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We investigate arrays of m three-dimensional, unit-Burger-number, quasi-geostrophic
vortices in mutual equilibrium whose centroids lie on a horizontal circular ring; or
m+ 1 vortices where the additional vortex lies on the vertical ‘central’ axis passing
through the centre of the array. We first analyse the linear stability of circular point
vortex arrays. Three distinct categories of vortex arrays are considered. In the first
category, the m identical point vortices are equally spaced on a circular ring and no
vortex is located on the vertical central axis. In the other two categories, a ‘central’
vortex is added. The latter two categories differ by the sign of the central vortex. We
next turn our attention to finite-volume vortices for the same three categories. The
vortices consist of finite volumes of uniform potential vorticity, and the equilibrium
vortex arrays have an (imposed) m-fold symmetry. For simplicity, all vortices have
the same volume and the same potential vorticity, in absolute value. For such finite-
volume vortex arrays, we determine families of equilibria which are spanned by the
ratio of a distance separating the vortices and the array centre to the vortices’ mean
radius. We determine numerically the shape of the equilibria for m=2 up to m=7, for
each three categories, and we address their linear stability. For the m-vortex circular
arrays, all configurations with m > 6 are unstable. Point vortex arrays are linearly
stable for m < 6. Finite-volume vortices may, however, be sensitive to instabilities
deforming the vortices for m < 6 if the ratio of the distance separating the vortices
to their mean radius is smaller than a threshold depending on m. Adding a vortex
on the central axis modifies the overall stability properties of the vortex arrays. For
m= 2, a central vortex tends to destabilise the vortex array unless the central vortex
has opposite sign and is intense. For m> 2, the unstable regime can be obtained if the
strength of the central vortex is larger in magnitude than a threshold depending on the
number of vortices. This is true whether the central vortex has the same sign as or the
opposite sign to the peripheral vortices. A moderate-strength like-signed central vortex
tends, however, to stabilise the vortex array when located near the plane containing
the array. On the contrary, most of the vortex arrays with an opposite-signed central
vortex are unstable.
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1. Introduction
Arrays of vortices in mutual equilibrium have arguably been of theoretical interest

since the earliest works on vortex motion. Thomson (1883) first described the stability
of m two-dimensional identical point vortices equally spaced on a horizontal circular
ring for m= 2 up to m= 7. Such a configuration is referred to as a circular m-vortex
array. There is a very large body of literature dedicated to the study of vortex
equilibria, in particular for two-dimensional vortices. Morikawa & Swenson (1971)
studied the effect of a central point vortex on the stability of an array of m point
vortices for two-dimensional vortices as well as for single-layer quasi-geostrophic
(QG) shallow-water vortices. The two-dimensional m-vortex problem was also
revisited in depth by Kurakin & Yudovich (2002). The stability of point vortex
multipoles has also been the focus of numerous other studies, including Aref (2009)
in two dimensions and Kizner (2011, 2014) for a two-layer flow.

Thomson’s seminal work also inspired further studies, including Dritschel (1985),
where the point vortex configurations were generalised to arrays of two-dimensional
finite-area patches of uniform vorticity. Other configurations of finite-area vortex
equilibria with m-fold symmetries have been sought for two-dimensional vortices by
Burbea (1982), Wu, Overman II & Zabusky (1984), Crowdy (2002, 2003), Kizner
& Khvoles (2004a,b) and Xue, Johnson & McDonald (2017), and for geophysical
vortices by Kizner, Khvoles & McWilliams (2007), Shteinbuch-Fridman, Makarov
& Kizner (2015), Kizner et al. (2017), Reinaud, Sokolovskiy & Carton (2017) and
Shteinbuch-Fridman, Makarov & Kizner (2017) to name but a few studies.

Observations by the Juno spacecraft have recently revealed the presence of persistent
polygonal arrays of cyclonic vortices on Jupiter’s poles (see Adriani et al. 2018),
motivating further studies of vortex equilibria in a three-dimensional, rapidly rotating
and stratified environment. Large-scale oceanic and atmospheric motions are also
strongly influenced by the background planetary rotation and the background stable
stratification of the fluid. The QG model is the simplest dynamical model that takes
these effects into account. It is asymptotically derived from the full equations of
motion when both rotation and stratification effects dominate the flow evolution. In
this framework, the flow can be fully described by the (slow) evolution of a materially
conserved scalar quantity: the potential vorticity (see Vallis 2006). Vortices abound
in the oceans and the atmosphere (see Ebbesmeyer et al. 1986; Chelton, Schlax &
Samelson 2011; Peterson et al. 2013; Zhang, Wang & Qiu 2014, and many other
studies). These vortices can be defined as contiguous regions of potential vorticity.

The main objective of the present paper is to study, for the first time, equilibria for
m (m > 2) three-dimensional, unit-Burger-number, finite-volume vortices of uniform
potential vorticity located on a circular ring, within the QG approximation, in a rapidly
rotating, continuously stratified fluid. We also examine the effect of the addition of a
vortex on the vertical axis passing through the centre of the ring, a problem often
referred to in the literature as the (m+ 1)-vortex problem (see Sokolovskiy & Verron
2008). Pairs of three-dimensional, continuously stratified QG co-rotating vortices in
mutual equilibrium were first analysed in Reinaud & Dritschel (2002) while pairs of
counter-rotating vortices were discussed in Reinaud & Dritschel (2009). Additionally,
a special class of three-vortex equilibria is discussed by Reinaud & Carton (2015).
Configurations of three-dimensional QG vortices arranged in a nearly regular pattern
can be the result of the destabilisation of a torus of potential vorticity as shown by
Reinaud & Dritschel (2019).

In this paper we show that unstable finite-volume vortex equilibria can be found in
some part of the parameter space for all the values of m considered. For the m-vortex
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problem, however, point vortex arrays are linearly stable for m<6. Nevertheless, finite-
volume vortices can be sensitive to modes of instability deforming the vortices for m<
6 if the vortices are close enough to each other. For m= 2, the addition of a central
like-signed vortex destabilises the system. For m>2, adding a weak central like-signed
vortex tends to stabilise the vortex array, in particular if the central additional vortex is
located at a small enough height from the other vortices. An intense like-signed central
vortex may, however, induce instability. The (2 + 1)-vortex system with an opposite-
signed central vortex is also unstable unless the central vortex is intense. For m> 3,
adding an opposite-signed vortex on the central axis may destabilise the vortex arrays,
and linearly stable solutions are found in fewer, if any, parts of the parameter space.

The paper is organised as follows. Next, § 2 describes the mathematical model and
the numerical tools used in the study. The main results for point vortices are discussed
in § 3 while the results for finite-volume vortices are presented in § 4. Conclusions are
presented in § 5.

2. Mathematical set-up
We consider an adiabatic, inviscid, three-dimensional, horizontally and vertically

unbounded, continuously stratified, rapidly rotating fluid. For simplicity, we assume
that the background rotation is uniform so that the Coriolis frequency f is constant.
We also assume that the buoyancy frequency N, defined by N2

= gρ−1
0 dρ/dz under the

Boussinesq approximation, is constant so that the stratification is linear with depth.
Here g is the gravitational acceleration, ρ0 is the mean density and ρ(z) is the basic
state density. The Boussinesq approximation assumes that the density variations are
small compared to the mean density. This assumption is valid for the oceans. For
convenience, we rescale the physical vertical coordinate by the ratio N/f . Typically,
N/f � 1 in most parts of the oceans (see Dijkstra 2008). In this vertically stretched
reference frame, the equations become independent of N and f , hence our results are
valid for all values of N/f . We define the Froude number Fr=U/(NH), where U is
a characteristic scale of horizontal velocity and H is a characteristic vertical length
scale, and the Rossby number Ro = U/( fL), where L is a characteristic horizontal
length scale. For rapid background rotation Ro� 1 and strong stratification Fr2

�Ro,
the Boussinesq equations can be asymptotically expanded in terms of small Ro and
Fr to obtain the QG model (see Vallis 2006 for details). The equations read

q=
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
, (2.1)

with
Dq
Dt
=
∂q
∂t
−
∂ψ

∂y
∂q
∂x
+
∂ψ

∂x
∂q
∂y
= 0, (2.2)

where q defined by (2.1) is the QG potential vorticity (PV) anomaly, hereinafter
referred to as PV for simplicity, ψ is the streamfunction and D/Dt stands for the
material derivative. Equation (2.2) states that PV is materially conserved for an
adiabatic, inviscid fluid. It should be noted that the full dynamics is controlled by
the PV, q, a single scalar quantity. Equation (2.1) can formally be inverted using the
Green’s function for the three-dimensional Laplacian

G(x; x′)=−
1

4π|x− x′|
, (2.3)
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which by construction provides the streamfunction, evaluated at x= (x, y, z), induced
by a point vortex of unit intensity located at x′ = (x′, y′, z′). Differentiating explicitly
the Green’s function with respect to x and y, respectively, gives the velocity v= ∂ψ/∂x
and u = −∂ψ/∂y induced by the point vortex. Second-order derivatives provide the
velocity gradients which are used to study the linear stability of the point vortex
arrays; see appendix A for details. For finite core vortices, the inversion of (2.1)
leads to volume integrals. The fluid domain is represented by horizontal layers
of equal thickness 1z in which the Green’s function (and its derivatives) can be
integrated analytically. The remaining (horizontal) surface integrals are converted to
contour integrals over the contours bounding the horizontal cross-sections of the
uniform PV vortices using Green’s theorem.

The numerical method used to perform the simulation of the evolution of the flow
is the purely Lagrangian contour surgery algorithm introduced by Dritschel (1988)
for two-dimensional flows and adapted to three-dimensional QG flows by Dritschel
& Saravanan (1994) and Dritschel (2002). Contour surgery is an extension of contour
dynamics (see Zabusky, Hughes & Roberts 1979), which allows one to control the
complexity of the vortex bounding contours by topological reconnections.

To obtain finite-volume vortex equilibria, we use an iterative method which makes
the vortex bounding contours converge to streamlines. The approach is based on a
method developed by Pierrehumbert (1980) for two-dimensional flows and adapted
to three-dimensional QG flows by Reinaud & Dritschel (2002) and further used in
Reinaud & Dritschel (2009) and Reinaud & Carton (2015). The method is presented
in appendix B. The linear stability of the finite-volume vortex arrays is addressed by
analysing deformation modes of the vortex bounding contours (Reinaud & Dritschel
2002) and is briefly described in appendix C. It includes a mode representing the
displacement of the full contours, hence the relative displacement of the vortices.

3. Point vortices

We first consider arrays of point vortices. We refer to the vortices lying along the
ring as the peripheral vortices. Vortex i carries an intensity or ‘charge’ of potential
vorticity Γi, which has the physical dimension of a volume-integrated PV (see e.g.
Gryanik 1983). The m peripheral vortices are identified by their index 1 6 i 6 m. If
an additional central vortex is present, it is identified by the index 0. For convenience,
we define the strength of vortex i by κi = Γi/(4π). The point vortex problem has a
unique length scale and a unique time scale, which can both be chosen arbitrarily. The
length scale is set by the radius R= 1 of the ring on which the m peripheral vortices
are located, and the time scale is implicitly defined by taking κi= κ = 1 for 16 i6m,
where κ is the common strength of the peripheral vortices. Without loss of generality,
the ring of vortices is located on the horizontal plane z = 0. The location of the m
peripheral vortices at t = 0 is (xi, yi, zi) = (cos θi, sin θi, 0), where θi = 2π(i − 1)/m.
The central vortex has strength κ0 and is located at (0, 0, d). We take d > 0 without
loss of generality. We define α = κ0/κ . The general geometry of the vortex array is
shown in figure 1.

We analyse the linear stability of the m-vortex arrays and of the (m + 1)-vortex
arrays for d = 0 and α = ±1 for 2 6 m 6 8. When d = 0, all m + 1 vortices are
coplanar. We analyse the normal modes of perturbation of the horizontal locations of
the vortices (x′i, y′i, 0). We do not consider perturbations of the vertical location of the
vortices, which could also modify the distance separating the vortices, as no external
QG flow may move the point vortices in the vertical direction. We do not consider
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FIGURE 1. Geometry of the point vortex array and definition of the parameters presented
for 6+ 1 vortices: (a) view from the top in the x, y-plane, (b) side view in the x, z-plane.
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FIGURE 2. (Colour online) (a) Maximum growth rate σmax versus the number of vortices
m for QG point vortices in a three-dimensional, continuously stratified fluid. The results
for the m-vortex problem are indicated by black +, and the (m+ 1)-vortex problem with
d = 0 and α = 1 by blue 6, while α =−1 by red E. (b) The same as (a) but for two-
dimensional vortices for comparison.

perturbations on the strength of the vortices either. These modes of perturbations have
a time dependence proportional to eσ t

= eσr t(cos σit + i sin σit), where the real part
of σ is the growth rate of the mode, σr, and its imaginary part, σi, is its frequency.
There are nm = 2m modes for the m-vortex problem or nm = 2m + 2 modes for the
(m + 1)-vortex problem. This approach is the same as the one used in different
contexts in Reinaud & Carton (2015, 2016) and is further described in appendix A.

Figure 2 shows the maximum growth rate σmax
=max16j6nm{σrj} versus the number

of peripheral vortices m. For comparison, similar results for two-dimensional vortices
are included. The results presented here are obtained using the same numerical
technique as for the QG computations but adapted to the two-dimensional situation.
For the two-dimensional vortices, the circulation of the peripheral vortices is set to
Γ2D = 2π. When a central vortex is added, d = 0 by construction, and again we use
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FIGURE 3. (Colour online) Trajectories of the point vortices for the unstable (2+1)-vortex
problem for (a) γ =−1, (b) γ = 0 and (c) γ = 1.

a central vortex of circulation Γ0 = ±Γ2D = ±2π. The parameter α is also used to
denote the circulation ratio of the central vortex to the peripheral ones.

For the m-vortex problem, results shown in figure 2 indicate that the three-
dimensional QG vortex array is ‘less linearly stable’ than the equivalent two-
dimensional one. Indeed, the two-dimensional vortex arrays are linearly stable for
m6 7 (see figure 2b, Thomson (1883) and Kurakin & Yudovich (2002)), whereas the
three-dimensional QG vortex arrays are only linearly stable for m6 5 (see figure 2a).
Recall that the difference between the two situations lies in the nature of the Green’s
function, which is G2D(x′; x′) = (1/2π) ln |x − x′| for the two-dimensional case in
contrast with (2.3). Hence the velocity gradients are proportional to r−3 in QG, where
r= |x− x′| is the distance between the source and the evaluation point, compared to
r−2 for the two-dimensional vortices.

We also observe a strong influence of the presence of a central vortex. For d = 0,
α = 1 and m > 3, the presence of the like-signed central vortex stabilises the array.
The vortex array indeed remains linearly stable for m= 6 up to 8. The vortex array
with m = 9 is linearly unstable. Similar stabilising effects of a central, like-signed
vortex were first observed for two-dimensional geostrophic vortices by Morikawa &
Swenson (1971). It should be noted that the like-signed central vortex has, however,
a destabilising effect for a small number of peripheral vortices m = 2, 3. On the
other hand, the presence of a coplanar opposite-signed central vortex with α = −1
destabilises the ring, except for the special case m= 3. Overall, these trends are also
observed for the two-dimensional case, as shown in figure 2(b).

We next show the nonlinear evolution of a selection of point vortex arrays. Figure 3
shows the trajectories of the point vortices for (2+ 1)-vortex arrays with α =−1, 0
and 1. All trajectories are shown in the reference frame steadily rotating with the
equilibrium. In this reference frame, the departure of the vortices from their initial
position is the result of instability. In the case where α =−1, shown in figure 3(a),
the central vortex and each peripheral vortex have equal and opposite strengths. The
central and one of the peripheral vortices get closer together to form a vortex dipole,
which moves away from the origin. This vortex dipole has an overall zero strength
as the strengths of the vortices compensate. To conserve the angular impulse J =
2π
∑2

i=0 κi(x2
i + y2

i )= 2πκR2, the other peripheral vortex orbits around the origin. For
α=0, the central vortex has zero strength and thus is a passive particle. The remaining
two vortices are stable (see figure 2a). The evolution of the vortex array is shown
in figure 3(b). The two peripheral vortices, shown in red and black, remain indeed
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FIGURE 4. (Colour online) Trajectories of the point vortices for the unstable (3+1)-vortex
problem for γ = 1.

at their initial locations. The passive particle, however, moves away from its initial
location, which is a hyperbolic critical point. It should be noted that instabilities have
also been found in shallow water for such degenerate tripoles, in which the central
pole is passive, by Kizner (2014) – see in particular their figure 5. This is further
detailed below when we address the influence of the parameter α.

For α = 1, the vortex array is unstable. The evolution of the vortices is shown in
figure 3(c). Here all three vortices have equal strength. The trajectories indicate that
one of the peripheral vortices may move towards the origin while the central vortex
moves outwards to conserve both linear and angular impulses. Similar behaviours
where the central vortex moves towards the ring while one of the peripheral vortices
moves towards the centre have been observed for larger values of m as shown below.

Results presented in figure 2(a) also indicate that the (3+ 1)-vortex array with α= 1
is unstable. The evolution of the vortices is shown in figure 4. The trajectories of the
vortices appear to be chaotic. We also see that all vortices transitorily pass near the
origin. For a larger number of vortices (m> 4) and α= 1, the results (not shown) also
indicate that the unstable equilibria lead to a chaotic motion of the vortices.

The evolution of the weakly unstable six-vortex array is shown in figure 5. The
weak instability results in a very small oscillatory motion of the vortices. The
oscillation is due to nonlinear effects. The oscillation is better seen by plotting the
evolution of the distance r1,5 = |x1 − x5| between vortex 1 and vortex 5, initially
located at (1, 0, 0) and (−1/2, −

√
3/2), respectively. After an exponential growth

of the distance r1,5 from its initial value, nonlinear effects bring the vortices back to
their initial positions. This relative motion repeats quasi-periodically. The evolution
of the unstable seven-vortex array is shown in figure 6. In this case the instability
is much stronger and the point vortices have an apparent chaotic motion. It can be
noted that one of the seven peripheral vortices moves (temporarily) near the centre
of the array, indicating that the stable (6+ 1)-vortex array acts as an attractor.

By symmetry, the (m+ 1)-vortex array remains in steady rotation even if d 6= 0 and
|α| 6= 1, provided the central vortex is located on the vertical axis passing through
the centre of the ring, which is the rotation axis of the system. Moreover, in this
case the system remains in steady rotation for all values of α. The central vortex
strength κ0 and its vertical location d modify the angular velocity of the equilibrium
but do not break the equilibrium. They also affect its stability properties. We thus
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FIGURE 5. (Colour online) (a) Trajectories of the point vortices for the unstable six-vortex
problem for 0 6 t 6 500. The unfilled circle indicates the initial position of the vortices.
The dashed circle indicates the ring of radius R = 1 where the vortices initially lie.
(b) Distance r1,5 = |x1 − x5| between the vortex 1 and vortex 5 versus time.
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FIGURE 6. (Colour online) (a) Trajectories of the point vortices for the unstable
seven-vortex problem for 0 6 t 6 10. The unfilled circle indicates the initial position of
the vortices.

examine the stability properties of the (m + 1)-vortex array in the parameter space
(α, d) distinguishing the cases α < 0 and α > 0 for clarity.

We first present results for m = 2 in figure 7. The vortex array is unstable for
small d and α > 0. The growth rate of the instability decays as d is increased as
a consequence of the decrease of the interaction between the central vortex and the
peripheral vortices as seen in figure 7(b). The same is true for −1.5 < α < 0 (see
figure 7a). A stronger opposite-sign central vortex is, however, able to stabilise the
vortex array. We recover in particular that the (2 + 1)-vortex array with α = −2 is
linearly stable as established analytically by Reinaud & Carton (2015). Results also
indicate that the (2+1)-vortex array is unstable for α→0, i.e. for a vanishing strength
central vortex. In the complete absence of a central vortex, a pair of like-sign point
vortices, a two-body system, is stable. The instability observed for the (2+ 1)-vortex,
a three-body system, with α→ 0 is due to the fact that the central vortex lies initially
at a hyperbolic critical point (a stagnation point separating two trajectories around
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FIGURE 7. (Colour online) Contours of maximum growth rates of instability for the
(2 + 1)-vortex problem in a three-dimensional, continuously stratified fluid in the place
(|α|, d) for (a) α < 0 and (b) α > 0.

the peripheral vortices). Hence, although the locations of the peripheral vortices are
stable, the vanishing central vortex is unstable. This explains the trajectory of the
central vortex observed in figure 3(b). Similar results are discussed by Kizner (2014)
for QG two-layer and single-layer flows, where the pair of active vortices is shown to
be stable but an instability can be observed due to the possible motion of the passive
central vortex.

Next, results are presented in figure 8 for α < 0 and in figure 9 for α > 0 and
3 6 m 6 6. First, the results show that linearly unstable modes can be found for all
values of m investigated, in particular if |α| is larger than a threshold which depends
on m. Since the influence of the central vortex on the peripheral vortices decreases
with its height d, this growth rate of the instability is larger for small d. This is
true for all cases but for m = 3 and α < 0, as seen in figure 8. We also confirm
that an opposite-signed central vortex favours instability as the threshold in |α| which
separates the linearly stable and linearly unstable regions is lower, for a given d,
when α < 0. Finally, we see that, for α < 0, increasing m makes the vortex array
more unstable. On the other hand, for α > 0, we see that increasing m first shifts
the threshold in α to larger values. For m = 6 there is in fact a second, weaker,
unstable mode which arises from (α, d)= (0, 0) and persists for α > 0 and d 6= 0 (see
figure 10a). Recall indeed that the array of six point vortices is unstable. Therefore,
one expects for m > 6 that, when α→ 0, the (m+ 1)-vortex problem will be linearly
unstable as well. This mode becomes the dominant mode for m > 7 (see figure 10).
The particular case m = 6 is interesting, as in that case we see that a weak central
vortex located in the plane of the ring is able to stabilise the vortex array, while
instability is recovered if the weak central vortex is vertically offset by a value of
d of the order of the ring radius R= 1.

4. Finite-volume vortices
We next turn our attention to finite-volume vortices of uniform potential vorticity.

The objective of this part is to provide the generic shapes and characteristics of finite
core equilibria for 2 6 m 6 7 at the highest possible resolution. We again investigate
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FIGURE 8. (Colour online) Contours of maximum growth rates of instability for m
identical vortices on a ring with an opposite-signed central vortex (α < 0), for QG point
vortices in a three-dimensional, continuously stratified fluid in the plane (|α|, d) with
m= 3(a), 4(b), 5(c) and 6(d).

vortex arrays with and without a central vortex. We do not intend to provide at this
stage a complete catalogue of the equilibria throughout a large parameter space, which
arguably would be of little interest. There is an additional length scale in the problem,
associated with the size of the vortices. In this problem, the radius of the ring along
which the peripheral vortices lie is no longer fixed but is varied. Recall that this
distance sets the distance between the vortices. We are still free to fix a length scale in
the problem. Without loss of generality we set the height of the vortices to 1, in the
reference frame vertically stretched by N/f . We restrict attention to vortices having
a unit mean height-to-width aspect ratio, hv/rv, measured in the stretched reference
frame due to the numerical cost of the computations. Here, hv is the half-height of
the vortices and rv is their mean horizontal radius. Such vortices therefore have a
unit Burger number Bu = (hv/rv)2 = 1. The vortices are, however, pancake-like in
physical space. The specific choice of vortices with unit height-to-width aspect ratio
is, however, consistent with findings in QG turbulence where it has been shown that
vortices have typically a near-unity aspect ratio (close to 0.8) (see Reinaud, Dritschel
& Koudella 2003). It should be noted that this specific choice imposes a limitation on
the variety of equilibria we investigate.
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FIGURE 9. (Colour online) Contours of maximum growth rates for n identical vortices
on a ring with a like-signed central vortex for QG point vortices in a three-dimensional,
continuously stratified fluid in the place (|α|, d) for m = 3(a), 4(b), 5(c) and 6(d). The
panel for m= 6 offers a close-up for small d. Results for m= 6 and larger d are shown
in figure 10.

The branches of equilibria stem from vortex arrays of infinitely distant spherical
vortices in the vertically stretched reference frame. The vortices volume is V =
4πhvr2

v/3 = π/6, and their PV is set to q = 4π. This means that the time scale
associated with the vortices, inversely proportional to q, and their strength qV are the
same in all experiments. The m vortices are each discretised in the vertical direction
by nc= 83 horizontal layers. The vortex bounding contours are discretised by np= 4nc

nodes. It should be noted that the numerical cost of the algorithms grows as m2n2
pn2

c .
We focus on equilibria having imposed symmetries.

First, all m vortices have the same shape. Vortex i, 26 i6m, is the image of vortex
1 by a rotation of angle 2(i−1)π/m. Second, each vortex is symmetric with respect to
a vertical plane passing through the vortex centre and the vertical axis of rotation (the
z-axis). Similar numerical set-ups and symmetries are imposed for the (m+ 1)-vortex
problem. We focus on cases where the central vortex lies in the plane containing the
ring of peripheral vortices (d = 0). We consider the two cases where the PV of the
central vortex is q0 =±4π. In these cases, the central vortex has an imposed m-fold
symmetry, and the number of nodes np discretising each contour is adjusted to be
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FIGURE 10. (Colour online) Contours of maximum growth rates for n identical vortices
on a ring with a like-signed central vortex for QG point vortices in a three-dimensional,
continuously stratified fluid in the place (|α|, d) for m= 6(a), 7(b), 8(c) and 9(d).

divisible by m. Even when reducing the computational load by taking advantage of
the problem symmetries, determining a single equilibrium state at these resolutions
for 7+ 1= 8 vortices can take up to a day on a single core of a modern processor.
This imposes limitations on the number of states one can determine.

For each configuration, and a given value of m, we determine the family of
equilibrium states spanned by the ratio of distance δ separating the peripheral vortices
and the centre of the domain, which is the centre of rotation, to the mean vortex
radius rv = 0.5. Branches of solutions are sought until we reach an end point of the
solution branch, namely when the vortices touch. The choice of the distance to be
used depends on the configuration, as not all distances between a point defined on
the vortices and the rotation centre vary monotonically along the solution branches,
due to the deformation of the vortices. In practice, the distance δ is the distance
between the innermost edge of the vortices and the centre of the ring when the
peripheral vortices develop a sharp inner edge. On the other hand, δ is the distance
between the outermost edge and the centre of the ring when the vortices develop a
flat or slightly convex inner surface. We start the branches of solution from large
separation distances. When an equilibrium is reached by the iterative method, the
distance is reduced and the numerical method is resumed for the new separation. It
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should be noted that, if the radius of the ring tends to infinity, spherical vortices
should be in mutual equilibrium. The shape of the vortices departs from a sphere as
the vortices are located closer together. The equilibrium vortices are deformed to be
able to steadily withstand the shear (proportional to r−3) they induce on each other.
The numerical method used to determine the equilibrium states is iterative and is
described in appendix B.

We determine the equilibria for the m-vortex problem for 2 6 m 6 7. It should be
noted that the equilibria for m = 2 were originally obtained at lower resolution by
Reinaud & Dritschel (2002) and at high resolution in Reinaud & Dritschel (2018).

We first describe the shape of the equilibria obtained numerically and we address
next their linear stability. The method used for the linear stability analysis is described
in appendix C. Figure 11 shows a top view of the vortex bounding contours at the
end of the solution branch, where the vortices nearly touch for m= 2 to m= 7. Except
for m = 2, the vortices near the end point of the branch do not exhibit a single
sharp inner edge. This is in contrast with the two-dimensional equilibria shown by
Dritschel (1985) (in particular their figure 2) where a single sharp inner edge forms for
m 6 4. Instead, for m > 3 the innermost part of the vortices flattens and remains
slightly convex. Vortices touch by their side at the end point of the solution branch.

Figure 12 shows the maximum growth rate σmax
= max{σr} versus the distance

δ between the innermost edge of the vortices and the centre of rotation. Results
show that the equilibria are unstable for δ less than a threshold depending on m.
Importantly, unstable equilibria are found for all m for all three configurations.
Finite-volume vortices can deform and therefore can be sensitive to deformation
modes as well as displacement modes. By construction, only the displacement modes
can be captured by the analysis of the stability of systems of point vortices. Moreover,
there is a fundamental difference between deformation modes which affect the shape
of the vortices and displacement modes which move the vortices. If a point vortex
equilibrium is sensitive to a displacement mode, the point vortex equilibrium is
fundamentally unstable, i.e. it is unstable for all separation distances between the
vortices. The distance influences the magnitude of the growth rate, but does not
change the nature of the stability properties. On the other hand, the deformation
modes for finite-volume vortices can be triggered when the vortices are close enough
to each other, as seen in figure 12. In practice such deformation modes are associated
with the phase locking of vorticity Rossby waves travelling on the vortex boundaries
– see Dritschel (1995) for a discussion for two-dimensional vortices. A mode with
non-zero growth rate is observed for m = 7 for all distances and is associated with
the displacement mode. The growth rate of the instability increases as the vortices
are closer together. This is related to the increase of the strain vortices induced
on each other. It should be noted, however, that the similar (but much weaker)
displacement instability mode for m = 6 observed in the point vortex calculation
is not clearly noticeable for the finite-volume vortex equilibria. We conjecture that
the deformed finite-volume vortices have adapted to the external shear induced by
the other vortices. This has weakened the already weak mode, and its growth rate
cannot be convincingly distinguished from background numerical noise. Indeed, the
equilibria are obtained numerically by an iterative method, described in appendix B.
The iterative method is stopped when the correction to the rotation rate of the vortex
array is less than a threshold (10−11 in the present study). This means that a small
residual unsteadiness remains together with the unavoidable small truncation errors
inherent to the numerical approach. Hence very weak instabilities may have a growth
rate of the order of the precision of our numerical calculation of the equilibrium.
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FIGURE 11. Top view of the vortex bounding contours to the m-vortex equilibria at the
end of the solution branch where the vortices touch. The grey scale indicates the height
of the contour: lighter grey contours are nearer the top.

Figure 13 shows the vortex equilibria for the (m + 1)-vortex problem when d = 0
and α = −1. Recall that, except for m = 3, the associated point vortex arrays are
unstable. The general shape of the equilibria is qualitatively similar to the shape
of the two-dimensional equilibria obtained by Kizner et al. (2007) and the vortex
arrays obtained experimentally by Trieling, van Heijst & Kizner (2010). It should
be noted that we have not been able to reach an end point in the case m = 2
despite numerous attempts. Importantly, the algorithm requires that we fix a distance
between two points discretising the vortices during the iterative procedure to determine

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

98
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.989


46 J. N. Reinaud

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

∂

ßm
ax

FIGURE 12. (Colour online) Maximum growth rate σmax of instability versus the inner
gap δ for the finite-volume m-vortex problem for m = 3 (solid black), 4 (dotted black),
5 (dashed-dotted black), 6 (solid red) and 7 (dotted red).

the equilibrium. When the equilibrium is reached, this distance is reduced and the
procedure is resumed for this new distance. As mentioned previously, not all distances
vary monotonically along the branch of solutions, and we may need to describe the
solution branch piece by piece, adapting the adequate distance to be fixed. In the
case m = 2, we were not able to find a convenient distance to be fixed that would
allow one to go further along the branch. A new approach may be required in this
case.

The presence of an opposite-signed vortex in the centre of the structure changes the
topology of the streamlines, hence the shape of the equilibria. This difference with the
m-vortex problem becomes less noticeable for large m, as the vortices remain far from
the central vortex even at the end point of the branch. However, the peripheral vortices
tend to be thinner in the radial direction when the opposite-signed central vortex is
present. It is, however, important to stress that these qualitatively similar vortex shapes
have fundamentally different stability properties.

Figure 14 shows the maximum growth rate σmax for the (3 + 1)-vortex problem
with d = 0 and α = −1. We do not show results for the other values of m, as they
are all unstable for all distances. Indeed, these configurations are all unstable to at
least displacement modes as found for the point vortices. The linear stability of the
finite-volume vortices confirmed this. The case m= 3 is the only one which is linearly
stable to displacement modes. Again, we see that deformation modes can destabilise
the equilibrium if the vortices are close enough together. Recall that vortices at
equilibrium are more deformed as they are closer together.

Finally, figure 15 illustrates the equilibria at the end point of the solution branches
for the (m+ 1)-vortex problem with d = 0 and α = 1. Owing to the presence of the
central like-signed vortex, the vortex exhibits a sharp inner edge for m6 6. Note that,
for m> 6, the distance between two neighbouring peripheral vortices is less than the
distance between these vortices and the central vortex. In these cases, the peripheral
vortices interact more strongly with their neighbours on the ring. This explains the
change in the shape of the equilibria.
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(e) (f)

FIGURE 13. Top view of the vortex bounding contours to the (m+ 1)-vortex equilibria at
the end of the solution branch where the vortices touch (except for m= 2 in (a), where
this state could not be obtained numerically). The central vortex and the peripheral vortices
have opposite-signed PV. The grey scale indicates the height of the contour: lighter grey
contours are nearer the top.

The maximum growth rate σmax of the unstable modes versus δ is shown in
figure 16. Again, unstable modes are obtained for δ less than a threshold for all
m. The weak unstable mode observed for the (3+ 1) point vortex system for d = 0
and α = 1 is not clearly captured for the finite-volume problem. We conjecture
that, as seen for the six-vortex problem, the deformation of the vortices, hence their

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

98
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.989


48 J. N. Reinaud

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.25

0.20

0.15

0.10

0.05

0

∂

ßm
ax

FIGURE 14. Maximum growth rate σmax of instability versus the inner gap δ for the finite-
volume (m + 1)-vortex problem for m = 3 where the central vortex and the peripheral
vortices have opposite sign.

capacity to adapt to the external shear, weakens the instability. The growth rate of
the instability is of the order of the background numerical noise.

For the sake of completeness, one can also calculate two of the fundamental
invariants of the equilibria, namely their total energy E and their angular impulse J,
defined by

E=−
1
2

∫∫∫
V

qψ dv, (4.1)

J =
1
2

∫∫∫
V

q(x2
+ y2) dv. (4.2)

A summary of the results is presented in figure 17. For the two-vortex problem, the
margin of stability has been observed empirically to coincide with the maximum
of E and minimum of J versus the distance separating the vortices (see Reinaud &
Dritschel 2002, 2005). The fact that the combined extrema can be associated with
the onset of instability has been justified by Safman (1992) using Kelvin’s variational
principle. The condition is a sufficient but not necessary condition. We have not
found a systematic match between the onset of instability and the coincidence of
extrema for E and J for m > 2. It should be noted that such a match should not
be expected, at least for the displacement mode, as its origin is independent of the
distance separating the vortices. For almost all cases, the rotation rate ω and the
energy E increase as the vortices are closer to one another, hence their interaction is
stronger. On the other hand, J decreases with the distance, as J is associated with a
volume integral of PV weighted by distance to the system centre squared. Only for
the case m= 3 and d = 0, α =−1 do these trends differ. In this case the peripheral
vortices are close to the highly deformed opposite-signed central vortex. This central
vortex dominates the overall rotation (which becomes clockwise) and its contribution
to the angular impulse is negative.

We next illustrate the nonlinear evolution of unstable equilibria for the three
categories of vortex arrays. We start with an example of the three-vortex problem.
The equilibrium corresponds to a state with an innermost gap δ = 0.16 and the
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(c) (d)

(e) (f)

FIGURE 15. Top view of the vortex bounding contours to the (m + 1)-vortex equilibria
at the end of the solution branch where the vortices touch. The central vortex and the
peripheral vortices have the same PV. The grey scale indicates the height of the contour:
lighter grey contours are nearer the top.

maximum growth rate of instability is σmax
= 0.037. Results obtained with the

Lagrangian contour dynamics method are presented in figure 18. The equivalent
equilibrium with point vortices is linearly stable, indicating that there is no unstable
displacement mode. The instability is associated with the deformation of the vortices.
We do not force the instability but simply let it grow from pseudo-random numerical
errors. For numerical efficiency the number of nodes discretising the contours of
the equilibrium (np = 4nc) is reduced while maintaining high accuracy. This is done
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FIGURE 16. (Colour online) Maximum growth rate σmax of instability versus the inner gap
δ for the finite-volume (m+ 1)-vortex problem where the central vortex and the peripheral
vortices have the same sign for m = 3 (solid black), 4 (dotted black), 5 (dashed-dotted
black), 6 (solid red) and 7 (dotted red).

by ‘renoding’ the contours, which is part of contour surgery with standard set-up
parameters. This procedure is enough to introduce a small perturbation on the vortex
shape. Figure 18 shows the vortices in the reference frame steadily rotating with
the equilibrium. Therefore, any motion observed in this reference frame represents a
departure from equilibrium. The vortices remain at equilibrium for a long period of
time, while the deformation slowly grows from the low numerical noise. By t = 22,
the innermost edges of the vortices have deformed and have formed bridges which
connect them to the neighbouring vortex to their right (in the direction of rotation of
the structure). This deformation is qualitatively similar to the one associated with the
merger of a pair of like-signed vortices (see Reinaud & Dritschel 2002). As the flow
develops, the merged vortex forms a complex structure which resembles a three-blade
propeller. Some PV from the central layers converges to the centre of the structure.
To conserve the angular impulse J, some PV from the lower and upper layers of
the vortices is ejected away from the centre of the structure. These will turn into
filaments and small-scale debris in the late evolution of the flow.

The second illustration of the nonlinear evolution of the equilibria concerns an
unstable (6+ 1)-vortex equilibrium with d= 0 and α=−1. Recall that such a vortex
array is sensitive to a displacement mode. Results obtained with the Lagrangian
contour dynamics method are shown in figure 19. Here, the distance δ between the
peripheral vortex innermost edge and the centre of the central vortex is δ = 1.08
and the most unstable mode has a growth rate σmax

= 0.12. We first observe that
the vortices indeed move. Some vortices get closer together, creating a larger gap
with their other neighbouring vortex on the ring. The straining field changes as the
vortices depart from their equilibrium. The vortices thus start to deform. The vortices
which have got closer together merge to form larger structures. These structures are
not stable and can further interact and/or break back into much deformed secondary
structures. This resembles instances of partial merger observed during the interaction
between two vortices (see Reinaud & Dritschel 2002).
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FIGURE 17. (Colour online) Global diagnostics for the equilibrium state: rotation rate ω,
total energy E and angular impulse J versus `x, the distance between the centroid of the
peripheral vortices and the centre of the ring, for m= 2 (solid blue), m= 3 (solid black),
m = 4 (dotted black), m = 5 (dashed-dotted black), m = 6 (solid red) and m = 7 (dotted
red); and for the m-vortex problem (a–c), the (m+ 1)-vortex problem with d= 0, α=−1
(d–f ) and the (m+ 1)-vortex problem with d= 0, α = 1 (g–i).

Finally, we consider an example of unstable (4+ 1)-vortex equilibrium with d = 0
and α = 1 with δ = 0.16 and σmax

= 0.076. The equivalent point vortex equilibrium
is linearly stable. Results obtained with the Lagrangian contour dynamics method are
presented in figure 20. In this case, the instability is associated with the deformation of
the vortices. The sharp inner edge of the peripheral vortices elongates and a filament
of PV is shed near the edge of at least one vortex. This filament is wrapped around
the central vortex. This in turn breaks the symmetry of the flow. As the vortices
deform, some of the peripheral vortices strongly interact with the central vortex in
an asymmetric way. This is followed by a series of partial mergers, and breaking into
secondary vortices. In the latter two cases the central vortex remains near the centre
of the domain at least for the duration of the simulation. This is due to conservation
of the linear and angular impulses, as overall the system must remain anchored to the
centre of the domain.
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(a) (b)

(c) (d)

FIGURE 18. Evolution of the vortex bounding contours for an unstable (σmax
= 0.037)

array of three vortices in mutual equilibrium for δ = 0.16 at t= 0, 22, 24 and 27.5. The
vortex bounding contours are viewed orthographically at an angle of 45◦ from the vertical.

5. Conclusion

We have investigated the problem of m and m + 1 vortices in mutual equilibrium
in the context of three-dimensional, unit-Burger-number, quasi-geostrophic (QG)
vortices. We have first shown that these vortices have specific stability properties
even if they exhibit overall similar patterns with their known two-dimensional
counterparts. Notably, in the absence of a central vortex, no more than five identical
three-dimensional QG vortices can remain stably located on a circular ring. Recall
that seven two-dimensional vortices can remain in mutual equilibrium for long times.
We have also seen that adding an opposite-signed vortex on the vertical axis of
rotation of the system generally tends to destabilise the vortex array. The opposite
trend is observed if the central vortex has the same sign as the peripheral ones,
except for m = 2. However, instability can be found in general if the central vortex
is strong enough. Moreover, finite-volume vortices can be sensitive to deformation
modes when the vortices are close enough to each other. Nonetheless, there exist
large parts of the parameter space where such vortex arrays are stable and therefore
can persist in time. The existence of such equilibria can explain the formation
of patterns in geophysical contexts and in the atmosphere of other planets, such
as the polygonal clusters of cyclones observed in the polar regions of the Jovian
atmosphere (see Adriani et al. 2018). The paper has focused for the first time on
these equilibria in the simplest three-dimensional context relevant to environments
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(a) (b)

(c) (d)

FIGURE 19. Evolution of the vortex bounding contours for an unstable (σmax
= 0.12) array

of six peripheral vortices and an opposite-signed central vortex (α =−1) with d = 0, in
mutual equilibrium for δ = 1.08 at t = 0, 12, 16 and 21. The vortex bounding contours
are viewed from the top.

subject to rapid background rotation and stable density stratification. This research
can be extended to further studies in other contexts with different vertical density
stratification, in particular when the Boussinesq approximation fails to be relevant.
Additionally, the present investigation has restricted attention to unit-Burger-number
vortices, which limits the variety of equilibria investigated. Owing to the numerical
cost of computing three-dimensional finite-volume equilibria and addressing their
stability, it is impracticable to perform an exhaustive study of the influence of the
Burger number in this context. Such a study can, however, be performed using a
two-layer model and will be considered in a future work.

Appendix A. Linear stability for point vortices
This appendix briefly describes the method used to address the linear stability of a

system of point vortices. It relies on a straightforward linearisation of the equations
of motions of the vortices. The m peripheral vortices of strength κi are located on a
ring of radius R at a polar angle {θi}16i6m,

θi =
i− 1

m
2π. (A 1)

The peripheral vortices have a strength κi = κ for 1 6 i 6 m. The central vortex is
located at (0, 0, d) and has strength κ0.
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(a) (b)

(c) (d)

FIGURE 20. Evolution of the vortex bounding contours for an unstable (σmax
= 0.076)

array of four peripheral vortices and a like-signed central vortex (α = 1) with d = 0, in
mutual equilibrium for δ = 0.16 at t= 10, 14, 20 and 24. The vortex bounding contours
are viewed from the top.

Vortex 1 is located at the point (R, 0, 0) and is used to evaluate the uniform angular
rotation velocity ω,

ω=
v1

R
=

κ0

(R2 + d2)3/2
+ κ

m∑
i=2

1− cos θi

R3((1− cos θi)2 + sin2 θi)3/2
, (A 2)

where v1 is the velocity of vortex 1 in the y-direction. It should be noted that (A 2)
can be simplified but the simplified formula is not particularly illuminating. We also
denote for simplicity the Cartesian coordinates of the point vortices (xi, yi, zi), and we
define

r2
ij = (xi − xj)

2
+ (yi − yj)

2
+ (zi − zj)

2. (A 3)

We next focus on the normal (exponentially growing) modes of perturbation. We
consider perturbations of the horizontal coordinates of the vortices

(x̃i, ỹi, 0)= eσ t(x′i, y′i, 0), (A 4)

where σ = σr + iσi ∈ C. The real part σr of σ corresponds to the growth rate of
the mode while its imaginary part σi is its frequency. We do not consider vertical
perturbations, which would otherwise also affect the distance separating the vortices,
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since the vertical advection is negligible in the QG model; hence no perturbation
stemming from an external QG flow may move the vortices in the vertical direction.
We do not consider perturbations of the strength of the vortices either. It should be
noted that the vortex strengths are materially conserved in the incompressible, inviscid
and adiabatic flow. Other works, in particular Carnevale & Kloosterziel (1994), have
however included such perturbations, and they may lead to instability. We do not
consider algebraic modes or nonlinear modes in this work.

The equations for the perturbations are obtained by linearising the equations of
motion of the vortices in the reference frame rotating with the vortices about their
equilibrium position:

dx′i
dt
= σx′i

= ωy′i −
m∑

j=0,j6=i

κj

r3
ij

[(
1− 3

(yi − yj)
2

r2
ij

)
(y′i − y′j)− 3

(yi − yj)(xi − xj)

r2
ij

(x′i − x′j)
]
,

(A 5)
dy′i
dt
= −σy′i

= −ωx′i +
m∑

j=0,j 6=i

κj

r3
ij

[(
1− 3

(xi − xj)
2

r2
ij

)
(x′i − x′j)− 3

(yi − yj)(xi − xj)

r2
ij

(y′i − y′j)
]
.

(A 6)

For the m-vortex problem (the (m+ 1)-vortex problem, respectively), this provides
a 2m × 2m (a (2m + 2) × (2m + 2), respectively) algebraic eigenvalue problem for
σj, 1 6 j 6 2m (1 6 j 6 2m+ 2, respectively), which is solved numerically.

Appendix B. Finding finite-size equilibria
The numerical method to obtain steadily rotating states is an iterative method

which makes the vortex bounding contours in each horizontal cross-section converge
to streamlines, ψ = const., in the relevant rotating reference frame. In this reference
frame, the velocity is tangent to the contours, and the contours do not deform in
time. Here, each vortex is represented by a collection of nc = 83 horizontal contours
Ck.

The streamfunction in the rotating frame ψ̃k,n along the kth contour (Ck) in the nth
iteration takes the form

ψ̃k,n(ρk,n)=ψk,n(ρk,n)−
1
2Ωnρ

2
k,n, (B 1)

where ρk,n= (xk,n, yk,n) is the horizontal position vector describing the contour Ck, Ωn
is the nth estimate for the background rotation, and ψk,n(ρk,n) is the streamfunction
obtained from the inversion of Poisson’s equation (2.1).

For the (n+ 1)th iteration, we enforce, approximately, the condition of equilibrium,
namely

ψ̃k,n+1(ρk,n+1)= ck, (B 2)

where ck is a constant (generally different for each contour Ck). Starting from the nth
guess for the equilibrium solution, this equation is partially linearised about ρk,n to
find the correction ρk,n+1 − ρk,n. We use here radial corrections ηk,n, where the radius
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is measured horizontally from the centroid of the vortex to which Ck belongs. We
write

ρk,n+1 = ρk,n + ηk,n r̂k,n, (B 3)

where r̂k,n is the unit vector in the radial direction. Equation (B 2) is then expanded
to first order in η, but ignoring the implicit change in ψ associated with the change
in the contour shapes:

ψ̃k,n+1(ρk,n+1) ' ψk,n(ρk,n)−
1
2Ωnρ

2
k,n −

1
2Ω
′ρ2

k,n

+ ηk,n[(r̂k,n · ∇)ψk,n(ρk,n)−Ωnρk,n · rk,n], (B 4)

where
Ω ′ =Ωn+1 −Ωn (B 5)

is the correction to the background rotation rate and

ψk,n+1 'ψk,n (B 6)

is heuristically assumed, following Pierrehumbert (1980). The latter assumption avoids
the large matrix problem that would otherwise result.

Thus, from (B 2) and (B 4), the correction ηk,n can be expressed as a simple function
of the set of constants ck and Ω ′:

ηk,n =
ck − ψ̃k,n(ρk,n)+

1
2Ω
′ρ2

k,n

(r̂k,n · ∇)ψk,n(ρk,n)−Ωnρk,n · r̂k,n
. (B 7)

Two other conditions are next imposed to determine the rotation rate correction Ω ′
and the constants ck. The first one is the volume conservation of the vortices. In the
absence of vertical mass transfer in QG flows, volume conservation is equivalent to
the conservation of the area Ak within each contour Ck. This allows one to write a
first relation between ck and Ω ′. Area conservation between two iterations can be
expressed, at the first order, by

Ak,n+1 =
1
2

∮
Ck

ρ2
k,n+1 dθ

' Ak,n +

∮
Ck

ηk,nr̂k,n · ρk,n dθ ≡Ak, (B 8)

where θ is the geometric polar angle, Ak,n is the area of the kth contour at the nth
iteration, and Ak is the prescribed area of Ck (note that Ak,n converges to Ak as ηk,n→

0). Substituting ηk,n from (B 7) into (B 8), we obtain the following equations for the
constants ck as a function of Ω ′:

ck = hk,n −Ω
′gk,n (B 9)

(with wk,n ≡ ξ
−1
k,n rk,n · ρk,n)

hk,n =

Ak − Ak,n +

∮
Ck

ψ̃k,nwk,n dθ∮
Ck

wk,n dθ
and gk,n =

1
2

∮
Ck

ρ2
k,nwk,n dθ∮

Ck

wk,n dθ
. (B 10a,b)
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A second constraint is next imposed to determine the rotation rate correction Ω ′.
We fix the distance between one point chosen on one of the vortices of the ring. This
implies that the local correction at this point is zero:

ηk1,n(θ1)= 0. (B 11)

Here k1 refers to the mid-contour of the chosen vortex and the point has polar angle
θ1. Using (B 7), we find

Ω ′ =
ψ̃k1,n(θ1)− hk1,n

(1/2)ρ2
k1,n(θ1)− gk1,n

. (B 12)

The specific choice for the point depends on the geometry of the equilibrium. In
practice, it is either the innermost or the outermost edges of the contour in the plane
z= 0 of the vortex whose centre lies on the semi-axis [0,∞).

The iterative scheme is repeated until the correction Ω ′ is less than a given
tolerance, namely 10−11 in the present study.

Appendix C. Linear stability for finite-size vortices
We present here the method used to address the linear stability of the finite-size

vortices. We consider infinitesimal disturbances of the horizontal position vector ρk of
points along the contour Ck from its equilibrium value ρe,k = (xe, ye),

ρk(θ̃ , t)= ρe,k + γk
(−dye/dθ̃ , dxe/dθ̃ )

(dxe/dθ̃ )2 + (dye/dθ̃ )2
, (C 1)

where γk is a disturbance area taken in the form

γk(θ, t)= eσ t
M∑
m

γ̂k,meimθ . (C 2)

Here, the angle θ̃ is the ‘travel-time coordinate’, an angle proportional to the time
taken by a fluid particle to travel along the contour Ck. The mode m= 1 corresponds
to a displacement of the contour. The evolution of the disturbance area γk is governed
at first order by

∂γk

∂t
+ωk

∂γk

∂θ̃
=−

N∑
l=1

1ql
∂

∂θ̃

∮
Cl

γlGk,l(ρ) dθ̃ ′, (C 3)

where N = nv × nc is the total number of contours, ωk is the constant rotation rate of
the fluid particle along contour Ck, 1ql is the PV jump across contour Cl, Gk,l is the
Green’s function giving the velocity induced in the layer containing Ck by the PV in
the layer containing contour Cl in an unbounded infinite domain, and ρ = |ρe,k(θ)−
ρe,l(θ

′)|. Substituting γk and γl by their expression from (C 2) into (C 3) leads to a 2×
N×M real eigenvalue problem for the real and imaginary parts of γk. The eigenvalues
σ are complex. Their real part σr are the mode growth rates and their imaginary parts
σi are the mode frequencies. The eigenvectors {γ̃n}16n62NM allow one to reconstruct the
spatial structure of the modes. We use M = 10.
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It should be noted that the perturbation considered includes all possible deformations
of the vortex boundary (including the displacement of the vortex), consistent with the
QG equations: although the perturbation can have any vertical structure, no vertical
displacement of the layers is allowed.
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