-
gent Tutoring System research emphasized cognitive modeling;
today that is out of favor and researchers emphasize interactivity
(e.g., emotional tutors; tutors for groups).

Third, although some AI researchers have experienced a para-
digm shift in their understanding of knowledge engineering

3 The description of the oil spill scenario in Hayes-Roth et al. (1983) is re-
plete with examples of interactive methods, involving different roles and re-
porting relationships. Although several knowledge engineering teams ad-
dressed the coordination problem, all focused on tracing the source of the
oil spill, fitting the dominant view at the time that diagnostic modeling is
an exemplary aspect of expertise.

4 The distinction between a task (a function) and an activity (a behavior) is
crucial for understanding the distinction between a conventional business
process model and a work practice model. Tasks and activities are different
units of analysis, different perspectives for modeling human behavior. For
a full exposition, see Clancey (2002).

5 By “routine” tasks, we mean tasks that are repeated in particular contexts
(e.g., uplinking a file to the Space Station) and for which the vast majority of
situations that will occur (e.g., file uplink requests) can be handled automat-
ically by a program that applies a general world model and rules or proce-
dures (perhaps heuristic).

6 A reviewer commented: “The fact that people naturally behave in disas-
trously stupid ways is not very good support for the claim that we ought to
build automated tools that support the ways people actually work.” By sup-
porting the way people actually work, we do not mean reinforcing bad prac-
tices, such as failures to coordinate with others, check data validity, document
decisions, and so forth. We mean that tools need to fit and respect how the
work gets done in terms of interactive flows of data, information, and work

products, and even the movements of people in the workplace. Understanding
workflows includes identifying the source of data and how it is transformed,
cooperative interactions with coworkers in different media (phone, e-mail,
meetings), how job order priorities and schedules are set and revised, and
so forth. The case study of the Orbital Communications Adapter Mirroring
System (OCAMS) in this article illustrates how a workflow tool is designed
to change current practices, and how we ensure through observation, partner-
ship, and computer simulation that the tool will not disturb aspects of practice
we wish to retain or facilitate.

Problem solving methods in work systems design 359

https://doi.org/10.1017/S0890060409990059 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990059

(e.g., Hendler, 2009), many if not most AI academics con-
tinue to focus more narrowly on knowledge representation, rea-
soning, search, uncertainty, and so forth, that is, inventing for-
malisms for well-defined “problems” rather than building
practical systems (for which PSMs were intended).

In short, a given story about “what happened to PSMs”
might seem to some people as inaccurate, idiosyncratic, or ir-
relevant (and probably incomprehensible). If this is your reac-
tion, and you are interested in building practical systems, you
are encouraged to consult books that explain in detail the sit-
uated cognition perspective about work, problem solving,
and tool design (e.g., Greenbaum & Kyng, 1991; Hutchins,
1995; Clancey, 1997a, 2006, 2008; Wallace et al., 2007; Rob-
bins & Aydede, 2008).

1.4. Content organization

This paper provides a concrete example of the situated cogni-
tion perspective by explaining the architecture and methodol-
ogy we have applied at NASA in building a practical system
for Mission Control. Our work is based on a tool for modeling
work practice, called Brahms (Clancey et al., 1998; Sierhuis,
2001; Sierhuis et al., 2003, 2007; Clancey, Sierhuis, Damer,
et al., 2005; Seah et al., 2005). Brahms provides a language
(see Appendix A) for representing work in terms of agents
and activities, constituting an analytic shift from building ex-
pert systems to modeling and designing work systems, and a
methodological shift from interviewing experts to observing
how groups identify problematic situations and negotiate
practical methods for handling them. Using Brahms, our
concepts for analyzing, modeling, and automating NASA op-
erations include Agent (or Actor), Activity, Problematic Situa-
tion, Work System, and Workflow. Our work as “knowledge
engineers” has been transformed by three related shifts in per-
spective: theoretical (how tools are used in practice), architec-
tural (how tools are integrated in real-time, interactive systems),
and methodological (how tools are designed and developed).

We begin our story by providing an example of how
Brahms has been used to design and implement a workflow
tool called OCAMS for communications between ground
support in NASA’s Mission Control Center (MCC) in Hous-
ton and the astronaut crew of the International Space Station
(ISS; Clancey et al., 2008). We analyze the use of abstraction
in this workflow tool, thus explicating some of the principles
in the Brahms architecture, and relate the design of the tool
to 2nd GES terminology.

We conclude that for us the motivations of 2nd GES and
PSM abstraction in particular have been transformed in our
projects from configuring a problem solver to a higher level
problem of designing agents in a work system. From our per-
spective in developing tools for spaceflight operations, the re-
usable components in work systems design include entire
“problem solvers” (e.g., a planning subsystem), interoperabil-
ity frameworks (relating hardware and software on different
platforms), and interactive systems (“workflow agents”) that
use and revise models dynamically in a network of people

and computer systems. Consequently, the tasks, problems that
arise, methods are much broader than how they were conceived
in formalizing PSMs originally.

We use the OCAMS example to illustrate our present un-
derstanding of human problem solving, examining the chal-
lenges for developing automation that eliminates a flight
controller position. Our inability to fully automate the work
suggests that, although a large part of the original job can
be formalized in PSMs, the remaining aspects of human ca-
pabilities lie outside of what can be achieved using the present-
day model-based reasoning approach.7 On reflection, we find
that what we view as “problems” today are very often aspects
of the work that cannot be easily automated, because they lie
outside what a single person or expertise in a single domain
can handle. Problem solving in spaceflight operations occurs
at the group level (often international), across domains of ex-
pertise, with formal lines of authority and crosschecking of
work. This elevates our notion of “PSMs” to the means of
communicating and transforming work products among soft-
ware agents and human actors, broadening from methods that
only take place in the head (mental operations) to include
methods for coordinating and cooperating that take place in
the world (physical operations). With this shift from design-
ing an expert system to designing a work system, our toolkit
ontology moves up a level to include groups, agents, activ-
ities, locations, objects, communications, time lines, and so
forth. At the lowest levels one finds model-based inference,
where aspects of the original PSMs can be found.

2. EXAMPLE: THE OCAMS WORKFLOW
AUTOMATION TOOL

We illustrate and develop our perspective on problem solving
and tools by analyzing a mission operations workflow tool
called OCAMS, developed at NASA using the Brahms mod-
eling and simulation tool (see Appendix A). We describe the
context and design constraints, the methodology, the use of
abstraction in the solution, and the practical implications for
the “library of methods” approach.

2.1. Objectives, requirements, and methodology

The objective of the OCAMS project is to automate to the
greatest practical extent the file management operations be-
tween ground support groups and the astronauts onboard
the ISS. A flight controller called the OCA Officer performs
this work.8 The broader organizational objective is to improve
efficiency of mission operations by reducing personnel costs
for supporting the Station by 30% from the year 2005 base-
line. A secondary objective is to bring NASA’s research re-
sults into practical application by establishing partnerships

7 By this same analysis, model-based robots assisting astronauts may co-
operate with people, but are incapable of collaborating on projects (Clancey,
2004).

8 The Orbital Communications Adapter (OCA) is a PC card that enables a
personal computer to FTP files using a satellite network.

W.J. Clancey et al.360

https://doi.org/10.1017/S0890060409990059 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990059

between research and operations organizations. Third, from
the researchers’ perspective, demonstrating practical applica-
tions of agent-based systems integration in ground flight op-
erations will promote the use of such tools in lunar surface op-
erations (which are being prototyped in the field experiments
in “Mobile Agents,” a system using the same architecture;
Clancey, Sierhuis, Alena, et al., 2005).

The design requirements for the OCAMS project include
the following:

1. automate routine operations of the OCA Officer: mir-
roring,9 archiving, uplink/downlink to the ISS, notifi-
cation10;

2. enable flight controllers to retain responsibility and au-
thority by allowing for manual overrides of all system
operations;

3. enable flight controllers to make routine system modifi-
cations without programming (a practical issue of tech-
nology sustainability);

4. be sensitive to the current practices for workflow (e.g.,
how new jobs are received and results transmitted),
timing, communications, and authority for variances
in routines;

5. respect the work practices of shift handovers that in-
volve restarting software tools, recording file manage-
ment statistics in a handover log, retaining records of
incomplete work, or unresolved problems, and so
forth; and

6. respect local software and network practices (e.g., local
contractors install software patches; networked compu-
ters use firewall protocols).

We used the “simulation to implementation” methodology
to design, test, and deploy the OCAMS system (Fig. 1). Col-
laborating with operations personnel, we first studied how the
OCA work was accomplished and what opportunities for au-
tomation were most salient and/or pressing. This led to focus-
ing on the mirroring activity. We then collaboratively created
two simulations: current operations (in which mirroring is
done manually) and future operations (in which mirroring
is done with a distributed multiagent workflow tool). The fu-
ture operations simulation embeds the prototype OCAMS
tool used by a simulated OCA Officer. The simulation also in-
cludes a prototype graphical user interface (GUI) by which an
OCA Officer can control the simulation to understand what is
happening. Both the current and future operations simulations
model work shifts, handovers between OCA Officers, and
maintaining handover logs. Both simulations were run using
1 month of previously recorded data about file management,
allowing quantitative comparisons of the OCA Officer’s

work with and without the tool (Clancey et al., 2008; Sierhuis
et al., 2009).

After validating the completeness and plausibility of
the future simulation with the OCA Officers, we extracted
the agents comprising the embedded tool prototype (i.e.,
OCAMS) from the simulation and reconfigured them as a
run-time system that communicates between multiple com-
puters.11 This overall approach of transforming a current
simulation into a future simulation and then a tool is called
“simulation to implementation,” and represents an important
example of how system components can be used for both
design and implementation in a given application project.

By comparing metrics derived from the current and future
simulations, we can use the simulation-to-implementation
methodology to quantify the benefit of automation. Simulat-
ing how a tool will be used in future operations, including
the environment with which the tool will interact (e.g.,
OCA Officers and applications, such as FTP and spread-
sheets) demonstrates how work systems design puts exper-
tise and the original notion of a “consultation dialog” in
context.12 We will elucidate this shift in perspective further
when we discuss the challenges of fully automating the
OCA position. However, we will begin with a much simpler
and narrower analysis, considering to what extent OCAMS
can be described in terms of PSMs. First, we provide an
overview of the program’s design, and then we consider
how the design relates to generic tasks and PSMs.

2.2. Analysis of the file management process

This section examines how OCAMS manages files so that we
can better understand the role of PSMs (either actual or poten-
tial) in its construction. Table 1 shows a schema by which ISS
file management is abstracted into a file type taxonomy and
file handling rules. The principles for doing the three file
management operations considered here (mirroring, archiv-
ing, and notifying) are not based on the file contents (e.g., a
text document vs. a JPG image), but the functional relation
of the file to the mission (operational plans/procedures and
software, private data, and exceptions to these). Files are clas-
sified into 31 types identified by acronyms assigned by OCA
Officers (e.g., NFH is “news from home,” such as online

9 Mirroring involves reconstructing on a local area network (Mirror LAN),
a subset of the file operations performed on the ISS file system.

10 Notification includes speaking on the “voice loop” (a programmable
network of intercoms), modifying a flight note (a message posted in a work-
flow tool), sending e-mail, calling on a telephone, and broadcasting a remark
out loud in the room).

11 More specifically, the definition of certain agents were copied from the
Brahms future simulation and pasted into a new Brahms system that runs in
real time, with different agents configured to run on different computers. Ef-
fectively, each computer has a different Brahms system with its own Brahms
virtual machine (engine), and the agents communicate within and between
machines over the local network.

12 The case study of the “emergency management of inland oil and hazard
chemical spills” problem (Hayes-Roth et al., 1983) reveals awareness of
broad design issues (e.g., the stakeholders will evaluate the program differ-
ently, pp. 273–274). However, the relation to the “users” work is undevel-
oped: “the spills program is intended to augment experts, not to replace
them” (p. 273), and yet it must perform “as an expert” (p. 275) in providing
assistance to a “possibly inexperienced, off-hours security officer” (p. 334).
Brahms provides an ideal framework for simulating the physical flows of
spills and how they are managed by an organization, including agents with
different capabilities.

Problem solving methods in work systems design 361

https://doi.org/10.1017/S0890060409990059 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990059

news articles). Files may be transferred “up” to the ISS
(uplink), down to earth (downlink), or both.13

After collaboratively assembling and reflecting on the file
taxonomy, the OCA Officers summarized the classification
by the following four principles:

1. Operational data is mirrored and archived. Medical or
personal data is neither mirrored nor archived.

2. Most downlinked items are not mirrored. Exceptions:
files that stay onboard after downlink; changes the
crew has made to the onboard organizational software
that must also be implemented on the Mirror LAN.

3. Exception to archiving: keep a rolling archive of ima-
gery because of the volume.

4. Items deleted onboard are also deleted on the Mir-
ror LAN.

Clancey (1992, pp. 15–16) claimed that the relations re-
quired in a domain model depend on the modeling purposes
(e.g., diagnosis, teaching, knowledge acquisition). We find in
OCAMS this same process-specific, conditional character:
for each interactive function added (mirroring, archiving,
notifying) the classification becomes more branched and
specific.

In particular, the exceptions and variations in notifica-
tion cause file handling to be highly dependent on the type
of file and customer. The simple summary might suggest
that the 60 possible combinations of fTransfer �Mirror �
Archive � Notifyg outcomes would only require four file-
handling categories to cover the 31 file types. However, noti-
fication must take into account how the file was delivered
and whether the customer is on the voice loop system. We
find some principles (e.g., modify the flight note if any).
However, when we add further exceptions (e.g., is this a shut-
tle flight or a “stage” in the ISS expedition?), we end up with
seven categories to cover exceptions to the four principles. As
expected, the OCA Officers’ manual provides one procedure
per file type, rather than a set of principles (e.g., the manual

Fig. 1. The Orbital Communications Adapter Mirroring System (OCAMS) using model-based systems integration to automate some of the
file management between ground support and the International Space Station (ISS). Brahms agents run on three computers, each with a
Brahms Virtual Machine. Agents communicate via messages, providing requests and status. The communication agent commands and ex-
changes data with external applications and devices via an application-programming interface.

13 The input to OCAMS is a log of operations carried out by the OCA Of-
ficer in transferring files between the ground and ISS. OCAMS infers the file
type from the file path and name (e.g., a file name of the form “DOUG/
flights . . . pkg” is file type DOUG, which is a file type that should be
mirrored).

W.J. Clancey et al.362

https://doi.org/10.1017/S0890060409990059 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990059

devotes a section to handling the NFH file type instead of a
procedure for “what to do with an up-linked Web page”).

This analysis of OCAMS’ file types is relevant to under-
standing the degree to which file management operations are
general, and hence, likely to be automatically adapted to future,
unanticipated situations. Following the four principles listed
above, we could write rules to infer whether a new file type pro-
vided by a customer is mirrored, archived, and how the cus-
tomer is notified. Yet the nature of exceptions indicates a per-
son would need to approve any rule changes. Consequently,
we developed an editor by which an OCA Officer can add
new file types to the system and modify how file types are han-
dled by filling out a simple form like Table 1. This sustaining
cost becomes part of the analysis when justifying development
costs and choosing areas for future automation. Put another
way, understanding why and how frequently models used by
PSMs will be inadequate, thus requiring human intervention,
becomes part of the tool-building process.

3. TOWARD A WORKFLOW TOOL LIBRARY:
COMPONENTS REUSED IN OCAMS

Can we relate the design of OCAMS to the generic tasks and
PSMs of 2nd GES? A first step is to ask what components
are reused in Brahms models and workflow tools. To begin,
from the perspective of engineers in Mission Control, we
have solved a systems integration problem by developing
OCAMS. Accordingly, in thinking about building another
system “like OCAMS” we would consider the components
that facilitate interoperability among networks, machines,
and applications. In terms of the Brahms language (see
Appendix A), these reusable systems integration components
include the following:

1. Agents that communicate with external systems (Comm
Agents); these inherit behaviors from a Brahms group
(AbstractCommunicationAgent) that handles memory
management and supports both simulation and real-
time modes.

2. An FTP client library derived from previous Mobile
Agents configurations.14

3. Components in the Brahms “base library”:

a. basic file operations (copy, delete, checksum verifi-
cation, etc.) represented as a Brahms “Input/Output
Group” with file manipulation functions written in
Java, which other Brahms agents can inherit

b. a Brahms “Communicator Group” with activities to
create and read Communicative Acts (inspired by
Searle’s 1969 speech act theory and based on the
FIPA standard agent communication language for
multiagent systems)

c. a Brahms “JavaUtility Group” with activities to
manipulate Java objects, read Java object values,
and manage properties.

In modeling operations, we generally use a table-driven
method to represent work schedules, that is, the relation of
roles, activities, and time. When an OCAMS simulation be-
gins, a spreadsheet is interpreted to initialize agent beliefs
about file types and handling rules15 and what activities are
done when (i.e., the schedule time line; Seah et al., 2005).
In addition to adopting a table-driven architecture for sim-
ulating operations of different NASA missions, we have
reused Brahms workframes and thoughtframes that relate to
schedules.

After building a variety of mission operations simula-
tions, it seems clear that the simulating and automating
workflow operations requires agents to maintain beliefs
about the work in process, represented as sets of objects
(e.g., the files being uplinked and downlinked), constituting
a central part of the agent’s “situation-specific model” of the
work system. We expect to reuse such constructs in other
applications.

In summary, the Brahms language enables formalizing and
reusing model constructs exemplifying the 2nd GES concept
of representational tools with components more specific than
“inference rule” and “schema.” In OCAMS, these compo-
nents include descriptions of groups (including inheritable
beliefs and activities), particular agents, and schedule-related
inference, and situation-action rules (called Workframes).

Table 1. Schema for OCAMS taxonomy of file types and handling procedures

File Types Type of Data
Transfer
Direction Mirror? Archive? Notify?

,Symbolic
Name.

{Operational Plans & Procedures j Operational Software &
Schedule Changes j Personal or Medical j Exceptions}

{UP j DOWN j
BOTH}

{YES j
NO}

{YES j
NO}

{FlightNote j VoiceLoop j
Email j Phone j Outloud}

Thirty-one file types are categorized by the function of the data and/or customer providing or using the data. Transfers are to (UP) or from (DOWN) the
International Space Station (ISS). A mirrored file is copied to a ground-based subset of the ISS file system. An archived file is saved in a dated folder indicating
its source. Ground support customers are notified in different ways, including a workflow “flight note” system, a speaker–headset intercom (“voice loop”),
email, telephone, or by speaking out loud to someone across the room at another workstation.

14 One of the first examples of an “intelligent agent” was a program that
managed files using FTP (Anderson & Gillogly, 1976). A favorite joke was

that if the agent were told to move a directory in the most efficient man-
ner possible, it might first delete all the files.

15 An example thoughtframe initialized from a spreadsheet: “If a file with
the extension‘.cfg’ was uplinked to the folder ‘doug/config,’ then its file type
is DOUG_Config_File_Type and it should be mirrored.”

Problem solving methods in work systems design 363

https://doi.org/10.1017/S0890060409990059 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990059

These constructs are useful for automating workflow that in-
volves systems integration. However, 2nd GES research espe-
cially focused on abstraction of methods for manipulating
models, as in medical diagnosis. What are the tasks in
OCAMS? What models are contained in OCAMS?

4. APPLYING THE SYSTEM–TASK–OPERATOR
FRAMEWORK TO OCAMS: FROM EXPERT
SYSTEMS TO WORKFLOW SYSTEMS

Representing a file taxonomy and file handling operations
as agents (mirroring, monitoring, archiving) derives directly
from the 2nd GES approach of developing a domain model
and functional (task-specific) operators. Here is how
OCAMS fits the System–Task–Operator framework (Clancey
& Barbanson, 1991; Clancey, 1992):

† The system being modeled is the ISS file system, includ-
ing workstations, directory structure, and types of files.
These file types are related to types of customers (e.g.,
physicians, mission planners) and two broad functions
in which the files play a part (operational and medical/
personal).

† With respect to the ISS file system, the task is configura-
tion: assembling/maintaining another file system with
certain properties (mainly mirroring the ISS file system
minus medical/personal files and images). In other
words, the configuration task here is to replicate a subset
of a given structure (the ISS file system) on a “mirror”
server, in which the structure of the secondary system
(the Mirror LAN) is subject to certain general con-
straints (namely, what file types are mirrored), which
constitute “configuration rules.”

† The PSM is simple classification: the file name defines
the file type, and this defines how the file is to be con-
figured in the Mirror LAN (the options are Copy, Unzip
and monitor for errors, Delete, and Do nothing).

An obvious reaction to presenting OCAMS as an example
for appraising the value of identifying PSMs is that the mir-
roring and archiving operations are based on definitions, so
the most trivial method, simple classification, suffices. Heur-
istic decision making will be required subsequently for ex-
ecuting file transfer operations (Uplink/Downlink) within
the variable time periods available for communicating with
the ISS. Methods previously developed for scheduling prob-
lems are likely to be useful.16

However, just considering mirroring and archiving, the file
management task actually being accomplished by OCAMS is
already more complex than it might first appear:

1. OCAMS is actually building a physical system (the Mir-
ror LAN), not just modeling the design of a file system.
By the System–Task–Operator framework, the model-
ing purpose (task) with respect to the system in the
world being reasoned about (the file system) is “Build.”

2. OCAMS is applying the general model (file type taxon-
omy and handling rules) to plan and execute file man-
agement actions (copying, moving, renaming, deleting,
opening, etc.) that coordinate three situation-specific
system models (SSMs):

a. SSM-CONFIG represents the desired configura-
tion: files that need to be mirrored, archived, and
monitored at this time (OCAMS’ plan).

b. SSM-MIRROR and SSM-ISS represent the current
state of the world, which are the respective state of
the Mirror LAN and the state of the ISS file system
(including status of OCAMS actions that are pend-
ing confirmation).

Besides using simple classification for creating the SSM-
CONFIG from the SSM-ISS, OCAMS uses the methods of
queuing, handshake protocol, retry iteration, and synchroni-
zation to maintain the Mirror LAN system (modeled by
SSM-MIRROR).

In other words, OCAMS is not just a reasoning system.
OCAMS is an interactive system, an actor in the world,17

which uses model-based methods to plan its actions (SSM-
CONFIG) and keep track of the work to be done (SSM-MIR-
ROR). In some respects, it is as if Mycin were charged not
just with interpreting culture results, but actually treating a pa-
tient. More prosaically, this is the difference between an ex-
pert system and a workflow system.

Consequently, the software engineering problems in design-
ing OCAMS are complex and incorporate the problem solving
framework only as a means for a larger problem. In particular,
OCAMS agents run as distributed processes on six or more
workstations without a central controlling system. These
agents coordinate the physical manipulation of materials (files)
in the world, the layout of displays and logs, files in queues,
and of course file directories. The agents also run other pro-
grams and interpret error messages. Model-based inference is
used especially for planning and tracking actions (e.g., decid-
ing how to handle a particular file and what to do when errors
occur). In this respect, we can view OCAMS as being like a ro-
bot that inhabits the network in a distributed fashion.

As is plainly visible in the Building Expert Systems case
study, the consultation paradigm was the dominant way of
thinking about model-based tools in 1980. We imagined a sin-
gle “user” who is interviewed by the program; the program

16 One can also imagine a more complex program with “diagnosis and re-
pair” capabilities. Application and networking errors can occur that put the
file system (and agent system) into an uncertain state. Instead, failure han-
dling is automated in OCAMS by an “administration agent” that simply re-
starts the agent processes and redoes the operations in the current “batch”
of files. When more is required, a person usually needs to do something
that is out of the scope of automation (e.g., deciding how to diplomatically
handle an ISS crew member’s overgrown mail file).

17 For an analysis of “nonhuman actants,” in particular, how technology
and people codetermine work practices, see Latour (1991).

W.J. Clancey et al.364

https://doi.org/10.1017/S0890060409990059 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990059

asks questions, makes inferences, and then prints an interpreta-
tion and recommendations (e.g., a plan) for human interven-
tions. Of course, many other different types of systems were
developed in the 1980s, with automated process control pro-
grams being most similar to OCAMS.18 Opportunities and
challenges of embedding model-based programs in real-time
systems changed substantially with the advent of distributed
computing, the Internet, security concerns, multimodal inter-
faces, multiple vendor platforms, and so forth. As illustrated
by the list of reusable components in OCAMS (see “Toward
a Workflow Library”), a library of PSMs is just one part of
what is required in a practical toolkit for building model-based
systems today. To further understand the requirements, we will
consider requirements for extending OCAMS’ functionality to
automate more of the OCA Officers’ work.

5. A BROADER VIEW: THE MISSION
OPERATIONS WORK SYSTEM

Viewed comprehensively, automating the entire role of the
OCA Officer would involve the following additional tasks:
sustaining communications between computers on different
networks owned by different organizations, preserving secur-
ity of mission systems and private data using secure commu-
nication, customizing file management for special requests;
verifying and notifying that customer requests are complete,
and keeping records in handover logs and ongoing mission
documentation. As we described in OCAMS, some aspects of
these responsibilities can be accomplished by PSMs. More
broadly, the problem at hand is to build this entire system: de-
veloping a system of agents that together automate an operations
role that involves a great deal of coordination with people.

As we broaden OCAMS’ original mirroring and archiving
functions to cover most of the work done by the OCA Officer,
our perspective of “the system” being reasoned about and ma-
nipulated changes yet again, and the focus on maintaining
proper interactions with other players (people and tools) be-
comes more central. For example, OCAMS will need to inter-
pret and modify flight notes, messages in a kind of discussion
forum used by flight controllers. When we include the cus-
tomers who are delivering files for uplink and receiving
downlinked files, we see that the work system involves people
performing other roles in the Mission Operations Directorate
(MOD),19 astronaut family members, and flight controllers in
other countries in support of three to thirteen astronauts
(assuming a full shuttle flight of seven astronauts will occur

with a full contingent of six onboard the ISS). This is a
work system, a distributed collaboration among people using
diverse representations and tools: physicians, aeronautics en-
gineers, planners, robotics engineers, power and propulsion
flight controllers, family members, and so forth.

From this perspective, an extended OCAMS that auto-
mates all of the work of the OCA Officer must be designed
as an actor (participating agent) in a work system. This agent
would be responsible for retrieving files from different loca-
tions (file servers, hard drives), interpreting documents, con-
trolling different subsystems (e.g., software programs such as
FTP), creating structured documents (logs), and communicat-
ing with people (via a GUI, e-mail, flight notes, and perhaps
someday by speaking on the voice loop). The comprehensive
process would require classifying the work beyond file types
to include roles and authority structures in operations, daily
schedules, and mission phases (e.g., protocols and priorities
change when the Space Shuttle is docked to the ISS).

File management correspondingly becomes a subproblem
within the larger task of configuring the more-encompassing
work system, such as prioritizing file transfers for different cus-
tomers, given limited bandwidth, and fragmented communica-
tion windows between the ground and ISS. In effect, the re-
sponsibility of OCAMS shifts from merely focusing on and
juggling files to focusing as well on what people are trying
to accomplish and the support required by interacting teams
(e.g., a team of physicians on the ground and the astronauts
on the ISS). For example, the OCA Officers’ Handbook states:

OCA operators should keep their OPSPLAN well informed
of file transfers and [satellite network] availability. . . . The
OPSPLAN should always know what is on board and what
still needs to be uplinked. The OPSPLAN will coordinate
crew email operations with CAPCOM and the crew. Prior
to uplink, the OPSPLAN and OCA operator should agree
on the priority/uplink order of the files to be transferred.
This is because many times [network] availability is sparse
and time to uplink can be pressed.

In summary, extending OCAMS’ responsibilities requires
considerably broadening what aspects of spaceflight are mod-
eled (e.g., network availability), as well as adding agents to
prioritize and coordinate what will then become “low level”
file operations (e.g., mirroring). In particular, more sophisti-
cated planning and perhaps “what if” analysis would be use-
ful. To this end, we would probably couple OCAMS to a con-
straint-based tool, such as SPIFe (McCurdy et al., 2006),
rather than represent a planning capability in Brahms.20

This example suggests, like the functional-location decompo-
sition of OCAMS into agents, that the preferred software
engineering approach today is not construction of single

18 For example, Fagan’s 1980 dissertation project, the Ventilator Manage-
ment system (Rutledge et al., 1992), was coupled to real-time data, obviating
manual entry, and thus enabled ongoing interpretation and alerts.

19 MOD is the organization within the NASA Johnson Space Center that
operates the MCC, usually associated with a room with three large monitors
called the Flight Control Center. The OCA Officers work within MCC (a se-
cure building), but in another room, one of several “backrooms” where peo-
ple support the flight controllers (such as OPSPLAN, the “operations plan-
ner”) in the Flight Control Center, whom they can hear and speak to via
the voice loop. Fortunately, simple PSMs are sufficient for understanding
and using acronyms.

20 Indeed, some of the files managed by OCAMS are maintained by a
model-based scheduler (OSTPV; Frank et al., 2008). Thus, in effect, by fol-
lowing simple rules OCAMS is already helping coordinate work products be-
tween people and other automated systems.

Problem solving methods in work systems design 365

https://doi.org/10.1017/S0890060409990059 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990059

programs from components, but integration of modules, often
running on different platforms, that can flexibly communicate
in real-time settings.21

Thus, we again see that reusability of components is impor-
tant; in particular, components that manipulate models (e.g., a
scheduler) are direct descendents of PSMs formalized in the
1980s. However, the systems engineering problem now in-
cludes integration and interoperability of tools or services,
not just copying a formalism used in one program into an-
other. The Brahms run-time environment is specifically de-
signed to handle this systems-integration problem, also called
“interoperability.” This integrative, run-time capability was
not part of Brahms’ initial design as a work practice simu-
lation framework. However, the possibility of integrating ac-
tual tools within a work practice simulation was realized early
on (e.g., to simulate how people used an expert system). Well
before developing the Mobile Agents system in 2001, we also
realized and documented the advantages of the Brahms lan-
guage and engine for implementing distributed, communicat-
ing processes containing independent models of the world
engaging in different, but coordinated activities, namely,
“personal agents” (e.g., Anderson, 1977; see also US Patent
No. 6,216,098, Clancey et al., 2001).

To recap, the simulation-to-implementation methodology
using Brahms is particularly suitable to the challenges of auto-
mating a flight controller position. The shift from focusing on
tasks to activities and thus work practices (how the work is ac-
tually done, vs. idealized procedures detailing functional trans-
formations of work products) corresponds to a shift from repli-
cating or facilitating reasoning to supporting work systems.
This shift from a product-centered model to a behavioral-
practice model involves a shift to modeling and simulating
transactions (customer–flight-controller–product relations).
Accordingly, we have become concerned with the dynamic be-
haviors of an agent in a work system involving maintenance
of transactions, such as negotiation of requirements and re-
sources, which must be tracked, confirmed, communicated,
crosschecked, and sometimes renegotiated.

Going further to automate nonroutine aspects of the OCA
Officers’ work involves modeling how problems arise and
are recognized, formulated, and resolved. In general, participat-
ing as an actor in spaceflight operations requires nuanced, con-
text-sensitive conceptualization of what ground support and
the astronauts (both individually and as teams) are trying to
do, what incoming data and events mean, what different play-
ers are doing now on the mission, what resources (tools, tim-
ing, personnel, supplies) have available, how they are progres-
sing in their endeavor, and so forth (Feltovich et al., 2007).

Relating Brahms and OCAMS to the conception of PSMs,
we can say the glass is half-empty; our view of human problem

solving is much broader and the capabilities of a model-manip-
ulation process appear relatively limited compared to what
groups of people accomplish. Alternatively, we can say that
the glass is half-full; OCAMS can be abstractly described using
the System–Task–Operator framework. However (half-empty
again), this is only an analytical perspective: the salient archi-
tecture is characterized in terms of agents interacting with each
other and systems in the world, and it is only within this more
complex system that we find the situation-specific models and
inference operators of “problem solving.” Perhaps as the anal-
ysis in this section implies, OCAMS agents will eventually
model and act within the broader spaceflight operations work
systems, incorporating familiar PSMs at a different level of ab-
straction. However, the possibility and practicality of doing this
remains to be seen.

6. CONCLUSIONS AND PERSPECTIVE

In applying 2nd GES methods, we have developed Brahms, a
tool for modeling work practice. By enabling designers to
model and simulate alternative work system designs in different
scenarios, a Brahms simulation model has familiar science and
engineering purposes. It enables better understanding of causal
processes (e.g., relations between roles, schedules, procedures,
and workplace automation), measuring work systems flows
(e.g., productivity), identifying bottlenecks, predicting dead-
locks and gaps, and evaluating hypothesized improvements.

The Brahms modeling framework constitutes a schema for
simulating work practice, very much in the spirit of the 2nd
GES effort to develop domain-general abstractions, but using
an ontology relevant to modeling agent behaviors: observing,
moving, communicating, manipulating objects in the real
world. In particular, problem solving is modeled as an activ-
ity because it occurs in human behavior, often involving tools
(e.g., getting procedures from manuals) and interacting with
other agents. Modeling facilities, organizational roles, com-
munication methods, and actual movements is important for
understanding how an automated system will fit within or re-
quire changes to people’s activities. For example, flight con-
trollers in the same room as the OCA Officers speak over par-
titions to ask questions about the status of the work to be
done; they also walk over to examine files on the Mirror
LAN server. Should OCAMS broadcast information on a
loudspeaker? How would it know that the person being ad-
dressed is not too busy to hear?

Just as everyday work involves much more than reasoning,
a library of PSMs is not sufficient for building workflow
tools. Nevertheless, the Brahms modeling framework is de-
rived from the architecture of expert systems, where an agent
is like a knowledge-based system, but it is located and
operating within a broader work system schema (group, agent,
activity, detectable, communication act, area, movement).
The Brahms engine, replicated on each computer platform
containing Brahms agents, coordinates real-time, parallel
interactions among the agents and other systems in their
environment.

21 For example, in problem solving research the notion of “memory” orig-
inally focused on efficient matching. For an agent in an operational environ-
ment, the practical issue broadens to storing facts to engage in discourse about
events that occurred days or months ago. In MOD, a flight controller might
ask his/her personal agent, “Have we uplinked files like this to crew members
on previous flights?”

W.J. Clancey et al.366

https://doi.org/10.1017/S0890060409990059 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990059

In using the simulation-to-implementation methodology
we have found that a work practice simulation has a range
of purposes over time:

† formalizing a particular aspect of practice to produce
metrics useful for improving how the work is done,

† modeling and simulating agents that automate aspects of
the work,

† simulating how a workflow tool would be used in prac-
tice (again with metrics) and deploying an agent-based
workflow tool on distributed platforms, and

† improving the Brahms language and engine for model-
ing and relating people and technology in work systems.

The vision behind 2nd GES research, that abstraction of
system components could make building future systems
easier, has certainly been central in our methodology. The
abstractions that have guided the development of OCAMS
combine concepts and methods from software engineering
and from our own multiagent systems: a layered architecture;
functional decomposition of services into agents; providing
a “personal agent” for interacting with the person using the
tool; distributed implementation capability; abstraction of
domain relations into a separate domain model, enabling,
for example, a table-driven process; general methods for
systems integration (using JAVA to write a “communication
agent” that mediates between an application-programming
interface and other Brahms agents); handshake communica-
tion protocols for tracking the status of subsystems; and cate-
gorizing agent messages (e.g., request, information, subscrip-
tion, proposal) in the Brahms Communication Library.

We conclude that the 2nd GES effort was a reasonable,
well-grounded engineering phase of research that aimed
to analyze expert systems, abstract methods, and poten-
tially make system building more efficient through tools
with libraries of PSMs. We believe that such libraries never
became widely used in software engineering for multiple
reasons:

1. An important challenge in developing a new workplace
tool is proper integration with a complex, distributed
work system involving people and other tools.

2. The most obvious automation opportunities can be han-
dled algorithmically, but people need to be responsible
for interpreting and approving variations to the routine
(e.g., handling an astronaut’s request to uplink a new
kind of file on a daily basis for 6 months). Such varia-
tions require value-based judgments involving diplo-
macy and negotiation with other stakeholders.

3. When components are “reused” they are usually large
programs (e.g., a planner) or hardware (e.g., camera) in-
tegrated into a larger workflow system, and such inte-
gration is specialized because it involves representa-
tional mapping between ontologies (e.g., integrating a
camera with email and a database; Clancey, Sierhuis,
Alena, et al., 2005).

More broadly, referring to situated cognition research, we
emphasize that the methods of work practice are interactive,
employing reasoning for and through action in the real world.
Interactive methods relate internal system models to actions
in the world in a manner that carries out the agent’s responsibil-
ities in a sustained way over time, including direct observation,
communicating with people and other tools, coping with failure
(retrying; reconciling models and reality), and detecting when
assistance is required. The twist is that a problem solver must
not just model the world to reason about it, but actually uses
such models to keep the world in order on an ongoing basis.

In conclusion, the analytic thrust of 2nd GES research was
appropriate and still makes sense; however, the concept of de-
veloping practical systems from “skeletal tools” containing
PSM primitives was incomplete. Automation systems are
not “autonomous.” Instead, like people in a workplace, appli-
cations that serve to automate entire roles are better conceived
as agents, which interact frequently with people and other
systems, to categorize, negotiate, and communicate their re-
quests and contributions in the work environment. This coop-
erative endeavor can be viewed as a higher order “modeling
problem” of configuration, diagnosis, planning, and so forth.

The problem solving paradigm that strongly influenced ex-
pert systems work focused on reasoning about a problem by
manipulating one or more models of systems or processes in
the world. In viewing problem solving more contextually, our
research interest shifts to the meta-level: problems arise be-
cause of discrepancies between models (beliefs, plans, proce-
dures, theories) and the world, that is, “tear” in the model
(Burton & Brown, 1979, p. 95). PSMs include ways of inter-
acting with people and other systems to reinterpret policies
and adapt procedures to new contexts (e.g., changed re-
sources, revised priorities defined by authorities). For exam-
ple, the OCA Officer may seek supervisory assistance for
dealing with a file transfer request that does not fit defined cat-
egories; negotiate with peers across disciplines or shifts about
who will take responsibility to resolve aberrant situations; and
discuss economic and international political perspectives by
which policies will be evaluated by other agencies.

These concepts (assistance or permission, responsibility,
and nontechnical perspectives) move work practice into the
realm characterized by Simon (1973) as “ill-structured prob-
lems.” Complex events can call into question the validity of
models and policies. Such discrepancies are handled by peo-
ple by creating new categories, giving new interpretive twists
to rules and procedures by blending otherwise conflicting
values, and other methods of deferring, reassigning, or even
defining away the problematic situation.22 Such adaptation

22 Here we are reminded of the Columbia disaster, in which a simulation
model was interpreted to argue that foam could not damage the Space Shuttle;
hence, photographs of possible damage (taken from Earth) would not be
necessary (Columbia Accident Investigation Board, 2003). This decision
was influenced by a confusing presentation of the model in PowerPoint
(Tufte, 2006), the organizational status of the presenters, and the possible de-
lays imposed on future missions by categorizing the event as “out of family”
(i.e., as being a discrepancy).

Problem solving methods in work systems design 367

https://doi.org/10.1017/S0890060409990059 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990059

can be difficult when different analytic perspectives (e.g., sci-
entific, ethical, economic, political world views) are at cross
purposes (Schön, 1987) or because of organizational affilia-
tion participation (hence knowledge) is discounted. Here, in
saying that cognition is situated we mean that spaceflight op-
erations expertise is inherently distributed, not all technical,
and dynamically constructed in an ongoing social process.
The reflective problem solver asks: are my models adequate?
Have I interpreted them appropriately? Do I need to work
harder to prove my proposed actions are valid? As software
engineers move into this realm, with programs becoming ac-
tors in the workplace, we are challenged to be aware of the
difference between a model-based mechanism and human
conceptualization (Clancey, 1997a, 1999; Wallace & Ross,
2006). One approach is to design workflow agents to facili-
tate human responsibility when automating routine tasks by
helping people to understand the limitations of the models
and to detect when they are wrong.

ACKNOWLEDGMENTS

OCAMS was developed in partnership with the OCA Officers in Mis-
sion Operations Directorate of NASA Johnson Space Center, particu-
larly Chris Buckley, Deborah Hood, Skip Moore, Fisher Reynolds,
Tyson Tucker, and Karen Wells. We are grateful for the vision and
support of Tim Hall and Brian Anderson at NASA Johnson Space
Center and Mike Shafto at NASA Ames. Mike Scott and Ron van
Hoof (Stinger Ghaffarian Technologies, NASA Ames) played key
roles in implementing Brahms and OCAMS. This work was partially
supported by funding from NASA’s Constellation Program. AI
EDAM reviewers provided many useful comments.

REFERENCES

Acquisti, A., Sierhuis, M., Clancey, W.J., & Bradshaw, J.M. (2002). Agent-
based modeling of collaboration and work practices onboard the Interna-
tional Space Station. Proc. 11th Computer-Generated Forces and Behav-
ior Representation Conf., pp. 181–188.

Anderson, R.H. (1977, June). The use of production systems in RITA
to construct personal computer “agents.” SIGART Newsletter 63, 23–28.

Anderson, R.H., & Gillogly, J.J. (1976). Rand Intelligent Terminal Agent
(RITA): Design Philosophy. RAND Report R-1809-ARPA. Washington,
DC: Rand Corporation.

Bonasso, P., Firby, J.R., Gat, E., Kortenkamp, D., Miller, D., & Slack, M.
(1997). Experiences with an architecture for intelligent, reactive
agents. Journal of Experimental Theory of Artificial Intelligence 9,
237–256.

Bond, A.H., & Gasser, L. (1988). Readings in Distributed Artificial Intelli-
gence. San Mateo, CA: Morgan Kaufmann.

Brooks, R.A. (1991). How to build complete creatures rather than isolated
cognitive simulators. In Architectures for Intelligence (VanLehn, K.,
Ed.), pp. 225–239. Hillsdale, NJ: Erlbaum.

Burton, R.R., & Brown, J.S. (1979). An investigation of computer coaching
for informal learning activities. International Journal of Man–Machine
Studies 11(1), 5–24.

Carley, K. (1990). Group stability: a socio-cognitive approach. In Advances
in Group Processes, Advances in Group Processes: Theory and Research
(Lawler, E.J., Markovsky, B., Ridgeway, C., & Walker, H.A., Eds.), Vol.
7, pp. 1–44. Greenwich, CT: JAI Press.

Chandrasekaran, B., & Johnson, T.R. (1993). Generic tasks and task struc-
tures: history, critique and new directions. In Second Generation Expert
Systems (David, J.M., Krivine, J.P., & Simmons, R., Eds.), pp. 239–280.
New York: Springer–Verlag.

Choo, T.H., & Skura, J.P. (2004). SciBox: a software library for rapid devel-
opment of science operation simulation, planning, and command tools.
Johns Hopkins APL Technical Digest 25(2), 154–162.

Clancey, W.J. (1984). Methodology for building an intelligent tutoring sys-
tem. In Method and Tactics in Cognitive Science (Kintsch, W., Miller,
J.R., & Polson, P.G., Eds.), pp. 51–83. Hillsdale, NJ: Erlbaum.

Clancey, W.J. (1985). Heuristic classification. Artificial Intelligence 27,
289–350.

Clancey, W.J. (1986). Qualitative student models. In Annual Review of Com-
puter Science, pp. 381–450. Palo Alto: Annual Reviews.

Clancey, W.J. (1989). Viewing knowledge bases as qualitative models.
IEEE Expert: Intelligent Systems and Their Applications 4(2), 9–15,
18–23.

Clancey, W.J. (1992). Model construction operators. Artificial Intelligence
53(1), 1–124.

Clancey, W.J. (1997a). Situated Cognition: On Human Knowledge and Com-
puter Representations. New York: Cambridge University Press.

Clancey, W.J. (1997b). The conceptual nature of knowledge, situations, and
activity. In Human and Machine Expertise in Context (Feltovich, P.,
Ford, K., & Hoffman, R., Eds.), pp. 247–291. Menlo Park, CA: AAAI
Press.

Clancey, W.J. (1999). Conceptual Coordination: How the Mind Orders Ex-
perience in Time. Hillsdale, NJ: Erlbaum.

Clancey, W.J. (2002). Simulating activities: relating motives, deliberation,
and attentive coordination. Cognitive Systems Research 3(3), 471–499.

Clancey, W.J. (2004). Roles for agent assistants in field science: personal pro-
jects and collaboration. IEEE Transactions on Systems, Man, and Cyber-
netics, Part C: Applications and Reviews 34(2), 125–137.

Clancey, W.J. (2005). Towards on-line services based on a holistic analysis of
human activities. In Towards the Learning GRID: Advances in Human
Learning Services (Ritrovato, P., Allison, C., Cerri, S.A., Dimitrakos,
T., Gaeta, M., & Salerno, S., Eds.), pp. 3–11. Frontiers in Artificial Intel-
ligence and Applications, Amsterdam: IOS Press.

Clancey, W.J. (2006). Observation of work practices in natural settings. In
Cambridge Handbook on Expertise and Expert Performance (Ericsson,
A., Charness, N., Feltovich, P., & Hoffman, R., Eds.), pp. 127–145.
New York: Cambridge University Press.

Clancey, W.J. (2008). Scientific antecedents of situated cognition. In Cam-
bridge Handbook of Situated Cognition (Robbins, P., & Aydede, M.,
Eds.), pp. 11–34. New York: Cambridge University Press.

Clancey, W.J., & Barbanson, M. (1991). TOPO: implications of the system–
model–operator metaphor for knowledge acquisition. IEEE Expert 6(5),
61–65.

Clancey, W.J., & Letsinger, R. (1981). NEOMYCIN: reconfiguring a
rule-based expert system for application to teaching. Proc. 7th IJCAI,
pp. 829–826.

Clancey, W.J., Sachs, P., Sierhuis, M., & van Hoof, R. (1998). Brahms: simu-
lating practice for work systems design. International Journal of Human–
Computer Studies 49, 831–865.

Clancey, W.J., Sierhuis, M., Alena, R., Berrios, D., Dowding, J., Graham,
J.S., Tyree, K.S., Hirsh, R.L., Garry, W.B., Semple, A., Buckingham
Shum, S.J., Shadbolt, N., & Rupert, S. (2005). Automating CapCom
using mobile agents and robotic assistants. American Institute of Aero-
nautics and Astronautics 1st Space Exploration Conf. NASA Report
TP 2007-214554. Accessed at http://ntrs.nasa.gov

Clancey, W.J., Sierhuis, M., Damer, B., & Brodsky, B. (2005). The cognitive
modeling of social behavior. In Cognitive Modeling and Multi-Agent In-
teraction (Sun, R., Ed.), pp. 151–184. New York: Cambridge University
Press.

Clancey, W.J., Sierhuis, M., Seah, C., Buckley, C., Reynolds, F., Hall, T., &
Scott, M. (2008). Multi-agent simulation to implementation: a practical
engineering methodology for designing space flight operations. In Engi-
neering Societies in the Agents’ World VIII. Lecture Notes in Artificial
Intelligence (Artikis, A., O’Hare, G., Stathis, K., & Vouros, G., Eds.),
Vol. 4995, pp. 108–123. Heidelberg: Springer.

Clancey, W.J., Torok, D.M., Sierhuis, M., Hoof, R.J.J.V., & Sachs, P. (2001).
Simulating work behavior. US Patent 6,216,098.

Cohen, P.R., Greenberg, M.L., Hart, D.M., & Howe, A.E. (1989). Trial by
fire: understanding the design requirements for agents in complex envi-
ronments. AI Magazine 10(3), 34–48.

Columbia Accident Investigation Board (2003). CAIB Report, Vol. 1. NASA.
Accessed at http://www.caib.us/news/report/volume1/default.html

David, J.M., Krivine, J.P., & Simmons, R., Eds. (1993). Second Generation
Expert Systems. New York: Springer–Verlag.

W.J. Clancey et al.368

https://doi.org/10.1017/S0890060409990059 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990059

Dourish, P., & Button, G. (1998). On “technomethodology”: foundational re-
lationships between ethnomethodology and system design. Human–
Computer Interaction 13, 395–432.

Feltovich, P.J., Bradshaw, J.M., Clancey, W.J., Johnson, M., & Bunch, L.
(2007). Progress appraisal as a challenging element of coordination in hu-
man and machine joint activity. Proc. ESAW 2007, pp. 124–141.

Frank, J., Morris, P.H., Green, J., & Hall, T. (2008). The challenge of evolv-
ing mission operations tools for manned spaceflight. Proc. 9th iSAIRAS
2008.

Gewin, V. (2008). The new networking nexus. Nature 451, 1024–1025.
Gilbert, N., & Doran, J. (1993). Simulating Societies: The Computer Simu-

lation of Social Phenomena. London: UCL Press.
Greenbaum, J., & Kyng, M., Eds. (1991). Design at Work: Cooperative De-

sign of Computer Systems. Hillsdale, NJ: Erlbaum.
Hayes-Roth, F., Waterman, D.A., & Lenat, D., Eds. (1983). Building Expert

Systems. Reading, MA: Addison–Wesley.
Hendler, J. (2009). The Semantic Web from the bottom up. In Switching

Codes: “Ontology, Induction, and Semantic Web” (Bartscherer, T., &
Coover, R., Eds.). Chicago: University of Chicago Press.

Hutchins, E. (1995). Cognition in the Wild. Cambridge: MIT Press.
Latour, B. (1991). Technology is society made durable. In A Sociology of

Monsters: Essays on Power, Technology, and Domination (Law, J.,
Ed.), pp. 103–131. New York: Routledge.

McCurdy, M., Pyrzak, G., Ratterman, C., & Vera, A. (2006). The design of
efficient ground software tools. Proc. 2nd IEEE Int. Conf. Space Mission
Challenges for Information Technology, p. 257.

McDermott, J. (1988). Preliminary steps toward a taxonomy of problem-
solving methods. In Automating Knowledge Acquisition for Expert Sys-
tems (Marcus, S., Ed.), pp. 225–256. Boston: Kluwer Academic.

NASA (1980). Machine Intelligence and Robotics: Report of the NASA Study
Group. Office of Aeronautics and Space Technology. Accessed at http://
www.ntis.gov/ and http://www.rr.cs.cmu.edu/NASA.pdf

Newell, A., & Simon, H.A. (1972). Human Problem Solving. Englewood
Cliffs, NJ: Prentice–Hall.

Nii, H.P. (1986a). Blackboard systems. AI Magazine 7(2), 38–53.
Nii, H.P. (1986b). Blackboard systems. AI Magazine 7(3), 82–106.
Robbins, P., & Aydede, M., Eds. (2008). The Cambridge Handbook of Sit-

uated Cognition. New York: Cambridge University Press.
Rutledge, G.W., Thomsen, G.E., Farr, B.R., Tovar, M.A., Polaschek, J.X.,

Beinlich, I.A., Sheiner, L.B., & Fagan, L.M. (1992). The Design and Im-
plementation of a Ventilator-Management Advisor. Stanford Knowledge
Systems Laboratory. Accessed at ftp://ksl.stanford.edu/pub/KSL_
Reports/./KSL-92-11.ps.gz

Schön, D.A. (1987). Educating the Reflective Practitioner: Toward a New
Design for Teaching and Learning in Professions. San Francisco, CA:
Jossey–Bass.

Schreiber, A.T., Wielinga, B.J., de Hoog, R., Akkermans, J.M., & Van de
Velde, W. (1994). CommonKADS: a comprehensive methodology for
KBS development. IEEE Expert 9(6), 28–37.

Seah, C., Sierhuis, M., & Clancey, W.J. (2005). Multi-agent modeling and
simulation approach for design and analysis of MER mission operations.
Proc. Int. Conf. Human–Computer Interface Advances for Modeling and
Simulation, pp. 73–78.

Searle, R. (1969). Speech Acts: An Essay in Philosophy of Language.
New York: Cambridge University Press.

Shalin, V.L. (2005). The roles of humans and computers in distributed
planning for dynamic domains. Cognition, Technology, and Work 7(3),
198–211.

Sierhuis, M. (2001). Modeling and simulating work practice. PhD Thesis,
University of Amsterdam.

Sierhuis, M., Clancey, W.J., Seah, C., Trimble, J., & Sims, M.H. (2003).
Modeling and simulation for mission operations work systems design.
Journal of Management Information Systems 19(4), 85–128.

Sierhuis, M., Clancey, W.J., & van Hoof, R. (2007). Brahms: a multiagent
modeling environment for simulating work practice in organizations.
International Journal for Simulation and Process Modeling 3(3),
134–152.

Sierhuis, M., Clancey, W.J., & van Hoof, R. (2009). Brahms: an agent-ori-
ented language for work practice simulation and multi-agent systems devel-
opment. In Multi-Agent Programming: Languages, Tools and Applica-
tions (Bordini, R.H., Dastani, M., Dix, J., & El Fallah Seghrouchni, A.,
Eds.). New York: Springer.

Simon, H.A. (1973). The structure of ill-structured problems. Artificial Intel-
ligence 4(3), 181–202.

Tufte, E. (2006). Beautiful Evidence. Cheshire, CT: Graphics Press.
Vicente, K.J. (1999). Cognitive Work Analysis: Toward Safe, Productive, and

Healthy Computer-Based Work. Mahwah, NJ: Erlbaum.
Wallace, B., & Ross, A. (2006). Beyond Human Error: Taxonomies and

Safety Science. Boca Raton, FL: CRC Press.
Wallace, B., Ross, A., Davies, J.B., & Anderson, T., Eds. (2007). The Mind,

the Body and the World: Psychology After Cognitivism. London: Imprint
Academic.

Wynn, E. (1991). Taking practice seriously. In Design at Work: Cooperative
Design of Computer Systems (Greenbaum, J., & Kyng, M., Eds.), pp.
45–64. Hillsdale, NJ: Erlbaum.

William J. Clancey works at the NASA Ames Research
Center and Florida Institute of Human and Machine Cogni-
tion. He is Chief Scientist for human-centered computing in
the Intelligent Systems Division at Ames. He received a
BA in mathematical sciences from Rice University (1974)
and a PhD in computer science from Stanford University
(1979). Dr. Clancey has extensive experience in medical,
educational, and financial software and was a founding mem-
ber of the Institute for Research on Learning. He is especially
interested in relating social science and neuropsychology to
descriptive (symbolic) models of cognition to understand
the nature of consciousness.

Maarten Sierhuis is a Senior Research Scientist and Lead of
the Autonomy and Decision Support Group at Carnegie Mel-
lon University Silicon Valley, which is located at NASA
Ames Research Center. This work was performed when he
was affiliated with RIACS/USRA, also at NASA Ames. He
received a PhD in social science informatics from the Univer-
sity of Amsterdam and holds an engineering degree in infor-
matics from the Polytechnic University in The Hague, The
Netherlands. Dr. Sierhuis is a Co-Principal Investigator for
the Brahms Project, working in the Work Systems Design
and Evaluation Group in the Collaborative and Assistant Sys-
tems area within the Intelligent Sciences Division at NASA
Ames Research Center. He previously worked at NYNEX
Science & Technology.

Chin Seah is a Computer Scientist at Stinger Ghaffarian
Technologies (SGT), assigned to the Brahms Project at
NASA Ames Research Center. He has a BS in computer en-
gineering from Santa Clara University and an MS in compu-
ter information science from the University of Pennsylvania.
Mr. Seah has applied the Brahms work system design and
modeling approach to the Mars Exploration Rover and ISS
mission operations. Before joining the Brahms team, he
worked as a Business Process Management Consultant at An-
dersen Consulting and as a Knowledge Engineer at Mindbox,
Inc., implementing rule-based and case-based expert systems.

APPENDIX A

A.1. Brahms: Modeling and facilitating human activities

In late 1992 NYNEX and the Institute for Research on Learning
formed a partnership, with a primary objective of developing a

Problem solving methods in work systems design 369

https://doi.org/10.1017/S0890060409990059 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990059

work systems design simulation tool that would facilitate work
practice analysis, ethnography, and participatory design (Clancey
et al., 1998). In developing the tool, which became known as
Brahms, it was apparent from early on that the modeling language
must enable representing interactions between people doing activ-
ities, objects having structure and behaviors, and geographic areas
in which people and objects were located and moved. Although
the AI members of the group did not initially understand how the so-
cial scientists’ concept of “activities” related to “tasks” of expert sys-
tems (Clancey, 1997b), it was possible to develop a modeling lan-
guage and simulation architecture by viewing the problem as
simulating chronological behaviors of interacting agents in a simu-
lated world.

In modeling work practice the analyst’s perspective view of the
domain broadens: a work practice simulation models the structure
and behavior of human organizations. Often this includes modeling
the structure and behavior of objects (e.g., an electronic circuit) that
people reason about. Objects simulated in Brahms include tools
(e.g., a camera) and documents. Brahms’ language provides special
constructs for modeling communications, areas, and agent move-
ments, with which one can model building facilities, object layouts
in space, vehicles, communication devices, written procedures,
and so forth. Because a simulation of work must show how
assigned tasks are performed, a work practice simulation also mod-
els how people solve problems. Importantly, it also enables model-
ing how problems are discovered, defined, and handled (or not).

Modeling and simulating work practice requires representing de-
tails of interpersonal coordination in the workplace that business
process models usually omit (e.g., using fax machines to pass jobs
from one office to another). A work practice model goes beyond in-
dividual reasoning to simulate interactions among groups (e.g., of-
fice workers). The essence is always to understand and model how
work actually gets done, not just what is supposed to happen (ideal-
ized procedures).

Another key idea is that human activities are conceptually occur-
ring simultaneously on different organizational and temporal levels,
in a form of conceptual subsumption and blending: living and work-
ing in California, working for NASA while affiliated with the Insti-
tute for Human and Machine Cognition, being a coprincipal inves-
tigator of the OCAMS Project, writing a paper, working at home.
Personal activities (e.g., being a parent) are dynamically blended
with work activities (e.g., how a phone call from a spouse is handled
may depend on the ongoing work activity or may override work
concerns).

Three existing computational ideas were merged in designing the
Brahms language and simulation architecture circa 1992:

1. Neomycin’s “metacognitive” architecture was adapted for its
flexibility for organizing and controlling high-level processes
(Clancey, 1984). Neomycin’s representation of strategic
methods called “tasks”23 was adapted for simulating Activities
in Brahms; Metarules became Workframes; “end-conditions”
became Detectables.

2. Activities are activated and “running” in a subsumption archi-
tecture (Brooks, 1991) instead of being invoked like functions
(a major change from how Neomycin’s “tasks” were inter-
preted by its engine).

3. Following the “Distributed AI” approach (Bond & Gasser,
1988), agents and objects interact in a modeled environment:
blending ideas from Cohen et al.’s (1989) simulation of fire-
fighting, SimLife’s simulation of animals (a game by Maxis),
and the then nascent work on “simulating societies” (Gilbert &
Doran, 1993).24

In summary, the Brahms language constitutes a particular type of
multiagent system, based on modeling human behavior over time in a
geographic space using physical tools while communicating with
other people. The following summarizes how work practices are
simulated in Brahms, referring to the key language constructs:

† Groups of Agents with individual Beliefs interact while doing
personal and inherited group Activities.

† Behaviors in Activities represented as conditional actions
(Workframes), which are sequences or alternative ways of
doing something; Activities can be aborted, interrupted, and
resumed.

† Reasoning (modeled by the application of inference rules
called Thoughtframes) is contextual; that is, Thoughtframes
are associated with Activities.

† Perceiving is an experience while acting (Detectables are asso-
ciated with Workframes).

† Activities occur in parallel, in a subsumption hierarchy, model-
ing human behavior as a conceptual, contextual nesting of
“what the agent is doing now.”

† World Facts (the modeler’s God’s eye view of the environ-
ment) are distinguished from agent Beliefs about the world
(e.g., the simulation may represent that an object is in a location
with a state, but an agent may have arbitrary beliefs about the
object).

† Conceptual Objects represent mental constructs about Agents,
Groups, and Activities (e.g., jobs, phases in an activity: prep-
aration for, during, and after journey of the Space Shuttle to
the ISS); objects may be an instance of a class.

† Areas represent geographic places (e.g., a floor of a habitat), in
which Agents (e.g., people, robots) and Objects (e.g., furniture,
computers, global positioning system devices) are located; an
area may be an instance of an area class, Part Of another area
or connected by a Path.

Brahms is a natural extension of the knowledge-based systems
concept, applied to modeling people at work. In our original inspira-
tion, each agent in Brahms is like one knowledge-based system, but
not all agents are people: Some devices with sensors and complex
behaviors are modeled as agents (e.g., robots); simpler objects (or
systems modeled as simple objects) can also have behaviors (e.g.,
an e-mail program).

In 1998, Brahms development shifted from IRL/NYNEX to NASA
Ames Research Center. Sierhuis (2001) simulated aspects of Apollo
lunar operations, followed by simulations of mission operations on

23 In Clancey’s (1992) reformulation, Neomycin’s “tasks” were renamed
“methods.”

24 Brahms was first presented at the Second International Conference on
Multiagent Systems in 1996. The ideas of “multiagent systems” and
“agent-based modeling” were in the air when the architecture was invented
in early 1993. For example, Carley (1990) presented a “sociocognitive model
of the interface between self and society,” combining social and cognitive
model constructs. However, her formalism did not have the construct of an
“agent” with simulated behaviors in a simulated environment. Individuals
only interacted in an abstract sense, which caused “exchange of information.”

W.J. Clancey et al.370

https://doi.org/10.1017/S0890060409990059 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990059

the ISS (Acquisti et al., 2002), a Mars analog habitat (Clancey, Sier-
huis, Damer, et al., 2005), and planning operations for controlling
the Mars Exploration Rover (Seah et al., 2005). The notion of geogra-
phy shifted from Manhattan to the moon and Mars. Modeled objects
now included robots. Our justification for simulating work shifted
from simply providing insights to a work systems design team to show-
ing lack of connectivity in operations designs and how breakdowns in
flows (e.g., missing steps in procedures) were detected and handled in
practice. Then in developing OCAMS we constrained the simulation
to generating metrics that provided information for answering practical
work system design questions.

We began the simulation-to-implementation approach in the Mo-
bile Agents Project (2001–2006), where we used the Brahms archi-
tecture as a run-time system to develop a series of distributed work-
flow tools (Clancey, Sierhuis, Damer, et al., 2005) leading to
OCAMS. In the run-time configuration, one or more agents are lo-
cated on a given computer platform and communicate in real time
with each other and to get data from and control external devices
and software systems. Thus, run-time agents are interacting pro-
cesses that interpret data, communicate, and take action in the world
and may cause their platform to move (e.g., a robot) or be moved
about in the world (e.g., a computer in a backpack). Generally,
each person using Mobile Agents has a “personal agent” with which
he or she communicates by voice and/or a GUI. The “world facts” of
the Brahms simulation are replaced by the world itself, which must
be inspected, instrumented, and manipulated by the agents to get
information.

In the Brahms run-time configuration, an “agent” is a subsystem
within a larger environment of agents. We agree with Schreiber et al.

(1994, p. 29), “A KBS [knowledge-based system] is only one agent
among many—human and nonhuman—and carries out only a frac-
tion of the organization’s tasks,” but we would add that a workflow
tool might consist of many agents, each of which includes a KBS.
Correspondingly, a workflow tool constructed from Brahms does
not consist of a set of modules such as “Inference,” “Communica-
tion,” and “Domain Knowledge Base,” the common components
of an expert system, but has a higher level physical and functional
architecture (e.g., the rover’s agents include a “navigation agent,”
“panoramic camera agent,” and “a speech agent”).

The Brahms Virtual Machine (the “engine”; Sierhuis et al., 2007)
manages the simulation of each agent’s behavior, physical state, and
beliefs. The Brahms engine updates the state of the simulation ac-
cording to each agent’s inferences, communications with other
agents, movements, perceptions, changes to the state of objects in
the world, and so forth. In particular, depending on an agent’s roles
and location in the real world, including real-world systems to which
it is coupled (e.g., a camera), each agent attends to different facts
in the world, forms its own belief models, and carries out its own
activities.

Diagrams of a Brahms multiagent system (see Fig. 1) show how
the agents are distributed on platforms and their functional interac-
tions; we also represent resulting behaviors in timelines (the Agent-
Viewer, Sierhuis et al., 2007). In distributed, real-time systems, each
computer platform with Brahms agents has a Brahms Virtual Ma-
chine, by which the agents on different platforms interact by Ask
and Tell communications. Agents also interact indirectly through
computer applications, physical sensors, and robotic effectors. See
the references for details.

Problem solving methods in work systems design 371

https://doi.org/10.1017/S0890060409990059 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990059

