
Robotica: (2019) volume 37, pp. 1346–1362. C© Cambridge University Press 2019
doi:10.1017/S0263574718001558

Navigational Control Analysis
of Two-Wheeled Self-Balancing Robot
in an Unknown Terrain Using
Back-Propagation Neural Network
Integrated Modified DAYANI Approach
Animesh Chhotray∗ and Dayal R. Parhi
Robotics Laboratory, Department of Mechanical Engineering, National Institute of Technology,
Rourkela, Odisha 769008, India. E-mail: dayaldoc@yahoo.com

(Accepted December 22, 2018. First published online: February 15, 2019)

SUMMARY
The present paper discusses on development and implementation of back-propagation neural net-
work integrated modified DAYANI method for path control of a two-wheeled self-balancing robot in
an obstacle cluttered environment. A five-layered back-propagation neural network has been insti-
gated to find out the intensity of various weight factors considering seven navigational parameters
as obtained from the modified DAYANI method. The intensity of weight factors is found out using
the neural technique with input parameters such as number of visible intersecting obstacles along
the goal direction, minimum visible front obstacle distances as obtained from the sensors, minimum
left side obstacle distance within the visible left side range of the robot, average of left side obsta-
cle distances, minimum right side obstacle distance within the visible right side range of the robot,
average of right side obstacle distances and goal distance from the robot’s probable next position.
Comparison between simulation and experimental exercises is carried out for verifying the robust-
ness of the proposed controller. Also, the authenticity of the proposed controller is verified through
a comparative analysis between the results obtained by other existing techniques with the current
technique in an exactly similar test scenario and an enhancement of the results is witnessed.

KEYWORDS: Two-wheeled self-balancing robot; Navigational control; Modified DAYANI;
Back-propagation neural network; Path planning.

1. Introduction
The ever-increasing demands of mobile robots in various sectors like manufacturing, transporting,
surveillance and planetary exploration have evoked a lot of interest among researchers for their
autonomous control. Apart from the industrial automation, mobile robots can also be used as potential
candidates for many domestic applications such as assistance in medical surgery, guidance of disable
people, cleaning and monitoring like many household purposes. During accomplishment of the above
sophisticated operations, these robots have to interact with their surroundings which may be static or
dynamic in nature. The current work addresses the development of an autonomous navigational con-
troller for the two-wheeled self-balancing robot (TWSBR) without any outside human assistance.
The navigational controller deals with the motion planning of the robot in the workspace through
continuous generation of feasible set of positions from the initial position to the target location and
subsequent translation and rotations by negotiating with the intermediate obstacles.

∗ Corresponding author. E-mail: chhotrayanimesh@gmail.com

https://doi.org/10.1017/S0263574718001558 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718001558
https://orcid.org/0000-0001-6458-7582
mailto:dayaldoc@yahoo.com
mailto:chhotrayanimesh@gmail.com
https://doi.org/10.1017/S0263574718001558

Navigational control analysis of two-wheeled self-balancing robot 1347

Based on the available information of the surrounding environment of the robot, the path planning
is categorized as offline or global path planning and online or local path planning.1 If the environment
is structured in nature with known static obstacles or prior information about followed trajectory of
moving obstacles is provided in advance, then it is the case of a global path planning. Whereas,
local path planning deals with unstructured environments with no prior knowledge of the robot’s sur-
rounding. Thus, it relies on the online sensor readings for assessing the dynamic environment. But
practically, all path planning algorithms actually begin with an off-line manner initially, and when
the robot finds an obstacle in its path, the path planning switches to online mode. For this, Zhang
et al.2 have proposed an approach by combining both global as well as local path planning in order
to guarantee the completeness of finding a path to the goal. The approach for solving the path plan-
ning problems can be broadly divided into classical approaches and heuristic methods.3, 4 The major
classical methods comprised of Roadmap-based method, cell decomposition method, artificial poten-
tial field and mathematical programming method.5 Although most of the motion planning problems
can be resolved by the above techniques, usually these are not certainly mutually exclusive in nature.
The widely accepted Roadmap methods are Voronoi diagram,6 Visibility graph,7 Subgoal Network
and Silhouette method.5 In the cell decomposition method, the workspace is divided into cells or grids
of some specific size and the robot searches its route in free space cell graph. Simultaneous local-
ization, mapping and planning of the surrounding for robot trajectory control are realized through an
adaptive cell decomposition method incorporated with a laser range finder-based image matching.8

It has been reported from most of the literature that though classical approaches can generate
an obstacle-free path, they still suffer from many drawbacks like greater computational complexity,
more execution time, trapping in local minima and providing lesser optimal solution.9 Therefore, var-
ious heuristic methods have been developed to overcome the inefficiency of the classical methods.10

Kim11 has proposed a virtual escaping route method based on artificial potential functions for
avoiding a trap situation in local minima. Ismail et al.12 have developed an idea for reducing the
number of steps involved for robot motion from start to goal point by using genetic algorithm in a
static grid environment. Similarly, Kala et al.13 have proposed a modified version of A∗ algorithm
for path planning in a static environment by implementing a multineuron heuristic search method
based on probability-based fitness function. A comparison of the performance of navigational con-
trollers by considering three different types of fuzzy membership functions has been presented by
Pradhan et al.14 for multiple mobile path planning in completely unknown environments. Rao et al.15

have proposed an improved krill herd method for generating safe way points in order to traverse a
collision-free path in dynamic environments. Deepak et al.16 have introduced two fitness functions
dealing with the distances between each swarm agent to that of the target position and adjacent
obstacle in their particle swarm optimization-based mobile robot navigation system for determin-
ing the global best position. Savkin and Li17 have presented a randomized navigation algorithm for
complete search and map building in a closed obstacle muddled surroundings with the help of range
finder sensors of Pioneer3D-x robot. Likewise, various hybrid optimization algorithms have been
implemented in both static and dynamic environments for single as well as multiple robots path
planning in complex cluttered environments.18–20 Recently, Kumar et al.21, 22 have demonstrated the
path planning of humanoid robots in static as well as dynamic environments by implementing both
statistical and heuristic methods.

An artificial neural network infused rule-based heuristic method has been implemented by Parhi
and Singh23 for autonomous robot motion in a cluttered environment. Here, back-propagation
algorithm helps the training of the neural network. Bassil24 has come with a three-layered artifi-
cial neural network for autonomous navigation of a rover in planetary terrain. The off-line training of
the network is realized through a supervised back-propagation learning approach. Both off-line and
subsequent online learning are carried out for training of a recurrent neural network by Al-Sagban
and Dhaouadi25 for avoiding obstacles in case of differential drive robots. The real-time autonomous
mapping of grid environments with the help of restricted sensor readings is realized through a bio-
logically inspired neural network by Luo et al.26 for dynamically building the exact map of the
immediate surrounding for navigation. Boukens and Boukabou27 have obtained satisfactory perfor-
mance in tracking the desired trajectory of nonholonomic two-wheeled robots by designing a robust
controller through application of a neural network system. Recently, Farias et al.28 have also imple-
mented artificial neural networks for establishing an obstacle detection model by the fusion of the

https://doi.org/10.1017/S0263574718001558 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718001558

1348 Navigational control analysis of two-wheeled self-balancing robot

Fig. 1. Lab-built TWSBR. (a) Front view and (b) side view.

distance estimation information gathered from different proximity sensors. A multilayer feed forward
neural network has been developed by Singh and Parhi29 for optimization of path length and time
elapsed during navigation. Various cognitive tasks like learning, training, adaption and generaliza-
tion can be dealt with by the use of this back-propagation neural network. Singh and Thongam30

also have demonstrated a novel method for generating a near-optimal path during navigation avoid-
ing static and moving obstacles in a varying surrounding conditions using multilayer neural network
system.

From the above extensive literature analysis, it has been revealed that the controllers developed by
combining the traditional path planning algorithms with the heuristic control strategies have shown
better performance in terms of path length and obstacle avoidance behavior. Therefore, the current
analysis deals with the development of a navigational controller for successful path planning of
a TWSBR in unknown cluttered terrain by implementing back-propagation neural network inte-
grated with modified DAYANI approach. Unlike global path planning approach of DAYANI arc
contour method31 in static environment, here the local path search is realized through the ultrasonic
range finders. As TWSBRs are statically unstable in nature, most of the available literatures are on
dynamic modeling and stability control analysis of the vehicle.32–34 Articles representing the tra-
jectory tracking and navigational behavior of the TWSBR are very less till date and most of them
only deal with forward or backward motion with yaw orientation in simulation platform only.35–39

But, in this paper, real-time obstacle avoidance and target reaching capability of a lab-built TWSBR
are realized through experimental verification by incorporating the proposed control architecture.
Also, the developed controller is compared with some of the existing controllers in terms of path
length travelled while traversing from the initial start to goal position in a complex obstacle cluttered
environment.

2. Modeling of TWSBR

2.1. System modeling
The lab-built TWSBR consists of a three-layered structural assembly where the bottom layer is com-
prised of two differentially driven DC motors mounted on the common axis and connected with two
wheels on both sides. The microcontroller units MK20DX256VLH7 and ATMEGA 328P along with
the IMU sensor unit MPU6050 form the middle layer of the prototype. The batteries and the manipu-
lator are placed at the upper layer for sifting the center of gravity towards upward direction as shown
in Fig. 1.

The attitude estimation of the TWSBR in the form of pitch angle and pitch angular velocity
has been realized through the accelerometer and gyroscope of the inertial measurement unit. Also,
the optical encoders provide the position and linear velocity information about the robot to the

https://doi.org/10.1017/S0263574718001558 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718001558

Navigational control analysis of two-wheeled self-balancing robot 1349

Fig. 2. Block diagram of TWSBR.

Fig. 3. Kinematic modeling of TWSBR.

microprocessor. Simultaneously, the array of ultrasonic sensors gives obstacle and the target dis-
tances. The microcontroller processes the data received from the sensors by the implementation of
the control algorithm and delivers the pulse-width modulated signals to the motor driver circuits for
the subsequent motion of the robot. The DC motors receive the power supply from the batteries
of 12 V and 5 A capacity and are regulated by the motor drivers as commanded by the processor.
The requisite communication with the remote PC-like control program implementation and outcome
extraction is established through USB interface and a Bluetooth module. The complete block diagram
of the lab-built TWSBR is depicted in Fig. 2.

2.2. Kinematic modeling
In order to understand the mechanical behavior of the robot, a prior knowledge of its proper kinematic
model is highly essential. This will help in establishing the relation between robot’s position and
orientation while performing some desired tasks.40 Before formulating the kinematic model of the
actual TWSBR, some assumptions are to be followed for simplification. The robot must be consid-
ered as a rigid body and its wheels follow a pure rolling motion without any slippage or skidding. The
friction between the floor and rotating parts of the robot is negligible with a point contact. The oper-
ational plane should always be horizontal and the steering axis of the robot remains orthogonal to it.

The TWSBR has two independently driven wheels with a common axis of rotation. The radius
of the wheel is ‘r’ and the distance between the wheels is ‘D’ as shown in Fig. 3. The linear and
angular velocities of each individual wheels are denoted as νl, ωl and νr, ωr for left and right wheels,
respectively. Then the TWSBR’s linear and angular velocities are represented as

VR = vr + vl

2
, ωR = vr − vl

D
(1)

https://doi.org/10.1017/S0263574718001558 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718001558

1350 Navigational control analysis of two-wheeled self-balancing robot

X

Start

Goal

Obs2

Obs3

Obs8

Obs4

Obs7

Obs9Obs6

Obs ‘m’

XRS XRGXC

Obs1

Obs5

YC
YRS

YRG

Y

Fig. 4. Scenario consisting of robot, obstacles and intersecting obstacles within visible range.

During navigation, the current location and orientation of the robot are described by a local reference
frame. If the heading angle of the robot is θR, then its local position (ξ̇l) can be mapped with the
global positions (ξ̇g) as mentioned below:

ξ̇l = R(θR)ξ̇g =
⎡
⎣ cos(θR)

− sin(θR)

0

sin(θR)

cos(θR)

0

0
0
1

⎤
⎦
⎡
⎣ ẋg(t)

ẏg(t)

(θ̇R)g(t)

⎤
⎦ (2)

where the global reference frame is related to the robot linear and angular velocities as⎡
⎣ ẋg(t)

ẏg(t)(
θ̇R
)

g
(t)

⎤
⎦=

⎡
⎣ cos(θR)

sin(θR)

0

0
0
1

⎤
⎦ [VR

ωR

]
(3)

3. Control Architecture of Back-Propagation Neural Network Integrated Modified DAYANI
Approach

In the current analysis, the TWSBR follows local path planning approach while moving from the
known start position to the goal position in an unknown environment populated with static obstacles.
After the onset of motion from the initial position, the robot perceives its surrounding environment
by the readings received from the array of eight onboard ultrasonic sensors. Once it detects obsta-
cles present inside the visible range of the sensors, the back-propagation neural network integrated
modified DAYANI algorithm forces into action. This determines the most feasible next point of
motion during the motion from start to target location so that the robot moves without collision with
the obstacles in-between. The following section describes how the various inputs are calculated by
implementing modified DAYANI approach and subsequent five-layered back-propagation neural net-
work architecture for calculation of several weight factors involved in the calculation of the overall
weight of each feasible point of the arc contour.

3.1. Analysis of modified DAYANI approach
In the following section, modified DAYANI method has been discussed for determining various
inputs to the neural network system for calculating the weight factors used in navigational path
analysis of TWSBR.

3.1.1. Calculation of number of intersecting obstacles within the possible movement direction of
robot. As shown in Fig. 4, the obstacles present in the concerned environment are denoted as
obstacle 1 (Obs1) to obstacle m (Obs ‘m’). The particular robot locations like initial position, cur-
rent position and goal position are represented by their Cartesian coordinates such as (XRS, YRS),
(XC, YC) and (XRG, YRG), respectively. Here, the shortest path traversed by the robot at any instance
will be the line joining the robot position (XC, YC) at that instance with the goal position (XRG, YRG).

https://doi.org/10.1017/S0263574718001558 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718001558

Navigational control analysis of two-wheeled self-balancing robot 1351

Fig. 5. Scenario showing the obstacles position around the robot.

Robot follows that shortest path until it encounters any obstacles in its visible range. The most feasi-
ble next position of motion of the robot (XC+1, YC+1) is to be determined from the ‘n + 1’ number of
possible points of the arc ‘ABC’. The arc ‘ABC’ is disintegrated into ‘n/2’ equal segments on both
side of the line joining the robot current position (XC, YC) and goal position (XRG, YRG). The total
number of obstacles present in the front visible range of the robot is denoted as ‘RQ’. In the present
case, RQ = 4 (Obs1, Obs5, Obs8 and Obs9).

3.1.2. Finding the minimum distance of the obstacle in the front side visible direction. Here, in this
case, from the sensor readings, the minimum intersecting distance from the robot to the obstacle
boundary is calculated in the front visible direction. In the present scenario, the minimum obstacle
distance (RDFmin) is obtained by considering Obs1 according to Fig. 4 out of total four number of
obstacles in the front visible range.

3.1.3. Finding minimum obstacle distance in left side visible direction. According to Fig. 5, the
minimum distance of the obstacle present within the left side visible range of the robot is calculated
based on the sensor inputs at each instance of time. Here, the minimum left side obstacle distance is
denoted as RDLmin.

3.1.4. Determination of average obstacle distance in left side visible direction. In the present sce-
nario, average intersecting distance in the left side visible direction of the robot is calculated
according to the sensor inputs. The left side average obstacle distance is denoted as RDLavg. If there
are ‘L’ numbers of intersecting obstacles in the left side of the robot, then the average obstacle
distance can be written as follows:

RDLavg = (
RDL1 + RDL2 + RDL3 + + RDLL

)
/L (4)

3.1.5. Finding minimum obstacle distance in right side visible direction. According to Fig. 5, the
minimum distance of the obstacle present within the right side visible range of the robot is calculated
based on the sensor inputs at each instance of time. Here, the minimum right side obstacle distance
is denoted as RDRmin.

3.1.6. Determination of average obstacle distance in right side visible direction. In the present
scenario, average intersecting distance in the right side visible direction of the robot is calculated
according to the sensor inputs. The right side average obstacle distance is denoted as RDRavg. If there
are ‘R’ numbers of intersecting obstacles in the right side of the robot, then the average obstacle
distance can be written as follows:

RDRavg = (
RDR1 + RDR2 + RDR3 + + RDRL

)
/R (5)

https://doi.org/10.1017/S0263574718001558 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718001558

1352 Navigational control analysis of two-wheeled self-balancing robot

Input 1
‘RQ’

W1,i

W2,i

W3,i

W4,i

W5,i

Input 2
‘RDFmin’

Input 3
‘RDLmin’

Input 4
‘RDLavg’

Input 5
‘RDRmin’

Input 6
‘RDRavg’

Input 7
‘RDGi’

Fig. 6. Calculation of different weight factors from various environmental parameters using five-layered back-
propagation neural network.

3.1.7. Distance between robot’s probable next position and goal. There are total n + 1 probable
positions present in the arc ‘ABC’ to which the robot can proceed during its next step advancement.
Therefore, here the distance from all those probable points to the goal point is calculated according
to the following equation:

RDGi=1,n+1 =
((

XRG − XC+1,i
)2 + (

YRG − YC+1,i
)2
)0.5

(6)

where (XC+1,i, YC+1,i) is the new probable ‘ith’ position of the robot, where ‘i’ varies from 1 to n + 1
positions in the arc ‘ABC’.

3.1.8. Determining whether robot’s next probable position is within the front obstacle or not. During
navigation, it is quite apparent that at some of the instances, the robot’s probable next positions may
fall within the front obstacle boundary itself. So, these positions are not to be considered further
as the feasible next position for advancement. Therefore, the distance between the robot’s current
position and the possible ‘n + 1’ next positions should be always less than the minimum front obstacle
distance, and the probability of existence of that probable next position can be represented according
to Eq. (7). ⎧⎪⎨

⎪⎩
WF = 1 if

((
XC+1,i − XC

)2 + (
YC+1,i − YC

)2
)0.5

< RDFmin

Else

WF = 0

⎫⎪⎬
⎪⎭ (7)

Several influential weight factors are calculated according to above eight cases and they are termed as
W1,i, W2,i, W3,i, W4,I, W5,I and W6,i. These weight factors depend upon the following input parame-
ters: (i) intensity of obstacles in the robot motion direction; (ii) minimum obstacle distance in the
front visible range; (iii) minimum and average obstacle distances in left visible range of robot;
(iv) minimum and average obstacle distances in right visible range of robot; (v) distance between
robot’s probable next position and goal and (vi) probability of existence of the robot next step
of advancement as described before. The influential weights W1,i, W2,i, W3,i, W4,i and W5,i are
calculated from neural network as depicted in Fig. 6. Whereas, W6,i = WF as stated in Eq. (7).

https://doi.org/10.1017/S0263574718001558 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718001558

Navigational control analysis of two-wheeled self-balancing robot 1353

3.2. Description of five-layered back-propagation neural network used in modified DAYANI-neural
technique

Figure 6 describes the architecture of the five-layered back-propagation neural network used for
calculation of several weight factors. The first layer of the neural network consists of seven neu-
rons. Second, third and fourth layers are the hidden layers and consist of 14, 50 and 10 neurons,
respectively. The last layer, that is, the output layer consists of five neurons as shown in Fig. 6.
Several hundred training patterns are prepared to train the neural network. The inputs to the neural
network are (i) number of intersecting obstacles ‘RQ’ in the front direction of the robot within
visible range; (ii) minimum distance ‘RDFmin’ to the intersecting obstacle in within front visi-
ble range; (iii) minimum distance ‘RDLmin’ to the intersecting obstacle in left side visible range;
(iv) average obstacle distance ‘RDLavg’ in left direction of the robot within visible range; (v) mini-
mum distance ‘RDRmin’ to the intersecting obstacle in right side visible range; (vi) average obstacle
distance ‘RDRavg’ in right direction of the robot within visible range and (vii) goal distance ‘RDGi’
from probable robot position for calculation of global weight factors. The outputs from the neural
network are different weight factors (i.e., W1,i, W2,i, W3,i, W4,i and W5,i). The network learning is
achieved through back-propagation algorithm which is based on the error correction methodology.41

During training, the error signals are back-propagated until the desired output is realized. The error
is calculated as a performance measure of the network as presented by23, 29

Err = 1

2

∑
all training
patterns

(
Wp,idesired − Wp,iactual

)2
(8)

where Wp,i is the output from the neural network. The error is back-propagated from the outer layers
to the hidden layers to train the network. A local error gradient is computed for the neurons of the
hidden layers for suitable correction of weights.42

δ{lay}
r = f

′(
V{lay}

r

)(∑
k

δ
{lay+1}
k N{lay+1}

sr

)
(9)

The synaptic weights are corrected according to the following equations:23

Nqr(t + 1) = Nqr(t) + �Nqr(t + 1) (10)

where

�Nqr(t + 1) = α�Nqr(t) + �ηδ{lay}
r y{lay−1}

q (11)

Here, t = iteration number, α is the momentum coefficient and η is the rate of learning.
Then, the final output from the back-propagation neural network will be

Wp,i = f
(

V [5]
p=1,5

)
(12)

where

V5
p =

∑
q

N{5}
pq y{4}

q (13)

The overall weight (WG,i) for the robot’s ith (i = 1 − n + 1) position out of robot probable positions
from the arc ‘ABC’ is calculated as follows:

WG,i = W1,i · W2,i · W3,i · W4,i · W5,i · W6,i (14)

From the obtained values of ‘WG,i’, as calculated from Eq. (14) for total ‘n + 1’ conditions of the
robot’s possible positions, the position with maximum value of ‘WG,i’ is considered. The robot travels
to that best next possible position according to values obtained from Eq. (14). This entire process
continues in a loop till the robot achieves its target position. MATLAB code is written to implement

https://doi.org/10.1017/S0263574718001558 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718001558

1354 Navigational control analysis of two-wheeled self-balancing robot

Fig. 7. Simulation results showing (a) initial position, (b-e) intermediate steps of robot navigation from start to
goal position and (f) final position during robot motion in a maze-like environment.

the neural network integrated modified DAYANI approach for path control of TWSBR in unknown
terrain.

4. Simulation and Experimental Results

4.1. Navigation of TWSBR in simulation framework
Virtual Robot Experimentation Platform (V-REP) has been selected as the simulation framework for
verifying the authenticity of the proposed algorithm. V-REP is an easily coded and powerful simu-
lation platform which can incorporate various control algorithms through its versatile programming
approaches. It is a scalable simulator with multitude in-built tools having ready to use capabilities for
simultaneous sensing, actuation and control of different robotic systems with reduced complexities.
Also, the actual CAD model of the robot considering its system dynamics along with the obstacles of
exact dimensions analogous to the experimental scenario can be integrated in this simulation frame-
work. Here, the Solid-works model of the TWSBR is directly imported to the simulation platform
and the control algorithm is implemented through Lua script. A platform of size 160 × 240 units is
created for performing the simulation analysis. Several simulation exercises have been performed by
selecting various random environments and a few of them are presented here. Figure 7 depicts the
path traced by the robot during simulation from start point to goal point while avoiding the haphaz-
ardly located obstacles in a maze-like environment. Similarly in Fig. 8 also another different kind of
complex cluttered environment with random static obstacles is considered for analyzing the feasibil-
ity of the neural network integrated modified DAYANI approach. In both the cases, it is observed that
the robot successfully navigates among the obstacles from the start to the goal point in the shortest
route.

https://doi.org/10.1017/S0263574718001558 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718001558

Navigational control analysis of two-wheeled self-balancing robot 1355

Table I. Technical specification of the TWSBR used for experimental analysis.

Components Technical descriptions

Microcontroller One ATmega2560 and MK20DX256VLH7, Cortex-M4, 72 MHz
Flash memory 256 KB
RAM 64 KB
Sensor One MPU6050 and eight ultrasonic sensors
Actuator Two 300 RPM DC motors with 30 kg.cm torque each
Encoder 1800 counts/rotation
Speed Max: 0.3 m/s
Power source Two 12 V, 5000 mAh lithium-polymer batteries
Voltage regulator LM2596 buck converter
Wireless communication HC-05 bluetooth with UART interface and USB port
L × W × H 40 cm × 22 cm × 50 cm
Weight Approx. 2732 g
Payload Approx. 2000 g
Simulator V-REP, MATLAB
Development environment Arduino IDE and Teensyduino

Fig. 8. Simulation results showing (a) initial position, (b-e) intermediate steps of robot navigation from start to
goal position and (f) final position during robot motion in a complex cluttered environment.

4.2. Navigation of TWSBR in experimental setup
The efficiency of the proposed controller is validated through a series of real-time experiments.
Here, the practical implementation of the simulation results is carried out through creation of exactly
similar environment under laboratory conditions. The arena size is taken as 1.60 × 2.40 m and com-
prised of obstacles of exactly similar shape and size as that of the simulation window. The complete

https://doi.org/10.1017/S0263574718001558 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718001558

1356 Navigational control analysis of two-wheeled self-balancing robot

Fig. 9. Snapshots of experimental results showing (a) initial position, (b-e) intermediate steps of robot naviga-
tion from start to goal position and (f) final position during robot motion in a maze-like environment.

specification of the TWSBR used in the experimental analysis is represented in Table I. The TWSBR
is programmed through Arduino programming language due to its supportive nature to multiple
programming paradigms and has a standard library. The threshold distance for the ultrasonic range
finding sensors used in the current study is taken as 25 cm. The robot starts moving towards the
target by searching the best next feasible point according to the neural network integrated modified
DAYANI algorithm and avoids the obstacles in between. Figures 9 and 10 represent the snapshots of
intermediate steps involved during the navigation.

4.3. Comparative analysis of simulation and experimental results
The path length and the time taken in different environmental scenarios involved during simulation
analysis are noted from the V-REP window. Also, the path length from the start point to goal point is
measured with the help of measuring tape during equivalent experimental setup. Simultaneously, the
respective time elapsed for traversing that path is recorded through stopwatch. As the authenticity
of the proposed navigational controller is verified through a comparative analysis of the simulation
and respective experimental results, a series of 30 different environmental scenarios are considered
here for the investigation. Table II shows the path length covered by the robot from start point to goal
point while avoiding the obstacles for 30 scenarios. The average deviation for path length between
simulation and experimental results is found to be within 6%. Table III represents the respective
time taken to cover the path by the robot for the same 30 scenarios as stated in Table II. Here,
the average deviation for time elapsed between simulation and experimental results is also found
to be within 6% which is well within the acceptable limit. This deviation in results arises due to the
frictional resistance between wheel and floor, presence of backlash in gear system as well as any kind
of slippage condition during real-time experimental analysis. But, in identical simulation exercises,
there is least chance of frictional and data transmission losses due to its ideal condition.

https://doi.org/10.1017/S0263574718001558 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718001558

Table II. Path length traversed by robot from start point to goal point while avoiding obstacles.

Path length (m) Path length (m) Average
No. of exercise (simulation) (experiment) Deviation (%) deviation (%)

1 2.97 3.06 2.95 5.59
2 1.78 1.88 5.32
3 3.39 3.69 8.14
4 2.29 2.45 6.54
5 2.31 2.54 9.06
6 2.99 3.06 2.29
7 3.08 3.18 3.15
8 1.65 1.82 9.35
9 2.41 2.65 9.06
10 1.8 1.9 5.27
11 1.6 1.73 7.52
12 3.5 3.64 3.85
13 3.28 3.59 8.64
14 3.13 3.29 4.87
15 2.85 3.12 8.66
16 3.06 3.18 3.78
17 2.09 2.17 3.69
18 1.76 1.85 4.87
19 2.67 2.79 4.31
20 3.23 3.43 5.84
21 2.49 2.56 2.74
22 3.3 3.39 2.66
23 1.9 2.08 8.66
24 1.74 1.82 4.4
25 3.01 3.11 3.22
26 3.1 3.23 4.03
27 2.51 2.71 7.39
28 1.72 1.79 3.92
29 2.41 2.65 9.06
30 1.75 1.83 4.38

Fig. 10. Snapshots of experimental results showing (a) initial position, (b-e) intermediate steps of robot naviga-
tion from start to goal position and (f) final position during robot motion in a complex cluttered environment.

https://doi.org/10.1017/S0263574718001558 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718001558

1358 Navigational control analysis of two-wheeled self-balancing robot

Table III. Time taken by robot from start point to goal point while avoiding obstacles.

Time taken (ms) Time taken (ms) Average
No. of exercise (simulation) (experiment) Deviation (%) deviation (%)

1 44,329 48,080 7.81 5.69
2 26,568 28,400 6.46
3 50,598 55,597 9
4 34,180 36,320 5.9
5 34,478 36,879 6.52
6 44,627 45,655 2.26
7 45,971 47,006 2.21
8 24,627 25,998 5.28
9 35,971 37,552 4.22
10 26,866 29,200 8
11 23,881 25,295 5.6
12 52,239 53,706 2.74
13 48,956 50,954 3.93
14 46,717 51,074 8.54
15 42,538 45,095 5.68
16 45,672 49,131 7.05
17 31,195 32,448 3.87
18 26,269 28,513 7.88
19 39,851 41,160 3.19
20 48,209 51,894 7.11
21 37,165 38,779 4.17
22 49,254 52,387 5.99
23 28,359 30,759 7.81
24 25,971 26,825 3.19
25 44,926 48,759 7.87
26 46,269 47,953 3.52
27 37,463 38,867 3.62
28 25,672 27,218 5.69
29 35,971 38,825 7.36
30 26,120 28,383 7.98

5. Comparison with Existing Navigational Controllers
From the above simulation and experimental analysis, it is quite evident that by implementing the
neural network integrated modified DAYANI algorithm, TWSBR is perfectly able to navigate avoid-
ing obstacles in unknown cluttered environments. However, the efficacy of the proposed controller
should be verified by comparing it with other existing navigational techniques. Therefore, path length
traced by some existing authors implementing optimized fuzzy controller using genetic algorithm
method and TLBO-based ANFIS technique is considered for comparison purpose. Figure 11(a)
and (b) shows the comparison of the path obtained by Zhao et al.43 using an optimized fuzzy
controller through genetic algorithm method and our proposed modified Neural DAYANI method.
Similarly, the path comparison of the proposed technique with TLBO-based ANFIS technique as
obtained by Aouf et al.44 is represented in Figure 12(a) and (b). The path lengths generated from
both the existing techniques and the proposed technique are calculated and presented for comparison
in Table IV. From the comparative analysis, it is clearly visible that the neural network integrated
modified DAYANI approach can be chosen as a better alternative than the existing techniques with
around 11% reduction in path length.

6. Conclusion
In the current analysis, a novel neural network integrated modified DAYANI approach has been ana-
lyzed and implemented for navigational path control of TWSBR in unknown environment. Here,
a back-propagated neural network method has been deployed for determination of the intensity of
various weight factors required to be used in the modified DAYANI method. These intensity weight

https://doi.org/10.1017/S0263574718001558 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718001558

Navigational control analysis of two-wheeled self-balancing robot 1359

Table IV. Comparison of path length traced by Zhao et al.43 and Aouf et al.44 with path obtained by neural
network integrated modified DAYANI approach by considering 1 cm = 1 unit.

Technique used Path length (unit) Deviation (%)

Optimized fuzzy controller by 16.8 11.3
genetic algorithm method,
Zhao et al.43 and Fig. 11(a)

Neural network integrated modified 14.9
DAYANI approach, Fig. 11(b)

TLBO-based ANFIS technique by 9.5 12.76
Aouf et al.44 and Fig. 12(a)

Neural network integrated modified 8.3
DAYANI approach, Fig. 12(b)

Fig. 11. (a) Path obtained by optimized fuzzy controller by genetic algorithm method by Zhao et al.43 and
(b) path obtained by neural network integrated modified DAYANI approach.

factors are calculated using the five-layered neural network considering number of visible intersect-
ing obstacles along the goal direction, minimum visible front intersecting distances as obtained from
the sensors, average of left side distances, minimum left side distance within the visible left side
range of the robot, average of right side distances, minimum right side distance within the visible
right side range of the robot and goal distance from the robot’s probable position as input parameters.

https://doi.org/10.1017/S0263574718001558 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718001558

1360 Navigational control analysis of two-wheeled self-balancing robot

Fig. 12. (a) Path obtained by TLBO-based ANFIS technique by Aouf et al.44 and (b) path obtained by neural
network integrated modified DAYANI approach.

Comparisons are carried out for verifying the robustness of the proposed controller between simula-
tion and experimental exercises and the deviation is found to be within 6%. In order to comprehend
the effectiveness of the developed method, the results obtained from the proposed approach have
been compared with the results acquired through both optimized fuzzy controller by genetic algo-
rithm method and TLBO-based ANFIS technique in identical environmental scenario. This witnesses
a better enhancement of results through our suggested controller than the existing methods by other
authors. Thus, using the proposed neural network integrated modified DAYANI method, the TWSBR
is able to find the optimal path from start point to goal point in a lesser time without colliding with
the obstacles in between.

References
1. P. Raja and S. Pugazhenthi, “Optimal path planning of mobile robots: A review,” Int. J. Phy. Sci. 7(9),

1314–1320 (2012).
2. H. Zhang, J. Butzke and M. Likhachev, “Combining Global and Local Planning with Guarantees on

Completeness,” IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN,
USA (2012) pp. 4500–4506.

3. E. Masehian and D. Sedighizadeh, “Classic and heuristic approaches in robot motion planning-a
chronological review,” World Acad. Sci. Eng. Technol. 29(1), 101–106 (2007).

4. D. R. Parhi and M. K. Singh, “Navigational strategies of mobile robots: A review,” Int. J. Autom. Control
3(2–3), 114–134 (2009).

5. J. C. Latombe, Robot Motion Planning, vol. 124 (Springer Science & Business Media, New York, 2012).

https://doi.org/10.1017/S0263574718001558 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718001558

Navigational control analysis of two-wheeled self-balancing robot 1361

6. S. Garrido, L. Moreno, M. Abderrahim and F. Martin, “Path Planning for Mobile Robot Navigation Using
Voronoi Diagram and Fast Marching,” IEEE/RSJ International Conference on Intelligent Robots and
Systems, Beijing, China (2006) pp. 2376–2381.

7. H. Kalud̄er, M. Brezak and I. Petroviæ, “A Visibility Graph Based Method for Path Planning in Dynamic
Environments,” MIPRO, Proceedings of the 34th International Convention, Opatija, Croatia (2011) pp.
717–721.

8. B. Dugarjav, S. G. Lee, T. B. Quang, K. W. Gwak and B. Lee, “Adaptive online cell decomposition with
a laser range finder in unknown non-rectilinear environments,” Int. J. Precis. Eng. Manuf. 18(4), 487–495
(2017).

9. O. Montiel, R. Sepúlveda and U. Orozco-Rosas, “Optimal path planning generation for mobile robots
using parallel evolutionary artificial potential field,” J. Intell. Rob. Syst. 79(2), 237–257 (2015).

10. T. T. Mac, C. Copot, D. T. Tran and R. De Keyser, “Heuristic approaches in robot path planning: A
survey,” Rob. Auton. Syst. 86, 13–28 (2016).

11. D. H. Kim, “Escaping route method for a trap situation in local path planning,” Int. J. Control Autom.
Syst. 7(3), 495–500 (2009).

12. A. T. Ismail, A. Sheta and M. Al-Weshah, “A mobile robot path planning using genetic algorithm in static
environment,” J. Comput. Sci. 4(4), 341–344 (2008).

13. R. Kala, A. Shukla and R. Tiwari, “Robotic path planning in static environment using hierarchical multi-
neuron heuristic search and probability based fitness,” Neurocomputing 74(14–15), 2314–2335 (2011).

14. S. K. Pradhan, D. R. Parhi and A. K. Panda, “Fuzzy logic techniques for navigation of several mobile
robots,” Appl. Soft Comput. 9(1), 290–304 (2009).

15. D. C. Rao, M. R. Kabat, P. K. Das and P. K. Jena, “Cooperative navigation planning of multiple mobile
robots using improved krill herd,” Arabian J. Sci. Eng. 43(12), 7869–7891 (2018).

16. B. B. V. L. Deepak, D. R. Parhi and B. M. V. A. Raju, “Advance particle swarm optimization-based
navigational controller for mobile robot,” Arabian J. Sci. Eng. 39(8), 6477–6487 (2014).

17. A. V. Savkin and H. Li, “A safe area search and map building algorithm for a wheeled mobile robot in
complex unknown cluttered environments,” Robotica 36(1), 96–118 (2018).

18. A. Pandey and D. R. Parhi, “Optimum path planning of mobile robot in unknown static and dynamic
environments using fuzzy-wind driven optimization algorithm,” Defence Technol. 13(1), 47–58 (2017).

19. P. K. Mohanty and D. R. Parhi, “A new hybrid optimization algorithm for multiple mobile robots
navigation based on the CS-ANFIS approach,” Memetic Comput. 7(4), 255–273 (2015).

20. D. R. Parhi and S. Kundu, “A hybrid fuzzy controller for navigation of real mobile robot,” Int. J. Appl.
Artif. Intell. Eng. Syst. 3(1), 169 (2011).

21. A. Kumar, P. B. Kumar and D. R. Parhi, “Intelligent navigation of humanoids in cluttered environments
using regression analysis and genetic algorithm,” Arabian J. Sci. Eng. 43(12), 7655–7678 (2018).

22. P. B. Kumar, K. K. Pandey, C. Sahu, A. Chhotray and D. R. Parhi, “ A Hybridized RA-APSO Approach for
Humanoid Navigation,” IEEE Nirma University International Conference on Engineering (NUiCONE),
Ahmedabad, India (2017) pp. 1–6.

23. D. R. Parhi and M. K. Singh, “Heuristic-rule-based hybrid neural network for navigation of a mobile
robot,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 224(7), 1103–1118 (2010).

24. Y. Bassil, “Neural network model for path-planning of robotic rover systems,” arXiv preprint
arXiv:1204.0183 (2012).

25. M. Al-Sagban and R. Dhaouadi, “Neural-Based Navigation of a Differential-Drive Mobile Robot,” 12th
IEEE International Conference on Control Automation Robotics & Vision (ICARCV), Guangzhou, China
(2012) pp. 353–358.

26. C. Luo, J. Gao, X. Li, H. Mo and Q. Jiang, “Sensor-Based Autonomous Robot Navigation Under
Unknown Environments with Grid Map Representation,” IEEE Symposium on Swarm Intelligence (SIS),
Orlando, FL, USA (2014) pp. 1–7.

27. M. Boukens and A. Boukabou, “Design of an intelligent optimal neural network-based tracking controller
for nonholonomic mobile robot systems,” Neurocomputing 226, 46–57 (2017).

28. G. Farias, E. Fabregas, E. Peralta, H. Vargas, G. Hermosilla, G. Garcia and S. Dormido, “A neural network
approach for building an obstacle detection model by fusion of proximity sensors data,” Sensors 18(3),
683 (2018).

29. M. K. Singh and D. R. Parhi, “Path optimisation of a mobile robot using an artificial neural network
controller,” Int. J. Syst. Sci. 42(1), 107–120 (2011).

30. N. H. Singh and K. Thongam, “Mobile robot navigation using MLP-BP approaches in dynamic
environments,” Arabian J. Sci. Eng. 43(12), 8013–8028 (2018).

31. D. R. Parhi and A. Chhotray, “Development and analysis of DAYANI arc contour intelligent technique
for navigation of two-wheeled mobile robot,” Ind. Rob. Int. J. 45(5), 688–702 (2018).

32. R. P. M. Chan, K. A. Stol and C. R. Halkyard, “Review of modelling and control of two-wheeled robots,”
Annu. Rev. Control 37(1), 89–103 (2013).

33. A. Maddahi, A. H. Shamekhi and A. Ghaffari, “A Lyapunov controller for self-balancing two-wheeled
vehicles,” Robotica 33(1), 225–239 (2015).

34. H. W. Kim and S. Jung, “Control of a two-wheel robotic vehicle for personal transportation,” Robotica
34(5), 1186–1208 (2016).

35. T. Takei and R. Imamura, “Baggage transportation and navigation by a wheeled inverted pendulum mobile
robot,” IEEE Trans. Ind. Electron. 56(10), 3985–3994 (2009).

https://doi.org/10.1017/S0263574718001558 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718001558

1362 Navigational control analysis of two-wheeled self-balancing robot

36. P. Shu-Hua, H. Cui and L. Deng-Hua, “Fuzzy Path Planning of Two-Wheeled Robot Optimized by
Gold Mean,” In: Informatics in Control, Automation and Robotics (Springer, Berlin, Heidelberg, 2011)
pp. 477–484.

37. H. Mirzaeinejad and A. M. Shafei, “Modeling and trajectory tracking control of a two-wheeled mobile
robot: Gibbs–Appell and prediction-based approaches,” Robotica 36(10), 1551–1570 (2018).

38. J. Lee and W. Park, “Probability-Based Optimal Path Planning for Two-Wheeled Mobile Robots,” ASME
2015 Dynamic Systems and Control Conference, 2015, American Society of Mechanical Engineers,
Columbus, OH, USA (2015) pp. V003T40A006-V003T40A006.

39. N. A. Ghani, L. Haur, T. Yon and F. Naim, “Dual mode navigation for two-wheeled robot,” World Acad.
Sci. Eng. Technol. 58, 278–283 (2011).

40. A. Chhotray, M. K. Pradhan, K. K. Pandey and D. R. Parhi, “Kinematic Analysis of a Two-Wheeled Self-
balancing Mobile Robot,” Proceedings of the International Conference on Signal, Networks, Computing,
and Systems, New Delhi, India (2016) pp. 87–93.

41. D. T. Pham and D. R. Parhi, “Navigation of multiple mobile robots using a neural network and a Petri Net
model,” Robotica 21(1), 79–93 (2003).

42. S. Haykin, Neural Networks: A Comprehensive Foundation (Prentice Hall PTR, Upper Saddle River, NJ,
USA, 1994).

43. R. Zhao, D. H. Lee and H. K. Lee, “Mobile robot navigation using optimized fuzzy controller by genetic
algorithm,” Int. J. Fuzzy Logic Intell. Syst. 15(1), 12–19 (2015).

44. A. Aouf, L. Boussaid and A. Sakly, “TLBO-based adaptive neurofuzzy controller for mobile robot
navigation in a strange environment,” Comput. Intell. Neurosci. (2018). doi:10.1155/2018/3145436.

https://doi.org/10.1017/S0263574718001558 Published online by Cambridge University Press

http://dx.doi.org/10.1155/2018/3145436
https://doi.org/10.1017/S0263574718001558

	Navigational Control Analysis of Two-Wheeled Self-Balancing Robotin an Unknown Terrain Using Back-Propagation Neural Network Integrated Modified DAYANI Approach
	Introduction
	Modeling of TWSBR
	System modeling
	Kinematic modeling

	Control Architecture of Back-Propagation Neural Network Integrated Modified DAYANI Approach
	Analysis of modified DAYANI approach
	Description of five-layered back-propagation neural network used in modified DAYANI-neural technique

	Simulation and Experimental Results
	Navigation of TWSBR in simulation framework
	Navigation of TWSBR in experimental setup
	Comparative analysis of simulation and experimental results

	Comparison with Existing Navigational Controllers
	Conclusion

