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We derive a two-dimensional depth-averaged model for coastal waves with both
dispersive and dissipative effects. A tensor quantity called enstrophy models the
subdepth large-scale turbulence, including its anisotropic character, and is a source
of vorticity of the average flow. The small-scale turbulence is modelled through a
turbulent-viscosity hypothesis. This fully nonlinear model has equivalent dispersive
properties to the Green—Naghdi equations and is treated, both for the optimization
of these properties and for the numerical resolution, with the same techniques which
are used for the Green—Naghdi system. The model equations are solved with a
discontinuous Galerkin discretization based on a decoupling between the hyperbolic
and non-hydrostatic parts of the system. The predictions of the model are compared
to experimental data in a wide range of physical conditions. Simulations were run
in one-dimensional and two-dimensional cases, including run-up and run-down on
beaches, non-trivial topographies, wave trains over a bar or propagation around an
island or a reef. A very good agreement is reached in every cases, validating the
predictive empirical laws for the parameters of the model. These comparisons confirm
the efficiency of the present strategy, highlighting the enstrophy as a robust and
reliable tool to describe wave breaking even in a two-dimensional context. Compared
with existing depth-averaged models, this approach is numerically robust and adds
more physical effects without significant increase in numerical complexity.
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1. Introduction

The need for accurate models in coastal engineering has motivated many works
in the past decades. The difficulties met by the researchers lie in the fact that the
capability of the model to capture the main physical phenomena must be accompanied
by an easy and reliable numerical resolution. A successful approach must combine an
accurate and physically relevant model with a robust and efficient numerical scheme,
both being mutually dependent. The main physical effects to model are the dispersive
effects and the dissipative effects. The dispersion brings the most acute difficulties
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in the numerical resolution because it typically introduces third-order derivatives into
the equations. Moreover the classical dispersive equations like the Green—Naghdi
equations (Green & Naghdi 1976) lack dissipative terms whereas the even more
classical Saint-Venant equations, also known as the nonlinear shallow-water equations
(Barré de Saint Venant 1871), are non-dispersive. The dispersive effects are dominant
before breaking, in the so-called shoaling zone of the coastal waves propagation, and
the dissipation dominates after breaking in what is called the surf zone. One of the
challenges in coastal wave modelling is to derive a model capable of describing both
the dispersion and the dissipation and of predicting accurately the breaking point.
A discussion of the interdependence between physical phenomena, model equations
and numerical schemes within the scope of the Saint-Venant equations can be found
in Brocchini & Dodd (2008). The zone of the beach which is alternately wet and dry
is the swash zone. The phenomena of run-up and run-down take place in this zone.
They are also challenging for the numerical resolution.

The first dispersive equations used for coastal waves were the weakly nonlinear
equations derived by Boussinesq (1872) for the propagation of a solitary wave in
water of constant depth, extended by Peregrine (1967) for water of variable depth
using the depth-averaged velocity. However the weak nonlinearity assumption reduces
the validity of these equations. The dispersive properties were improved by different
techniques, notably by Madsen, Murray & Sgrensen (1991) and also by Nwogu
(1993) who considered the velocity at an arbitrary distance from the still water
level instead of the depth-averaged velocity. Models which were able to dispense
with the weak nonlinearity hypothesis were developed by Green & Naghdi (1976)
and were adopted for coastal waves propagation under the name of fully nonlinear
Boussinesq models in spite of the fact that the scope of these models exceeds by
far the original Boussinesq equations. The dispersive properties of these equations,
while better than those of weakly dispersive models, are not completely satisfactory
because of their weakly dispersive character. They were in turn improved by various
means such as considering the velocity at an arbitrary depth (Wei er al. 1995) or by
using asymptotically equivalent equations (Bonneton et al. 2011). New Green—Naghdi
systems, asymptotically equivalent to the standard Green—Naghdi equations, but having
a mathematical structure more suited to the numerical resolution, were proposed by
Lannes & Marche (2015) and, in the one-dimensional case, by do Carmo et al.
(2018). Rotational effects were included by Zhang et al. (2013). Reviews on this
subject can be found in Brocchini (2013) and Kirby (2016).

Different strategies were implemented to add dissipative effects to the dispersive
models in order to describe properly the breaking waves. We focus here mostly on
two-dimensional models and we refer to Part 1 of this work (Kazakova & Richard
2019) for one-dimensional models of coastal waves and to Brocchini (2013) for a
complete overview. In the roller model of Madsen, Sgrensen & Schiffer (1997) the
surface roller of breaking waves is considered as a volume of water being carried
by the wave with the wave celerity. The position of the breaking point is found by
a breaking criterion involving the local slope of the surface elevation. This approach
requires also the geometrical determination of the roller, the determination of the roller
celerity and a complex calibration of various parameters.

In another approach the energy dissipation in the breaking waves is modelled by
introducing an eddy viscosity in the equations. In the model of Chen et al. (2000) two
empirical parameters are used to determine the onset and cessation of breaking and
the implementation of the breaking model in two horizontal dimensions requires the
determination of the wave direction in order to estimate the age of a breaking event.
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A Smagorinsky-type subgrid model (Smagorinsky 1963) is used to account for the
effect of the resultant eddy viscosity on the underlying flow (Chen et al. 1999). In
some other eddy-viscosity models the viscosity is calculated from a turbulent kinetic
energy for which a semi-empirical transport equation with source term is solved
(Nwogu 1996; Zhang et al. 2014).

Removing the dispersive terms in the Green—Naghdi equation leads to the
Saint-Venant equations which produce discontinuities that dissipate energy. This
is at the basis of the hybrid or switching method (Bonneton et al. 2011; Tonelli &
Petti 2011; Tissier et al. 2012) which switches off the dispersive terms when some
breaking criterion is satisfied and which switches on these terms when a criterion for
the end of breaking is activated.

For all these approaches, a breaking criterion is needed and many criteria were
used such as a relative trough Froude number (Okamoto & Basco 2006), a gradient
of momentum (Roeber & Cheung 2012), a combination of a local evaluation of the
mechanical energy dissipation, a maximal front slope and a critical Froude number
(Tissier et al. 2012) or a combination of the surface variation and the local slope angle
(Filippini, Kazolea & Ricchiuto 2016). The numerical shock detector of Krivodonova
et al. (2004) was used as a breaking criterion by Duran & Marche (2015) for the
switching strategy and a numerical resolution by a discontinuous Galerkin method.

The switching method was numerically implemented by various schemes (hybrid
finite volume/finite difference scheme in Tissier et al. (2012), finite volume and finite
element in Filippini et al. (2016), discontinuous Galerkin finite element scheme in
Duran & Marche (2017) and in Sharifian, Kesserwani & Hassanzadeh (2018)). The
major drawbacks of the switching approach are the mesh grid sensitivity and the non-
physical oscillatory effects due to the switching of the dispersive terms (see Filippini
et al. 2016; Kazolea & Ricchiuto 2018). These numerical oscillations may increase
with the mesh refinement and can be damped by a smooth transition to the hyperbolic
regime. Further the numerical wave breaking detection involves the calibration of a set
of empirical parameters.

Alternative approaches include the Saint-Venant equations with non-hydrostatic
pressure corrections, which avoid the high-order derivatives in the Boussinesq
or Green—Naghdi equations with a calculation of the vertical distribution of the
non-hydrostatic pressure (see for example Stelling & Zijlema 2003 or Lu et al. 2015),
or the semi-integrated model of Antuono & Brocchini (2013). A more complete
overview on these approaches was made by Kirby (2016).

Although the turbulence is maybe the most striking phenomenon in a breaking wave,
it is rarely taken into account directly in the models. In the eddy-viscosity models
the turbulence is modelled by a turbulent-viscosity hypothesis but it is not resolved.
As highlighted by Nadaoka & Yagi (1998), the turbulence in shallow-water flows
has a double-structural and strongly non-isotropic character. The double structure lies
in the coexistence of a three-dimensional (3-D) turbulence with length scales less
than the water depth and horizontal two-dimensional (2-D) eddies (with a vertical
vorticity) with much larger length scales. Moreover the shallow-water turbulence may
show an inverse cascade of energy or backscatter i.e. an energy transfer from the 3-D
turbulence toward the 2-D eddies (Nadaoka & Yagi 1998; Hinterberger, Frohlich &
Rodi 2007). With an eddy-viscosity hypothesis, even if calculated with a turbulent
kinetic energy and an additional transport equation, not only the anisotropic character
of the turbulence cannot be described but also the backscatter cannot be captured by
the model.

In the Part 1 of this work (Kazakova & Richard 2019) a filtering approach
was implemented with a cutoff frequency in the inertial subrange. It follows that


https://doi.org/10.1017/jfm.2019.125

https://doi.org/10.1017/jfm.2019.125 Published online by Cambridge University Press

A new model of shoaling and breaking waves. Part 2 149

only the residual small-scale turbulence is modelled through a turbulent-viscosity
hypothesis while the 3-D subdepth turbulence is resolved. After depth averaging the
filtered equations over the depth, this subdepth turbulence was taken into account
in the model by a new quantity called enstrophy. The isotropic character of the
small-scale turbulence, the equality of the dissipation of the mean residual kinetic
energy and its rate of production (Lilly 1967) and the large validity of the energy
cascade hypothesis in the inertial subrange give a much greater validity to the
turbulent-viscosity hypothesis for the residual turbulence with a cutoff in the inertial
subrange. The existence of an explicit quantity for the subdepth large-scale turbulence
is an advantage over previous approaches to model the breaking phenomenon and
to describe the breaking waves. In particular, whereas finding and implementing
a suitable breaking criterion is a laborious task for the models lacking a quantity
describing explicitly the turbulence, the approach of Kazakova & Richard (2019)
leads to an easier breaking criterion based on the value of a variable of the model
and, in the favourable cases, does not need a breaking criterion at all.

In the present paper the one-dimensional model of Kazakova & Richard (2019)
is extended to a two-dimensional model describing three-dimensional flows. The
conservative part of the model is similar to the model derived by Teshukov (2007)
in the non-dispersive case and to the model derived by Castro & Lannes (2014) in
the dispersive case, in both cases without any dissipative effects. The dissipation is
added in the present paper through eddy-viscosity terms (which produce also diffusive
effects) and a turbulent dissipation term. Phenomena such as run-up and run-down
are studied as well. In a 2-D context the anisotropic character of turbulence is an
important feature to model. The optimization techniques of the dispersive properties
are extended to the new model in order to simulate accurately the wave propagation
in the shoaling zone. An important goal is to be able to add more physical effects to
the model, namely turbulence effects, without increasing significantly the complexity
of the numerical resolution. Accordingly a suitable numerical scheme is extended to
this model. Further the empirical laws determining the values of the model parameters
are validated in a wide range of physical situations in order to give a real predictive
character to the model.

The two-dimensional equations of the model are derived and discussed in §2
and the empirical laws chosen to model the eddy viscosity and the dissipation are
presented in § 3. The numerical implementation is explained in §4 with a formulation
of the equations more suited to the numerical resolution and improving the dispersive
properties. A discussion on the breaking criterion is given in §5. The numerical
results on several test cases with the comparison with experimental results of the
literature are presented in § 6.

2. Two-dimensional depth-averaged filtered equations
2.1. Three-dimensional filtered equations

The Navier-Stokes equations for an incompressible fluid of density p and kinematic
viscosity v are filtered in the same manner as for the large-eddy simulation approach
with a cutoff frequency in the inertial subrange. The details of this filtering approach
are given in Part 1 of this work (Kazakova & Richard 2019). The velocity field
v is decomposed as v = v + v" where v is the filtered velocity field and v" is
the residual (or subgrid) velocity field. The residual stress tensor is modelled by
a turbulent-viscosity hypothesis and the residual kinetic energy is absorbed into a
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modified pressure p (see for example Pope (2000) for more explanations on this
approach). The filtered continuity equation is

divv=0 (2.1)
and the filtered momentum equation can be written
av .o 1 . — _
T +diviv®v) =g — —grad p + div(2vyD) + vAUv, (2.2)
o
where g is the acceleration due to gravity, vy is a turbulent viscosity and D is the
filtered strain rate tensor

D= i[grad v + (grad v)"]. (2.3)

The kinetic energy of the filtered velocity field e, =v - v/2 satisfies the equation

dey . _pv I _ .
§—|—le eV +— —2w+v)v-D+e,v| =—¢& — P, 2.4)
0
where e, is defined by g = —grade,, & =2vD: D is the viscous dissipation in the

filtered motions (the colon denotes the double dot product) and P" = 2v;D : D is
the energy transfer from the filtered motions towards the residual motions. At high
Reynolds numbers, the term &y is negligible. Denoting by e the dissipation of the
turbulent kinetic energy, a result due to Lilly (1967) allows us to write the equality of
the dissipation of the mean residual kinetic energy and its rate of production (see also
Pope 2000; Higgins, Parlange & Meneveau 2004) and therefore (P") >~ ¢ (the brackets
denote Reynolds averaging).

The problem is a three-dimensional flow over a variable bottom. The components
of the filtered velocity field v are u# and v in the horizontal directions Ox and Oy
respectively and w in the vertical direction Oz. It is convenient to define the two-
dimensional filtered velocity field in the horizontal plane by # = [u, v]T. The elevation
of the bottom and of the free surface with respect to a horizontal datum are denoted
by b(x,y) and Z(x,y, t) respectively. The water depth is h(x, y, 1) =Z(x, y, 1) — b(x, y).
The still-water depth is hy(x, y) and the water elevation is n(x, y, t) = h(x, y, t) —
ho(x, y). These notations are depicted in figure 1. It is important to note that the
‘free surface’ referred above is a smooth mean filtered free surface. The boundary
conditions for the filtered flow at this mean surface derived by Hasselmann (1971)
for non-splashing regimes and by Brocchini & Peregrine (2001) for splashing regimes
introduce new turbulent stresses at this smooth surface. Although they can have an
important role for non-hydrostatic models based on Reynolds-averaged Navier—Stokes
equations (Derakhti et al. 2016), they are usually neglected in depth-averaged models.
We refer to the Part 1 of this work (Kazakova & Richard 2019) for a more complete
discussion.

In the following, the operators gradient and divergence are related to a two-
dimensional space (Oxy) unless noted otherwise. The conventions used for tensor
calculus are given in appendix A.

The no-penetration boundary condition at the bottom and the kinematic boundary
condition at the free surface can be written respectively

w(b) =u(b) - grad b (2.5)
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b(x.y)
o ; x
FIGURE 1. Notations used in the text.
and
Z
w(Z)=—+u(Z)-grad Z. (2.6)

at

Additionally the dynamic boundary condition at the free surface is (o - n)(Z) =0
where ¢ is the Cauchy stress tensor including the turbulent-viscosity effect and where
n is the unit normal vector at the free surface. In order to model the shear stress
on the bottom wall, the dynamic boundary condition at the bottom can be written
(o0 - n')(b) = —p(b)n’ — f where n’ is the unit normal vector at the bottom, f is a
friction force to be modelled and p includes all non-viscous terms i.e. the hydrostatic
part of the pressure and all terms due to the dispersive effects and to the variable
bottom. The friction force models the shear stress on the bottom and is classically
written as a Chézy force or a Manning—Strickler force. This friction term is kept in
the derivation of the model but it proved to be useless in the considered applications
presented in §6 and was consequently neglected. This can be explained by the fact
that, in the case of breaking waves, the dissipation effects are mainly due to the
breaker-generated turbulence rather than to the effects in the bottom boundary layer.
The shear stress on the bottom was similarly neglected by Veeramony & Svendsen
(2000).

2.2. Scaling

According to the shallow-water hypothesis, which is here assumed to be valid, there is
a small parameter u = hj/L <1 where hj is a reference value of the still-water depth
and where L is a characteristic length scale in the horizontal plane. A classical scaling
is used to write the equations in dimensionless form (see Antuono & Brocchini 2013).
The dimensionless quantities are denoted by a tilde symbol and are defined by

P R A A i)
_L’ y_L, Z_h?;’ _l’l’ h37
; h - p - u - v 57
:7*’ p:i’ u= = V= = .
hg pghs ghg ghg @7
- w ~ u ~ b ~ Z
w= y u—= = b=7, Z=7
1w/ ghy ghs hq hg
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The viscous stress tensor is defined by T =2pvD = 7;¢; ® ¢; where the vectors e; are
the unit vectors (with Einstein notation and the indexes 1, 2 and 3 for x, y and z
respectively). It is scaled as

Lt Lz,

~ Lz,
Txx:77 T y — Y ) :7’
pv/ghy T puy/ehy T pvy/ghy

(2.8)
. Lz, - T [hy . T, [hg
Ty=—F—=, Tg=—4/— L= —.
Y pv+/ghg vl g vl g

It is usual for the modelling of coastal waves to suppose that the Reynolds number
defined by Re ="h \/ng /v is high enough so that the viscous terms are negligible (see
for example Antuono & Brocchini 2013). Within the scope of an asymptotic method
this hypothesis can be quantified by writing Re = O(u~*). With the hypothesis of a
weakly turbulent flow (see below), this condition reduces to Re = O(u~>) (Kazakova
& Richard 2019) and this will be assumed in the following.

The ratio v/ (h \/gTz’g) is typically very small, of the order of 1072 (Cox, Kobayashi
& Okayasu 1995; Svendsen et al. 2000, see also the discussion in Svendsen 1987
from various experimental measures). The same scaling as in Antuono & Brocchini
(2013) and in Zhang et al. (2014) is used for the eddy viscosity, i.e.

- vr

Vp= ———.
TN

The scaling of the deviatoric part of the residual stress tensor A" =2pv;D=Ale; ®e¢;
is thus

(2.9)

~r Ar - ~r A\r;y ~T7 Ar
Axx — XX , A ! — J , — iz ,
w*pghs Y wrpghs = wroghy
e r a (2.10)
~Fr — Xy ~r — L ~r — 7}2‘
Y utpghs o npghs Y upghs
It follows that the dimensionless continuity equation writes
. 0w
divi+ —=0 (2.11)
0z

and that the dimensionless momentum equation in the horizontal plane can be written

9 9
" eradp = pldiva+ =2 2.12)
0z 0z

.
8—;’ +divi ®i) +

. . . . ~Tr ~r . .
In this expression, the two-dimensional vector a3 = A _e, —I—Ayzey is introduced as well
as the two-dimensional tensor a =2v;s where

s=i[gradi + (grad)"]. (2.13)
We have
it 5
as = vra—z + O(u”). (2.14)
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The dimensionless momentum equation in the vertical direction Oz is

(2.15)

ow  dmww  9vw 9w ap A A A
2 27 xz 272 272z
= < = = =—1-— - .
“(at+ax+ay+az> R H
The no-penetration boundary condition writes w(b) =u(b) - gradl; while the kinematic
boundary condition is

dh -
w(Z) = 5 +u(Z)-gradZ. (2.16)
The dynamic boundary condition at the free surface becomes in dimensionless form
a3;(2) + p(Z)grad Z — *a(Z) - grad Z =0, (.17
p(Z) + 1*a3(Z) - grad Z — 1*A(Z) =0. (2.18)

All capillary effects are neglected. The dynamic boundary conditions on the bottom
write

as(b) + p(b)grad b — p2a(b) - grad b = p(b)grad b — 1°f, (2.19)
B(b) + 1as(b) - grad b — (A (b) = p(b). (2.20)

The friction force on the bottom is supposed to be of O(u?). In these expressions, p
and f denote dimensionless quantities.

2.3. Averaged mass and momentum equations

The equations (2.11), (2.12) and (2.15) are averaged over the depth taking into account
the boundary conditions. The averaged quantity corresponding to any quantity X is

defined as
1 Z(x,1)

(X)=- / Xdz. (2.21)
h b(x)

The two-dimensional average velocity vector is denoted by U = (u)) and its
components in the Ox and Oy directions are denoted by U and V respectively.
The filtered horizontal velocity vector is decomposed as the sum of its averaged
value and of a deviation @’ representing the large-scale turbulence and the shearing
effects i.e.

ux,y, z,)=Ux, y, ) +u'(x,y,z,0). (2.22)

In the same way as in Teshukov (2007), the flow is supposed to be weakly turbulent
(see Kazakova & Richard 2019). This means that #’= O(x) and that in dimensionless
form & = U + pi’. The same hypothesis was used by Castro & Lannes (2014).

This assumption is equivalent to the underlying hypotheses in other models. In eddy-
viscosity models for instance, the turbulent viscosity is of O(u) in accordance with
experimental results as explained above. Since the eddy viscosity can be written vy =
¢ L,/k, where ¢ is a dimensionless constant of O(1) and ¢,, a mixing length of O(h),
the turbulent kinetic energy is of O(u?). This is exactly the same order of magnitude
as the turbulent energy that is obtained with the weak turbulence assumption. In the
switching models or in the nonlinear shallow-water models (Saint-Venant equations)
the turbulence is not modelled at all (apart from drag forces which model effects at
the bottom boundary layer) which does not prevent these models from having been
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successfully applied to breaking waves. In this case the turbulent dissipation is handled
by the discontinuities produced by these hyperbolic equations and this implies that the
front parts of breaking waves cannot be correctly described since they reduce to shock
waves. The same problem is found with turbulent hydraulic jumps which are treated
as discontinuities in the Saint-Venant system. This problem was improved within the
scope of a new hyperbolic system based on the weak turbulence (or weak shear)
assumption by Richard & Gavrilyuk (2013) who were able to model correctly strong
hydraulic jumps with an upstream Froude number as high as 16 and consequently
with a very strong turbulence. It follows that, in spite of its name, the assumption
of weakly turbulent flows does not prevent the application of the model to breaking
waves in the surf zone and is an improvement on the switching models which are
commonly used for these waves.

In the following the tilde symbols for dimensionless quantities are dropped to
lighten the notations. After averaging over the depth, the mass equation becomes

oh
e + div(hU) =0. (2.23)

With the kinematic boundary condition at the free surface, the averaging over the
depth of the three first terms of the momentum equation (2.12) yields

zry 9 dhU z
/ P rdivaow) + 22| dr= 22 4 div / u®udz. (2.24)
b ot 0z ot b

The approach of Teshukov (2007) is followed here for the treatment of the integral
of u @u. The enstrophy tensor is defined as

1 Z
=13 u' @u'dz. (2.25)
b

Since, by definition, (u') =0, we can write (u®@u) =U ® U + u*h*¢. This gives

“low dwu ohU )3
— +diveu)+ — | dz=—+divihkUQ U + u"h’¢). (2.26)
b ot 82 at

The equation (2.15) is needed to calculate the pressure term. First the material
derivative of h is defined as

. dh
h= o + U - grad h. (2.27)

Second an expression of the vertical velocity w can be obtained from the continuity
equation. We get

h
w=(z— b)% +U-gradb+ O(u). (2.28)
Then the left-hand part of (2.15) can be written

ow  duw  dvw  Iw? h D
oW o W W byt 2 (U - grad b) + O(). 2.29
T T 3y o (@=b), + 5 (U-gradd) + O(u) (2.29)
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where the material derivative has the same meaning as the dot in (2.27) i.e. DX/Dt=
0X/dt+ U - grad X for any scalar quantity X. We denote by & the material derivative
of h along the average flow i.e.

h = 8h+U8i1 (2.30)
oot dx '
aUN\? 92U 92U
=h|—=) —h— —hU—. (2.31)
0x 0x0t ox?2

The term in / is a source of difficulties for the numerical resolution and a special
treatment is needed to handle it properly (see §4).

This result is used to calculate the part of the pressure term that does not depend
on the eddy viscosity. Using the boundary conditions, we find

/Z d h2+ 2h2ﬁ+ 2h2D(U db) + u*F (2.32)
=—= —_ ——(U - gra , .
A plr=—t+uw—+uw—U-8 wF,

where F is the integral of viscous terms

A 8 Z VA 8 ¥4 A
F1:/ dz/ A;Zdz-i-/ dz/ A;7dz+/ A dz. (2.33)
b ox J, ™ b y Jz = b

As in Part 1 of this work (Kazakova & Richard 2019), the turbulent viscosity is
assumed to be uniform over the depth. A depth-uniform eddy viscosity was also
assumed by Zhang et al. (2014). This hypothesis is sufficient for the applications to
coastal wave modelling. A depth-variable eddy viscosity would increase considerably
the complexity of the model for little benefit. It follows from this assumption and
from the hypothesis of a weakly turbulent flow that

Z P z zZ 9 Z
/ dz— / A, dz=0(u) and / dz— / A dz=0(u). (2.34a,b)
b ox J, ™ b ay J,

These two integrals can therefore be neglected. In the same way, we get az = O(w).
It follows that the dynamic boundary conditions on the bottom yield

as(b) + WA (b)grad b — i a(b) - grad b= —°f . (2.35)

Using again the boundary conditions, this leads to the following expression for the
averaged momentum balance equation

U . - oo Rh
W+d1v(hU®U+uh<p)+grad 54—#?4—/117

Z Z
= —p(b)grad b + u°f + ,uzdiv/ adz — ,uzgrad/ A dz+0(n),  (2.36)
b b

where
7 /2 D w db) (2.37)
=——(U-gra )
2D
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and p(b) = h + u2hh/2 + u?2IT'/h + O(u?) is the pressure on the bottom to the
exclusion of all viscous effects. All viscous effects at the bottom are modelled by the
friction force f. The continuity equation implies that A7 = —A| — A . The calculation
of the last integrals leads to

at 3
= —hgrad b+ p*div(hA) + L —f) + O(u). (2.38)

OhU n? h2h
— +div(hU @ U + u*h’e) + grad <2 +ul— + ,u217’>

The expression of the quantity f* is

"—h
s 2

h D
=+ E(U - grad b)] grad b. (2.39)

It encompasses terms due to the variable bottom of O(u?). The tensor A satisfies the
relation
A=2v;S+ 2v(divU)l, (2.40)

where I is the identity tensor (two-dimensional) and where
S=1[grad U + (grad U)"]. (2.41)

This tensor A acts like the viscous stress tensor of a compressible fluid. The averaged
mass equation (2.23) of the model is analogous to the mass conservation equation of
a compressible fluid, the depth A being analogous to the density. The relation (2.40) is
then analogous to the constitutive equation of a Newtonian compressible fluid i.e. T =
2uD + n(divv)l; where D is the strain rate tensor, /3 the three-dimensional identity
tensor, v is the velocity field (the operator divergence is here three-dimensional), u
and 7 being the first and second viscosities respectively. In the case of the model, the
first viscosity is equal to the turbulent viscosity vy and the second viscosity is equal
to 2vr. Note that S is not a deviator since tr S =divU # 0. For compressible fluids,
it is more convenient to define the deviatoric tensor Sy = S — (divU)I/2 (this gives
tr Sy =0 since tr/ =2 in a two-dimensional space). The tensor A can then be written

A=2v;S, + ¢ (div D), (2.42)

where ¢ =3vy is the sum of the first and second viscosities and is the volume viscosity
of the model (in a three-dimensional space, the volume viscosity is equal to n+2u/3).
The first viscosity and the volume viscosity are both positive, which is in accordance
with the second law of thermodynamics. Note that the Stokes hypothesis, according
to which the volume viscosity is equal to zero, is not satisfied in the model.

The gradient term on the left-hand side of (2.38) includes dispersive effects
originating from a non-hydrostatic correction to the pressure. It should be noted that
no smallness assumption was made on the nonlinearity, which implies that the model
is fully nonlinear. Its dispersive properties are identical to those of the Green—Naghdi
equations. An improvement of these properties is proposed in § 4.

The model is anisotropic due to the anisotropy of the symmetrical enstrophy tensor
¢@. The definition (2.25) of the enstrophy tensor shows clearly that ¢ is symmetrical.
However it is not an isotropic tensor since its deviatoric part @” = @ — tre I/2 is
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not zero. The tensor ¢ has three independent components denoted by ¢;, ¢, and
¢y, which are defined by ¢ = @116, Qex + ¢ie. Qe + @ae, e, + pne, ®e,. This
tensor represents the large-scale turbulence and the shearing effects. The large-scale
turbulence of the energy-containing range has an anisotropic character which is thus
taken into account in the model through the anisotropic tensor ¢.

This is one of the main advantages of this approach in comparison with the classical
approaches modelling all turbulence with an eddy viscosity. A viscosity hypothesis is a
valid model for turbulence if this one is reasonably isotropic and not too far from the
equilibrium between production and dissipation. These two conditions are questionable
in the case of the turbulence of a breaking wave. Consequently the classical eddy-
viscosity approaches for breaking waves misses the anisotropic effects of the large-
scale turbulence (Nadaoka & Yagi 1998). Furthermore, there is no backscatter with an
eddy-viscosity model and consequently no energy transfer from the horizontal three-
dimensional eddies towards the vertical two-dimensional eddies and yet this transfer
can happen (see for example Nadaoka & Yagi 1998; Hinterberger et al. 2007).

With our depth-averaged large-eddy simulation (LES) approach with a cutoff
frequency in the inertial subrange, only the small-scale turbulence is modelled by
a turbulent-viscosity hypothesis while the anisotropic large-scale turbulence of the
energy-containing range is resolved. Both the isotropic and equilibrium conditions
are well satisfied for the small-scale turbulence (see for example Kolmogorov’s
hypotheses, Kolmogorov 1941) and the absence of backscatter from the small scales
towards the large scales is a very classical view in accordance with the energy
cascade of Richardson (1922) which was confirmed experimentally in the case of
breaking waves by Hattori & Aono (1985). The introduction of the eddy viscosity
has thus better physical justifications than for the classical eddy-viscosity models.
The anisotropic character of our equations has a physical basis and on the whole the
resolution of the large-scale turbulence gives our model a richer physical content.

The model features six scalar unknowns which are the water depth h, the
components U and V of the average velocity field in the Ox and Oy directions
respectively and the three components of the enstrophy tensor. The mass (2.23) and
momentum (2.38) equations provide three scalar equations. Three more equations are
thus needed to close the system. In the one-dimensional case (Kazakova & Richard
2019) the closure was obtained with the energy equation. In this two-dimensional
case, the energy equation gives only one scalar equation and it is not sufficient. In the
one-dimensional (1-D) case the energy equation could be replaced with the enstrophy
equation which was one scalar equation since the 1-D enstrophy is a scalar. In the
two-dimensional (2-D) case the enstrophy tensor equation is used to provide the three
remaining scalar equations.

2.4. Enstrophy tensor equation

The tilde symbols are also dropped in this section. The first step to derive the
enstrophy tensor equation is to form the tensor product u ® (2.12)+ (2.12) Qu.
Taking into account the boundary conditions, this leads to

ouQu
ot

d
+diveQueu) + a—(wu@u)+u®gradp+gradp®u
Z

) . ) d’u 0’u
=pudiva+ u dlva®u+v7u®ﬁ+vrﬁ®u. (2.43)
Z Z
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The second step is to average this equation over the depth, again with the boundary
conditions. This procedure yields

3
&(hU@) U+ i) +divilUQURU + UK e + u*h’e @ U)
+ pidiv (WP e) QU + u’h’e - (grad U)' + U ® grad P+ grad P@ U
=—p(b)(UR grad b + grad b @ U) + p*div (U ® hA) + p*[div(U ®@ hA)]"

+ U f+ 1 f QU — Wh(P) + 0, (2.44)
where ..
P= h; + ;ﬁh;h + WP (2.45)
The tensor P includes all dissipative effects and its expression is
P =gradu-a+a-(gradu)’ + 2vy 88’; ® aa’; +2(tra)s + O(u?). (2.46)

Note that tr P" = 2P" since the energy equation (2.4) is half the trace of the tensor
equation (2.43). This tensor corresponds to a transfer from the filtered scales towards
the residual scales in the same way as P is an energy transfer from the filtered scales
towards the residual scales. Extending the result of Lilly (1967) according to which
(P") ~ ¢, the average tensor (P") is almost equal to the dissipation tensor & which
corresponds to the dissipation of the residual stress tensor 6" = —p(V®v — V Q7).
The estimation {P") ~ (¢) made in Kazakova & Richard (2019) is extended to the
corresponding tensors as

(P") ~ (e). (2.47)

The third step is to form the tensor product U® (2.38) 4+ (2.38) ® U. This gives

U U

ot
+U®gradP+grad PQ U = —p(b)(U®grad b + grad b ® U)

+ U Q f+ 1 QU + 12U @ div(hA) + p div(hA) @ U + O(1°). (2.48)

+divihlUQU QU + p*UQ hp) — p*grad U - Ko + p’div(iPe) @ U

Then (2.48) is finally subtracted from (2.44) to yield the evolution equation of the
enstrophy tensor

oh
TZP + div(hg ® U) — 2h(divU)¢ +grad U - he + he - (grad U)"
_ A A r {e)
=gradU - o + P (gradU)" — e + O(w). (2.49)

It is noteworthy that this equation includes no dispersive term and no term depending
on the variable bottom. Further there is no second-order nor third-order derivative,
which means that the numerical resolution of this equation is a priori not especially
difficult if the dissipative term is known.

This equation is similar to the Reynolds stress equation with the following
differences: First there is no term involving the third-order tensor (w' @u' Qu')
which is of O(u®) and thus negligible. This is the main interest of Teshukov’s
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hypothesis of a weakly turbulent flow (Teshukov 2007). Second there is no
velocity—pressure-gradient tensor (or no pressure—rate-of-strain tensor) because the
depth-averaging procedure is based on a decomposition of the horizontal filtered
velocity field but not on a decomposition of the pressure. The pressure is explicitly
and consistently expressed from the momentum equation in the Oz-direction. There is
thus no analogous to the fluctuating pressure field. These two differences constitute a
huge simplification. Third there is no diffusive term. Lastly the production tensor has
two parts. The first part,

—gradU - hg — he - (grad U)", (2.50)

is relative to the large-scale turbulence. It originates from the depth averaging of the
filtered velocity field and thus from the part of the turbulence which is resolved. It is
anisotropic. The second part,

A A T
grad U - 7 + P (gradU)", (2.51)
is due to the residual small-scale turbulence. Modelling the residual stress tensor with
an eddy-viscosity hypothesis gives this term the structure of a viscous production,
although of a compressible type since divU # 0. The term —2h(divU)¢ is due to
the equation being written for the evolution of the tensor ¢ instead of the evolution
of the tensor (u' @ u') = h*¢@. The left-hand part of (2.49) was obtained by Teshukov
(2007) who included no dissipation. The compressible viscous production is new in
this kind of approach.

2.5. Energy

Taking half the trace of (2.44) gives an energy balance equation for the model. This
energy equation can also be derived by averaging over the depth equation (2.4). This
equation writes

B)
&[h(e + u?e)] + div[hU(e + p*e’) + PU + u?U - b’ ¢]

h
= —hU - grad b + p*div(hU - A) — ”‘25 tr{e) + p’f - U+ 0(u?), (2.52)

where ]
U-U , h? h , h?
=— —t = — 2.53
e S tworet+ S+t (2.53)
and .
. h 1 5
e = E(U- grad b) + E(U -grad b)”. (2.54)

The energy of the system is e+ u’e’ where ¢ encompasses terms of O(u?) due to the
variable bottom. The term u?h’tr@/2 is a turbulent energy for the system. It includes
only the large-scale turbulence. The equation of tr¢ can be found by taking the trace
of (2.49). Alternatively it can be derived from the energy equation (2.52) and from
the mass and momentum equations (2.23) and (2.38). The equation for the trace of
the enstrophy tensor is thus equivalent to the energy equation. It can be written
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dhtr ¢

+ div(hUtr @) — 2h(div U)tr ¢ 4+ 2h¢ : grad U

2 tr (&)

= %A :gradU — o + O(w). (2.55)
The term in A:grad U is positive and results in a creation of turbulent energy since
A:gradU = 2v7||Sy||*> + 3vr(divU)? > 0 where ||So|l = (So : So)'/?>. Note that the
volume viscosity entails a creation of turbulent energy due to the variations of the
water depth which are analogous to compressions or expansions of compressible fluids.
These depth variations are characterized by divU which is related to the material
derivative h by h=—hdivU.

2.6. Vorticity of the mean flow

Let us denote by J the determinant of the enstrophy tensor ¢@. The Cauchy inequalities
imply that J > 0. If the dispersive, viscous and dissipative terms are removed, the
remaining system is hyperbolic (Teshukov 2007) if J#0 (Richard 2013). If the system
is restricted to its hyperbolic part, the determinant of the enstrophy tensor satisfies the

equation (Teshukov 2007)

DJ ,
— =2JdivU, (2.56)
Dt

which implies that 4°J is conserved along the trajectories of the mean flow and
can be interpreted as an entropy of the system (Gavrilyuk & Gouin 2012). Also,
in the hyperbolic system, if J > 0 at a time r =0, then J > 0 at any time ¢ > 0.
A geometrical interpretation of the evolution equation of the tensor h’@ was given in
Gavrilyuk & Gouin (2012) who showed that the eigenvectors of this tensor undergo
a rotation similar to a rigid body and form a natural moving frame whose evolution
is determined by the mean rate of the deformation tensor. This interpretation can
be further specified. Assuming that J # 0, the tensor ¢ is invertible. The evolution
equation of the inverse tensor ¢! can be deduced from (2.49). Restricting ourselves
again to the hyperbolic part of the equations, this equation can be written

Dg!
Dt

— 2divl)p 491 S+ 8.9 49 . 2297, (2.57)

where the tensor 2 is the mean rotation-rate tensor which is the antisymmetric part
of grad U.

For comparison, we define another tensor that satisfies a similar equation. First we
consider two orthogonal infinitesimal vectors dx; =dx;e; and dx, =dx,e, attached to a
point of the fluid and transported by the mean flow (dx; > 0 and dx, > 0). They satisfy
the equation D(dx;)/Dt=grad U - dx;, (i € {1, 2}). We define the diagonal tensor P as
P =dx e} ® €] + dx,e, ®e,. The vectors €] and €, are eigenvectors of P and dx; and
dx, are eigenvalues. The tensor Q defined by Q= (P- P)~' can be represented by an
ellipse whose semi-major axis is dx; and semi-minor axis is dx, (assuming dx; > dx,).
The following equality pertaining to the tensor Q can be derived

Da =

E:—Z(divU)O+Q-S+S-O—Q-§+§-O. (2.58)

The comparison between (2.57) and (2.58) shows that these equations differ only in
that the mean rotation-rate tensor £ in (2.58) is replaced by —£ in (2.57). This means
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that the inverse enstrophy tensor is convected by the mean flow, deformed by the
mean strain rate tensor and rotated by the opposite of the mean rotation-rate tensor.
Moreover the tensor ¢~! can be represented by an ellipse whose area can be written

A=m+/J. The (2.56) implies that

L DA divU 2.59
ADr = wU. (2.59)
The rate of change of the area of the ellipse is the rate of change of area due to
the mean flow (in a three-dimensional space divU would be a rate of change of
volume). The area of the ellipse associated with Q satisfies the same equation. It
follows that the dilatation, convection and deformation of this ellipse are the same
as an infinitesimal ellipse attached to material particles moving with the mean flow
but that this ellipse undergoes a rotation with an angular velocity which is exactly
the opposite of the local angular velocity of the mean flow.
The vorticity of the mean flow could be defined as £ =rotU but, as the mean
flow is two-dimensional, there is only one non-zero component which is in the Oz
direction and it is better to define the vorticity as

Q2 =ec:gradU. (2.60)

In this expression, € is the two-dimensional pseudotensor of Levi-Civita which can be
written € = g,e; ® ¢; where g;; is the two-dimensional symbol of Levi-Civita defined
by
+1 if@G,)=(1,2)
g;=q—1 if(i,)=@2,1 (2.61)
0 ifi=j.

The mean rotation-rate tensor can be written 2 = —(£2/2)e; @ e, + (£2/2)e; @ e,. Thus
it seems that the difference between (2.57) and (2.58) is due to the vorticity of the
mean flow and that the tensors ¢~! and Q satisfy the same equation if the mean flow
is irrotational (Debieve, Gouin & Gaviglio 1982).

However an evolution equation of the vorticity of the mean flow can be derived
from (2.38). This vorticity equation can be written

082 . = 1 . 3 D
g—l—U-gradQ:—.leVU—i—,u € : grad %dlv(ZvThSo—h Q)

W= n _ . h b
— ﬁé: grad <3vTh divU — 2trgo> ®grad h + p’e : grad h @ grad (3 + 2>

2=. f 2=. D h
+ u°e : grad ﬁ + u"e : grad E(U-gradb) ® grad E—H) . (2.62)

The decomposition of the enstrophy tensor as the sum of its isotropic (or spherical)
part and of its anisotropic (or deviatoric) part is written ¢ = (trgp)l/2 + @® where @P
is the deviator of the enstrophy tensor. The compressible character of the equations
entails the presence of source terms in this vorticity equation such as the term
—$§2divU on the right-hand side of the equation. There are also baroclinic terms
which in the three-dimensional usual case would be written —(1/p?) grad p x gradp
and which here take the form —(1/h*)€ : grad P ® grad h where P is some scalar
field (h is here analogous to the density p). In particular there is a baroclinic term
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due to the turbulent volume viscosity ¢ =3v7 and to the trace of the enstrophy tensor.
There are also source terms akin to baroclinic terms due to the dispersion and to the
variable bottom. And finally there are source terms due to the first turbulent viscosity
and to the deviator of the enstrophy tensor.

This equation shows the big difference between the tensors ¢~ and Q. Equation
(2.58) is only a geometrical description of the variation of @ while it is transported
by the mean flow. The tensor @ has no influence on the mean flow and is only
passively transported. On the contrary, the enstrophy tensor is not only transported
and modified by the mean flow, it modifies the mean flow since ¢ appears in the
momentum equation (2.38). This means that (2.49) is a physical equation and not a
mere geometrical equation such as (2.58) in spite of the similarity.

Even if the mean rotation-rate tensor has no influence on the trace of the enstrophy

-1

tensor nor on the energy, because the terms involving £ in (2.57) are traceless, it
is inconsistent to neglect these terms in the enstrophy tensor equation, assuming that
the mean flow is irrotational or weakly rotational, because the enstrophy tensor is a
source in the vorticity equation, notably by its deviatoric part. It is also not possible to
calculate the enstrophy tensor by replacing (2.49) by an equation of the kind of (2.58)
with a hypothesis of a weak vorticity because this one is not tenable given that the
enstrophy can create vorticity. Moreover (2.58) has a completely different meaning, is
not hyperbolic and has wholly different characteristics.

The presence of the enstrophy tensor, including its deviator, in the vorticity equation
(2.62) shows that transfers can happen between the three-dimensional horizontal eddies
modelled by the enstrophy tensor and the two-dimensional vertical eddies represented
by the vorticity of the mean flow. Our depth-averaged LES approach with a cutoff
in the inertial subrange follows the energy cascade from the energy-containing range
towards the dissipation range but can describe transfers from the large-scale turbulence
with a scale of O(h) or smaller (in the water depth) towards the vertical eddies of the
average flow with an even bigger scale.

3. Modelling the eddy viscosity and the dissipation tensor

To close the model, two quantities remain to be specified, namely the turbulent
viscosity vy and the averaged dissipation tensor (e). Empirical laws are proposed
to determine these two quantities. A correct model of the dissipation should preserve
the positivity of the enstrophy tensor and thus of its determinant J and of its trace.
The determinant can be written J = [(tr@)?> — ¢ : @]/2. Ignoring all terms except the
dissipation in the enstrophy equation (2.49) leads to the evolution equations

Diro  tr{e)

— 3.1
Dt h? G-1)

and

DJ

Dr
A simple way to preserve the positivity of both tr¢ and J is to have Dtre/Dr =
—trofi and DJ/Dt = —Jf, where f; and f, are positive functions depending on
the variables of the mean flow. As the equations of the model must satisfy the
Galilean invariance, these functions should not depend on U. Moreover, they should
be invariant in every coordinate systems. This implies that they can depend on £
and on the two invariants of the tensor, tr¢ and J. The simplest way is to choose

1
—ﬁ(tr(otr((e)) —¢:(e)). (3.2)
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{(e) = of (h, tr @) where the function f depends only on % and tr¢ and is obtained by
a dimensional analysis. This gives f(h, tr@) = C,h%,/tr@ where C, is a dimensionless
quantity. The model for the average dissipation is thus

(&) =ChoJue. (3.3)

With this choice the one-dimensional case studied in Kazakova & Richard (2019) is
recovered as a particular case. Further, since the turbulent kinetic energy of the model
is (h*tr@)/2, the chosen model has the same form as the model proposed by Rotta
(1951) if the dissipation and the turbulent kinetic energy are related with a mixing
length proportional to the fluid depth.

The model for the turbulent viscosity is obtained by a similar approach. The
eddy viscosity must be the same in every Galilean reference frame and in every
coordinate system. It is simpler to assume that vy depends on /# and tre but not
on J. A dimensional analysis yields vy = C,h*,/tr@ where the dimensionless quantity
C, can be interpreted as the inverse of a turbulent Reynolds number R leading to

h2
Vr = E«/tr(p. (34)
The one-dimensional case (Kazakova & Richard 2019) is also recovered as a particular
case. This expression of the eddy viscosity based on the turbulent kinetic energy and
on a mixing length, which is here proportional to the water depth, is a very classical
one (Kolmogorov 1942).

4. Numerical implementation

In the absence of enstrophy, the present model reduces to the classical two-
dimensional Green—Naghdi equations. The introduction of this new variable entails
a modified pressure law and three supplementary transport equations that can be
naturally injected into the hyperbolic part of the system. As a consequence, from
a general point of view, this model can be numerically treated in a straightforward
manner on the basis of any existing numerical approach dedicated to the Green—
Naghdi equations. Naturally, this is even simpler in the one-dimensional case,
since the enstrophy tensor equation reduces to a scalar equation. On this basis,
preliminary results were obtained by Kazakova & Richard (2019) using an extension
of the strategy proposed in Le Métayer, Gavrilyuk & Hank (2010) for mild slope
topographies, allowing the establishment of relevant empirical laws based on the
study of solitary waves. In the present work we aim to pursue the efforts towards
describing realistic situations, considering a two-dimensional approach on general
bathymetries. In addition, and notably for the analysis of periodic waves, we have to
think about how to improve the dispersive properties of the proposed model. Before
getting through the numerical implementation, we briefly discuss how to address such
an issue.

4.1. Constant diagonal formulation

In view of the targeted numerical simulations, we first propose to rewrite the model
in an asymptotically equivalent form, allowing us both to improve the dispersive
properties and provide a gain in terms of computational cost. To achieve this outcome,
we exploit the works proposed by Bonneton et al. (2011), followed later by Lannes
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& Marche (2015), mainly for purposes of computational efficiency. The present
section merely consists in verifying that the current model enters into the appropriate
formalism. Consequently we shall not discuss all technical aspects, and refer to the
aforementioned references for more details.

As is the case when dealing with Boussinesq-type models, the numerical challenge
stands in the treatment of the discharge equation, due to the presence of high-order
derivatives (up to third order) and second-order non-stationary terms appearing
through the material derivative. This last point has heavy practical consequences
since it results in the inversion of a time-dependent elliptic operator which couples
the velocity components.

The model is constituted by (2.23), (2.38) and (2.49). In all applications presented in
the present paper, the friction term was not needed to reach a good agreement with the
experimental measures. Consequently in the following f =0. These equations, written
with the components of U and ¢, are collected for convenience’ sake in appendix B.
As mentioned before, this model reduces to the standard Green—Naghdi equations with
a modified pressure law, supplemented by the transport of the enstrophy tensor. We
hence inherit the same technical difficulties as discussed just before, concentrated in
the discharge evolution. As a consequence, in what follows we will only focus on the
momentum equation.

As a first remark, adapting the notations used in Bonneton et al. (2011), we can
express the average velocity equation (2.38) as

U 2
(I+p*T) % + U - grad U+ grad(h +b) + %div(hB(p — hA) + 120y = O(11). (4.1)

In this expression / is the identity operator, T is a linear operator depending on A and
b and defined by

1 h 1
TW = — o grad(A*divW) — 5div Werad b + ﬁgrad(hzgrad b-W)

+ (grad b - W)grad b 4.2)
for any vector field W and
1
0, = —ﬁgrad{h3 [div(Udiv U) — 2(div U)*]} + [U - grad(U - grad b)]grad b

h 1
— i[div(UdiV U) — 2(divU)*|grad b + ﬂgrad[th -grad(U - grad b)]. (4.3)
Introducing the notation
1

0,=0,+ zdiv(h%o — hA), (4.4)

the previous equation becomes

2 U 2 3

I+ u T)§+U- grad U +grad(h 4 b) + u"Qy = 0O(1"), 4.5)

and we can reproduce the arguments employed in Bonneton et al. (2011) to obtain
the equation

aU
I+ u>T) (m + U - grad U) +grad(h + b) + u’Q, = O(?), (4.6)
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where
0,=0,— T -gradU). 4.7

Denoting by (I+u>T)~! the inverse operator of (/4 *T), this equation can be written

U grdU + () (grad(h kb 00 = 00).  (@8)
As highlighted by Lannes & Marche (2015), this formulation has two main advantages,
namely it does not require the computation of third-order derivatives, and the presence
of the operator (I + u?>T) makes the model stable with respect to high frequency
perturbations. Nevertheless, a remaining major drawback is the necessity of inverting
this operator, since it is time dependent and involves a coupling between the velocity
components. Starting form the dimensionless mass equation and a velocity equation
under the form (4.6), Lannes & Marche (2015) reached the following so-called
‘constant diagonal’ formulation of the momentum equations, which reads, in the
present context:

) C1 1/ a—1
I+ paT) a7 +div(hU @ U) + ——hgrad(h + b)
o
1
+ —hgrad(h+b) + i (hQy +hQ; + @y) = O, (4.9)

where the operator T only depends on a given water depth at rest /4, and has a time-
independent diagonal structure since

10 (40 W

1 w
TW=—_div |[hlgrad— | =—~— (h3—— ) e (4.10)
3 h() 38XJ 8xj h()

for any vector field W = W,e;. The auxiliary quantities are defined as follows:

_ _ 1
Q, = hgrad[e - grad(h +b)] - - grad h — ﬂgrad[hzgrad b-grad(h+b)]
h
+ 5grad bA(h+ b) — [grad b - grad(h + b)]grad b + O(u?) 4.11)

and
03 = S{(I+ *aT) ' [hgrad(h + b)1}, (4.12)

where S is an operator defined as
S{W} = tgrad(h’ — ) - grad W + 1 (h* — i) AW — L A(W* — hp) W (4.13)

for a generic smooth enough vector field W. The role of the constant «, initially
introduced by Bonneton e al. (2011), is precisely to improve the dispersive properties
of the model (namely, to provide a better matching with respect to the linear Stokes
theory). Following the works previously mentioned, we take o = 1.159 in our
numerical experiments. Note that in the above formulation (4.9), the only difference
with the original work is the expression of Q; (4.7), which through (4.4) also contains
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the conservative and viscous terms related to the enstrophy. Going back to variables
with dimensions, (4.9) becomes:

ohU —1
(I+aT) | == +divhU ® U) + Y7 ehgrad(h + b)
(07

h
n ‘% grad(h + b) + hQ, + ghQ, + g0; = 0. (4.14)

Finally, following what has been done in Duran & Marche (2017) we reformulate the
previous equation as:

ohU
o7 +div(hUQ U + h’p) + ghgrad(h+b) + D =0, (4.15)
where
_ gh . 3
D = —=—grad(h+b) —div(h’@)
o

h
+U+aT)"! %grad(h—i—b) 1O, + ghQ, + 505 . (4.16)

This formulation is asymptotically equivalent to the original model presented in
appendix B but with improved dispersive properties. Without this treatment, dispersive
properties (which are the same as those of the Green—Naghdi equations) are accurate
up to khyg >~ 1 (where k is the wavenumber). With these improvement techniques
the results are accurate until khy >~ 4 for the phase celerity, khg >~ 2.5 for the group
velocity and khy >~ 2 for the shoaling gradient (see Chazel, Lannes & Marche 2011).

4.2. Pre-balanced formulation

In this work, numerical investigations will be based on the high-order discontinuous
Galerkin approach developed by Duran & Marche (2017). This approach directly
applies to (4.15) with a preliminary rewriting of the hyperbolic part with the prospect
of balancing well the properties. This approach extends the 1-D works introduced
by Liang & Marche (2009) for the shallow-water (Saint-Venant) equations, in the
context of unstructured high-order discretizations. The key idea is to reformulate the
hydrostatic pressure term as

ghgrad(h+b) = %grad(Zz — 27b) + gZ grad b. 4.17)

Then we denote the vector solution W = (Z, hU", hoi1, hoia, hey)T, and recast (2.23),
(4.15) and (2.49) in the compact form:

% +divF(W, b) +D(W, b) =S(W, b). (4.18)

This system features five equations: the scalar conservation equation of mass (first
equation corresponding to (2.23)), the vector balance equation of momentum (second
equation corresponding to (4.15)) and three scalar equations for the three independent
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components of the enstrophy tensor (three last equations corresponding to (2.49)). The
flux F and the dispersive term I are defined by

hU 0
hU®U+h3¢+§(ZZ—ZZb)I D
F(W, b) = hon U . DW.b)=|0|.  (4.19a,b)
0
ho,U 0
henU

The dispersive R>-valued term D is defined by (4.16), and the source term by

0
—gZgrad b
S(W, b) = |Rii +Ei — ChoniJou +¢n |, (4.20)

Ry + Eip — Cohoian/oi1 + ¢
Ry + Ex — Crohyn /@11 + ¢

with - U
R, =2h — —p— |,
11 <§011 dy P12 8y>
R —h 8U+8V VvV oU @21)
12="n |12 I dy P11 ox ©22 dy s .
oU ov
Ry, =2h — — Y —
2 <§022 I P12 8x>
and
aU\> UV UV AU\’
En="T18( 20} +42287 (207 %7 1 h (27 |,
h 0x ox dy oy dx ay
v oU U 0dV oV dU oV aU IV
Ep=—" 13 —=——+——)+5(——+—— |, (4.22)
h dx dy ax dy dx ox  dy dy
aV\® UV UV v\’
En="T|8( %) 4422207 1297 o (20 |,
h ay ax ady dy ox ax

Note that the flux function F in (4.18) allows for a clear decoupling between the
hyperbolic and dispersive parts of the system. The system (4.18) is the final set of
equations which was solved numerically for all test cases.

4.3. Discrete formulation

We now turn to the numerical scheme, which consists of a direct extension of the
works of Duran & Marche (2017). As a consequence, we shall not go into detail
here, and refer to this paper for an exhaustive description. The main principles of
this numerical scheme are given in appendix C. An example of a regular triangular
mesh used in the numerical computations is given in figure 2. Overall, the main
numerical challenge stands in the computation of the components of 1), which
involves the resolution of a global linear system. As previously stated, in our case
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—

Ax

FIGURE 2. Example of regular mesh.

this task is considerably alleviated since the elliptic operator appearing in (4.15) is
time independent and allows us to decouple the evolution of the velocity components.
The computation of this term follows the protocol described in Duran & Marche
(2017), based on the use of local discontinuous Galerkin fluxes (Cockburn & Shu
1998) to build the first- and second-order differential operators. We refer to the above
papers for technical details. As concerns the enstrophy transport, the conservative
terms are treated in the hyperbolic stage, according to (4.18), while the associated
source terms are computed in a collocated framework with direct nodal products, in
the same way as those of the momentum equations. Classically, advancing in time
will be carried out by standard high-order strong stability preserving Runge—Kutta
(SSP-RK) algorithms, following the original work.

5. Wave breaking

Preliminary results of Part 1 (Kazakova & Richard 2019) for solitary waves showed
that the activation of the eddy viscosity from the beginning of the computation may
decrease prematurely the wave amplitude in the shoaling zone if the initial nonlinearity
is too high. This necessitated the use of a breaking criterion in these cases to activate
the turbulent viscosity at the breaking point. On the contrary, for solitary waves with
an initially small nonlinearity, no breaking criterion was needed and the eddy viscosity
was activated from the beginning of the computation in the shoaling zone and the
breaking process was predicted naturally as a sudden growth of the enstrophy.

As a consequence, for now, and in the philosophy of other existing strategies, this
compels us to introduce a breaking criterion in order to activate the eddy viscosity
only in eligible areas. Naturally, the different criteria of the literature mentioned in the
introduction can be used to turn on viscosity terms and generate enstrophy only when
needed. As for hybrid or ad hoc viscosity methods, this entails the introduction of a
discontinuity in the momentum equations in the neighbourhood of the breaking area.
From a general viewpoint, this can be a source of numerical instabilities, especially
if the discretization parameters are not chosen appropriately. In the present case, the
viscous terms being expressed in terms of the enstrophy, they are subject to a regular
growth localized in a very thin region surrounding the breaking point, allowing us
to introduce the turbulent effects in a smooth way. Further, this behaviour makes
the model less sensitive with respect to the mask width in which viscous terms are
activated.


https://doi.org/10.1017/jfm.2019.125

https://doi.org/10.1017/jfm.2019.125 Published online by Cambridge University Press

A new model of shoaling and breaking waves. Part 2 169

Another detection strategy, proposed by Kazakova & Richard (2019) for solitary
waves, consists of using the enstrophy itself to detect wave breaking. Indeed, this
quantity is intrinsically linked to turbulent effects and can be used as a relevant
tool to predict the development of turbulent structures. This leads to the introduction
of a new quantity, referred to as virtual enstrophy, which quantifies the amount of
enstrophy that the model is potentially able to produce. As in the original work, the
virtual enstrophy is computed at each time step as the real enstrophy, but without
any feedback on the evolution of the other variables. Then, breaking points can be
identified as those where the virtual enstrophy is high enough, which also imposes
the introduction of an appropriate threshold. Once this threshold is exceeded, the
turbulent viscosity is activated in the neighbourhood of the incriminated cells in order
to produce the effective enstrophy to handle wave breaking, in the same manner as
for the classical breaking criteria previously mentioned. Classically, a slope limiter is
applied in these areas (Cockburn & Shu 1998), notably to damp the brutal entropy
variations. Note that in the 1-D case studied in Part 1, the enstrophy has only one
component. The viscosity is activated when the scalar virtual enstrophy exceeds the
threshold value. In the 2-D case studied in the present paper, the enstrophy is a tensor
and the threshold value applies now to the trace of the virtual enstrophy. Note that this
strategy naturally implies a non-zero value as initial data for all diagonal components
of the enstrophy. Following Part 1, this value will be taken to be 107! s7 in our
numerical tests.

The first test case (§6.1) is only used to validate the numerical scheme. The
problem is to calculate the known analytical solution of a soliton with a constant
enstrophy in the absence of dissipation. The test cases 2, 4 and 5 (§ 6.2, §6.4 and §6.5
respectively) deal with solitary waves and the same breaking criteria established in
Part 1 are used. We denote by ¥ the virtual enstrophy tensor. It satisfies the same
equation (2.49) as ¢ except that in the equation of ¥ the eddy viscosity is always
activated. Note that in the other equations, the tensor which appears is still ¢, not ¥,
so that the virtual enstrophy has no effect on the other quantities. The eddy viscosity
is activated in the other equations of the model if tr ¥ > 1y where v, is the breaking
threshold which is given by the empirical law of Part 1 (Kazakova & Richard 2019)

0.0314;
1/,0:% (0.1+a*°>. (5.1)
0

In this expression, hj and a* are respectively the initial still-water depth and the
initial amplitude of the solitary wave. This expression applies if the initial nonlinearity
a*/hy > 0.05 which is the case in all three test cases. The eddy viscosity is then
calculated with the empirical law established in Part 1 for the Reynolds number R

which appears in (3.4)
R =0.85+60s, (5.2)

where s is the bed slope. In the cases of a variable slope, the value of this Reynolds
number can be estimated locally, depending on the local slope, but a numerical
investigation showed that a constant value based on an average slope, intermediate
between the highest and lowest slopes, can be used without changing significantly
the results. This is due to the relatively weak sensitivity of the model to the precise
values of the parameters.

The test case 3 (§6.3) is the only one to deal with a wave train. The initial
nonlinearity is small enough to simulate all wave propagations, including the breaking
initiation and termination, without any breaking criterion. The Reynolds number R
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Test 2 3 4

Yo(s2) 689 0 78 2
R 387 175 2 35

TABLE 1. Values of the parameters used for each test case.

of (3.4) is calculated with the result found in Part 1 for solitary waves with a small
initial nonlinearity i.e. 5 < R < 10. The value R = 7.5 was used although another
value in this interval gives almost the same results. The determination of the general
empirical laws for ¥, and R for wave trains will necessitate a thorough investigation
which is left for a future work. Of course, it is always possible to tune all parameters
case by case to match the experimental measures but this method would prevent the
model being predictive.

As in Part 1 the coefficient C, is taken equal to 0.48 in all cases. The values of
the parameters used for each test case are gathered in table 1 although other choices
are possible for the cases 4 and 5 (see the explanations in §§6.4 and 6.5) because
the slope is not constant.

6. Numerical results
6.1. Augmented solitary wave

As a preliminary test we validate the ability of the scheme to capture an analytical
solution, in the absence of topography and without breaking effects. In a recent work,
Richard & Gavrilyuk (2015) showed the existence of solitary waves with non-trivial
constant enstrophy profiles as exact solutions to the model. Considering a reference
enstrophy ¢, the corresponding relative amplitude a = a/hy, where the amplitude a
of the wave is the maximum value of n (see figure 1), is

1 ) _ —
[—(1+4¢0) + /(1 4 4@0)% + 4(Fr2 — 1 — 3@0) @0l (6.1)

a=—
200

where Fr stands for the Froude number and ¢, = hopy/g is the dimensionless
enstrophy. Inverting the previous equation we obtain:

Fr=+/(1+a)[1 + @B +a), (6.2)

leading to the following generalized wave celerity:

co=F,\/gho=/8g(ho + a) + ¢o(hy + @) (3hy + a). (6.3)
The free surface elevation is given by the following formula:

2a(Fr* — 1 —3¢,)
Fri—1— Q@4 a®)@y+ (Fr2 — 1 — (3 — a®)@,) cosh[k (x — cot — x0)]°

n(x, 1) = (6.4)

where

Kk =/3(Fr2 — 1 —3@)/Fr, (6.5)
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FIGURE 3. (Colour online) Test 1: 2-D view of the initial condition.

and x; stands for the initial location of the solitary wave. Setting the transverse
velocity V and the other components of the enstrophy tensor to zero, the exact
solution is given by:

h(x, 1) =hy + n(x, 1),

Ulx, t) = (1— fi ) 6.6
X, )_CO h(x, t) ) ( . )

11(x, 1) = @p.

The computational domain consists of a 200 m long rectangular channel, meshed
with a regular triangulation of characteristic size Ax = Ay = 0.25 m (see figure 2).
The solitary wave is initially located at xo = 50 m. We set 7y = 1 m and impose
Fr=1.2, ¢y =0.2 s72, leading to an amplitude a =0.128 m and the initial condition
depicted in figure 3. As highlighted by Kazakova & Richard (2019), this gives a
solution with a smaller amplitude than the classical solitary wave solution of the
Green—Naghdi equations obtained with the same Froude number. We can observe in
figure 4 a comparison between analytical and numerical results at several propagation
times, obtained with the third-order scheme, highlighting a very good resolution
of the wave propagation. Note that the preservation of the initial enstrophy ¢, has
been numerically confirmed throughout the computation up to the machine error,
independently from the mesh size or the polynomial degree in the approximation
space.

6.2. Wave breaking and run-up of a solitary wave

We now turn to a classical 1-D test case implying wave breaking and run-up, based on
the experiment of Synolakis (1987). The initial condition consists of an incident wave,
obtained as an exact solution of the classical Green—-Naghdi equations, propagating
over a beach with a constant bed slope s=1/19.85. This benchmark is widely used
to exhibit the ability to capture shoaling and breaking processes, with subsequent run-
up and run-down phenomena (see Zelt 1991; Titov & Synolakis 1995; Cienfuegos,
Barthelemy & Bonneton 2010; Tonelli & Petti 2010; Bonneton et al. 2011; Tissier
et al. 2012; Kazolea, Delis & Synolakis 2014, for instance). The numerical set-up
implies a solution centred at xo =10 m in a 35 m long domain, regularly meshed with
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FIGURE 4. Test 1: 1-D free surface profiles at r=0, t=10.25 s, t=20.5 s and +=30.75 s.
Exact solution (dots) versus numerical solution (solid curves).

a space step Ax= Ay=0.0625 m, as indicated in figure 2. A 5 m long sponge layer
has been added at the left boundary to stabilize the initiation of the wave propagation.
Following the experiment, the reference depth is 45 =0.3 m and we consider a relative
amplitude a/h§ =0.28. The topography is given by:

0 if x<15 m
bx) = {s(x — 15) otherwise. (6.7)

The laws (5.1) and (5.2) are used for the trigger threshold i, of the virtual
enstrophy and the dimensionless Reynolds number, leading to the values ¥~ 6.89 s~>
and R~ 3.87 in the present case. As stated in §5, the parameter C, has always the
constant value C, =0.48.

We can observe in figure 5 a comparison between experimental and numerical
results at several reference times during the propagation. In accordance with the
experimental observations, the wave propagates, shoals and steepens when reaching
the shore, as can be seen at times t* = t(g/hy)"/?> = 10 and r* = 15. Then nonlinear
effects induced by the bed elevation trigger the breaking of the wave, occurring
between r* = 15 and #* = 20. To better understand the key role played by the
enstrophy variables, a particular focus of the process is available in figure 6. We can
see that a sudden production of enstrophy occurs at +* = 18.1, allowing a precise
identification of the transition to the turbulent regime. Once the wave is identified as
breaking, the enstrophy production is able to correctly balance the dispersive effects
and we recover the expected characteristics of the wave transformation, until the end
of the run-up phenomenon. Note that since the enstrophy naturally follows the wave
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FIGURE 5. Test 2: comparison of the 1-D free surface profiles between numerical results
(solid curves) and experimental data from Synolakis (1987) (crosses) at several times
during the propagation (t* =t(g/ho)"?).

motion, there is no need to artificially turn off irrelevant terms or introduce additional
de-breaking criteria in regions which are not of concern, as is can be the case with
other existing approaches. As reported by Synolakis (1987) (see also Kazolea et al.
2014), a second breaking process happens at the end of the computation, in the
form of a hydraulic jump around #* =53. As shown in figure 7, the process in also
well captured by the proposed method without any breaking criterion, highlighting
the enstrophy as a relevant diagnostic quantity with respect to the general detection
of shock waves. These results were obtained with the third-order scheme; identical
space and time locations have been observed for the breaking points using other
space orders and/or different mesh resolutions. This low sensitivity with respect to
the discretization parameters is not surprising, since the breaking criterion is somehow
directly resolved as a model variable. Note finally that if a precise and predictive
calibration of the breaking parameters (i, R) has been extracted from the works of
Kazakova & Richard (2019), no significant variability has been observed around the
corresponding reference values, which also attests to the robustness of the proposed
strategy.

These results can be compared to existing models. In switching models the fronts
of breaking waves are too steep because these waves are treated as discontinuities and
the amplitude is not always correct. This is especially clear at * =20 (compare our
result in figure 5 at r* = 20 with the results of Tissier et al. (2012), Kazolea et al.
(2014) and Kazolea & Ricchiuto (2018) at the same time). Moreover all switching
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FIGURE 6. Test 2: virtual enstrophy profile at several times around the breaking point.
Wave breaking is identified at r*=18.1, x=30.3 m.

models produce spurious oscillations when the mesh size is refined, which prevents
numerical convergence.

Eddy-viscosity models behave better than switching models, especially if the
turbulent viscosity is calculated with a turbulent kinetic energy for which an equation
is solved (Kazolea & Ricchiuto 2018). Our result just after breaking, at #* = 20,
is nevertheless slightly better (compare with Roeber, Cheung & Kobayashi 2010;
Kazolea et al. 2014 and even Kazolea & Ricchiuto (2018), all of them having very
good results on the whole but a slight discrepancy at the front of this breaking wave).
The eddy-viscosity models can have difficulty in detecting the second breaking where
a hydraulic jump is created (Kennedy et al. 2000; Kazolea et al. 2014). In any case,
a breaking criterion is needed for the initiation of both the first and second breaking
events and for the breaking termination.

In our model the profile of the breaking wave is found with a greater accuracy,
especially in the front region, and there is no need for a breaking criterion either for
the breaking termination or for the initiation of the second breaking. The hydraulic
jump is predicted naturally by the model. All these improvements are due to the
addition of the enstrophy. This new variable is already known to improve the
description of roll waves and turbulent hydraulic jumps (Richard & Gavrilyuk 2012,
2013) and these new results show that this gives not only a greater accuracy to
the simulation of turbulent breaking waves but also more numerical simplicity and
robustness by removing the need for some breaking criteria.

6.3. Wave train breaking over a bar

We now turn to a classical test based on the laboratory experiments carried out by
Beji & Battjes (1993), devoted to the study of periodic sinusoidal waves propagating
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FIGURE 7. Test 2: virtual enstrophy profile at several times around the second breaking
point (hydraulic jump). Wave breaking is identified at * =53, x=33.5 m.
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FIGURE 8. Test 3: sketch of the experimental configuration of Beji & Battjes (1993) and
location of the wave gauges.

over a submerged bar. The experimental set-up implies a 37.7 m long wave flume
equipped with a trapezoidal bar with 1/20 front and 1/10 back slopes, separated by
a 2 m plane area, leading to the configuration displayed in figure 8. The evolution
of the flow is followed at eight wave gauges disposed along the channel, for which
experimental data are available. The first one is placed at x=6 m while the others are
located at the level of the bar, regularly spaced from x=11 to x=17 m, as indicated
in figure 8. The water depth at rest was set to 45 =0.4 m, leading to a 0.1 m water
depth at the top of the bar.

Several series of experiments were run by Beji & Battjes (1993), with varying
amplitudes and frequencies. The objective pursued here is to show that the current


https://doi.org/10.1017/jfm.2019.125

https://doi.org/10.1017/jfm.2019.125 Published online by Cambridge University Press

176 G. L. Richard, A. Duran and B. Fabreges

x (m)

FIGURE 9. Test 3: free surface (a) and enstrophy (b) profiles at three consecutive times
during the breaking process.

approach can also be applied to capture a complete breaking process in the context
of wave trains. This leads us to consider the experimental dataset obtained with a
frequency of 0.4 Hz and a wave amplitude 0.054 m, corresponding to a strongly
nonlinear case. In this context, the shoaling of incoming waves is followed by a
spilling-type breaking at the arrival at the flat part of the bar. After passing the bar,
under the combined effect of the topography and their reintroduction in deeper waters,
waves experience highly nonlinear deformations, accompanied by the development
of high-order harmonics, close to the dispersive limits of the model. This induces
a non-trivial coupling between turbulent effects and highly nonlinear deformations
throughout the simulation. Capturing this complex dynamics is therefore a quite
challenging issue, generally considered as an important step in the validation of
numerical methods for breaking.

Computations have been run on the domain [—10 m, 40 m], including 10 m left
and right sponge layers to generate incoming waves and to allow for a proper exit of
the outgoing waves. A regular mesh with 1200 elements in the x-direction was used
for this test. As explained in § 35, the initial nonlinearity is small enough to set the
activation criterion Y, to zero, meaning that there is no breaking criterion and that
the enstrophy is computed everywhere from the beginning of the computation. In this
case R can be chosen in the interval 5 <R < 10 (see §5) and we chose R="7.5. As
previously discussed, the dissipation parameter C, is always equal to 0.48.

The appearance of enstrophy and its subsequent disappearance (see figure 9) denote
the initiation and termination respectively of wave breaking. It is noteworthy that the
turbulent effects are not totally damped between two successive waves leading to an
accumulation of enstrophy at the level of the bar. These numerical observations are
physically relevant, since they highlight that the turbulence produced by a single wave
can have not entirely disappeared at the arrival of the following wave, as has been
reported in several works (see for instance Ting & Kirby 1994).

In any case, this accumulation phenomenon is limited in practice and does not break
the stability of the method. Further, as shown in figure 10, the method offers a good
agreement with the experiments, significantly better than the agreement obtained with
usual methods.
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FIGURE 10. Test 3: time series of the free surface elevation at wave gauges. Comparison
between the numerical results (curve) and the experimental data of Beji & Battjes (1993)
(circles).

Looking at figure 10 more closely, the results at gauge 2 show that the shoaling
process is well described. In particular, we recover the correct amplitudes, while small
overestimations can be observed with hybrid methods (see Duran & Marche 2017,
Tissier et al. 2012), presumably caused by numerical instabilities propagating in the
neighbourhood of the breaking area (see also Kazolea & Ricchiuto 2018). Wave
breaking occurs at the level of gauge 3. Our results reflect the ability to capture
accurately the breaking process, with a precision similar to recent hybrid strategies
(Kazolea et al. 2014; Filippini et al. 2016) but without breaking criterion. Gauges 4
and 5 allow us to examine the continuity of the breaking process. We observe an
almost perfect reproduction of the wave transformation, including the free surface
inflection at the rear side of the waves, which is not well captured by the models
mentioned above (compare the results at gauge 4 in figure 10 with the results at the
same gauge in Kazolea & Ricchiuto 2018, figure 6, where it is numbered gauge 3).
This improvement in the accuracy of the description of breaking waves compared
to eddy-viscosity models is attributable to a better modelling of turbulence through
the resolution of the large-scale turbulence with the variable enstrophy. The passing
at gauge 6 marks the end of the breaking process, and is accompanied by a more
pronounced manifestation of the wave decomposition into secondary waves. To our
knowledge, no depth-averaged model is able to provide such a level of agreement
at this gauge. As can be seen through gauges 7 and 8, the model is also able
to faithfully describe the end of the process, more successfully than the switching
strategies (Tissier et al. 2012; Duran & Marche 2017), or ad hoc viscosity approaches
(Klonaris, Memos & Karambas 2013). Note finally that the presented results appear
to be of the same order of quality as those obtained with direct computational fluid
dynamics (CFD) simulations with ad hoc eddy viscosity (Kamath et al. 2015).
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As for the previous test case, the switching models produce breaking waves with
excessively steep fronts and create numerical instabilities when the mesh is refined.
The eddy-viscosity models do not have these problems but they need a breaking
criterion for the initiation and termination of the breaking processes as with the
switching models. That our model does not need any breaking criterion for this
test case is an important improvement since these criteria are a serious weakness
of coastal waves models. This does not mean that there is no need for an initiation
criterion in other cases of wave trains. In this respect, further work is needed to
remove completely the need for a breaking criterion. But the fact that, in some cases
at least, no criterion is needed at all is an important result which makes the present
approach promising.

6.4. Tsunami wave on a conical island

Based on the laboratory experiments of Liu et al. (1995) and (Briggs et al. 1995),
we now investigate the evolution of a solitary wave propagating over a conical island.
This test is regularly employed to study run-up processes and related numerical
handling of dry cells with rough topographies in a two-dimensional environment (see
for instance Chen et al. 2000; Lynett, Wu & Liu 2002; Ricchiuto & Bollermann
2009; Kazolea et al. 2012; Azerad, Guermond & Popov 2017). The experimental
set-up implies a 25 m by 30 m basin equipped with a wavemaker calibrated for the
generation of solitary waves. The topography is defined as follows:

max (0.625, 09— f) if r<3.6
b(r) = 4 (6.8)

0 elsewhere,

r being the distance in metres from the centre of the island (xg, y9) = (12.96 m,
13.80 m). The initial water depth is Aj = 0.32 m. The flow evolution can be tracked
through a series of gauges covering the experimental domain, measuring the free
surface elevation. Several datasets are available, implying different initial amplitudes
of the incident wave. Here we chose a relative amplitude of a/hj =0.2, corresponding
to the most important initial nonlinearity. In this situation, as reported in Titov &
Synolakis (1995), wave breaking is observed all around the island. The phenomenon
is however not sufficiently pronounced to threaten the numerical stability and is
generally neglected in this respect. The objective here is to show that the method is
able to capture these small turbulent effects, while highlighting the possible related
benefits.

For the numerical simulation we used the third-order scheme on a structured mesh
of 49566 elements, corresponding to a space step of approximately Ax = Ay =
0.167 m. Still based on the law in (5.1), the virtual enstrophy threshold v, is equal
to 7.8 s72. As the dimensionless Reynolds number R depends on the topography (5.2),
a local strategy can be adopted to calculate the viscosity parameter from the law in
(5.2) i.e. R=0.85 where s=0 and R=15.85 where s =1/4). However, we did not
observe significant differences using a constant number all over the computational
domain corresponding to the average slope (see §5) and this yields a value of R
close to 2 (note that there is a weak sensitivity to this value). It is even possible to
remove the breaking criterion if s = 1/4 and to take R = 0.85 and ¥, = 7.8 s2 if
s=0and R=7.5 and v, =0 is s = 1/4 (the two last values being standard when
there is no need for a breaking criterion as in §6.3).
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FIGURE 11. (Colour online) Test 4: 3-D view of the free surface at r=3s; 6 s; 9 s;
10 s; 11.5 s and 12.5 s (from left to right and top to bottom).

One can observe 3-D snapshots of the solution during the propagation in figure 11,
exhibiting a good reproduction of the flow characteristics. In particular, the passing
of the emerged part of the island is well resolved, as well as the junction of the
two resulting lateral waves at the rear side of the cone and the run-up on the
lee side. Time series of the free surface are given at gauge numbers 6, 9, 16 and 22,
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| ‘Wavemaker

FIGURE 12. Test 4: positions of the gauges in the experiment of Briggs et al. (1995).
The large circle shows the base of the island.
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FIGURE 13. Test 4: time evolution of the free surface at reference gauges.

respectively located at (9.36 m, 13.80 m), (10.36 m, 13.80 m), (12.96 m, 11.22 m)
and (15.56m, 13.80m). The positions of these gauges are shown in figure 12 and the
results are presented in figure 13. We observe a good agreement with the experimental
data. In particular, as reported in Kazolea et al. (2012) and Lannes & Marche (2015)
for instance, slight overestimations of the leading wave amplitude at WG 9 and 22
can be observed when wave breaking is not accounted for (see also Fuhrman &
Madsen 2008). Injecting enstrophy into the system seems to slightly reduce these
discrepancies, especially for WG 22 and the minimum run-down amplitude of the
reflected wave at WG 9. As confirmed in figure 14, the method is able to identify
wave breaking in the vicinity of the island during the passing of the wave. Note that
similar results were obtained with a mesh of 150000 elements to confirm that these
amplitude corrections are not due to under-resolution.

As with all other models, the present model does not capture the small oscillations
after the main wave, especially at gauge 9. As discussed by many authors (Kanoglu
& Synolakis 1998; Fuhrman & Madsen 2008; Lannes & Marche 2015; Zhang et al
2016) the experimental solitary wave profiles were less accurate in their rear part than
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FIGURE 14. Test 4: time evolution of the trace of the virtual enstrophy tensor at reference
gauges.

in their front part and in particular they included a spurious tail which is likely to
explain these discrepancies. Additionally, as was pointed out by Liu et al. (1995),
the solitary wave was reflected in the experiments by the boundary of the basin and
by the wave generator. This explains some smaller waves which are not captured by
the numerical simulations such as the second elevation on the lee side of the island
(gauge 22).

6.5. Tsunami wave propagation over a 3-D reef

This last test case is extracted from the laboratory experiments described in Swigler
(2009). The set-up implies the study of a solitary wave evolving within a realistic
coastal configuration, including a three-dimensional fringing reef. This is a quite
demanding test case, implying highly nonlinear transformations, wave breaking and
treatment of shoreline motions in the presence of steep bottom variations. These
mechanisms entail complex turbulent dynamics that makes this benchmark in the
line of the targeted applications of the proposed model. Recent two-dimensional
Boussinesq-type models used this set of data to validate their ability to describe the
complexity of surf-zone mechanisms such as wave breaking and bore propagation
driven by strongly varying bathymetries (see for instance Roeber & Cheung 2012;
Shi et al. 2012; Kazolea et al. 2014).

The experimental basin is 48.8 m long and 26.5 m wide. The bottom geometry
reproduces a planar beach with a triangular flat reef surmounted by an idealized island
located at the centre, as can be seen in figure 15. The offshore water depth is set to
hiy =0.78 m, and the beach slopes extend from x =10 to x =32.5 m, so that a flat
bottom is recovered shortly after the shoreline. The triangular shelf has a maximum
elevation of 0.71 m and is linearly connected to the beach, with steeper slopes as
we get closer to the shelf edge. The island is represented by a 6 m diameter cone of
0.45 m height centred at x=12.6 m along the y-direction centreline. The flow motion
is followed by means of a measurement device composed of nine wave gauges, where
the free surface was recorded, supplemented by three acoustic Doppler velocimeters
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FIGURE 15. (Colour online) Test 5: sketch of the experimental basin with gauges and
acoustic Doppler velocimeter (ADV) locations.

Wave gauges ADV
No. 1 2 3 4 5 6 7 8 9 1 2 3

x(m 75 13 21 75 13 21 25 25 25 13 21 21
y(m O 0 0 5 5 5 0o 5 100 0 0 5

TABLE 2. Test 5: wave gauges and ADV locations.

(ADVs) to capture the velocity field. Their locations are indicated in table 2 and in
figure 15.

The relative amplitude of the incoming wave is a/hj=0.5, making this test highly
nonlinear. The computational domain was extended at the inlet and outlet boundaries
for the generation and the absorption of the solitary wave. The presented results
were obtained with the second-order scheme on a mesh of approximatively 200000
elements, refined in the vicinity of the apex, leading to maximum and minimum
areas maxrer, hy = 7.23 x 107> m? and minzcy; hy = 6.57 x 107* m? respectively.
Following the empirical laws (5.1) and (5.2), the breaking threshold is equal to
Yo =2.0 s7 and we set R=3.5, which corresponds to an intermediate slope between
the maximum and minimum slopes. Naturally, other reasonable choices can be made
for this parameter (with a definition depending on the local slopes for instance), but
these variations did not have a significant influence on the numerical results.
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FIGURE 16. For caption see next page.

Figure 16 presents several snapshots of the numerical simulation of the propagation
of a solitary wave towards the coast. The colour maps the value of tr ¢, which is the
turbulent energy of the system times 2/h%, from deep blue (almost no turbulence) to
red (highly turbulent). The red parts correspond to the foamy parts of breaking waves
with strong vortices and rollers. Colours refer to the online version of the paper. The
movie of this simulation can be found online.

The first important steps of the propagation, corresponding to the passing of the
central cone, can be observed in figure 16(a—d). As can be seen through the colour
mapping, wave breaking is well captured by the model since the enstrophy is triggered
at this stage. In accordance with the experiments and the works mentioned above, we
observe a total submersion of the island. The shoaling and breaking processes seem
to be well reproduced. In particular, just after the first breaking event at the arrival of
the apex, one can see the enstrophy propagating from the centre of the cone to the
lateral boundaries, which clearly highlights a progressive transmission of the turbulent
structures along the y-direction.
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FIGURE 16 (cntd). (Colour online) Test 5: snapshots of the free surface during the

run-up process. Colour mapping with respect to the quantity tr@ =@ + ¢ in s72.

Figure 16(e—g) focuses on the termination of the breaking process and the wave
propagation over the flat part of the beach. It can be seen that the enstrophy is
progressively dissipated, while some residual turbulence can still be observed around
the apex. The advancing wave front is well captured, without apparent numerical
instabilities.

Figure 16(h—j) proposes snapshots corresponding to the run-down process occurring
towards the end of the simulation. Again the scheme is able to detect the formation
of a hydraulic jump near the shoreline, which can be seen as the two-dimensional
counterpart of what has been observed in one dimension with test 2. Comparisons
with experimental data at wave gauges are displayed in figure 17 for the free surface.
They exhibit the capability of the model to predict accurately the arrival times of
incident and reflected waves and to provide the correct amplitudes throughout the
computational domain. Similar observations can be made with the time series of the
velocity obtained by ADV proposed in figure 18.

As in the previous cases the switching models tend to produce steeper wave fronts
for breaking waves. Again this is explainable by the fact that these models handle
breaking waves and turbulent dissipation by a discontinuity. The accuracy of our
results is comparable to that of Roeber & Cheung (2012), Shi et al. (2012) and
Kazolea et al. (2014) and there is no phase lag, as is obtained by some models.
Moreover due to the superior treatment of the large-scale turbulence, our model is
able to remove the need for a breaking criterion both for the breaking termination
and for the second breaking initiation during the run-down where a hydraulic jump
is formed. A breaking criterion is needed only for the initiation of the first breaking.


https://doi.org/10.1017/jfm.2019.125

https://doi.org/10.1017/jfm.2019.125 Published online by Cambridge University Press

A new model of shoaling and breaking waves. Part 2 185

0.4 . —————
0.2 WG1 — Numeric
.0 o\ coteasy . | _etanen © 2 Experimental

—-0.2

0.4
0.2 WG2
—-0.2

0.4
0.2 WG3
02

n (m)

n (m)

n (m)

0.4
0.2 /\ WG4 ]
—-0.2

0.4 _ )
0.2 J\ WG5S |

—0.2
0.4
0.2

0 beoon

—0.2 L

0.4
0.2 WG7

—02 ; i i . H H ; ]

0.4
0.2 WG8

0 loosoosessssssssed  SeiieonormrTeTTTTeSSe o - acad
—0.2
0.4
0.2 : WG9 1

—0.2

n (m)

n (m)

n (m)

n (m)

n (m)

n (m)

0 5 10 15 20 25 30 35 40
1(s)

FIGURE 17. Test 5: time evolution of the surface elevation at reference gauges.

7. Conclusion

We derived a new two-dimensional depth-averaged model for coastal waves under
the assumption of a weakly turbulent shallow-water flow. This is an extension of
the one-dimensional model of Kazakova & Richard (2019). The subdepth large-scale
turbulence is resolved and taken into account by a tensor quantity called enstrophy.
This tensor gives an anisotropic character to the model in accordance with the
anisotropy of the three-dimensional subdepth large-scale turbulence. This tensor is
also a source of vorticity of the mean flow and is responsible for transfers in both
directions between the large two-dimensional horizontal eddies with a vertical vorticity
and the three-dimensional subdepth turbulence. The small-scale turbulence is modelled
with a turbulent-viscosity hypothesis and a depth-uniform eddy viscosity. The weak
turbulence assumption is actually equivalent or superior to the hypotheses of other
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FIGURE 18. Test 5: time evolution of the velocity components at ADVs.

coastal waves models and does not prevent the application of the model to breaking
waves in the surf zone with a strong turbulence.

The three equations of the model consist of a scalar equation representing the mass
conservation, a vector equation expressing the momentum balance and a tensor
equation for the enstrophy tensor. The equation for the trace of this tensor is
equivalent to the depth-averaged kinetic energy equation. The eddy viscosity and
the turbulent dissipation are obtained by analogy with classical empirical laws. The
presence of viscosity and dispersion implies the absence of discontinuities in the
solution.

The model is fully nonlinear and its dispersive properties are equivalent to those of
the Green—Naghdi equations. These properties were further improved by the method
of Bonneton et al. (2011) which can be directly extended to our model. The numerical
resolution was obtained by an asymptotically equivalent formulation of the model
equations according to the constant diagonal method of Lannes & Marche (2015) and
by the discontinuous Galerkin scheme of Duran & Marche (2017). It is noteworthy
that the methods developed for the Green—Naghdi equations can be readily adapted
to this model since the dispersive terms are identical. The tensor equation includes no
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dispersive terms nor terms due to the variable bottom. The additional equations are
only transport equations with source terms without high-order derivatives, not even of
second order. Consequently the numerical resolution complexity is not significantly
increased by comparison with the Green—Naghdi equations. Compared to the hybrid or
switching methods, there is no problem of mesh grid sensitivity nor of non-physical
oscillations.

A breaking criterion is not always needed. When it is needed, the breaking criterion
of Kazakova & Richard (2019) for solitary waves can be taken directly as well as the
values for the parameters of the model. There is no need for a breaking termination
criterion. There is a low sensitivity to the precise values of these parameters and
also to the discretization parameters, which gives an appreciable robustness to the
model. These improvements are attributable to the presence in the model of a quantity
resolving explicitly the large-scale turbulence. The partial removal of the breaking
criteria is already an important result. Future works on this approach should endeavour
to remove completely these criteria which would be an important improvement in
coastal wave modelling.

The model was used to simulate various cases of solitary wave propagation and one
case of wave trains. Studied phenomena include the run-up and run-down of a wave
over a beach, the propagation of a wave train over a bar and the two-dimensional
waves propagation around an island or around a reef and on a sloping beach. The
agreement with the experimental measures is very good in all cases. In particular
the breaking phenomenon, including the hydraulic jump appearing in a run-down
phase, are better or more easily described than in previous depth-averaged models.
The numerical simulations show that this new model is numerically robust and that
it has a predictive character and a high physical content without significant increase
in numerical complexity.

All these results show that this approach is really promising but it should be
extended in a future work to a thorough study of wave trains and of the different
types of breaking processes, mainly the spilling and plunging types. In particular, the
empirical laws for the models parameters, which are well established in the case of
a solitary wave, are needed for wave trains in order to give the model a complete
predictive character.
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Supplementary movie

A movie of the numerical simulation of the two-dimensional propagation of a
solitary wave around a reef over a sloping beach, including run-up and run-down
(test case of §6.5), is available as an online supplementary material.

Supplementary movie is available at https://doi.org/10.1017/jfm.2019.125.
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Appendix A. Conventions used in tensor calculus

For any vector (first-order tensor) V = Vie; , second-order tensor A= Aje; ® ¢; and
A= A;jei®ej or third-order tensor B = Bje; ® ¢; ® ¢, (using Einstein notation), the
dot product is defined as

A-A= AikA}g.ei X ¢, (A 1)
the double dot product is defined as

A A =AjA (A2)

Ji

the divergence operator is defined as

) aU; ) 0A; . 0B
divU = , divA=—¢;, divB= e; e, (A3a—c)
0x; 0x; Xy
and the gradient of a vector is defined as
oU;
gradU = Pl (A4)
X

J

Appendix B. Equations of the model

The complete system of equations can be written with the components U and V of
the average velocity and with the three independent components ¢;;, ¢, and ¢y of
the symmetrical enstrophy tensor. The mass equation (2.23) can be written

oh  dhU  0hV

—+—4+—=0. B1
8t+8x+8y B

The momentum equation (2.38) in dimensional form gives the two scalar equations

dhU
=t —(hUz + Ry + T+ 1) + —(hUV+ 1)
b d aU v\ o aU 1%
——gh>" + = (4vrh 20rh ) + = (vph S oSS ) -, (B2
et a<vTa+”Ta) ay(”Tay“L”Tax)fX (B2)
RV 9 \ .
T+*(hUV+h <P12)+*(hV +hen+I+1T)

ob V. aU\ 9 aU Vv
=g+ 2 (v v 20rh S+ 4vh ) — . (B3
88y+8x<vT ox VT 8y) 3y <”T +”Ta> - B
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The enstrophy equation (2.49) in dimensional form gives the three scalar equations

ah dhU dhV E)% AU
on + pi + o =2h@y1— — 2hp,—
at dx ay ay ay
v aU\> UV _dUIV C1ANS
—18( =) +4———+2——+2( ) | —ChonVon T ¢n, (B4)
h ox ax dy ay ox ay
dhpi,  dhUgp,  dhVeiy aU Vv E)% AU
=h — + — | — hgy— — hgy—
a0 T ax T oy v Gy Ty ) TG TR
vy AU AU VoV AUV UV
— B34+ —— )45 ——+—— || — Chpn ,
+h [ <8x 8y+8x 8y>+ <8x 8x+8y 8y>] Py pu + ¢z
(BS)
and
8]1(,022 ahU§022 8hV§022 aU aVv
= 2h@y — — 2hg1, —
a0 T ax T oy e
v avV\® UV UV v\’
+ 218 — ) +d4——+2——+2(— ) | = Chonoi 9. (BO)
h ay ax dy dy ox ox

In these equations, the expressions for I1, IT’, f/, fy/ and vy are in dimensional form

o8 (B7)
2 3
. WD [ 3b b
mN=——(U—+V— (B8)
2 Dt ox ay
f,_hiiab+ 0bD (9b b B9)
T2 9x  9xDr \ 9x Ay
f/_hﬁabJrhabD yob 0 B10)
Y29y  9yDr \ ax dy
and
h2
VT=§ @11+ ¢n. B11)

Appendix C. Numerical scheme

We consider a computational domain 2 C R2?, discretized with a conformal
triangular mesh 7,. Denoting by 7 a generic element of the triangulation and by
oT its boundary, we introduce the broken polynomial space

PY(Ty) :={v e L* | vy e PXT), VT € Ty}, (C1)

where P*(T) denotes the space of two-variable polynomials in 7 of degree at most k.
The area of T is denoted |7| and the notations b, p, will respectively stand for its
diameter and perimeter. In the following, the notation N, is employed for the number
of degrees of freedom, equal to dim(P*(T)) = (k + 1)(k + 2)/2. The approximation
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space is X;, =PX(T) x (PX(T))?> x (P*(T))*. The computational time interval is denoted
[0, #,..x] and discretized in a sequence of intermediate times (¢"),—oy With a local time
step At" =¢"*! — ", With notations similar to the continuous frame, we hence seek
for an approximate solution W, = (Z,, hU;, h@1, h@ion, hgyny) of (4.18). The resulting
semi-discrete formulation can be expressed through the local statement: find W, € X,
such that:

d
/ —W, 7, dx — /F(Wh, by) - grad 7, dx +/ F(W,, by) - nyr mj, ds
r dt T aT
+ / D(W,. by de = / S(W,. by dr, (€2)
T T

for all 7, € P*(7;) and all T € 7;. In the formulation above, b, stands for a polynomial
expansion of the topography » on P*(7,) and n,r is the unit outward normal to the
boundary 7. Given a local polynomial expansion basis {¢;}"*, the local restriction of
the solution on a given element 7 can be written as:

N
Wir@, 0)=> Wi)¢i(x), xeT,1€[0, lyql, (C3)

i=1

where {Wi}fyk are the local expansion coefficients, so that the formulation (C2) leads
to

N d -
YA ( / ¢,-¢jdx> - [E Wb - gradgyar+ S [ Fregas
e T T Fcor Y F
+ /D(Wh, bp)¢; dx = / S(Wy, bpgjdx, 1<j<N;. (C4)
T T

In the above expression, I@‘T,F are interface terms approximating the projection of the
fluxes F(W,, by,) - nrr along the unit outward normal corresponding to the face F
of T, defined in the spirit of finite volume methods. In Duran & Marche (2017), the
preservation of motionless steady states Z=cte, U =0 is guaranteed for solutions of
an arbitrary order based on an adaptation of the hydrostatic reconstruction (Audusse
et al. 2004). As a matter of fact, it can be shown easily that the pre-balanced
formalism allows a trivial treatment of such configurations, as soon as the line
and surface integrals are computed exactly and the topography admits a continuous
discrete representation (which is automatically ensured with nodal expansions). As a
consequence, with the same choice of nodal expansion basis {¢;}}* for the bathymetry,
there is no need to introduce modified states or additional correction term in the
numerical fluxes. In light of this, classical Rusanov fluxes are used to evaluate the
interface terms:

ﬁT,F =F,W ,W" b~ b*, nrr)
= %(F(W_, b)) enrp+FW b)) enrp) —aWH —W"), (C5)

where the superscripts ‘—/+’ refer to the interior and exterior states respectively and
a=maxre7;, Ay, Ar referring to the maximum wave speed at the level of the element

T:

A = max(U - nyr & Vgh+3Rny - @ - nyr). (C6)
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Based on the works of Cockburn & Shu (2001), the associated Courant—Friedrichs—
Levy condition is
AT Ar <
|T| 2k+1
but the presence of viscous terms in the model may constrain the time step to a
parabolic stability condition. This point has to be taken into account during our
numerical simulations. An implicit treatment of these terms would allow us to get
rid of this restriction, but at the price of partially loose the computational efficiency
and the ease of implementation of the method. Such investigations are left for future
works.

For the wetting and drying treatment, we used the technique employed in Duran &
Marche (2017), involving the positive-preserving reconstruction introduced in Zhang,
Xia, & Shu (2012), coupled with a classical cutoff technique to discriminate wet
cells from dry cells. This method was sufficient to stabilize the computations in the
vicinity of dry fronts, even in the presence of enstrophy, and without the need for a
preliminary thin layer of water.

VT €Ty, (C7
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