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Abstract We solve the inverse differential Galois problem over differential fields with a large field of

constants of infinite transcendence degree over Q. More generally, we show that over such a field, every
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Introduction

Large fields play a central role in field arithmetic and modern Galois theory, providing

an especially fruitful context for investigating rational points and extensions of function

fields of varieties. A field k is called large if every smooth k-curve with a k-rational point

has infinitely many such points (see [21, p. 2]). In this paper, we extend a key result

about the Galois theory of large fields to the context of differential Galois theory.

Differential Galois theory, the analog of Galois theory for linear differential equations,

had long considered only algebraically closed fields of constants; but more recently, other

constant fields have been considered (e.g., see [1–3, 6, 7, 16]). Results on the inverse

differential Galois problem, asking which linear algebraic groups over the constants can
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arise as differential Galois groups, have all involved constant fields that happen to be

large. In this paper, we prove the following result (see Theorem 3.3).

Theorem A. If k is any large field of infinite transcendence degree over Q, then every

linear algebraic group over k is a differential Galois group over the field k(x) with

derivation d/dx.

As a consequence, we solve the inverse differential Galois problem over Qp(x); this had

previously been open. (See also Corollary 3.6.)
In differential Galois theory (as in usual Galois theory), researchers have considered

embedding problems, which ask whether an extension with a Galois group H can be

embedded into one with group G, where H is a quotient of G. (E.g., see [4, 5, 8, 14,

17, 19].) In order to guarantee solutions, it is generally necessary to assume that the

extension is split (i.e., G → H has a section). In this paper, we prove the following result

about split embedding problems over large fields (see Theorem 4.4).

Theorem B. If k is a large field of infinite transcendence degree over Q, then every split

differential embedding problem over k(x) with derivation d/dx has a proper solution.

In fact, our proof shows somewhat more. Given a field k0 of characteristic zero and
a linear algebraic group G over k0, there exists an integer n such that for any large

overfield k/k0 of transcendence degree at least n, there is a Picard–Vessiot ring over k(x)
with differential Galois group Gk (see Theorem 3.3(a)). A similar assertion holds in the

situation of Theorem B; see Theorem 4.4(a).

Theorems A and B carry over [21, Main Theorem A] from usual Galois theory to

differential Galois theory. That result, which was the culmination of much work on inverse

Galois theory for function fields over various types of base fields, proved that every finite

group is a Galois group over k(x) and that finite split embedding problems are solvable

over k(x), if k is large. The result made clear that inverse Galois theory over function fields

is best studied in the context of large fields, which include in particular R, Qp, k((t)),
k((s, t)), algebraically closed fields, and pseudo-algebraically closed fields. We refer the

reader to [23] for a further discussion.

Theorem A also generalizes a number of known results on the differential inverse Galois

problem (e.g., in the cases of k being algebraically closed, real, or a field of Laurent series

in one variable) as well as yielding other results (e.g., the cases of pseudo-algebraically

closed fields, Laurent series in more than one variable, and the p-adics). Moreover, in

this paper, we generalize the theorem further from k(x) to all differential fields with field

of constants k that are finitely generated over k (Corollary 3.6).

A special case of Theorems A and B was proven by the first three authors in [3], where
k was required to be a Laurent series field k0((t)). The restriction there to that case had

resulted from the use of patching methods in that paper. In the current paper, we bring

in other ideas to build on the results of [3] and of two sequels [4, 5] in order to obtain our

theorems about function fields over large fields. In [4, Theorem 4.2], it was shown that

proper solutions exist to every split differential embedding problem over k0((t))(x) that is

induced from a split embedding problem over k0(x). Since Laurent series fields are large,

the main result in this current paper also yields a new result over Laurent series fields,
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namely that in [4], the hypothesis on the embedding problem being induced from k0(x)
can be dropped.

As in the case of embedding problems over large fields in usual Galois theory, it is

necessary in our main result to assume that the embedding problem is split. In usual

Galois theory, this is because in order for all finite embedding problems over k(x) to

have proper solutions, it is necessary by [25, I.3.4, Proposition 16] for k(x) to have

cohomological dimension at most one, and, hence, for k to be separably closed (not

merely large). In differential Galois theory, every finite regular Galois extension of k(x)
is a Picard–Vessiot ring for a finite constant group, and so the same reason applies.

On the other hand, in usual Galois theory, every finite embedding problem over k(x)
(even if not split) has a proper solution if k is algebraically closed and in fact has many

such solutions in a precise sense; this implies that the absolute Galois group of k(x)
is free of rank card(k) (see [12, 20]). In the differential situation, it was shown in [5,

Theorem 3.7] that all differential embedding problems over C(x) have proper solutions.

The main theorem of the current paper combined with [5, Proposition 3.6] implies that for

any algebraically closed field k of infinite transcendence degree over Q, every differential
embedding problem over k(x) has a proper solution (Corollary 4.6).

Unlike the analogous results in usual Galois theory, our Theorems A and B assume

infinite transcendence degree. This extra hypothesis results from specialization in

differential Galois theory behaving differently than in usual Galois theory. In both

situations, an extension of k((t))(x) with a given group G descends to an extension of

l(x) with group G, for some finitely generated field extension l/k contained in k((t)). The

field l is the function field of a k-variety V , over which the Galois extension is defined.

In usual Galois theory, the Bertini–Noether theorem (e.g., [10, Proposition 9.4.3]) yields

a dense open subset U ⊆ V such that the specialization of the Galois extension to any

k-point of U is again a G-Galois field extension; and this yields the desired result for k
large. But in differential Galois theory, the natural analog of Bertini–Noether fails, and

the situation is much more complicated (see [15, § 5]). In order to complete the strategy
in our situation, we first use that the given group descends to a finitely generated field

extension k0/Q. Then the extension of k((t))(x) with differential Galois group G descends

to an extension of k1(x) with differential Galois group G for a suitable finitely generated

field extension k1 ⊆ k0((t)) of k0. If the transcendence degree of k/k0 is greater than or

equal to the transcendence degree of k1/k0, then we can embed k1 into k (Corollary 1.2)

and achieve Theorem A by base change from k1 to k. (This can be viewed as descending

to a k0-variety and then specializing to a k-point that lies over the generic point of that

variety.) As the group varies, so do k0 and k1; so to obtain Theorem A for all G, we

require k to have infinite transcendence degree over Q.

This manuscript is organized as follows. Section 1 concerns embeddings of function

fields into large fields. More specifically, Proposition 1.1, originally proven by Arno Fehm,

states that the function field of a smooth connected variety over a subfield of a large field

can be embedded into that large field under certain hypotheses. This proposition and its

corollary are key to deducing our results over large fields from the case of Laurent series

fields, in Sections 3 and 4. Section 2 concerns the Picard–Vessiot theory over arbitrary

constant fields of characteristic zero. In particular, it is proven here that the property
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of being Picard–Vessiot is preserved under base change. In Propositions 3.1 and 4.2,

respectively, this is used to descend a Picard–Vessiot ring over a function field to one

over a smaller ground field (viz. a rational function field over a finitely generated subfield

of the original field of constants). We use these descent results to solve the differential

inverse problem and differential embedding problems in Sections 3 and 4, in the context

of large fields.

1. Embeddings into large fields

The aim of this section is to prove that certain subfields of the Laurent series field k((t))
can be embedded into k if k is a large field, which will become important in Sections 3

and 4. Recall that a field k is large if every smooth k-curve with a k-rational point has

infinitely many such points. Examples include algebraically closed fields, fields that are

complete with respect to a non-trivial absolute value (see, e.g., [23, § 1, Ex. A.2]), and
fraction fields of domains that are Henselian with respect to a non-trivial ideal (see [22,

Theorem 1.1]). In particular, the fields C, R, Qp, and the fraction field k0((t1, . . . , tn)) of

a power series ring in several variables are all large.

If k is large, then every smooth k-curve with a rational point has card(k) rational points

[23, Theorem 3.1.1]. Also, if k is large and X is a smooth irreducible k-variety with a

rational point, then X (k) is dense in X [23, Proposition 2.6]. Moreover, a field k is large if

and only if it is existentially closed in its Laurent series field k((t)) [23, Proposition 2.4].

Hence, if k is large and X is a smooth k-variety with a k((t))-point, then X has a k-point.

The following result was proven in [9]; see Theorem 1 and Lemma 4 there. Below we

give a shorter and more direct proof, using a different strategy. (Here and below we write

td(k/ l) for the transcendence degree of a field extension k/ l.)

Proposition 1.1. Let k be a large field, l ⊆ k be a subfield, and V be a smooth connected

l-variety with function field L = l(V ) and V (k) non-empty. Suppose that td(k/ l) >
dim(V ). Then the canonical embedding of fields l ↪→ k can be prolonged to an embedding

of fields L ↪→ k. Equivalently, there exist k-rational points dominating the generic point

of V .

Proof. Since V is smooth and connected, it is also integral. Hence, the given k-rational

point is contained in a non-empty (dense) affine open subvariety which is smooth and

integral, and we may replace V by that subvariety (which we again call V ). Let R := l[V ]
be its coordinate ring; then L = Frac(R). Given any k-point of Spec(R) (i.e., a point

x ∈ Spec(R) together with an l-algebra map ı : κ(x) ↪→ k), let dx := td(κ(x)/ l). Choose

(x, ı) as above such that dx is maximal; hence, dx 6 dim(V ). It suffices to show that

dx = dim(V ), since then x is the generic point of V .
Suppose to the contrary that dx < dim(V ). Let u := (u1, . . . , udx ) be a system of

functions in R such that its image ũ = (ũ1, . . . , ũdx ) under the reduction map R→ κ(x)
is a transcendence basis of κ(x) over l. The composition l[u] → R→ R/Ix = κ(x) is

injective; hence, l[u] ∩ Ix = {0}, where Ix G R is the prime ideal defining x . Let l1 =
l(u) = Frac(l[u]) and R1 := R⊗l[u] l1. The l-embedding R ↪→ R1 defines a dominant

morphism of schemes V1 := Spec R1 ↪→ Spec R = V , with V1 a smooth l1-variety. Since
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κ(x) is an algebraic field extension of l1, x ∈ V is the image of a closed point of V1.

Hence, ı : κ(x)→ k defines a k-point x1 ∈ V1(k). Let l̃ be the algebraic closure of l1
in k. Since td(l1/ l) < td(L/ l) = dim(V ) 6 td(k/ l), it follows that l̃ is strictly contained

in k. Hence, by Theorem 3.1(2) from [23], V1 has a k-point that is not an l̃1-point. The

associated point z ∈ V1 = Spec(R1) is equipped with an l1-embedding ı : κ(z) ↪→ k whose

image is thus not algebraic over l1. Viewing z as a point of V via V1 ↪→ V , we obtain a

contradiction to maximality because

dz = td(κ(z)/ l) = td(κ(z)/ l1)+ td(l1/ l) > td(l1/ l) = dx .

This proposition yields the following corollary, which we use in proving Theorem 3.3.

Corollary 1.2. Let k be a large field, k0 ⊆ k and k1 ⊆ k0((t)) be subfields with k0 ⊆ k1,

td(k1/k0) 6 td(k/k0) and k1/k0 finitely generated. Then there exists a k0-embedding

k1 ↪→ k.

In particular, if k0 ⊆ k are fields such that k is large and td(k/k0) is infinite, then for

every finitely generated field extension k1/k0 with k1 ⊆ k0((t)), there is a k0-embedding

k1 ↪→ k.

Proof. Let k1 be as in the statement of the corollary. Since K0 := k0((t)) is separably

generated over k0 and k0 is relatively algebraically closed in K0 (i.e., K0/k0 is a regular

field extension), it follows that k1 is separably generated over k0 and k0 is relatively
algebraically closed in k1 as well. Equivalently, there exists a geometrically integral

smooth k0-variety V with k0(V ) = k1 and dim(V ) = td(k1/k0). For such a V , V (k1) is

non-empty (because it contains the generic point of V ) and thus V (K0) is non-empty

as well since K0 ⊇ k1. Therefore, so is V (K ), where K := k((t)) ⊇ k0((t)) = K0. Since k
is large, it is existentially closed in K = k((t)) (as noted earlier); and so V (k) is also

non-empty. An application of Proposition 1.1 yields a k0-embedding k1 ↪→ k (with l of

loc. cit. replaced by k0).

2. Picard–Vessiot theory

Our main results concern differential Galois theory over a field of constants that is large

but not necessarily algebraically closed. While classical Picard–Vessiot theory (as in [24])

assumes an algebraically closed field of constants, we need to use a more general form of
the theory; e.g., see [7] and [3]. In Proposition 2.3, we prove that being a Picard–Vessiot

ring is preserved under extension of constants; this is used in Sections 3 and 4.

Let CR denote the ring of constants of a differential ring R. For a differential field

F of characteristic zero, K = CF is a field that is relatively algebraically closed in F .
Consider a matrix A ∈ Fn×n and the corresponding linear differential equation ∂(y) = Ay.

A fundamental solution matrix for this equation is a matrix Y ∈ GLn(R) with entries in

some differential ring extension R/F such that ∂(Y ) = A · Y ; i.e., the columns of the

matrix Y form a fundamental set of solutions. A Picard–Vessiot ring for ∂(y) = Ay is

a simple differential ring extension R/F with CR = K such that R is generated by the

entries of a fundamental solution matrix Y ∈ GLn(R) together with det(Y )−1. In short,

we write R = F[Y, det(Y )−1
].
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The differential Galois group of a Picard–Vessiot ring R/F is the functor

G : (K -algebras)→ (Groups), G(S) := Aut∂(R⊗K S/F ⊗K S),

where Aut∂(R⊗K S/F ⊗K S) indicates the F ⊗K S-linear differential automorphisms of

R⊗K S and where the K -algebra S is given the trivial derivation. The functor G is

represented by the K -Hopf algebra CR⊗F R = K [(Y−1
⊗ Y ), det(Y−1

⊗ Y )−1
], where Y−1

⊗

Y := (Y−1
⊗ 1) · (1⊗ Y ). Hence, G is an affine group scheme of finite type over K and thus

a linear algebraic group over K (since char(K ) = 0).

Remark 2.1. If K is algebraically closed, then G is determined by its group of K -points

G(K ) = Aut∂(R/F), which is the classical differential Galois group over such a K .

Moreover, in that situation, there is a unique Picard–Vessiot ring up to isomorphism

for every matrix A ∈ Fn×n [24, Proposition 1.18]. This is not the case for general fields

of constants; both existence and uniqueness can fail. But over a rational function field,

Picard–Vessiot rings do always exist, which is easy to see using a power series expansion

of the solution at an ordinary point of the differential equation (i.e., where it is not

singular) which is defined over K . More generally, the same holds for the function field

of any K -curve with an ordinary K -point, whether or not K is finitely generated.
The following fact is worth noting but will not be used in this paper: If a Picard–Vessiot

ring does exist for a given differential equation, the set of isomorphism classes of

Picard–Vessiot rings for that equation is in bijection with H1(K ,G). Here G is the

differential Galois group of (any) one of the Picard–Vessiot rings for the equation

(choosing a different Picard–Vessiot ring gives an inner form of G and thus does not

change the Galois cohomology set). For a proof, see [7, Corollary 3.2] or [6, Proposition 1].

By differential simplicity, every Picard–Vessiot ring R/F is an integral domain such

that CFrac(R) = CR = CF . More generally, we have the following.

Lemma 2.2. Let R be a simple differential ring containing Q. Then R is an integral

domain such that CR is a field, and the constant field of Frac(R) is equal to CR.

Proof. As in [24, Lemma 1.17.1], every zero divisor of R is nilpotent and the radical

ideal is a differential ideal (see also [7, Lemma 2.2]). Hence, R is an integral domain. If

x ∈ Frac(R) is constant, then I = {a ∈ R | ax ∈ R} is a non-zero differential ideal in R
and thus 1 ∈ I and x ∈ R. Hence, CFrac(R) = CR and, in particular, CR is a field.

Proposition 2.3. Let F be a differential field of characteristic zero with field of constants

K and let R/F be a Picard–Vessiot ring with differential Galois group G. Let K ′/K be a

field extension and define F ′ = Frac(F ⊗K K ′) and R′ = R⊗F F ′. Then F ′ is a differential

field extension of F with CF ′ = K ′ and R′ is a Picard–Vessiot ring over F ′ with Galois

group G K ′ := G×K K ′.

Proof. The derivation on F extends canonically to the integral domain F ⊗K K ′ and

hence to F ′ by considering elements in K ′ as constants. Both F and R are simple

differential rings with constant field K ; so F ⊗K K ′ and R⊗K K ′ are also simple
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differential rings, by [18, Lemma 10.7], with constants K ′. By Lemma 2.2, CF ′ =

CF⊗K K ′ = K ′ and CFrac(R⊗K K ′) = CR⊗K K ′ = K ′.
Since R/F is a Picard–Vessiot ring, R = F[Y, det(Y )−1

] for some fundamental

solution matrix Y ∈ GLn(R) for a differential equation ∂(y) = Ay over F . Thus, R′ =
F ′[Y, det(Y )−1

], where we view R ⊆ R′. Identifying R⊗K K ′ with R⊗F (F ⊗K K ′) ⊆ R′,
we have R′ = R⊗F F ′ = R⊗F S−1(F ⊗K K ′) = S−1(R⊗F (F ⊗K K ′)) = S−1(R⊗K K ′)
and Frac(R′) = Frac(R⊗K K ′), where S is the set of non-zero elements in F ⊗K K ′. So

CFrac(R′) = K ′ = CF ′ . By [7, Corollary 2.7], it then follows that R′ is simple and R′/F ′ is

a Picard–Vessiot ring for the differential equation ∂(y) = Ay.

Let G ′ denote the differential Galois group of R′/F ′. We claim that G ′ = G K ′ . For
every K ′-algebra S, there is an injective group homomorphism

G K ′(S) = Aut∂(R⊗K S/F ⊗K S)→ G ′(S) = Aut∂(R′⊗K ′ S/F ′⊗K ′ S),

using that R′⊗K ′ S is a localization of R⊗K S. Conversely, every γ ∈ G ′(S) restricts to

an injective differential homomorphism R⊗K S→ R′⊗K S. The matrix B = Y−1γ (Y ) ∈
GLn(R′⊗K S) has constant entries and is thus contained in GLn(S). Therefore, γ (Y ) = Y B
is contained in R⊗K S. Since R = F[Y, det(Y )−1

], we conclude that γ (R⊗K S) = R⊗K S.

Thus, γ restricts to an element in G K ′(S). Hence, the homomorphism G K ′(S)→ G ′(S)
is a bijection and it defines an isomorphism of linear algebraic groups G K ′ → G ′.

If K ′/K is algebraic, then F ⊗K K ′ is a field, and the statement and proof of the above

proposition simplify. We will use Proposition 2.3 in Sections 3 and 4 in the context of

F = K (x) and F ′ = K ′(x), with K ′/K not algebraic.

3. The inverse differential Galois problem

In this section, we solve the inverse differential Galois problem for rational function fields

over a large field of constants having infinite transcendence degree over Q. Our strategy

is to build on the main result of [3], which solved the problem in the case that the ground

field is of the form k0((t)). Concerning the passage from that case to the case of large

fields, we note that Laurent series fields are large; and, in addition, any large field k is

existentially closed in the Laurent series field k((t)).
Our proof relies on the notion of ‘descent’. More precisely, if F ′/F is an extension of

differential fields, we say that a Picard–Vessiot ring R′/F ′ descends to a Picard–Vessiot

ring over F if there exists a Picard–Vessiot ring R/F together with an F ′-linear

differential isomorphism R⊗F F ′ ∼= R′. In particular, given a field extension K/k, a

Picard–Vessiot ring R over K (x) descends to a Picard–Vessiot ring over k(x) if there
exists a Picard–Vessiot ring R0/k(x) together with a K (x)-linear differential isomorphism

R ∼= R0⊗k(x) K (x).

Proposition 3.1. Consider a rational function field K (x) of characteristic zero with

derivation ∂ = d/dx and let R/K (x) be a Picard–Vessiot ring with differential Galois

group G. Let further k0 ⊆ K be a subfield and let G0 be a linear algebraic group over

k0 with (G0)K = G. Then there is a finitely generated field extension k1/k0 with k1 ⊆ K
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such that R/K (x) descends to a Picard–Vessiot ring R1/k1(x) with differential Galois

group (G0)k1 .

Proof. As R is a finitely generated K (x)-algebra, we can write R as a quotient of a

polynomial ring K (x)[X1, . . . , Xr ] by an ideal J . We fix generators g1, . . . , gm of J :

R = K (x)[X1, . . . , Xr ]/(g1, . . . , gm).

We fix an extension of ∂ from K (x) to K (x)[X1, . . . , Xr ] such that this derivation induces

the given derivation on R. In particular, J is a differential ideal in K (x)[X1, . . . , Xr ]. We

can now choose a finitely generated field extension k/k0 with k ⊆ K such that

(1) gi ∈ k(x)[X1, . . . , Xr ] for all i = 1, . . . ,m;

(2) ∂(X i ) ∈ k(x)[X1, . . . , Xr ] for all i = 1, . . . , r ;

(3) R = K (x)[Y, det(Y )−1
] for a fundamental solution matrix Y ∈ GLn(R) with the

property that all entries of Y have representatives in k(x)[X1, . . . , Xr ]; and

(4) the element in R represented by X i can be written as a polynomial expression over
k(x) in the entries of Y and det(Y )−1 for all i = 1, . . . , r .

Property (2) implies that k(x)[X1, . . . , Xr ] is a differential subring of K (x)[X1, . . . , Xr ].

Set I = J ∩ k(x)[X1, . . . , Xr ]. Then I is a differential ideal in k(x)[X1, . . . , Xr ] and it

contains g1, . . . , gm by (1). As K (x)/k(x) is faithfully flat, I is thus generated by

g1, . . . , gm . We define R1 = k(x)[X1, . . . , Xr ]/I . Hence,

R1 = k(x)[X1, . . . , Xr ]/(g1, . . . , gm)

is a differential ring and as K (x) is flat over k(x), there is a K (x)-linear isomorphism of

differential rings

R1⊗k(x) K (x) ∼= R.

Let c ∈ CR1 . As CR = K , there exists an a ∈ K such that we have c⊗ 1 = 1⊗ a in

R1⊗k(x) K (x). Thus, a ∈ k(x) and c = a ∈ k. Hence, CR1 = k.

Next, consider a non-zero differential ideal I1 ⊆ R1. Then J1 = I1⊗k(x) K (x) is a
non-zero differential ideal in R1⊗k(x) K (x) ∼= R, and as R is a simple differential ring,

we conclude that 1 ∈ J1. As K (x)/k(x) is faithfully flat, R1⊗k(x) K (x) is faithfully flat

over R1 and therefore I1 = J1 ∩ R1. Hence, 1 ∈ I1, and we conclude that R1 is a simple

differential ring.
Finally, (3) implies that the matrix Y has entries in the subring R1 of R. Its determinant

det(Y ) ∈ R1 is a unit when considered as an element in R1⊗k(x) K (x) and thus det(Y )
is invertible in R1, so Y ∈ GLn(R1). Set A = ∂(Y )Y−1. As Y is a fundamental solution

matrix for R/K (x), A has entries in K (x). On the other hand, Y ∈ GLn(R1) implies that

the entries of A are contained in R1. Hence, A has entries in R1 ∩ K (x) = k(x), and, thus,

Y is a fundamental solution matrix for a differential equation over k(x). Furthermore,

R1 = k(x)[Y, det(Y )−1
] by (4). Hence, R1 is a Picard–Vessiot ring over k(x).
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Let G1 be the differential Galois group of R1/k(x). Then G1 is a linear algebraic group

over k and (G1)K = G by Proposition 2.3. Therefore, (G1)K = ((G0)k)K , and, hence,

there exists a finite extension k1/k with

(5) (G1)k1 = (G0)k1 .

We conclude that R descends to the Picard–Vessiot ring R1⊗k(x) k1(x) over k1(x) with
differential Galois group (G0)k1 by Proposition 2.3.

An analog of Proposition 2.3 in the context of differential embedding problems can

be found in the next section (Proposition 4.2). We illustrate the above proposition with

the following example. Here we take K in the proposition to be a Laurent series field

since that is the type of field that will be used in the next result; and we illustrate how

a Picard–Vessiot ring over K (x) can be descended to the rational function field over a

finitely generated field of constants.

Example 3.2. (a) Let E be a subfield of C, let K = E((t)), and let G be the orthogonal

group O2,K . Here G is induced by the group G0 = O2,Q over k0 = Q ⊂ K . Endow

K (x) with the derivation ∂ = d/dx and consider the differential equation ∂Y = AY
over K (x) with A =

(t −1
1 t

)
. Then a Picard–Vessiot ring R/K (x) for this differential

equation is given by

R = K (x)[y1, y2, (y2
1 + y2

2)
−1
] ⊂ K ((x)),

with y1 = et x cos(x) ∈ K ((x)) and y2 = et x sin(x) ∈ K ((x)) so that y2
1 + y2

2 = e2t x ;

and a fundamental solution matrix is
(y1 −y2

y2 y1

)
. The differential Galois group of R

over K (x) is then G. This Picard–Vessiot ring descends to a Picard–Vessiot ring

over k1(x) with group (G0)k1 (satisfying conditions (1)–(5) in the above proof) for a

finitely generated field extension k1/Q with k1 ⊆ K , as in Proposition 3.1. Namely,
we may take k1 = Q(t).

(b) Let K = C((t)) and now consider the group G = G2
m,K , which is induced by G0 :=

G2
m,Q. Since i ∈ K , the groups G2

m,K and O2,K are isomorphic; but the groups G2
m,Q

and O2,Q are not. So if we consider the same differential equation as in part (a),

then the descent of R to Q(t)(x) considered above does not have differential Galois
group (G0)Q(t), but rather O2,Q(t). On the other hand, over the field k1 := Q(i, t),
these two groups become isomorphic. So the above Picard–Vessiot ring over K (x)
with group G descends to a Picard–Vessiot ring over k1(x) with group (G0)k1 .

We now come to the main result of this section, the second part of which is Theorem A

from the Introduction.

Theorem 3.3. (a) Let k0 be a field of characteristic zero, and let G be a linear algebraic

group over k0. Then there exists a constant cG ∈ N, depending only on G, with

the following property: for all large fields k with k0 ⊆ k and td(k/k0) > cG , Gk is a

differential Galois group over (k(x), d
dx ).

(b) If k is a large field of infinite transcendence degree over Q, then every linear

algebraic k-group is a differential Galois group over k(x) endowed with ∂ = d/dx.
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Proof. Let K := k0((t)) be the Laurent series field over k0. Then ∂ = d/dx extends from

k(x) to K (x) and by [3, Theorem 4.5], there exists a Picard–Vessiot ring R/K (x) with

differential Galois group G K . Then by Proposition 3.1, there exists a finitely generated

field extension k1/k0 with k1 ⊆ K such that R/K (x) descends to a Picard–Vessiot ring

R1/k1(x) with differential Galois group Gk1 . Set cG := td(k1/k0).

Let k be a large field with k0 ⊆ k and td(k/k0) > cG . Then by Corollary 1.2, there

exists a k0-embedding k1 ↪→ k. To conclude the proof of (a), we can now base change

R1 to R1⊗k1(x) k(x) and obtain a Picard–Vessiot ring over k(x) with differential Galois

group (Gk1)k = Gk by Proposition 2.3.

The proof of assertion (b) follows easily from (a) by noting that every linear algebraic

k-group G descends to a subfield k0 ⊆ k, which is finitely generated over Q.

Example 3.4. (a) Let k0 = Q and G = O2,Q. Proceeding as in the proof of Theorem 3.3,

let K = Q((t)) and consider a Picard–Vessiot ring R/K (x) with differential Galois

group G K . Specifically, we may choose R as in Example 3.2(a) (with E = Q). As

in that example, R descends to a Picard–Vessiot ring over k1 = Q(t). If k is a large

field of transcendence degree at least one over Q, then we can embed k1 into k,

and we can then base change the Picard–Vessiot ring over k1(x) to obtain one

over k(x).

(b) More generally, for any positive integer n and with k0 and K as in part (a), we may

consider the differential equation ∂Y = AnY , where An is the 2n× 2n block diagonal

matrix whose ith block is Ai =
(ti −1

1 ti

)
, where t1, . . . , tn are sufficiently general (e.g.,

algebraically independent) elements of K . A Picard–Vessiot ring R/K (x) for this

differential equation is given by

R = K (x)[y1i , y2i , (y2
1i + y2

2i )
−1
| i = 1, . . . , n] ⊂ K ((x)),

with differential Galois group On
2,K . This Picard–Vessiot ring descends to a

Picard–Vessiot ring over k1(x) with group (On
2)k1 , where k1 = Q(t1, . . . , tn) ⊂ K .

If k is a large field of transcendence degree at least n, then we can embed k1 into k
and we obtain a Picard–Vessiot ring over k(x) with group On

2,k .

Remark 3.5. (a) Theorem 3.3 guarantees the existence of a Picard–Vessiot ring with

prescribed differential Galois group. By a standard Tannakian argument, one

can moreover prescribe the representation, i.e., the action on the solution space
(see [3, Proposition 3.2]).

(b) There exist large fields of arbitrary transcendence degree over Q. Namely, for any

non-zero cardinal d, if K = Q(xα |α ∈ I ), where {xα |α ∈ I } is a set of d variables,
then the algebraic closure k of K (t) in K ((t)) is a large field with td(k/Q) = d. The

field of algebraic p-adics (i.e., the relative algebraic closure of Q in Qp) is large of

transcendence degree equal to zero.

By [3, Corollary 4.14] (this is an adaption of a trick due to Kovacic), part (b) of

Theorem 3.3 extends from the rational function field k(x) to all finitely generated field

extensions with arbitrary derivations that have field of constants k.
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Corollary 3.6. Let k be large field of infinite transcendence degree over Q. Let F be a

differential field with a non-trivial derivation and field of constants k. If F/k is finitely

generated, then every linear algebraic group over k is a differential Galois group over F.

This result in particular applies if the field of constants k is Qp (or, more generally,

a Henselian valued field of infinite transcendence degree) or if k = k0((t1, . . . , tn)), the

fraction field of a power series ring in several variables.

4. Differential embedding problems

In this section, we solve split differential embedding problems over k(x) for large fields k
of infinite transcendence degree over Q. As in Section 3, we build on the Laurent series

case, relying here on [4], where induced differential split embedding problems were solved

via patching methods. In this way, we parallel the strategy that was used in usual Galois

theory, where the solvability of finite split embedding problems for function fields over

large fields was deduced from an analogous assertion over Laurent series fields; see [21],

[11] and [13]. But in the differential context, new issues need to be treated.

To this end, we work with differential torsors, which were introduced in [5]. Let F
be a differential field of characteristic zero with field of constants K and let G be
a linear algebraic group over K . We equip its coordinate ring K [G] with the trivial

derivation; hence, F[G F ] = F ⊗K K [G] is a differential ring extension of F . We write

F[G] = F[G F ]. A differential G F -torsor is a G F -torsor X = Spec(R) such that R is

a differential ring extension of F and such that the co-action ρ : R→ R⊗F F[G] is

a differential homomorphism. A morphism of differential G F -torsors ϕ : X → Y is a
morphism of G F -torsors (i.e., a G F -equivariant morphism of varieties) such that the

corresponding homomorphism F[Y ] → F[X ] is a differential homomorphism.

If Spec(R) is a differential G F -torsor and H is a closed subgroup of G, the ring of

invariants is defined as RHF = {r ∈ R | ρ(r) = r ⊗ 1}. If N is a normal closed subgroup

of G, then Spec(RNF ) is a differential (G/N )F -torsor and the co-action RNF → RNF ⊗F
F[G/N ] = RNF ⊗F F[G]NF is obtained from restricting the co-action ρ : R→ R⊗F F[G]
(see Proposition 1.17 together with Proposition A.6(b) in [5]).

By Kolchin’s theorem, if R/F is a Picard–Vessiot ring with differential Galois group G,

then Spec(R) is a G F -torsor. The co-action ρ : R→ R⊗F F[G] can be described explicitly

as follows. Let Y ∈ GLn(R) be a fundamental solution matrix, i.e., R = F[Y, det(Y )−1
].

Recall that K [G] = CR⊗F R is generated by the entries of the matrix Y−1
⊗ Y and its

inverse. Then ρ is determined by setting ρ(Y ) = Y ⊗ (Y−1
⊗ Y ). Conversely, if X =

Spec(R) is a differential G F -torsor with the property that R is a simple differential ring

and CR = K , then R is a Picard–Vessiot ring over F with differential Galois group G [5,
Proposition 1.12].

Lemma 4.1. Let K/k be a field extension in characteristic zero and let F1 be a differential

field with field of constants k. We equip K with the trivial derivation and set F =
Frac(F1⊗k K ). Let further G be a linear algebraic group over k. Assume that we are

given a Picard–Vessiot ring R/F with differential Galois group G K which descends to a

Picard–Vessiot ring R1/F1 with differential Galois group G. Then the following holds:
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(a) The co-action ρ : R→ R⊗F F[G] restricts to the co-action ρ1 : R1 → R1⊗F1

F1[G].

(b) For every closed subgroup H of G, the isomorphism R1⊗F1 F ∼= R restricts to an

isomorphism R
HF1
1 ⊗F1 F ∼= RHF .

Proof. Let Y ∈ GLn(R1) be a fundamental solution matrix, i.e., R1 = F1[Y, det(Y )−1
]. As

R descends to R1, there is a differential isomorphism R1⊗F1 F ∼= R over F . Hence, after

identifying R1 with a subring of R, we obtain an equality R = F[Y, det(Y )−1
]. Define Z =

Y−1
⊗ Y ∈ GLn(R1⊗F1 R1) ⊆ GLn(R⊗F R). Recall that F1[G] = F1[Z , det(Z)−1

] and the

co-action ρ1 : R1 → R1⊗F1 F1[G] is given by Y 7→ Y ⊗ Z . Similarly, the co-action ρ : R→
R⊗F F[G] is given by Y 7→ Y ⊗ Z . Hence, ρ = ρ1⊗F1 F and (a) follows.

The H -invariants are defined as RH
= { f ∈ R | ρ( f ) = f ⊗ 1} and so the equality ρ =

ρ1⊗F1 F implies (b).

A split differential embedding problem (N o H, S) over F consists of a semi-direct

product N o H of linear algebraic groups over K together with a Picard–Vessiot ring S/F
with differential Galois group H . A proper solution of (N o H, S) is a Picard–Vessiot ring

R/F with differential Galois group N o H and an embedding of differential rings S ⊆ R
such that the following diagram commutes:

N o H

∼=

��

// // H

∼=

��
Aut∂(R/F) res // // Aut∂(S/F)

Equivalently, R is a Picard–Vessiot ring with differential Galois group N o H
such that there exists an isomorphism of differential HF -torsors Spec(S) ∼= Spec(RNF )

[5, Lemma 2.8].

Proposition 4.2. Let F = K (x) be a rational function field of characteristic zero with

derivation ∂ = d/dx and let k0 ⊆ K be a subfield. Let (N0 o H0, S0) be a split differential

embedding problem over k0(x). Then for every proper solution R of the induced differential

embedding problem ((N0)K o (H0)K , S0⊗k0(x) K (x)) over K (x), there exists a finitely

generated field extension k1/k0 with k1 ⊆ K such that the following holds: R/K (x)
descends to a Picard–Vessiot ring R1/k1(x) that is a proper solution of the split differential

embedding problem ((N0)k1 o (H0)k1 , S0⊗k0(x) k1(x)) over k1(x).

Proof. We define N = (N0)K , H = (H0)K , S = S0⊗k0(x) K (x), and further G = N o H
and G0 = N0 o H0; hence, (G0)K = G. By Proposition 3.1, there exists a finitely

generated extension k1/k0 with k1 ⊆ K such that R descends to a Picard–Vessiot

ring R1/k1(x) with differential Galois group (G0)k1 . Therefore, we can write

R = K (x)[X1, . . . , Xr ]/I and R1 = k1(x)[X1, . . . , Xr ]/I1, for some polynomial ring

K (x)[X1, . . . , Xr ] with a suitable derivation that restricts to k1(x)[X1, . . . , Xr ] and

some differential ideal I that is generated by its contraction I1 = I ∩ k1(x)[X1, . . . , Xr ].
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Similarly, we can write S0 = k0(x)[Y1, . . . , Ys]/J0, S = K (x)[Y1, . . . , Ys]/J with J =
J0⊗k0(x) K (x). We define S1 = S0⊗k0(x) k1(x). Then S1 = k1(x)[Y1, . . . , Ys]/J1 with J1 =

J0⊗k0(x) k1(x). Since K (x)/k1(x) is faithfully flat, J1 = J ∩ k1(x)[Y1, . . . , Ys]. Let

ϕ : S→ RNK (x)

be the given isomorphism of HK (x)-torsors. After passing from k1 to a finitely generated

extension, we may assume that

(1) ϕ maps the elements in S = K (x)[Y1, . . . , Ys]/J represented by Y1, . . . , Ys
to elements in R = K (x)[X1, . . . , Xr ]/I that are represented by elements in

k1(x)[X1, . . . , Xr ];

(2) RNK (x) is generated as a K (x)-algebra by finitely many elements α1, . . . , αm ∈

R = K (x)[X1, . . . , Xr ]/I with the property that all α1, . . . , αm are represented by

elements in k1(x)[X1, . . . , Xr ];

(3) for i = 1, . . . ,m, αi = ϕ(βi ) for an element βi ∈ S = K (x)[Y1, . . . , Ys]/J that is
represented by an element in k1(x)[Y1, . . . , Ys].

For the sake of simplicity, we will write expressions such as Nk1(x), Hk1(x) meaning
(N0)k1(x), (H0)k1(x). We will also write expressions such as k1[G], k1[H ] meaning k1[G0]

and k1[H0], respectively.

Property (1) implies ϕ(S1) ⊆ R1 ∩ RNK (x) and as R1 ∩ RNK (x) = R
Nk1(x)
1 by Lemma 4.1(a),

we conclude that ϕ restricts to an injective differential homomorphism

ϕ1 : S1 → R
Nk1(x)
1 .

It remains to show that ϕ1 is an isomorphism of Hk1(x)-torsors.

We claim that R
Nk1(x)
1 = k1[α1, . . . , αm]. Since R1 ∩ RNK (x) = R

Nk1(x)
1 , Property (2)

implies that αi is contained in R
Nk1(x)
1 for all i , and, hence, R

Nk1(x)
1 ⊇ k1[α1, . . . , αm]. On

the other hand, α1, . . . , αm generate RNK (x) , i.e.,

RNK (x) = k1[α1, . . . , αm]⊗k1(x) K (x).

By Lemma 4.1(b), we also have an equality RNK (x) = R
Nk1(x)
1 ⊗k1(x) K (x) and thus

R
Nk1(x)
1 ⊗k1(x) K (x) = k1[α1, . . . , αm]⊗k1(x) K (x),

and we conclude

R
Nk1(x)
1 = k1[α1, . . . , αm].

Therefore, Property (3) implies that ϕ1 is surjective. Finally, since ϕ is HK (x)-

equivariant, we conclude that its restriction is Hk1(x)-equivariant, where we use
Lemma 4.1(a) together with the fact that the co-action of HK (x) on RNK (x) is given

by restricting R→ R⊗F F[G] to RNF → RNF ⊗F F[G]NF = RNF ⊗F F[H ].

Example 4.3. Take K = Q((t)) and k0 = Q ⊂ K . Let G be the Borel subgroup B2,Q ⊂

SL2,Q consisting of matrices of the form
(
α β

0 α−1

)
. Thus, G is isomorphic to the semi-direct
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product Ga,QoGm,Q, with α ∈ Gm,Q conjugating β ∈ Ga,Q to α2β. The ring S0 :=

Q(x)[ex , e−x
] ⊂ Q((x)) is a Picard–Vessiot ring over Q(x) with group Gm,Q with respect to

the derivation ∂ = d/dx ; here α ∈ Gm,Q takes ex
7→ αex . Thus, we have a split differential

embedding problem E = (Ga,QoGm,Q, S0) over Q(x), which induces such an embedding

problem EK over K (x). Let u be a non-zero element of K , let z ∈ K ((x)) be an element

satisfying ∂(z) = 1
t+x e−2x

∈ K [[x]], and let y = uex z. Note that z (and hence also y)

is transcendental over the fraction field of S0 because the exponential integral is not

an elementary function. Let A =
(

1 u
t+x

0 −1

)
. Then R = K (x)[ex , e−x , z] = K (x)[ex , e−x , y] ⊂

K ((x)) is a Picard–Vessiot ring for the differential equation ∂Y = AY over K (x), with a

fundamental solution matrix given by Y =
(

ex y
0 e−x

)
. The differential Galois group of R

over K (x) is G K , with α ∈ Gm,K taking ex
7→ αex and z 7→ α−2z so that y 7→ α−1 y;

and where β ∈ Ga,K fixes ex and takes y 7→ y+β. Thus, R is a proper solution to

the embedding problem EK . If we take k1 = Q(t, u) ⊂ K , then R descends to a proper
solution to the induced split differential embedding problem Ek1 over k1(x) by the proof

of Proposition 4.2.

The main result of this article is the following theorem, whose second part is Theorem B

from the Introduction.

Theorem 4.4.

(a) Let k0 be a field of characteristic zero, and let E = (N0 o H0, S0) be a split differential

embedding problem over (k0(x), d
dx ). Then there is a constant cE ∈ N, depending only

on E, with the following property: for all large fields k with k0 ⊆ k and td(k/k0) > cE ,

the induced differential embedding problem ((N0)k o (H0)k, S0⊗k0(x) k(x)) over the

differential field (k(x), d
dx ) has a proper solution.

(b) If k is a large field of infinite transcendence degree over Q, then every split

differential embedding problem over the differential field (k(x), d
dx ) has a proper

solution.

Proof. Set G0 = N0 o H0. We define K = k0((t)) and endow K (x) with the derivation

d/dx . Then Ŝ = S0⊗k0(x) K (x) is a Picard–Vessiot ring over K (x) with differential

Galois group (H0)K by Proposition 2.3. By [4, Theorem 4.2], the split embedding

problem ((N0)K o (H0)K , Ŝ) has a proper solution, i.e., there exists a Picard–Vessiot ring

R̂/K (x) with differential Galois group (G0)K such that R̂(N0)K (x) and Ŝ are isomorphic as

differential HK (x)-torsors.

Then by Proposition 4.2, there exists a finitely generated field extension k1/k0 with k1 ⊆

K = k0((t)) with the property that R̂ descends to a Picard–Vessiot ring R1/k1(x) with

differential Galois group (G0)k1 and such that R
(N0)k1(x)
1 and S0⊗k0(x) k1(x) are isomorphic

as differential (H0)k1(x)-torsors. Set cE := td(k1/k0).

Now suppose that k is a large field with k0 ⊆ k and td(k/k0) > cE . Set N = (N0)k ,

H = (H0)k , G = (G0)k , and S = S0⊗k0(x) k(x). We claim that the embedding problem

(N o H, S) over k(x) has a proper solution. By Corollary 1.2, there exists a k0-embedding

k1 ↪→ k, and, hence, we can define R = R1⊗k1(x) k(x). Then R is a Picard–Vessiot ring
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over k(x) with differential Galois group ((G0)k1)k = (G0)k = G by Proposition 2.3. The

isomorphism R
(N0)k1(x)
1

∼= S0⊗k0(x) k1(x) of differential (H0)k1(x)-torsors gives rise to an

isomorphism RNk(x) ∼= S0⊗k0(x) k(x) of differential Hk(x)-torsors by base change from k1(x)

to k(x), where the equality R
(N0)k1(x)
1 ⊗k1(x) k(x) = RNk(x) follows from Lemma 4.1(b)

and Hk(x)-equivariance follows from Lemma 4.1(a). As S0⊗k0(x) k(x) = S, we obtain

an isomorphism of Hk(x)-torsors RNk(x) ∼= S. Hence, R solves the embedding problem

(N o H, S) over k(x) which concludes the proof of (a).

Assertion (b) follows from (a) as follows: let (N o H ,S) be a split differential embedding

problem over k(x), i.e., G = N o H is a linear algebraic group over k and S/K (x) is a
given Picard–Vessiot ring with differential Galois group H . We fix a finitely generated

field extension k0/Q with k0 ⊆ k such that G and its structure of a semi-direct product

descends to a linear algebraic group G0 = N0 o H0 over k0. By Proposition 3.1, we may,

in addition, choose k0 such that S descends to a Picard–Vessiot ring S0 over k0(x) with

differential Galois group H0, i.e., S0⊗k0(x) k(x) ∼= S. We conclude the proof by applying

part (a) of the theorem.

Example 4.5. In the notation of Example 4.3, if k is a large field of transcendence degree

at least two over Q, then we can embed k1 = Q(t, u) into k. The proper solution to Ek1

given in that example then induces a proper solution to the split differential embedding

problem Ek over k(x). (Note that if we were to replace the group B2 = Ga,QoGm,Q
in Example 4.3 with Bn

2 = Gn
a,QoGn

m,Q, along the lines of Example 3.4(b), then the

analogous example would require a large field of transcendence degree at least 2n.)

In the case that the field k is algebraically closed, the splitness condition in

Theorem 4.4(b) can be dropped, and we get a solution to all differential embedding

problems.

Corollary 4.6. Let k be an algebraically closed field of infinite transcendence degree

over Q. Then every differential embedding problem defined over the differential field

(k(x), d
dx ) has a proper solution.

Proof. According to [5, Proposition 3.6], if F is a one-variable differential function

field over an algebraically closed field of constants k, and if every split differential

embedding problem over F has a proper solution, then every differential embedding

problem over F has a proper solution. Using this, the corollary then follows immediately

from Theorem 4.4(b).
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