
Math. Struct. in Comp. Science (2019), vol. 29, pp. 93–126. c© Cambridge University Press 2017

doi:10.1017/S0960129517000111 First published online 22 May 2017

A resource aware semantics for a focused

intuitionistic calculus

DELIA KESNER† and DANIEL VENTURA‡

†IRIF, CNRS, Univ. Paris-Diderot, Paris, France

Email: kesner@pps.univ-paris-diderot.fr
‡INF, Univ. Federal de Goiás, Goiânia, Brazil

Email: daniel@inf.ufg.br

Received 28 April 2016; revised 23 March 2017

We investigate a new computational interpretation for an intuitionistic focused sequent

calculus which is compatible with a resource aware semantics. For that, we associate to

Herbelin’s syntax a type system based on non-idempotent intersection types, together with a

set of reduction rules – inspired from the substitution at a distance paradigm – that preserves

(and decreases the size of) typing derivations. The non-idempotent approach allows us to

use very simple combinatorial arguments, only based on this measure decreasingness, to

characterize linear-head and strongly normalizing terms by means of typability. For the sake

of completeness, we also study typability (and the corresponding strong normalization

characterization) in the calculus obtained from the former one by projecting the explicit cuts.

1. Introduction

Intuitionistic logic can be expressed in different formal systems such as natural deduction

and sequent calculi. Equivalence between these two formal styles has been widely

studied (Espı́rito Santo 2009; Gentzen 1969; Pottinger 1977; Prawitz 1965; Zucker 1974),

i.e. every derivation in one system can be encoded into a derivation in the other one.

However, this correspondence is not one-to-one, in particular, several cut-free proofs

in an intuitionistic sequent calculus correspond to the same normal natural deduction

derivation. This gives rise to restrictions of sequent calculi, the so-called focused sequent

calculi (Andreoli 1992), which establish a better relationship with natural deduction.

Indeed, there is a one-to-one correspondence between cut-free proofs in focused sequent

calculi and normal derivations in natural deduction.

In 1994, Herbelin (1995) introduced the λ-calculus, obtained by a computational

interpretation of the focused sequent calculus for the minimal intuitionistic logic LJT . In

contrast to the usual λ-calculus notation for natural deduction, λ notation brings head

variables to the surface, treats sequences of arguments as lists, and encodes cut typing

rules with explicit cuts. Its operational semantics is specified by means of a complete set of

cut-elimination rules. The calculus is permutation-free and can be used to describe proof-

search in pure Prolog and some of its extensions (Miller et al. 1991). The reduction system

of the λ-calculus was then extended (Dyckhoff and Urban 2003) with permutation rules,

thus showing how to model beta-reduction by giving a natural basis for implementations

of functional languages.

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

D. Kesner and D. Ventura 94

Unfortunately, Herbelin’s calculus is not compatible with a resource aware semantics,

mainly because propagation of explicit cuts w.r.t. the structure of λ-terms induces useless

duplications of empty resources (c.f. technical discussion in Section 4). This is substantiated

when trying to interpret the λ-calculus by means of proof-nets (Girard 1996) or non-

idempotent intersection types (pioneered by Gardner (1994), Boudol et al. (1999), Kfoury

(1996) and Kfoury and Wells (2004)).

This paper proposes a new computational interpretation for the focused intuitionistic

sequent calculus LJT , that we call E-calculus, which is compatible with a resource

aware semantics. The new calculus keeps Herbelin’s syntax but changes the operational

semantics of λ to a resource-controlled interpretation, inspired from the structural lambda-

calculus (Accattoli and Kesner 2010), and the linear substitution calculus (Accattoli et al.

2014; Milner 2007). The terms of the E-calculus can be seen as λ-terms with explicit cuts

of the form t[x\u], where [x\u] is propagated according to the number of free occurrence

of x in t (and not w.r.t. the structure of terms). For the sake of completeness, we also

study in the second part of the paper the I-calculus, a formalism using full – in contrast

to partial – substitution, in which normal forms are exactly the same as those of the

E-calculus. An I-reduction step is obtained by projecting E-reduction steps into terms

without explicit cuts. In other words, E-reduction implements the meta-level operators of

the I-calculus by using a resource aware semantics specified by means of explicit reduction

rules. Therefore, the paper gives a self-contained study of computational interpretations

based on intuitionistic sequent calculi, completely independent from their isomorphic

natural deduction counterparts.

A second contribution of this paper is to provide type systems based on non-idempotent

intersection types for both E and I calculi. Intersection types were introduced to give

characterizations of strongly β-normalizing terms in the λ-calculus (Coppo and Dezani-

Ciancaglini 1978; Krivine 1993; Pottinger 1980); since then, they have been used to

characterize termination properties in a broader sense (Coppo et al. 1981), as well as to

construct models of the λ-calculus itself (Barendregt et al. 1983). Commonly, intersection

types are idempotent, i.e. σ ∧ σ = σ, but we use here non-idempotent types (Boudol et al.

1999; Kfoury 1996; Kfoury and Wells 2004), suitable to obtain quantitative information

about reduction sequences.

In this paper, we define non-idempotent type systems for both E and I calculi.

The first system, called HE, characterizes linear-head normalizing terms, i.e. a term t is

typable in HE if and only if t is linear-head E-normalizing. Linear-head reduction is for

terms with explicit cuts what head reduction is for λ-terms. Moreover, linear-head reduction

cannot be simply expressed as a strategy of β-reduction, the reason being that β-reduction

implements full substitution, while linear-head reduction only uses a partial/linear notion

of substitution.

The second system, called SE, characterizes strongly normalizing terms, i.e. a term t is

typable in SE if and only if t is strongly E-normalizing. Because of the

non-idempotent approach, the characterization proofs mentioned above use simple

combinatorial arguments, specified by a Weighted Subject Reduction property,

and make no use of reducibility techniques, as required in the idempotent

case.

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

A resource aware semantics 95

The third system, obtained by restricting SE to pure terms (i.e. terms without explicit

cuts) also characterizes strong I-normalization, as expected. The implication ‘Typability

implies Normalization’ is obtained from the corresponding result for E-terms mentioned

above, by using an appropriate projection lemma. The converse implication ‘Normalization

implies Typability’ is developed independently, i.e. without using the corresponding

result for the E-calculus (which would need to prove that the E-calculus preserves I-

normalization).

Some related work: In the last years, there has been a growing interest in non-idempotent

intersection types. The relation between the size of a non-idempotent intersection typing

derivation and the head/weak-normalization execution time of λ-terms by means of

abstract machines was established by de Carvalho (2007). Non-idempotence is used to

reason about the longest reduction sequence of strongly normalizing terms in both the

lambda-calculus (Bernadet and Lengrand 2011; De Benedetti and Ronchi Della Rocca

2013) and in different lambda-calculi with explicit substitutions (Bernadet and Lengrand

2013; Kesner and Ventura 2014b). Non-idempotent types also appear in the study of

needed reduction (Gardner 1994), linearization of the lambda-calculus (Kfoury 1996),

type inference (Kfoury and Wells 2004; Neergaard and Mairson 2004), different char-

acterizations of solvability (Pagani and Ronchi Della Rocca 2011) and verification of

higher order programs (Ong and Ramsay 2011). While the inhabitation problem for

intersection types is known to be undecidable in the idempotent case (Urzyczyn 1999),

decidability was recently proved (Bucciarelli et al. 2014) through a sound and complete

algorithm in the non-idempotent case. Concerning the use of idempotent intersection types

for focused intuitionistic sequent calculi, two different papers (Espı́rito Santo et al. 2012;

Ghilezan et al. 2011) provide characterizations of strongly normalizing terms by means of

typability, but none of them use quantitative information about reduction, as presented

in this paper. Moreover, in contrast to Ghilezan et al. (2011), which is based on explicit

control operators for weakening and contraction, we keep the simple, original syntax of

Herbelin.

The work presented in this paper originates from a first computational interpretation

of LJT appearing in an unpublished technical report (Kesner and Ventura 2014a). The

approach in Kesner and Ventura (2014a) formulates the typing rules by introducing

witness derivations everywhere, so that it is too costly and resource demanding (see the

discussion at the end of Section 11). The type systems in this paper only require witness

derivations for potentially erasable arguments of functions and cuts. As a consequence, the

upper bound for the longest reduction sequence of a strongly normalizing term obtained

in this paper, represented just by the size of a typing derivation, is tighter than the one

in Kesner and Ventura (2014a).

Structure of the paper: After giving some general notions of rewriting used all along the

paper (Section 2), the explicit E-calculus is introduced in Section 3. Two different typing

systems for the E-calculus are introduced in Section 4 followed by its main properties

(Section 5). Characterizations of linear-head and strong E-normalization are studied in

Sections 6 and 7, respectively. Section 8 presents the syntax and the operational semantics

of the I-calculus, obtained by projecting E into a pure grammar without explicit cuts.

Section 9 introduces non-idempotent types for the I-calculus and Section 10 studies

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

D. Kesner and D. Ventura 96

a characterization of I-normalization by means of typability. Finally, we conclude in

Section 11.

This paper is an extended version of Kesner and Ventura (2015).

2. General notions of rewriting

This section introduces some general notions of rewriting used all along the paper for

different reduction relations.

A reduction relation →R on a set O is a subset of O × O. We denote by →∗
R (resp.

→+
R) the reflexive–transitive (resp. transitive) closure of a given reduction relation →R. An

object o ∈ O is in R-normal form, or R-nf, written o ∈ NF(R), if there is no o′ such that

o →R o′. Similarly, o has an R-normal form, if there exists o′ ∈ NF(R) such that o →∗
R o′.

The reduction relation R is confluent if and only if for all objects o1, o2, o3 such that

o1 →∗
R o2 and o1 →∗

R o3, there is o4 being able to close the diagram, i.e. o2 →∗
R o4 and

o3 →∗
R o4. An object o is strongly R-normalizing, written o ∈ SN (R), if there is no infinite

R-reduction sequence starting at o, and o is R-finitely branching if the set {o′ | o →R o′}
is finite. If an object o is R-strongly normalizing and R-finitely branching, then the depth

of o, written ηR(o), is the maximal length of an R-reduction sequence starting at o.

3. The E-calculus

This section introduces the syntax and the operational semantics of the E-calculus. The

term language follows from Herbelin (1995), while the reduction rules aim to give a

resource aware semantics based on the substitution at a distance paradigm (Accattoli et al.

2014; Milner 2007). Given a countable infinite set of symbols x, y, z, . . ., we define the

following three syntactic categories:

(E-objects) o, p ::= t | l
(E-terms) t, u ::= xl | tl | λx.t | t[x\t]
(E-lists) l, m ::= ε | t; l

The empty list is denoted by ε and the construction [x\u] is said to be an explicit cut.

Remark that the symbol x alone is not an object of the syntax (term variables in natural

deduction style are encoded by xε), and cuts do not apply to lists, but only to terms, i.e.

l[x\u] is not in the grammar. We may write tl1 . . . ln for (. . . (tl1) . . . ln) and xε for xε.

The size of an object o, written |o|, is defined by induction as follows:

|xl| := |l| + 1 |ε| := 1

|tl| := |t| + |l| |t; l| := |t| + |l| + 1

|λx.t| := |t| + 1 |t[x\u]| := |t| + |u| + 1

The notions of free and bound variables are defined as usual, in particular,

fv(xl) := {x} ∪ fv(l) fv(ε) := �

fv(tl) := fv(t) ∪ fv(l) fv(t; l) := fv(t) ∪ fv(l)

fv(λx.t) := fv(t) \ {x} fv(t[x\u]) := (fv(t) \ {x}) ∪ fv(u)

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

A resource aware semantics 97

The set of positions of o, written pos(o), is a finite language over {0, 1} inductively defined

as follows: ε ∈ pos(o) for every o (the root position); 0p ∈ pos(λx.t) if p ∈ pos(t);

0p ∈ pos(xl) if p ∈ pos(l); 0p ∈ pos(tl) (resp. pos(t; l) and pos(t[x\u])) if p ∈ pos(t);

1p ∈ pos(tl) (resp. pos(t; l)) if p ∈ pos(l); 1p ∈ pos(t[x\u]) if p ∈ pos(u). The subterm of

t at position p is written t|p and defined as expected.

The number of free occurrences of x in o is written |o|x. We work with the standard

notions of α-conversion (i.e. renaming of bound variables for abstractions and cuts), and

Barendregt’s convention (Barendregt 1984).

We also consider different categories of E-contexts:

(E-head cut contexts) L ::= � | L[x\t]
(E-object contexts) O, P ::= C | V
(E-term contexts) C, D ::= � | xV | Cl | λy.C | C[y\u] | t[y\C] | tV
(E-list contexts) V, U ::= C; l | t; V

When the replacement of the hole of O by the object o is well defined (i.e. gives an

object), then we denote it by O[o]. Similarly, L[t] denotes the term obtained by replacing

the hole of L by the term t. We write Cx for a context C which does not capture the

free variable x, i.e. there are no abstractions or explicit cuts in the context that binds the

variable x. For instance, C = λy.� can be specified as Cx while C = λx.� cannot. In order

to emphasize this particular property, we write Cx[[t]] instead of Cx[t], and we may omit x

whenever it is clear from the context.

The reduction relation →E is defined as the closure by contexts O of the following

rewriting rules:

L[λx.t]ε 	→dBnil L[λx.t] L[xl]m 	→@var
L[x(l@m)]

L[λx.t](u; l) 	→dBcons L[t[x\u]l] L[tl]m 	→@app
L[t(l@m)]

Cx[[x l]][x\u] 	→c Cx[[u l]][x\u] if |Cx[[x l]]|x > 1

Cx[[x l]][x\u] 	→d Cx[[u l]] if |Cx[[x l]]|x = 1

t[x\u] 	→w t if |t|x = 0

where the operation @ is defined by the following two equations:

ε@l := l (u; l)@m := u; (l@m)

An example of reduction sequence is

(λx.x(xε; ε))(u; ε) →dBcons x(xε; ε)[x\u]ε →@var
x(xε; ε)[x\u] →c x(uε; ε)[x\u] →d u(uε; ε)

The reduction relation →E can also be refined. For every rewrite rule 	→X , we write →X

for the closure of 	→X by all contexts O. We define B@ := {dBnil, dBcons,@var,@app}
and →B@:=

⋃
X∈B@ →X . The non-erasing reduction relation →E\w is given by →B@∪{c,d},

i.e. →E\w=→E \ →w; this relation plays a key role in the characterization of strongly

E-normalizing terms (c.f. Section 7).

There are many differences between our reduction rules and those in Herbelin (1995).

First of all, the use of the meta-operation @ for concatenating lists in the rules 	→@var

and 	→@app
replaces the explicit concatenation rules in Herbelin (1995). This is particularly

convenient since we only reduce terms, even if these terms occur inside lists, so that

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

D. Kesner and D. Ventura 98

the proofs are simpler/shorter because there are less rules and only of one kind. A

major difference with Herbelin (1995) is the use of rules at a distance, specified by

means of (term and list) contexts, where the propagation of cuts is not performed by

structural induction on terms, since they are consumed according to the multiplicity of

their corresponding variables. As a consequence, the behaviour of the explicit cut operator

is specified by a resource aware semantics, thus preventing the useless duplication of

empty resources, which happens in Herbelin (1995) when using reduction steps of the

form (tl)[x\u] → t[x\u]l[x\u], where |tl|x = 0. This is particularly unsuitable when

considering non-idempotent types (c.f. the discussion at the end of Section 4). In contrast

to other calculi at a distance which only contains w and c-rules, for example the linear

substitution calculus (Accattoli et al. 2014; Milner 2007), we also consider here a dereliction

rule d. This is appropriate to obtain a weighted subject reduction property relative to

our typing system (c.f. Section 4), which would fail for the alternative rewriting rule

C[[x l]][x\u] 	→c C[[u l]][x\u] when |C[[x l]]|x = 1.

4. Typing systems HE and SE for E-terms

This section introduces the typing systems HE and SE for the E-calculus. Given a countable

infinite set of base types α, β, γ, . . ., we consider types and multiset types defined as follows:

(types) τ, σ, ρ ::= α | M ⊃ τ

(multiset types) M ::= {{τi}}i∈I where I is a finite set.

Our types are strict (Coppo and Dezani-Ciancaglini 1980; van Bakel 1992), i.e. the type

on the right-hand side of a functional type is never a multiset. We also make use of usual

notations for multisets, as in de Carvalho (2007), so that {{ }} denotes the empty multiset,

and {{σ, σ, τ}} must be understood as σ ∧ σ ∧ τ, where the symbol ∧ enjoys commutativity

and associativity but not idempotence, i.e. σ ∧ σ is not equal to σ.

Type assignments, written Γ,Δ, are functions from variables to multiset types (i.e. sets

of pairs), assigning the empty multiset to all but a finite set of variables. The domain of

Γ is given by dom(Γ) := {x | Γ(x) �= {{ }}}. The intersection of type assignments, written

Γ+Δ, is defined by (Γ+Δ)(x) := Γ(x)+Δ(x), where the symbol + denotes multiset union.

Hence, dom(Γ + Δ) = dom(Γ) ∪ dom(Δ). Thus, for example, {x : {{σ}}, y : {{{{ }} ⊃ τ}}} + {z :

{{τ}}, x : {{{{σ}} ⊃ σ}}} = {x : {{σ, {{σ}} ⊃ σ}}, y : {{{{ }} ⊃ τ}}, z : {{τ}}}.
We write Γ \\ x for the assignment (Γ \\ x)(x) = {{ }} and (Γ \\ x)(y) = Γ(y) if y �= x.

When dom(Γ) and dom(Δ) are disjoint, we use Γ; Δ instead of Γ + Δ, and we write

x : {{σi}}i∈I ; Γ, even when I = �, for the assignment (x : {{σi}}i∈I ; Γ)(x) = {{σi}}i∈I and

(x : {{σi}}i∈I ; Γ)(y) = Γ(y) if y �= x.

The symbol is called the empty stoup. A stoup Σ is either a type σ or the empty

stoup. Type environments are pairs of the form Γ | Σ, where Γ is a type assignment and

Σ is a stoup. Type judgments are triples of the form Γ | Σ � o : τ, where Γ | Σ is a type

environment, o is an object, and τ a type. The HE and SE type systems for the E-calculus

are given in Figures 1 and 2, respectively; both deriving type judgements of the form

Γ | � t : τ and Γ | σ � l : τ, where t is a term and l is a list. We write Γ | Σ �X o : τ or

Φ �X Γ | Σ � o : τ to denote derivations in the system X ∈ {HE,SE}.

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

A resource aware semantics 99

∅ | τ � ε : τ
(ax)

Γ | � t : τ

Γ \\x | � λx.t : Γ(x) ⊃ τ
(⊃ r)

Γ | σ � l : τ

Γ + {x:{{σ}}} | � xl : τ
(hlist)

Γ | � t : σ Δ | σ � l : τ

Γ + Δ | � tl : τ
(app)

(Δi | � t : σi)i∈I Γ | σ � l : τ

Γ +i∈I Δi | {{σi}}i∈I ⊃ σ � t; l : τ
(⊃ l)

(Δi | � u : σi)i∈I x:{{σi}}i∈I ; Γ | � t : τ

Γ +i∈I Δi | � t[x\u] : τ
(cut)

Fig. 1. The type system HE for the E-calculus.

Example 4.1. The following is a derivation for the term y(zε; ε) in system HE:

� | σ � ε : σ
(ax)

� | {{ }} ⊃ σ � zε; ε : σ
(⊃ l)

y : {{{{ }} ⊃ σ}} | � y(zε; ε) : σ
(hlist)

Let us call it Φy(zε;ε) for further references.

Example 4.2. The following is a derivation, that we call Φx(xε;ε), in system SE.

� | σ � ε : σ
(ax)

x : {{σ}} | � xε : σ
(hlist)

� | τ � ε : τ
(ax)

x : {{σ}} | {{σ}} ⊃ τ � xε; ε : τ
(⊃ l∈)

x : {{σ, {{σ}} ⊃ τ}} | � x(xε; ε) : τ
(hlist)

The hlist-size of the type derivation Φ is a positive natural number written sz2(Φ)

which denotes the size of Φ where every node hlist counts 2. Intuitively, the node

hlist counts 2 because it corresponds, in the standard sequent calculus, to an axiom

rule followed by a contraction. For instance, the derivation Φy(zε;ε) in Example 4.1 has

hlist-size 4 while Φx(xε;ε) in Example 4.2 has hlist-size 7.

Notice that both HE and SE are goal-directed, i.e. for each type judgement of the form

Γ | Σ � o : τ there is a unique typing rule whose conclusion matches the type judgement.

For instance, in system SE, there are two different rules to type a list t; l, but the type in the

stoup Σ discriminates between them. There is a similar distinction in system SE for terms

of the form t[x\u] depending on whether x is a free variable of t or not. A consequence

of this property is that statements usually known as generation lemmas (c.f. Barendregt

et al. 1983; Lengrand et al. 2004) are straightforward in both systems.

The (app) typing rule is the head-cut rule in the underlying logical system; similarly,

(cut), (cut/∈) and (cut∈) give an interpretation of the so-called mid-cut (Herbelin 1995).

The type derivation for t (resp. for u) in rule (⊃ l/∈) (resp. (cut/∈)) is called a witness

derivation, and turns out to be essential to guarantee strong normalization of the whole

typed term t; l (resp. t[x\u]).

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

D. Kesner and D. Ventura 100

Typing Rules {(ax), (hlist), (app), (⊃ r)} plus

Γ | � t : ρ Δ | τ � l : σ

Δ + Γ | {{ }} ⊃ τ � t; l : σ
(⊃ l/∈)

(Γj | � t : τj)j∈J J �= ∅ Δ | τ � l : σ

Δ +j∈J Γj | {{τj}}j∈J ⊃ τ � t; l : σ
(⊃ l∈)

Δ | � u : σ Γ | � t : τ x /∈ dom(Γ)

Γ + Δ | � t[x\u] : τ
(cut/∈)

(Δj | � u : σj)j∈J J �= ∅ x : {{σj}}j∈J ; Γ | � t : τ

Γ +j∈J Δj | � t[x\u] : τ
(cut∈)

Fig. 2. The type system SE for the E-calculus.

Observe that the case I = � in rules (⊃ l) and (cut) of system HE gives

Γ | σ � l : τ

Γ | {{ }} ⊃ σ � u; l : τ
(⊃ l)

Γ | � t : τ

Γ | � t[x\u] : τ
(cut)

where u is any term. Indeed, non-terminating terms like t(Ω; l) or t[x\Ω] are typable in

system HE, for Ω = (λx.xxε)λx.xxε. For a further discussion on the need of witness in

system SE, see Example 5.5 in Section 5.

The rules (⊃ l/∈) and (⊃ l∈) (resp. (cut/∈) and (cut∈)) in system SE can be specified by

means of a unique typing rule (⊃ lS) (resp. (cutS)), usually used in the proofs in order

to save some space. They have the following form:

(Γj | � t : τj)j∈J Δ | τ � l : σ

Δ +j∈J Γj | {{τi}}i∈I ⊃ τ � t; l : σ
(⊃ lS)

(Δj | � u : σj)j∈J x : {{σi}}i∈I ; Γ | � t : τ

Γ +j∈J Δj | � t[x\u] : τ
(cutS)

where (I = � ⇒ |J| = 1) and (I �= � ⇒ I = J).

Both type systems are relevant (Damiani and Giannini 1994), i.e. typing environments

only contain the consumed premises.

Lemma 4.1 (Relevance).

1 . If Γ | Σ �HE
o : τ, then dom(Γ) ⊆ fv(o).

2 . If Γ | Σ �SE
o : τ, then dom(Γ) = fv(o).

Proof. By induction on typing derivations.

Moreover, in contrast to Barendregt et al. (1983) and Bernadet and Lengrand (2013),

no subtyping relation is needed for abstractions and/or applications in system SE.

5. Properties of systems HE and SE

This section proves some fundamental properties of the systems HE and SE, namely, that

any typing is preserved by reduction and anti-reduction, i.e. by transforming/rewriting an

object forward (Section 5.2) and backward (Section 5.1). The forward properties are key

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

A resource aware semantics 101

to obtain ‘typability implies normalization,’ while the backward ones are used to prove

‘normalization implies typability.’

Since the developments of the forward (resp. backward) proofs for systems HE and

SE are quite similar, we present them in a factorized form. In particular, we start by

introducing the notion of typed occurrence of a redex in a general framework (for any

type system X), the concept being especially important to state the forward properties of

system HE.

In order to understand which are the redex occurrences actually constrained by a type

system, i.e. the reducible subterms that verify some particular type specification, let us

consider a derivation Φ �Γ | Σ �X o : τ, for X ∈ {HE,SE}. A position p ∈ pos(o) is a typed

occurrence or T-occurrence of the object o in the derivation Φ (of system X) if either

p = ε, or p = ip′ (i = 0, 1) and p′ ∈ pos(o|i) is a typed occurrence of o|i in some of their

corresponding subderivations of Φ. Intuitively, a typed occurrence indicates a subterm of

o which has some typing information in Φ.

Example 5.1. Let consider the following HE-derivation, where the notations xε, zε are

respectively used to abbreviate the terms xε and zε:

Φxε :=
� | {{σ, σ}} ⊃ τ � ε : {{σ, σ}} ⊃ τ

(ax)

x : {{{{σ, σ}} ⊃ τ}} | � xε : {{σ, σ}} ⊃ τ
(hlist)

Similarly, consider a derivation Φzε � z : {{ϕ}} | � zε : ϕ. Let t = y(zε; ε) be a term and Φt,
Φt′ two possible derivations:

Φt :=

Φzε � | σ � ε : σ
(ax)

z : {{ϕ}} | {{ϕ}} ⊃ σ � zε; ε : σ
(⊃ l)

z : {{ϕ}}, y : {{{{ϕ}} ⊃ σ}} | � y(zε; ε) : σ
(hlist) Φ′

t :=

� | σ � ε : σ
(ax)

� | {{ }} ⊃ σ � zε; ε : σ
(⊃ l)

y : {{{{ }} ⊃ σ}} | � y(zε; ε) : σ
(hlist)

The positions ε, 0 and 01 of y(zε; ε) are T-occurrences in both Φt and Φ′
t while the

position 00 is a T-occurrence only in Φt. Thus, given a derivation Φ of the form:

Φxε

Φt Φ′
t � | τ � ε : τ

(ax)

z : {{ϕ}}, y : {{{{ϕ}} ⊃ σ, {{ }} ⊃ σ}} | {{σ, σ}} ⊃ τ � t; ε : τ
(⊃ l)

x : {{{{σ, σ}} ⊃ τ}}, z : {{ϕ}}, y : {{{{ϕ}} ⊃ σ, {{ }} ⊃ σ}} | � xε(t; ε) : τ
(app)

and a derivation Φ′ of the form:

Φxε

Φ′
t Φ′

t � | τ � ε : τ
(ax)

y : {{{{ }} ⊃ σ, {{ }} ⊃ σ}} | {{σ, σ}} ⊃ τ � t; ε : τ
(⊃ l)

x : {{{{σ, σ}} ⊃ τ}}, y : {{{{ }} ⊃ σ, {{ }} ⊃ σ}} | � xε(t; ε) : τ
(app)

we have that ε, 0, 1, 00, 10, 11 and 101 are T-occurrences of xε(t; ε) in Φ and Φ′, while

100 is a T-occurrence in Φ but not in Φ′.

The notion of redex occurrence in calculi with explicit substitutions at a distance (Ac-

cattoli et al. 2014) is more subtle than the one in standard rewriting, simply because

one unique term may give rise to different reduction steps at the root, e.g. given

t = (x(xε; ε))[x\u] we have t →c (u(xε; ε))[x\u] as well as t →c (x(uε; ε))[x\u]. Thus,

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

D. Kesner and D. Ventura 102

a position p ∈ pos(o) is said to be a X-redex occurrence of o, for X ∈ B@ ∪ {w}, if t|p
has the form of the left-hand side of the rewriting rule 	→X; and p ∈ pos(o) is a X-redex

occurrence of o, for X ∈ {c, d}, if p = p1p2, and t|p1
= Cx[[x l]][x\u] and t|p = xl. For

example 00 and 000 are both c-redex occurrences of the term λz.(x(xε; ε))[x\u], where, in

both cases, p1 = 0. Note that, while p indicates which occurence of x is the target of the

cut, the position p1 is uniquely determined by the position of the cut itself.

A redex occurrence of o which is also a typed occurrence of o in Φ is said to be a redex

typed occurrence or redex T-occurrence of o in Φ. Remark that, given any object o, and

any derivation Φ for o in system SE, every occurrence of o is a T-occurrence of o in Φ.

However, in system HE this is not the case as illustrated in Example 5.1 above.

5.1. The ‘Forward’ properties

This section shows preservation of any typing by reduction, i.e. by transforming/rewriting

an object forward. In contrast to classical subject reduction properties for non-quantitative

typing systems, our preservation property can be weighted (Lemma 5.3), i.e. if Φ is a

type derivation for t and t reduces to t′, then t′ is not only typable, but it is typable by

a derivation smaller than Φ. This is crucial to obtain ‘typablity implies normalization’

properties which do not need any reducibility argument to be proved.

The weighted subject reduction lemma makes use of several properties, including a

quantitative linear substitution lemma (Lemma 5.2), stating that from a type derivation

of an object O[[xl]] and type derivations for u, we can get a type derivation for the object

O[[ul]], obtained by linear substitution, i.e. by linearly substituting the occurrence x in the

hole of the context O by u. The lemma also gives the size of the resulting derivation as a

function on the sizes of the original ones.

We start by showing that given type derivations for two lists l and m, it is possible to

construct a type derivation for the concatenation l@m.

Lemma 5.1. Let X = {HE,SE}. If Φl � Γ | δ �X l : σ and Φm � Δ | σ �X m : τ, then there

exists Φl@m � Γ + Δ | δ �X l@m : τ such that sz2(Φl@m) = sz2(Φl) + sz2(Φm) − 1.

Proof. By induction on the type derivation Φl � Γ | δ �X l : σ.

Intuitively, when combining Φl with Φm, one (ax) application becomes unnecessary. For

instance, let l = zε; ε, and Φzε as in Example 5.1 and Φm � Δ | σ �HE
m : τ, we have both

Φl :=
Φzε � | σ � ε : σ

(ax)

z : {{ϕ}} | {{ϕ}} ⊃ σ � zε; ε : σ
Φl@m :=

Φzε Φm

Δ + z : {{ϕ}} | {{ϕ}} ⊃ σ � zε;m : τ

Lemma 5.2 (Linear substitution). Let X ∈ {HE,SE}. If ΦO[[xl]]�x : {{ρi}}i∈I ; Γ | Σ �X O[[xl]] : τ

and (Φi
u �Δi | �X u : ρi)i∈I , then ΦO[[ul]] �x : {{ρi}}i∈I�K ; Γ +i∈K Δi | Σ �X O[[ul]] : τ, for some

K ⊆ I where sz2(ΦO[[ul]]) = sz2(ΦO[[xl]]) +i∈K sz2(Φi
u) − |K|. Moreover, if O|p = � and

p ∈ pos(O[[xl]]) is a T-occurrence of O[[xl]] in ΦO[[xl]], then K �= �.

Proof. By induction on the typing derivation ΦO[[xl]] � x : {{ρi}}i∈I ; Γ | Σ �X O[[xl]] : τ. We

only show here the cases O = � and O = C;m, as the other ones are similar to the second

case.

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

A resource aware semantics 103

— If O = �, then Σ = and Φxl is of the form:

Φl � Γ′ | σ �X l : τ

Γ′ + {x : {{σ}}} | �X xl : τ
(ax)

Moreover, sz2(Φxl) = sz2(Φl) + 2. Therefore, σ = ρk for some k ∈ I and Γ′ = x :

{{ρi}}i∈I\{k}; Γ. Hence,

Φul :=
Φk

u � Δk | �X u : ρk Φl � x : {{ρi}}i∈I\{k}; Γ | ρk �X l : τ

x : {{ρi}}i∈I\{k}; Γ + Δk | �X ul : τ

Moreover, sz2(Φul) = sz2(Φl)+sz2(Φk
u)+1 = sz2(Φxl)+sz2(Φk

u) − 1. The result then

holds for K := {k}.
— If O = C;m, then O[[xl]] = C[[xl]];m. Moreover, the stoup Σ is equal to {{σl}}l∈L ⊃ ϕ and

ΦC[[xl]];m necessarily ends as follows:

(Φj
C[[xl]] � Γj | �X C[[xl]] : σj)j∈J Φm � Π | ϕ �X m : τ

Π +j∈J Γj | {{σl}}l∈L ⊃ ϕ �X C[[xl]];m : τ
,

where |J| = 1 if (X = SE and L = �), and J = L otherwise. In addition, the

resulting type assignment Π +j∈J Γj has the form of the statement of the lemma,

i.e. Π +j∈J Γj = x : {{ρi}}i∈I ; Γ. Thus, Π can be written as x : {{ρi}}i∈Im ; Π′ and each

Γj (j ∈ J) can be written as x : {{ρi}}i∈Ij ; Γ′
j , for some Im and some Ij (j ∈ J) such that

I = Im ∪j∈J Ij , and some Π′ and some Γ′
j (j ∈ J) such that Γ = Π′ +j∈J Γ′

j . Moreover,

sz2(ΦC[[xl]];m) = sz2(Φm) +j∈J sz2(Φ
j
C[[xl]]) + 1 by definition of sz2(). By i.h. for each

j ∈ J , we have Φj
C[[ul]] � x : {{ρi}}i∈Ij�Kj

; Γ′
j +i∈Kj

Δi | � C[[ul]] : σj for some Kj ⊆ Ij

where sz2(Φj
C[[ul]]) = sz2(Φj

C[[xl]]) +i∈Kj
sz2(Φi

u) − |Kj |. Let K := ∪j∈JKj . Therefore,

ΦC[[ul]];m is of the form:

(Φ
j
C[[ul]] � x : {{ρi}}i∈Ij�Kj

; Γ′
j +i∈Kj

Δi | � C[[ul]] : σj)j∈J Φm � x : {{ρi}}i∈Im ; Π′ | ϕ � m : τ

x : {{ρi}}i∈I�K ; Π′ +j∈J Γ′
j +i∈K Δi | {{σl}}l∈L ⊃ ϕ � C[[ul]];m : τ

,

where sz2(ΦC[[ul]];m) = sz2(Φm)+j∈J sz2(Φ
j
C[[ul]])+1 =i .h . sz2(Φm)+j∈J (sz2(Φj

C[[xl]])+i∈Kj

sz2(Φi
u)−|Kj |)+1 = sz2(Φm)+j∈Jsz2(Φ

j
C[[xl]])+i∈Ksz2(Φi

u)−|K|+1 = sz2(ΦC[[xl]];m)+i∈K
sz2(Φi

u) − |K|. This concludes the first part of the proof of the statement.

Now, suppose p ∈ pos(C[[xl]];m) is a T-occurrence of C[[xl]];m such that (C;m)|p = �.

Then, p = 0p′ where p′ ∈ pos(C[[xl]]) is a T-occurrence in Φj
C[[xl]] for some j ∈ J . In

this case, Kj �= � holds by the i.h. so that K �= �.

Example 5.2. Let t be the term x(xε; ε), and consider the following typing derivation Φt

(in either system SE or HE) such that sz2(Φt) = 7:

� | σ � ε : σ

x : {{σ}} | � xε : σ
(hlist)

� | τ � ε : τ

x : {{σ}} | {{σ}} ⊃ τ � xε; ε : τ

x : {{σ, {{σ}} ⊃ τ}} | � x(xε; ε) : τ
(hlist)

Let u be a term such that Φu � Δ | � u : σ. Then, for t′ = x(u ε; ε), Φt′ is of the form:

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

D. Kesner and D. Ventura 104

Φu � Δ | � u : σ � | σ � ε : σ

Δ | � u ε : σ � | τ � ε : τ

Δ | {{σ}} ⊃ τ � u ε; ε : τ

x : {{{{σ}} ⊃ τ}} + Δ | � t′ : τ
(hlist)

where sz2(Φt′) = sz2(Φu) + 6 = sz2(Φt) + sz2(Φu) − 1.

We can now state one of our main forward properties for systems HE and SE, which

describes all the reduction steps that not only preserve types and environments but also

decrease the measure sz2(). The forthcoming Examples 5.3 and 5.4 illustrate a case when

that is not the case.

Lemma 5.3 (Weighted subject reduction for the E-calculus). Let X ∈ {HE,SE}. Let Φ �

Γ | Σ �X o : τ and o →E o
′ reduces a (B@, c, d, w)-redex T-occurrence of o in Φ.

1 . If X = HE, then Φ′ � Γ �HE
o′ : τ and sz2(Φ) > sz2(Φ′).

2 . If X = SE and the E-step is not w, then Φ′ � Γ | Σ �SE
o′ : τ and sz2(Φ) > sz2(Φ′).

Proof. By induction on the reduction relation →E, using Lemmas 5.1 and 5.2. We only

show the most interesting cases; remark that →w is out of scope when X = SE.

— If o = L[[λx.v]](u; l) →dBcons L[[v[x\u]l]] = o′, then we show sz2(Φ) > sz2(Φ′) by

induction on L. Let L = �. By construction, we have that Σ = and Φ is of the form:

Φv � x : {{ρl}}l∈L; Π | �X v : σ

Π | �X λx.v : {{ρl}}l∈L ⊃ σ
Φu;l :=

(Φj
u � Γj | �X u : ρj)j∈J Φl � Δ | σ �X l : τ

Δ +j∈J Γj | {{ρl}}l∈L ⊃ σ �X u; l : τ

Π + Δ +j∈J Γj | �X (λx.v)(u; l) : τ

where |J| = 1 if (X = SE and L = �), and J = L otherwise. Moreover, sz2(Φ) =

sz2(Φv) +j∈J sz2(Φj
u) + sz2(Φl) + 3. Hence, we have Φ′ of the form:

Φv[x\u] :=
Φv � x : {{ρl}}l∈L; Π | �X v : σ (Φj

u � Γj | �X u : ρj)j∈J

Π +j∈J Γj | �X v[x\u] : σ
Φl � Δ | σ �X l : τ

Π + Δ +j∈J Γj | �X v[x\u]l : τ

Moreover, sz2(Φ′) = sz2(Φv[x\u])+sz2(Φl)+1 = sz2(Φv)+j∈J sz2(Φj
u)+sz2(Φl)+2 <

sz2(Φ).

Let L = L′[y\u′], so that L[[t]] = L′[[t]][y\u′] for any t. By construction, Φ is of the

form:

ΦL[[t]] Φu;l :=
(Φj

u � Γj | �X u : σj)j∈J Φl � Δ | σ �X l : τ

Δ +j∈J Γj | {{σl}}l∈L ⊃ σ �X u; l : τ

Γ0 +j∈J ′ Πj + Δ +j∈J Γj �X L′[[λx.v]][y\u′](u; l) : τ

where |J| = 1 if (X = SE and L = �) and J = L otherwise. Moreover,

ΦL[[t]] :=
ΦL′[[t]] � Γ0; y : {{ρl}}l∈L′ �X L′[[λx.v]] : {{σl}}l∈L ⊃ σ (Φj

u′ � Πj | �X u′ : ρj)j∈J ′

Γ0 +j∈J ′ Πj �X L′[[λx.v]][y\u′] : {{σl}}l∈L ⊃ σ

where |J ′| = 1 if (X = SE and L′ = �) and J ′ = L′ otherwise. We can then construct

the following derivation:

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

A resource aware semantics 105

ΦL′[[λx.v]](u;l) :=
ΦL′[[t]] � Γ0; y : {{ρl}}l∈L′ �X L′[[λx.v]] : {{σl}}l∈L ⊃ σ Φu;l

Γ0; y : {{ρl}}l∈L′ + Δ +j∈J Γj �X L′[[λx.v]](u; l) : τ

By the i.h. there is a derivation ΦL′[[v[x\u]l]]�Γ0; y : {{ρl}}l∈L′+Δ +j∈J Γj �X L′[[v[x\u]l]] : τ

such that sz2(ΦL′[[λx.v]](u;l)) > sz2(ΦL′[[v[x\u]l]]).

We thus conclude with a derivation ΦL′[[v[x\u]l]][y\u′] of the form:

ΦL′[[v[x\u]l]] � Γ0; y : {{ρl}}l∈L′ + Δ +j∈J Γj �X L′[[v[x\u]l]] : τ (Φ
j

u′ � Πj | �X u′ : ρj)j∈J ′

Γ0 +j∈J ′ Πj + Δ +j∈J Γj �X L′[[v[x\u]l]][y\u′] : τ

Besides, sz2(ΦL′[[v[x\u]l]][y\u′])=sz2(ΦL′[[v[x\u]l]])+j∈J ′sz2(Φj
u′)+1<i .h . sz2(ΦL′[[λx.v]](u;l))+j∈J ′

sz2(Φj
u′) + 1 = sz2(ΦL′[[λx.v]]) +j∈J ′ sz2(Φj

u′) + sz2(Φu;l) + 2 = sz2(ΦL′[[λx.v]][y\u′](u;l)).

— If o = C[[xl]][x\u] →c C[[ul]][x\u] = o′, then, by construction, Σ = and

Φ :=
(Φi

u � Δi | �X u : ρi)i∈I ΦC[[xl]] � x : {{ρi}}i∈I ; Π | �X C[[xl]] : τ

Π +i∈I Δi | �X C[[xl]][x\u] : τ

where sz2(Φ) = sz2(ΦC[[xl]]) +i∈I sz2(Φi
u) + 1 (since |C[[xl]]|x > 1 then I �= �). By

Lemma 5.2, we have derivations ΦC[[ul]] � x : {{ρi}}i∈I�K; Π +i∈K Δi | � C[[ul]] : τ for

some K ⊆ I such that sz2(ΦC[[ul]]) = sz2(ΦC[[xl]]) +i∈K sz2(Φi
u) − |K|. Hence,

Φ′ :=
ΦC[[ul]] � x : {{ρi}}i∈I�K ; Π +i∈K Δi | �X C[[ul]] : τ (Φi

u � Δi | �X u : ρi)i∈I�K

Π +i∈I Δi | �X C[[ul]][x\u] : τ

where sz2(Φ′) = sz2(ΦC[[ul]])+i∈I�Ksz2(Φi
u)+1 =L.5.2 sz2(ΦC[[xl]])+i∈Isz2(Φi

u)−|K|+1 �
sz2(Φ). By hypothesis, the hole of C is a T-occurrence in Φ, so that Lemma 5.2

guarantees K �= � and thus sz2(Φ′) < sz2(Φ).

Although typability is stable by all the rules in system HE, the weighted subject reduction

property as it stands does not hold when reduction occurs in untyped occurrences of

redexes. This is illustrated in the following example.

Example 5.3. Let t = (λy.xε)(u; ε) and consider the following typing derivation for t:

Φt :=

� | σ � ε : σ

x : {{σ}} | � xε : σ

x : {{σ}} | � λy.xε : {{ }} ⊃ σ

� | σ � ε : σ

� | {{ }} ⊃ σ � u; ε : σ
(⊃ l)

x : {{σ}} | � t : σ

where sz2(Φt) = 7. Since there is no typing information for u, the size of Φt does

not depend by any means on u. Observe that any redex occurrence in u would not

be typed in Φt and, for any reduction sequence u →+
E u′, the typing derivation for

t′ = (λy.xε)(u
′; ε) is obtained from Φt by replacing u by u′ in rule (⊃ l) above. In other

words, Φt′ � x : {{σ}} | � t′ : σ where sz2(Φt′) = sz2(Φt).

Notice also that typability is stable by the rule →w, but the weighted subject reduction

property as it stands neither does hold in system SE due to the relevance property and

the use of witnesses. This is illustrated in the following example.

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

D. Kesner and D. Ventura 106

Example 5.4. Let t = λy.(λz.xε)(y; ε) →dBcons λy.xε[z\y]ε →w λy.xεε →@var
λy.xε = t′. We

have that t is typable, e.g. we can derive x : {{σ}} | � t : {{τ}} ⊃ σ. Despite the fact

that t′ is also typable, the judgement x : {{σ}} | � t′ : {{τ}} ⊃ σ is not derivable. Indeed,

�x : {{σ}} | � t′ : {{ }} ⊃ σ, so the type of t is not preserved.

This phenomenon is due to the loss of information in the typing environment of the

derivation corresponding to the w-redex. For instance, the judgement x : {{σ}}, y : {{τ}} �
xε[z\y] : σ is derivable and u = xε[z\y] →w xε, but x : {{σ}}, y : {{τ}} � xε : σ is not

derivable. Indeed, �x : {{σ}} � xε : σ, so the type environment of xε is shrinked. Then, if

v (resp. v′) is the first (resp. second) term in the reduction sequence above, we observe

that when we replace the former (sub)derivation by the shrinked one in the derivation of

x : {{σ}} | � v : {{τ}} ⊃ σ, we obtain a derivation of x : {{σ}} | � v′ : {{ }} ⊃ σ. Thus, the

non-preservation of type environments affects the preservation of types.

On the other hand, witnesses are necessary to guarantee that arguments are normal-

izable, so that their type environments must be included in the whole typing derivation.

The following example illustrates the need of such environments.

Example 5.5. Let I = λx.xε (identity), A = λx.x(xε; ε) (self-application), Ω = A(A; ε) (self-

reproductor), and consider an alternative typing rule where the environment of a term in

the head of a list is not memorized in the final environment of the object:

Γ | � t : ρ Δ | τ � l : σ

Δ | {{ }} ⊃ τ � t; l : σ
(⊃ l/∈

′)

We have ΦI � � | � I : {{τ}} ⊃ τ, ΦA � � | � A : {{σ, {{σ}} ⊃ ϕ}} ⊃ ϕ and the following

derivation Φm for m = z(zε; ε); ε:

Φz(zε;ε) � z : {{ρ′, {{ρ′}} ⊃ ρ}} � z(zε; ε) : ρ � | {{τ}} ⊃ τ � ε : {{τ}} ⊃ τ

� | {{ }} ⊃ {{τ}} ⊃ τ � m : {{τ}} ⊃ τ
(⊃ l/∈

′)

The term t = (λz.(λy.I)m)(A; ε) is then typable:

ΦI

� | � λy.I : {{ }} ⊃ {{τ}} ⊃ τ Φm

� | � (λy.I)m : {{τ}} ⊃ τ

� | � λz.(λy.I)m : {{ }} ⊃ {{τ}} ⊃ τ

ΦA � | {{τ}} ⊃ τ � ε : {{τ}} ⊃ τ

� | {{ }} ⊃ {{τ}} ⊃ τ � A; ε : {{τ}} ⊃ τ

� | � t : {{τ}} ⊃ τ

but t →+
E (λy.I)(Ω; ε), which is a non-terminating term.

It is also worth noticing that the sz2 function plays a central role in obtaining a strictly

decreasing measure in the lemma above. More precisely, if we consider the standard

measure on typing derivations, written sz, which counts 1 for every node of the derivation

tree, then the weighted subject reduction property does not hold. Here is an example.

Example 5.6. Let t, u, t′, Φt, Φ
1
u and Φt′ as in the Example 5.2 and let Φ2

u�Δ2 | � u : {{σ}} ⊃ τ.

Remark that sz(Φt) = 5 and that sz(Φt′) = 5 + sz(Φ1
u). Therefore,

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

A resource aware semantics 107

Φ :=
Φ1

u � Δ1 | � u : σ Φ2
u � Δ2 | � u : {{σ}} ⊃ τ Φt � x : {{σ, {{σ}} ⊃ τ}} | � t : τ

Δ1 + Δ2 | � t[x\u] : τ

where sz(Φ) = 6 +i=1,2 sz(Φi
u).

Given the reduction step t[x\u] →c x(u ε; ε)[x\u] = t′[x\u], there is a derivation Φ′

typing t′[x\u] such that sz(Φ′) = sz(Φ). Indeed,

Φ′ :=
Φ2

u � Δ2 | � u : {{σ}} ⊃ τ Φt′ � Δ1 | {{σ}} ⊃ τ � t′ : τ

Δ1 + Δ2 | � t′[x\u] : τ

As we mentioned in the introduction, the λ-calculus (Herbelin 1995) is not compatible

with a resource aware semantics, as illustrated by the following example. Consider a

λ-reduction of the form o = (tl)[x\u] → t[x\u]l[x\u] = o′, and suppose |tl|x = 0. Let Φ

be a typing derivation for the object o, thus having the following form:

Φ :=

Φt � Γt | � t : σt Φl � Γl | σt � l : τ

Γt + Γl | � tl : τ Φu � Δ | � u : σ

(Γt + Γl) + Δ | � (tl)[x\u] : τ

The typing derivation for the object o′, let say Φ′, must use twice the typing tree Φu, and

thus sz2(Φ) > sz2(Φ′) cannot hold. In other words, propagation of substitution w.r.t.

the structure of terms induces useless duplications of empty resources, turning out to be

inappropriate in the framework of resource aware semantics.

We end this section with two main corollaries of Lemma 5.3 which are key to establish

termination of reduction for typable terms in the forthcoming sections.

Corollary 5.1. If o is HE-typable, then any E-reduction sequence contracting only E-redex

T-occurrences is finite.

As noticed before, given a type derivation Φ for an object o in system SE, any redex of

o is a redex T-occurrence of o in Φ. As a consequence, if Φ �Γ | Σ �SE
o : τ and o →E\w o

′,

then Φ′ � Γ | Σ �SE
o′ : τ and sz2(Φ) > sz2(Φ′). Thus,

Corollary 5.2. If o is SE-typable, then o ∈ SN (E\w).

5.2. The ‘Backward’ properties

This section shows preservation of any typing by anti-reduction, i.e. by transform-

ing/rewriting a term backward. This property is crucial to obtain ‘normalization implies

typability.’ We start by proving a couple of technical results.

The following property gives the converse implication of Lemma 5.1.

Lemma 5.4. Let X = {HE,SE}. If Φl@m �Γ | δ �X l@m : τ, then there exists Γ1,Γ2, σ such

that Γ = Γ1 + Γ2, Φl � Γ1 | δ �X l : σ and Φm � Γ2 | σ �X m : τ.

Proof. The proof is by induction on Φl@m � Γ | δ �X l@m : τ.

While the following property gives the converse implication of Lemma 5.2.

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

D. Kesner and D. Ventura 108

Lemma 5.5 (Reverse linear substitution). Let X ∈ {HE,SE} and O[[xl]] be an E-object

and u be an E-term such that |u|x = 0 and Φ � Γ | Σ �X O[[ul]] : τ. Then there exist

Γ0, I, (Γi)i∈I , (σi)i∈I such that Γ = Γ0 +i∈I Γi, (Φi
u � Γi | �X u : σi)i∈I and

Φ′ � Γ0 + {x : {{σi}}i∈I} | Σ �X O[[xl]] : τ. In particular, if X = SE, then I �= �.

Proof. Let X ∈ {HE,SE}. We reason by induction on the typing derivation ΦO[[ul]] �

Γ | Σ �X O[[ul]] : τ. We only show here the most interesting case.

If O = C;m, then by construction ΦC[[ul]];m is of the form:

(Φj
C[[ul]] � Δj �X C[[ul]] : ρj)j∈J Φm � Γm | ϕ �X m : τ

Γm +j∈J Δj | {{ρl}}l∈L ⊃ ϕ �X C[[ul]];m : τ

where |J| = 1 if (X = SE and L = �), and J = L otherwise. By the i.h. for each j ∈ J ,

Δj = Δj
0 +i∈Ij Γi and Φ′

j � Δj
0 + {x : {{σi}}i∈Ij } | �X C[[xl]] : ρj and (Φi

u � Γi | �X u : σi)i∈Ij .

Let I := ∪j∈JIj . Hence,

Φ′ :=
(Φ′

j � Δj
0 + {x : {{σi}}i∈Ij } | �X C[[xl]] : ρj)j∈J Φm � Γm | ϕ �X m : τ

Γm +j∈J Δ0
j + {x : {{σi}}i∈I} | {{ρl}}l∈L ⊃ ϕ �X C[[xl]];m : τ

We then conclude with Γ0 := Γm +j∈J Δ0
j since Γ0 +i∈I Γi = Γm +j∈J Δ0

j +j∈J (+i∈IjΓi) =

Γm +j∈J (Δ0
j +i∈Ij Γi) = Γm +j∈J Δj = Γ.

Finally, we present the last key property, relating typing with expansion.

Lemma 5.6 (Subject expansion for the E-calculus). Let X ∈ {HE,SE}, o →E o′ and

Φ′ � Γ | Σ �X o′ : τ.

1. If X = HE, then Φ � Γ | Σ �HE
o : τ.

2. If X = SE and the reduction is not a w-step, then Φ � Γ | Σ �SE
o : τ.

Proof. The proof is by induction on o →E o
′, using Lemma 5.4 and 5.5. We only show

here the following two most interesting cases:

— If o = L[[λx.v]](u; l) →dBcons L[[v[x\u]l]] = o′, then we proceed by induction on L. Let

L = �. By construction, we have Σ = and Γ = Γ0 +j∈J Γj + Δ and Φ′ is of the form:

Φv � Γ0; x : {{ρi}}i∈I | �X v : σ (Φj
u � Γj | �X u : ρj)j∈J

Γ0 +j∈J Γj | �X v[x\u] : σ Φl � Δ | σ �X l : τ

Γ0 +j∈J Γj + Δ | �X v[x\u]l : τ

where |J| = 1 if (X = SE and I = �), and J = I otherwise. Therefore, we can

construct the derivation Φ below:

Φv � Γ0; x : {{ρi}}i∈I | �X v : σ

Γ0 | �X λx.v : {{ρi}}i∈I ⊃ σ

(Φj
u � Γj | �X u : ρj)j∈J Φl � Δ | σ �X l : τ

Δ +j∈J Γj | {{ρi}}i∈I ⊃ σ �X u; l : τ

Γ0 +j∈J Γj + Δ | �X (λx.v)(u; l) : τ

If L = L′[y\s], then L[[v[x\u]l]] = L′[[v[x\u]l]][y\s]. By construction, we have a

derivation of the following form:

Φ′ :=
Φt � Γ0; y : {{ρi}}i∈I | �X L′[[v[x\u]l]] : τ (Φj

s � Γj | �X s : ρj)j∈J

Γ0 +j∈J Γj | �X L′[[v[x\u]l]][y\s] : τ

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

A resource aware semantics 109

where |J| = 1 if (X = SE and I = �), and J = I otherwise. By i.h. on Φt, one has

Φ′
t �Γ0; y : {{ρi}}i∈I | � L′[[λx.v]](u; l) : τ and, by construction, Γ0; y : {{ρi}}i∈I = Δ1 +Δ2

such that Φt1 � Δ1 | � L′[[λx.v]] : σ and Φt2 � Δ2 | σ � (u; l) : τ. We can assume by α-

conversion that |u; l|y = 0 thus, by Lemma 4.1, we necessarily have that Δ1 = Δ′; y :

{{ρi}}i∈I and Γ0 = Δ′ + Δ2. Therefore, we can construct Φ below:

Φt1 � Δ′; y : {{ρi}}i∈I | �X L′[[λx.v]] : σ (Φj
s � Γj | �X s : ρj)j∈J

Δ′ +j∈J Γj | �X L′[[λx.v]][y\s] : σ Φt2 � Δ2 | σ �X (u; l) : τ

Γ0 +j∈J Γj | �X L′[[λx.v]][y\s](u; l) : τ

— If o = C[[xl]][x\u] →c C[[ul]][x\u] = o′, then by construction Σ = and

Φ′ :=
ΦC[[ul]] � x : {{ρj}}j∈J ; Π | �X C[[ul]] : τ (Φj

u � Γj | �X u : ρj)j∈J

Π +j∈J Γj | �X C[[ul]][x\u] : τ

Note that |C[[ul]]|x � 1 thus J �= � if X = SE. By Lemma 5.5, ∃Γ0, ∃I, ∃(Γi)i∈I ,

∃(ρi)i∈I such that x : {{ρj}}j∈J; Π = Γ0 +i∈I Γi, ΦC[[xl]] �Γ0 + {x: {{ρi}}i∈I} | �X C[[xl]] : τ

and (Φi
u � Γi | �X u : ρi)i∈I . In particular, I �= � if X = SE. By Lemma 4.1 and

α-conversion, we necessarily have that Γ0 = x : {{ρj}}j∈J; Π′ such that Π = Π′ +i∈I Γi

thus Γ0 + {x : {{ρi}}i∈I} = x : {{ρl}}k∈I∪J; Π′. Let K := I ∪ J . Hence,

Φ :=
ΦC[[xl]] � x : {{ρk}}k∈K ; Π′ | �X C[[xl]] : τ (Φk

u � Γk | �X u : ρk)k∈K

Π′ +k∈K Γk | �X C[[xl]][x\u] : τ

Observe that Π′ +k∈K Γk = Π′ +i∈I Γi +j∈J Γj = Π +j∈J Γj .

6. Characterization of linear-head E-normalization

In this section, we define linear-head reduction for the E-calculus by translating the

corresponding notion in calculi with explicit substitutions specified in natural deduction

style (Accattoli 2012). While linear-head reduction cannot be stated as a strategy of the

λ-calculus, it can be simply stated as a particular restriction of the E-calculus; related to

abstract machines (Danos and Regnier 2003) and linear logic (Girard 1987).

The main result of this section is a characterization of linear-head normalization by

means of the typing system HE.

First, we consider the set of linear-head contexts defined by the following grammar:

H ::= � | λx.H | Hl | H[x\t]
Linear-head reduction, written →lh, is the closure under linear-head contexts of the

following rules:

L[λx.t]ε 	→dBnil L[λx.t] L[xl]m 	→@var
L[x(l@m)]

L[λx.t](u; l) 	→dBcons L[t[x\u]l] L[tl]m 	→@app
L[t(l@m)]

Hx[[xl]][x\u] 	→lhc Hx[[ul]][x\u] if |Hx[[xl]]|x > 1

Hx[[xl]][x\u] 	→lhd Hx[[ul]] if |Hx[[xl]]|x = 1

Notice that there is no erasing rule, and that dBnil, dBcons, @var and @app are the same

rules used to define E-reduction in Section 3. Rules lhc (resp. lhd) is the restriction of

rule c (resp. d) to linear-head contexts. Therefore, the leftmost (i.e. head) occurrence of

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

D. Kesner and D. Ventura 110

a variable x in a term is substituted by u. This partial (i.e. linear) substitution is only

performed on head occurrences. For instance, the following is a linear-head reduction

sequence, where s = λz.zε:

(λyx.x(xε; ε))(wε; s; ε) →dBcons (λx.x(xε; ε))[y\wε](s; ε) →dBcons (x(xε; ε))[x\s][y\wε]ε →lhc

((λz.zε)(xε; ε))[x\s][y\wε]ε →dBcons (zε[z\xε]ε)[x\s][y\wε]ε →lhd ((xεε)ε)[x\s][y\wε]ε →lhd

((((λz.zε)ε)ε)ε)[y\wε]ε →4
dBnil

(λz.zε)[y\wε]

Remark that the last four (dBnil)-steps are not essential to reveal a head redex, i.e. the

sequence of ε’s above would not block the cut [y\wε], if a head occurrence of y exists.

But the normal-form (λz.zε)[y\wε] is certainly more readable than ((((λz.zε)ε)ε)ε)[y\wε]ε.

A similar situation happens with rules @var and @app, which cannot change the (head)

status of redexes. So, even if rules dBnil, @var and @app are not essential to define

linear-head reductions in this framework, we prefer to keep them in order to obtain more

readable normal forms in a sequent calculus notation.

The notion of lh-redex occurrence is defined as expected, according to the corresponding

notion of redex occurrence given in Section 5. Therefore, since →lh⊆→E, both weighted

subject reduction (c.f. Lemma 5.3) and subject expansion (Lemma 5.6) hold also for the

reduction lh. Remark, however, that lh-normal forms are not necessarily E-normal forms.

For instance, the term t = (x(yε; ε))[y\I] is in lh-nf but not in E-nf.
We now consider an inductive definition aiming to capture the set of E-terms containing

linear-head redexes. This inductive set is denoted by ¬lh to emphasize the fact it contains
terms which are not in lh-normal form. The auxiliary sets B@-red and cd-red denote,
respectively, terms reducible by {dBnil, dBcons,@var,@app} and {lhc, lhd}.

t ∈ B@-red

t ∈ ¬lh

t ∈ cd-red

t ∈ ¬lh

L[λx.u]ε ∈ B@-red L[λx.u](v; l) ∈ B@-red L[xl]m ∈ B@-red L[tl]m ∈ B@-red

u ∈ B@-red

ul ∈ B@-red

u ∈ B@-red

u[x\v] ∈ B@-red

u ∈ B@-red

λx.u ∈ B@-red

yl ∈ Ayl

u ∈ Ayl

ul ∈ Ayl

u ∈ Ayl & x �= y

λx.u ∈ Ayl

u ∈ Ayl & x �= y

u[x\v] ∈ Ayl

u ∈ Ayl

u[y\v] ∈ cd-red

u ∈ cd-red

ul ∈ cd-red

u ∈ cd-red

λx.u ∈ cd-red

u ∈ cd-red

u[x\v] ∈ cd-red

Thus, in particular, t ∈ ¬lh implies H[t] ∈ ¬lh. Indeed, we can formally show the

following equivalence:

Lemma 6.1. Let t be an E-term. Then, t /∈ lh-nf if and only if t ∈ ¬lh.

Proof. We first prove the following more general statements:

1. t = Hy[[yl]] if and only if t ∈ Ayl .

2. t is {lhc, lhd}-reducible if and only if t ∈ cd-red.

3. Let B@ = {dBnil, dBcons,@var,@app}. Then, t is B@-reducible if and only if t ∈ B@-red.

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

A resource aware semantics 111

1. The left-to-right implication is by induction on H and the right-to-left implication is

by induction on the context Ayl .

2. Let t be {lhc, lhd}-reducible. Then, t = H0[H
y
1[[yl]][y\u]] and it is then sufficient to show

Hy1[[yl]][y\u] ∈ cd-red. By point (1), we have Hy1[[yl]] ∈ Ayl so that Hy1[[yl]][y\u] ∈ cd-red

holds by definition.

Let t ∈ cd-red. We reason by induction on cd-red in order to specify t as H0[t
′],

with t′ {lhc, lhd}-reducible, so that t itself is {lhc, lhd}-reducible. For the base

case, t = u[y\v] ∈ cd-red comes from u ∈ Ayl . By point (1) u = Hy1[[yl]], so that

Hy1[[yl]][y\v] is {lhc, lhd}-reducible (and H0 = � in this case). All the inductive cases

are straightforward.

3. Let t be B@-reducible. Then, t = H0[t
′], where t′ is the left-hand side of some rule in

B@. It is then sufficient to show t′ ∈ B@-red, which is straightforward.

Let t ∈ B@-red. We reason by induction on B@-red in order to specify t as H0[t
′], with

t′ B@-reducible, so that t itself is B@-reducible. The base cases as well the inductive

cases are straightforward.

Now, take t /∈ lh-nf. Then, t is lh-reducible and by points (2) and (3) either t ∈ cd-red

or t ∈ B@-red, which implies t ∈ ¬lh.
Conversely, if t ∈ ¬lh, then either t ∈ B@-red or t ∈ cd-red and we conclude t /∈ lh-nf

by points (1) and (2).

Similarly, an inductive definition of E-terms in lh-nf can be given as follows, where
|l|; = n denotes the number of “;” in l:

u ∈ An
y

λx.u ∈ An
y

u ∈ An
y & x �= y

u[x\v] ∈ An
y

u ∈ Bn
y

u ∈ An
y

u ∈ Bn
y & x �= y

u[x\v] ∈ Bn
y

|l|; = n

yl ∈ Bn
y

Indeed, we can show the following equivalence:

Lemma 6.2. Let t be an E-term. Then, t ∈ lh-nf if and only if t ∈ An
y for some y and n.

Proof. The left-to-right implication is by induction on t. If t = yl, then t ∈ Bn
y ⊆ An

y

for some n. If t = λx.u, then u ∈ lh-nf so that u ∈ An
y for some n by the i.h. This gives

λx.u ∈ An
y by the first rule. If t = u[x/v], the same inductive reasoning applies. If t = ul,

then u cannot be of the form L[λx.u′], otherwise it would be dB-reducible. Then, t = yl, a

case which was already treated.

The right-to-left implication holds by a straightforward induction on An
y .

A term t is linear-head E-normalizing iff t ∈ SN (lh) †.

The characterization of linear-head normalizing terms follows from the lemmas below.

Lemma 6.3. If Φ�Γ | �HE
u : τ and u has no lh-redex T-occurrences in Φ, then u ∈ lh-nf.

Proof. Let Φ�Γ | �HE
u : τ and suppose that u /∈ lh-nf. Then, u ∈ ¬lh by Lemma 6.1.

First, we prove a property stating that for any u ∈ Ayl , yl has a (head) T-occurrence in

Φ. If u = yl ∈ Ayl , then the property is straightforward. If u = vm ∈ Ayl or u = λx.v ∈ Ayl

† Note that, since there are no erasing steps, weak and strong normalization coincides for lh-reductions.

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

D. Kesner and D. Ventura 112

or u = v[x\v′] ∈ Ayl for x �= y, where v ∈ Ayl , then by the i.h. yl has a T-occurrence in

the corresponding subderivation of Φ and so it has a T-occurrence in Φ.

Second, we show that u ∈ ¬lh implies u has a lh-redex T-occurrence in Φ, thus holding a

contradiction. We reason by induction on the definition of ¬lh. If u = L[[λx.v]]ε ∈ B@-red,

u = L[[λx.u′]](v;m) ∈ B@-red, u = L[[xl]]m ∈ B@-red or u = L[[vl]]m ∈ B@-red, then ε

is a lh-redex T-occurrence in Φ. If u = vm ∈ B@-red or u = v[x\v′] ∈ B@-red or

u = λx.v ∈ B@-red, where v ∈ B@-red, then by the i.h. the subterm v has a lh-redex

T-occurrence in the corresponding subderivation of Φ so that also u has a lh-redex

T-occurrence in Φ. Exactly the same reasoning applies for u = vm, or u = v[x\v′] or

u = λx.v belonging to cd-red where v ∈ cd-red. Finally, if u = v[y\v′], where v ∈ Ayl ,

then by the first property shown before we know that yl has a (head) T-occurrence in the

corresponding subderivation of Φ so that the redex v[y\v′] has a (head) T-occurrence in

Φ. This concludes the proof.

Lemma 6.4. Let u be an E-term. If u is liner-head E-normalizing, then u is HE-typable.

Proof. By induction on the length of the linear-head E-normalizing reduction. Let

u →k
lh u′, where u′ ∈ lh-nf. If k = 0 (i.e. u = u′), then u ∈ An

y , for some symbol y, by

Lemma 6.2. Let τn = M1 ⊃ · · · ⊃ Mn ⊃ τ (n � 0) such that Mi = {{ }} (1 � i � n).

We first prove by induction on |l|; = n that � | τn �HE
l : τ. If n = 0, then l = ε and

� | τ �HE
ε : τ by the typing rule (ax). If l = v;m, then � | τn �HE

m : τ by the i.h. and

� | {{ }} ⊃ τn �HE
v;m : τ by the rule (⊃ l).

Second, we prove by induction on Bn
y that u ∈ Bn

y implies y : {{τn}} | �HE
u : τ.

— If yl ∈ Bn
y , then � | τn �HE

l : τ by the previous point and y : {{τn}} | �HE
yl : τ by

the rule (hlist).

— If u[x\v] ∈ Bn
y comes from u ∈ Bn

y , then y : {{τn}} | �HE
u : τ holds by the i.h. thus

y : {{τn}} | �HE
u[x\v] : τ holds by the typing rule (cut).

Now, we prove by induction on An
y that u ∈ An

y implies Γ | �HE
u : σ where the

domain of Γ has at most the symbol y.

— If u ∈ An
y , where u ∈ Bn

y , then the property follows by the previous point.

— If λx.u ∈ An
y , where u ∈ An

y , then Γ | �HE
u : σ by the i.h. so that Γ \\ x | �HE

λx.t :

Γ(x) ⊃ σ by application of the typing rule (⊃ r). If Γ has at most y, then also does

Γ \\ x.

— If u[x\v] ∈ An
y , where u ∈ An

y and x �= y, then Γ | �HE
u : σ by the i.h. so that

Γ | �HE
u[x\v] : σ by application of the typing rule (cut).

Otherwise, let u →lh v →k
lh u′. By the i.h. the term v is HE-typable and thus by

Lemma 5.6 the same holds for u.

Theorem 6.1. Let u be an E-term. Then, u is linear-head E-normalizing iff u is HE-typable.

Proof. The left-to-right implication holds by Lemma 6.4. For the right-to-left implic-

ation, let u be HE-typable. By Corollary 5.1, and the fact that →lh⊆→E, the strategy

consisting in contracting lh-redex T-occurrences terminates in a term u′ without such

redexes. Moreover, u′ is HE-typable by Lemma 5.3. Then, u′ turns out to be in lh-nf by

Lemma 6.3. Thus, u is head-linear E-normalizing.

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

A resource aware semantics 113

7. Characterization of strong E-normalization

This section is devoted to the characterization of E-strong normalization. The structure

of the proof runs along the following lines. We give an alternative definition of the set

SN (E\w), that we denote by ISN (E\w), where E\w is the non-erasing reduction relation

→E \ →w. We show this new alternative definition to be equivalent to the original one, i.e.

o ∈ SN (E\w) iff o ∈ ISN (E\w) (Lemma 7.5). We then use this equivalence to obtain the

‘typable iff normalizing’ property as follows:

— SE-typability implies E \ w-normalization (Corollary 5.2), implying E-normalization

(Lemma 7.7).

— E-normalization trivially implies E\w-normalization, and every object in ISN (E\w) is

SE-typable (Lemma 7.6). The equivalence in Lemma 7.5 allows to conclude.

7.1. An alternative definition of SN (E\w)

We give an alternative definition of SN (E\w). Indeed, the inductive set of E\w-strongly

normalizing objects, written ISN (E\w), is the smallest subset of objects satisfying the

following properties:

(EL) ε ∈ ISN (E\w).
(NEL) If t, l ∈ ISN (E\w), then t; l ∈ ISN (E\w),

(L) If t ∈ ISN (E\w), then λx.t ∈ ISN (E\w).
(HL) If l ∈ ISN (E\w), then xl ∈ ISN (E\w).
(W) If t, s ∈ ISN (E\w) and |t|x = 0, then t[x\s] ∈ ISN (E\w).

(dBnil) If (λx.t)l1 . . . ln (n � 0)∈ISN (E\w), then (λx.t)εl1 . . . ln∈ISN (E\w).
(dBcons) If t[x\u]ml1 . . . ln (n � 0) ∈ ISN (E\w), then (λx.t)(u;m)l1 . . . ln ∈ ISN (E\w).
(@var) If x(m1@m2)l1 . . . ln (n � 0) ∈ ISN (E\w), then (xm1)m2l1 . . . ln ∈ ISN (E\w).
(@app) If t(m1@m2)l1 . . . ln (n � 0) ∈ ISN (E\w), then (tm1)m2l1 . . . ln ∈ ISN (E\w).

(C) If C[[u l]][x\u]∈ISN (E\w) and |C[[x l]]|x > 1, then C[[x l]][x\u]∈ISN (E\w).
(D) If C[[u l]] ∈ ISN (E\w) and |C[[x l]]|x = 1, then C[[x l]][x\u] ∈ ISN (E\w).
(E) If (tl)[x\s] ∈ ISN (E\w) and |l|x = 0, then t[x\s]l ∈ ISN (E\w).

In order to show that SN (E\w) and ISN (E\w) are equivalent sets, we first introduce

a technical tool. Indeed, we do not want to distinguish terms having explicit cuts at

different head positions, mainly because they do have exactly the same maximal reduction

lengths. More precisely, the head graphical equivalence ∼ on E-terms, inspired from the

σ-equivalence on λ-terms (Regnier 1994) and the σ-equivalence on λ-terms with explicit

substitutions (Accattoli and Kesner 2010), is given by the contextual, transitive, symmetric

and reflexive closure of the following axiom:

(tl)[x\u] ≈ t[x\u]l, where |l|x = 0

Notice that (xl)[x\u] cannot be ∼-converted into x[x\u]l when x /∈ fv(l), since x alone is

not a term of the calculus. The key property concerning this equivalence relation is stated

below, where ηR(o) denotes the maximal length of an R-reduction sequences starting

at o.

Lemma 7.1 (Invariance for ∼). Let o, o′ be E-objects such that o ∼ o′. Then,

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

D. Kesner and D. Ventura 114

1. o →E\w o0, iff o′ →E\w o
′
0, where o0 ∼ o′

0. In particular, ηE\w(o) = ηE\w(o
′).

2. Φ � Γ �SE
o : τ, iff Φ′ � Γ �SE

o′ : τ. Moreover, sz2(Φ) = sz2(Φ′).

Proof.

1. The proof consists in showing that o →E\w o′ and o ∼ o0 implies there is o′
o such that

o0 →E\w o′
0 and o′ ∼ o′

0. The proof is by induction on o →E\w o′ and case analysis of

o ∼ o0.

2. The proof is by induction on o ∼ o′ and is straightforward.

We now establish some properties of SN (E\w) which are used to show that the set

SN (E\w) is indeed equal to ISN (E\w).

Lemma 7.2. Let m, l be two E-lists. Then, m, l ∈ SN (E\w) iff m@l ∈ SN (E\w).

Proof. By induction on m, knowing that m = t;m′ ∈ SN (E\w) iff t, m′ ∈ SN (E\w).

Lemma 7.3. Let V be an E-list context, t be an E-term and m, l be E-lists.

1. V[[tl]] ∈ SN (E\w) implies V[[t]] ∈ SN (E\w).
2. V[[t(m@l)]] ∈ SN (E\w) implies V[[tm]] ∈ SN (E\w).

Proof. The proof of the first point is by induction on ηE(V[[tl]]) and the proof of the

second one is by induction on ηE(V[[t(m@l)]]) and uses the first point.

Let o be an E-object such that |o|x = n. If |o|y = 0, i.e. if y is fresh in o, then we write

o[x\y] to denote an arbitrary nondeterministic replacement of i (0 � i � n) occurrences of

x by the fresh symbol y. Thus, for example, if o = xε[z\xε], then o[x\y] may denote one

of the terms xε[z\xε], yε[z\xε], xε[z\yε], or yε[z\yε].

Lemma 7.4. Let o be a E-object and v be a E-term. If o →E\w o
′, then o[x\y] →E\w o

′
[x\y] and

o[x\y]{y/v} →E\w o
′
[x\y]{y/v}.

A consequence of the previous lemma is that o →E\w o
′ implies o{x/v} →E\w o

′{x/v}.

Corollary 7.1. Let o be a E-object and v be a E-term. If o[x\y]{y/v} ∈ SN (E\w), then

o ∈ SN (E\w).

A consequence of the previous corollary is that C[[vl]] ∈ SN (E\w) implies C[[xl]] ∈
SN (E\w), a property which will be used in the forthcoming key Lemma 7.5.

Although the inclusion ISN (E\w) ⊆ SN (E\w) can be obtained through typability in

SE, we prefer to present here a direct (and self-contained) proof of this inclusion.

Lemma 7.5. SN (E\w) = ISN (E\w).

Proof. If o ∈ SN (E\w), then one shows o ∈ ISN (E\w) by induction on 〈ηE\w(o), |o|〉. For

the converse one reasons by induction on the definition of o ∈ ISN (E\w). Full details can

be found in the Appendix.

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

A resource aware semantics 115

7.2. The main proof

This section uses Lemma 7.5 to show the characterization of E-normalization as explained

before. More precisely,

Lemma 7.6. Let o be an E-object. If o ∈ SN (E\w), then o is SE-typable.

Proof. By induction on the structure of o ∈ ISN (E\w) =Lemma 7.5 SN (E\w).
— If o = ε, o = t; l, o = λx.t, o = xl, or o = u[x\v] with |u|x = 0, then the proof is

straightforward by using the i.h.

— If o ∈ ISN (E\w) comes from one of the rules (dBnil), (dBcons), (C), (D), (@var) or

(@app), then the property holds by the i.h. and the subject expansion Lemma 5.6.

— If t[x\s]l ∈ ISN (E\w) comes from the rule (E), then (tl)[x\s] ∈ ISN (E\w), so that

(tl)[x\s] is SE-typable by the i.h. and the property holds by Lemma 7.1.2.

Strong E-normalization can be now obtained from strong E\w-normalization as follows:

Lemma 7.7 (From E\w to E). Let o be an E-object. If o ∈ SN (E\w), then o ∈ SN (E).

Proof. One first shows a postponement property for w-reduction steps given by: if

o →+
w →E\w o′, then o →E\w→+

w o′. Then the property is proved by contradiction using the

postponement property and the fact that w-reduction is itself terminating.

We can now conclude with the main result of this section.

Theorem 7.1. Let o be an E-object. Then o is SE-typable iff o ∈ SN (E).

Proof. Let o be SE-typable. Then o ∈ SN (E\w) by Corollary 5.2 and o ∈ SN (E) by

Lemma 7.7. For the converse, o ∈ SN (E) ⊆ SN (E\w) because →E\w⊆→E. We conclude by

Lemma 7.6.

8. The I-calculus

We introduce the syntax and the operational semantics of the I-calculus, slightly differently

defined in Espı́rito Santo (2000). The I-calculus can be obtained from E by an appropriate

projection function (c.f. Lemma 8.3).

Given a countable infinite set of symbols x, y, z, . . ., three syntactic categories are defined

by the following grammars:

(I-objects) o ::= t | l
(I-terms) t, u, v ::= xl | λx.t | (λx.t)l

(I-lists) l, m ::= ε | t; l
Remark that general terms of the form tl are not I-terms.

As before, we work with Barendregt’s convention and the standard notion of α-

conversion. I-contexts are defined as E-contexts restricted to I-objects, specified by the

following specialized grammar:

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

D. Kesner and D. Ventura 116

(I-object contexts) OI ::= CI | VI
(I-term contexts) CI ::= � | xVI | λx.CI | (λx.CI)l | (λx.t)VI
(I-list contexts) VI ::= � | CI; l | t; VI

The reduction relation →I is given by the closure of contexts OI of the following rules:

(λx.t)ε 	→βε λx.t (λx.t)(u; l) 	→βcons t{x\u}◦ l

where the operations ◦ and { \ } are defined as follows:

(xl)◦ m := x (l@m) ε{x\v} := ε

((λy.t)l)◦ m := (λy.t)(l@m) (u; l){x\v} := u{x\v}; l{x\v}
(λx.t)◦ m := (λx.t)m (y l){x\v} := yl{x\v}

(xl){x\v} := v ◦ l{x\v}
((λy.t)l){x\v} := (λy.t{x\v})l{x\v}
(λy.t){x\v} := λy.t{x\v}

The substitution operator { \ } is defined on α-equivalence classes of terms in order to

avoid the capture of free variables. Notice that substitution distributes with respect to @

and◦, i.e. one can show that (t@l){x\u} = t{x\u}@l{x\u} and (t◦l){x\u} = t{x\u}◦l{x\u}.
As expected, the I-calculus enjoys confluence:

Theorem 8.1 (Confluence). The reduction relation →I is confluent.

Proof. A self-contained proof can be done by the Tait–Martin Löf technique. The proof

is quite standard but we list below the principal steps to follow:

— We define a simultaneous reduction relation �:

– o � o.

– t � t′ implies λx.t � λx.t′.

– l � l′ implies xl � xl′.

– t � t′ and l � l′ imply t; l � t′; l′.

– t � t′, u � u′ and l � l′ imply (λx.t)(u; l) � t′{x\u′}◦ l′.

— We show that � verifies the diamond property. This is done by induction on the

relation � and a detailed analysis of cases. Thus, we conclude � is confluent by Baader

and Nipkow (1998).

— We easily show that the relations �∗ and →∗
I are equal. So that we conclude that →I

is confluent.

An erasing step is the closure by contexts of the reduction rule (λx.t)(u; l) 	→ t{x\u}◦ l,

where x /∈ fv(t), i.e. an erasing step discards the argument u since x /∈ fv(t) implies

t{x\u} = t. Notice that erasing steps cannot be postponed, so that we cannot apply

to the I-calculus the same (simple) proof technique used in Section 7 to characterize

E-strong normalization. An example of non-erasing step is (λy.yε)(xε; xε; ε) → x(xε; ε)

while (λy.zε)(xε; xε; ε) → z(xε; ε) is an erasing step. Non-erasing steps play a key role in

Lemma 9.4.

The I-calculus can be simulated in the E-calculus in terms of more atomic steps. Indeed,

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

A resource aware semantics 117

Lemma 8.1. Let o be an I-term. If o →I o
′, then o →+

E o′.

Proof. One first shows that for all I-objects t, u, l, t[x\u] →∗
E t{x\u} and tl →∗

E t◦ l.

The proof then proceeds by induction on I-reduction. The interesting case is when

o = (λx.t)(u; l) →I t{x\u}◦ l = o′, for which we conclude by o = (λx.t)(u; l) →E t[x\u]l →∗
E

t{x\u}l →∗
E t{x\u}◦ l = o′ using the properties mentioned above.

A direct consequence is the following property, to be used later in Section 10.1.

Corollary 8.1. Let o be an I-term. Then, o ∈ SN (E) implies o ∈ SN (I).

Reciprocally, the E-calculus can be projected into the I-calculus. For that, we first

remark that the system sub = {w, d, c,@var,@app} is locally confluent and terminating.

Hence, sub-normal forms of objects are unique; we thus write sub(o) for the sub-normal

form of an object o. Remark that sub(o) is an I-object for every E-object o.

First, some auxiliary lemmas in order to investigate the projection mentioned above.

Property 8.1. Let OI[[xl]], t, u be I-terms. Then,

1. OI[[xl]]{x\u} = OI[[u◦ l]]{x\u}
2. t{x\u} = t[p\y]{y\u}{x\u}, where p is any position of t having a free occurrence of x,

and t[p\y] is the term obtained by replacing the free occurrence of x at position p by a

fresh variable y.

Proof. The first point can be shown by induction on contexts and the second one by

induction on terms.

Lemma 8.2. Let t be an I-term, l be an E-list and u be an E-term. Then,

1. sub(t[x\u]) = t{x\sub(u)}
2. sub(tl) = t◦ sub(l)

Proof. The proof is by simultaneous induction on the pair 〈|t|x, |t|〉. It uses the fact that

sub(l@m) = sub(l)@sub(m), as well as Proposition 8.1.

Corollary 8.2. Let t, u be E-terms and l be an E-list. Then,

1. sub(t[x\u]) = sub(t){x\sub(u)}
2. sub(tl) = sub(t)◦ sub(l)

Proof. As noticed before sub(t) is an I-term. Then, we have

sub(t[x\u]) = sub(sub(t)[x\u]) =Lemma 8.2 sub(sub(t)){x\sub(u)} = sub(t){x\sub(u)}
sub(tl) = sub(sub(t)l) =Lemma 8.2 sub(sub(t))◦ sub(l) = sub(t)◦ sub(l)

Lemma 8.3 (Projection). Let o be an E-term. If o →E o
′, then sub(o) →∗

I sub(o
′).

Proof. By induction on E-reductions using Corollary 8.2.

Using confluence of I, Lemmas 8.1 and 8.3, we obtain the following property.

Corollary 8.3. The reduction relation →E is confluent.

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

D. Kesner and D. Ventura 118

∅ | τ � ε : τ
(ax)

Γ | � t : τ

Γ \\x | � λx.t : Γ(x) ⊃ τ
(⊃ r)

Γ | σ � l : τ

Γ + {x:{{σ}}} | � xl : τ
(hlist)

Γ | � t : ρ Δ | τ � l : σ

Δ + Γ | {{ }} ⊃ τ � t; l : σ
(⊃ l/∈)

(Γj | � t : τj)j∈J J �= ∅ Δ | τ � l : σ

Δ +j∈J Γj | {{τj}}j∈J ⊃ τ � t; l : σ
(⊃ l∈)

Γ | � λx.t : σ Δ | σ � l : τ

Γ + Δ | � (λx.t)l : τ
(app)

Fig. 3. The type system SI for the I-calculus.

9. Typing system SI for I-terms and its properties

In this section, we restrict to I-objects the system SE introduced in Section 4. The resulting

system SI is given in Figure 3. As before, relevance holds for I-objects.

Lemma 9.1. If Γ | Σ �SI
o : τ, then dom(Γ) = fv(o).

The proof of ‘typable implies normalizing’ in Section 10 is obtained through the

corresponding property for SE and the behaviour of projections established in Lemma 8.3.

Therefore, no forward properties are needed (nor investigated) in the present section. For

the converse, i.e. ‘normalizing implies typable,’ a self-contained proof is developed, thus

the necessity of backward properties, such as the forthcoming reverse substitution lemma

(c.f. Lemma 9.3).

First, we establish the backward property for the ◦ operation.

Lemma 9.2. If Φt◦l � Γ | � t◦ l : τ, then there exist Φt, Φl and σ such that Γ = Γt + Γl ,

Φt � Γt | � t : σ and Φl � Γl | σ � l : τ.

Proof. By induction on sz2(Φt◦l) and the structure(s) of t and l, using Lemma 5.4 on

pure terms.

Lemma 9.3 (Reverse substitution). If x ∈ fv(o) and Φ �SI
Γ | Σ � o{x/u} : τ, then there

exist (Φi
u�SI

Γi � u : σi)i∈I and Φo�SI
x : {{σi}}i∈I ; Γo | Σ � o : τ for I �= � and Γ = Γo+i∈IΓi.

Proof. By induction on the structure of o. We only show the most interesting case.

If o = yl, then there are two possibilities.

If y �= x, then o{x/u} = y l{x/u}, thus Σ = and Φ is of the form:

Φl′ � Πl′ | σ � l{x/u} : τ

Πl′ + {y : {{σ}}} � y l{x/u} : τ

By the i.h. Πl′ = Πl +i∈I Πi and Φl � x : {{σi}}i∈I ; Πl | σ � l : τ and (Φi
u � Πi | � u : σi)i∈I .

Then, Φo � x : {{σi}}i∈I ; Πl + {y : {{σ}}} | � yl : τ by the rule (hlist) and the result then

holds for Γo := Πl + {y : {{σ}}} and (Γi := Πi)i∈I .

If y = x, then o{x/u} = u◦ l{x/u} and, by Lemma 9.2, Σ = , Γ = Πu + Πl′ such that

Φu � Πu | � u : σu and Φl′ � Πl′ | σu � l{x/u} : τ.

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

A resource aware semantics 119

Suppose x ∈ fv(l). Then, by the i.h. Πl′ = Πl +j∈J Πj and Φl � x : {{σj}}j∈J; Πl | σu � l : τ

and (Φi
u � Πj | � u : σj)j∈J . Let I := J ∪ {u}, where we suppose w.l.o.g. that u /∈ J . Then,

Φo�x : {{σi}}i∈I ; Πl | � xl : τ by the rule (hlist) and the result then holds for (Γi := Πi)i∈I
and Γo := Πl .

Suppose x /∈ fv(l). Then, J = � and thus Φo � x : {{σu}}; Πl | � xl : τ holds by rule

(hlist). We have the derivation Φu so the property holds for a singleton I .

Lemma 9.4 (Subject expansion for non-erasing reductions of the I-calculus). If Φ′�SI
Γ | Σ �

o′ : τ and o →I o
′ is a non-erasing step, then there exists Φ such that Φ �SI

Γ | Σ � o : τ.

Proof. By induction on the non-erasing reduction relation →I. We only present the

proofs for both βε and βcons rules. The remaining inductive cases are straightforward.

— If o = (λx.t)ε →βε λx.t = o′, then Σ = and Φ �Γ | � (λx.t)ε : τ by the application of

the (ax) and (app) rules.

— If o = (λx.t)(u; l) →βcons t{x/u} ◦ l = o′, where x ∈ fv(t), then by Lemma 9.2, we

have that Σ = , Γ = Γt′ + Γl and there is σ such that Φt′ � Γt′ | � t{x/u} : σ

and Φl � Γl | σ � l : τ. By Lemma 9.3, Γt′ = Γ0 +i∈I Γi, where I �= �, and Φt �

x : {{ρi}}i∈I ; Γ0 | � t : σ and (Φi
u � Γi | � u : ρi)i∈I . Then,

Φ :=

Φt � x : {{ρi}}i∈I ; Γ0 | � t : σ

Γ0 | � λx.t : {{ρi}}i∈I ⊃ σ

(Φi
u � Γi | � u : ρi)i∈I Φl � Γl | σ � l : τ

Γl +i∈I Γi | {{ρi}}i∈I ⊃ σ � u; l : τ

Γ0 + Γl +i∈I Γi | � (λx.t)(u; l) : τ

10. Characterization of strong I-normalization

The characterization of SN (I) through typability in SI is obtained proving the two

implications separately, as in the characterization of SN (E) developed in Section 7.

However, the proofs do not follow the same scheme.

The proof of ‘typability implies normalization,’ instead of a direct result obtained by

means of a weighted subject reduction property, is established by a combination of the

respective result in system SE (c.f. Thm. 7.1) and the Projection Lemma 8.1.

On the other hand, in order to obtain the proof of ‘normalization implies typability’

using the corresponding result for SE, one would need the preservation of strong normal-

ization (PSN) property, stated as ‘o ∈ SN (E) implies o ∈ SN (I).’ In general, the PSN

property is not easy to prove, so we choose to concentrate on typability properties by

developing an alternative self-contained proof argument.

10.1. Typability implies strong I-normalization

In order to characterize the set SN (I) of strongly I-normalizing objects by means of

SI-typability, we first need to show that every SI-typable object is strongly I-normalizing.

This is obtained as follows:

Corollary 10.1. If Φ �SI
Γ | Σ � o : τ, then o ∈ SN (I).

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

D. Kesner and D. Ventura 120

Proof. If o is SI-typable, then o is also trivially SE-typable. Theorem 7.1 gives o ∈ SN (E)

and Corollary 8.1 gives o ∈ SN (I).

10.2. Strong I-normalization implies typability

This last part of the paper completes the characterization result for the I-calculus, namely,

we show that every strongly I-normalizing object is SI-typable, so that, combined with

Corollary 10.1, we obtain a full characterization of strongly I-normalizing objects by

means of SI-typability.

In order to achieve the main result of this section, we define an inductive set of objects

ISN (I) containing the set of strongly I-normalizing objects and contained in the set of

SI-typable ones. The set ISN (I) is inspired by the idempotent intersection typing system

proposed by Valentini (2001), then revisited by Kikuchi (2014).

We start by defining the set ISN (I) as the smallest subset of I-objects satisfying the

following properties:

(ax) ε ∈ ISN (I).

(⊃ r) If t ∈ ISN (I), then λx.t ∈ ISN (I).

(hlist) If l ∈ ISN (I), then xl ∈ ISN (I).

(⊃ lS) If t ∈ ISN (I) and l ∈ ISN (I), then t; l ∈ ISN (I).

(appnil) If λx.t ∈ ISN (I), then (λx.t)ε ∈ ISN (I)

(app∈) If t{x\u}◦ l ∈ ISN (I) and x ∈ fv(t), then (λx.t)(u; l) ∈ ISN (I).

(app/∈) If t◦ l ∈ ISN (I) and u ∈ ISN (I) and x /∈ fv(t), then (λx.t)(u; l) ∈ ISN (I).

Every strongly I-normalizing object o turns out to be in ISN (I).

Theorem 10.1. If o ∈ SN (I), then o ∈ ISN (I).

Proof. By induction on 〈ηI(o), |o|〉.
If o = ε, then the statement is trivial. If o = u; l, then the i.h. gives u and l in ISN (I)

so that u; l ∈ ISN (I) using rule (⊃ lS). The same reasoning can be applied if o = λx.t

or o = xl. If o = (λx.t)l, we consider two cases.

— l = ε. The i.h. gives λx.t ∈ ISN (I), then (λx.t)ε ∈ ISN (I) using rule (appnil).

— l = u; l′. We consider again two cases.

– x ∈ fv(t). Since ηI(t{x\u}◦ l) < ηI(o), then by the i.h. we have t{x\u}◦ l ∈ ISN (I),

then we obtain o ∈ ISN (I) using rule (app∈).

– x /∈ fv(t). Since ηI(t{x\u}◦l) = ηI(t◦l) < ηI(o), then by the i.h. we have t◦l ∈ ISN (I).

Moreover, ηI(u) < ηI(o), so that also by the i.h. we have u ∈ ISN (I). Then,

o ∈ ISN (I) using rule (app/∈).

Moreover, every object in ISN (I) is SI-typable.

Theorem 10.2. If o ∈ ISN (I), then there exists Φ′ such that Φ′ �SI
Γ | Σ � o : τ.

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

A resource aware semantics 121

Proof. By induction on the definition of ISN (I). The cases (ax), (⊃ r), (hlist) and

(⊃ lS) are straightforward. Let consider (λx.t)ε ∈ ISN (I) coming from λx.t ∈ ISN (I)

by rule (appnil). By the i.h. we have Φλx.t � Γ | � λx.t : τ, thus we conclude by

Φ′ :=
Φλx.t � Γ | � λx.t : τ � | τ � ε : τ

Γ | � (λx.t)ε : τ

Consider (λx.t)(u; l) ∈ ISN (I) coming from t{x\u}◦ l ∈ ISN (I) and x ∈ fv(t) by rule

(app∈). By the i.h. Φ′
1 � Γ | � t{x\u}◦ l : τ, thus Φ′ � Γ | � (λx.t)(u; l) : τ by Lemma 9.4.

Consider (λx.t)(u; l) ∈ ISN (I) coming from t◦ l ∈ ISN (I), u ∈ ISN (I) and x /∈ fv(t)

by rule (app/∈). By the i.h. Φ′
1 � Γ1 | � t◦ l : τ and Φ′

2 � Γ2 | � u : σ. By Lemma 9.2, we

get Φt � Γt | � t : τ′ and Φl � Γl | τ′ � l : τ, where Γ1 = Γt + Γl . Thus, we get

Φ′ :=

Φt � Γt | � t : τ′

Γt | � λx.t : {{ }} ⊃ τ′

Φ′
2 � Γ2 | � u : σ Φl � Γl | τ′ � l : τ

Γ2 + Γl | {{ }} ⊃ τ′ � u; l : τ

Γt + Γl + Γ2 | � (λx.t)(u; l) : τ

We can thus conclude this section with the equivalence between strongly I-normalizing

objects and typable objects in system SI.

Corollary 10.2. Γ | Σ �SI
o : τ if and only if o ∈ SN (I).

Proof. Typability implies normalization by Corollary 10.1. Normalization implies typ-

ability by Theorems 10.1 and 10.2.

11. Conclusion

This paper proposes a resource aware computational semantics for Herbelin’s syntax. The

resulting E-calculus can be seen as a refinement of the non-resource aware I-calculus,

whose meta-level operations are implemented by more atomic reduction rules in E.

In contrast to more complex resource-controlled interpretations realized by means of

explicit control operators for weakening and contraction, e.g. Ghilezan et al. (2011), our

implementation is achieved by rewriting rules inspired from the substitution at a distance

paradigm, recently used in successful investigations in computer science.

We define typing systems for both calculi I and E, based on relevant, strict, non-

idempotent intersection types. Typing rules of the systems are goal directed. In both cases,

typability is used to completely characterize head linear and strongly normalizing terms.

Our results are presented in a self-contained form, without resorting to their isomorphic

natural deduction counterparts. The proofs only use combinatorial arguments, neither

reducibility candidates nor memory operators have been necessary.

Balance between typing and reduction systems in a resource aware framework is

sensitive; this is illustrated by the approach in Kesner and Ventura (2014a) and the one

taken here. Indeed, adding a dereliction rule to the reduction system, as done in this

paper, allows to restrict the witness type derivations to erasable subterms only, while

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

D. Kesner and D. Ventura 122

dereliction can be simply omitted, as done in Kesner and Ventura (2014a), when using a

resource-consuming approach based on witnesses everywhere.

On further developments, the technique used in Bernadet and Lengrand (2013) to

establish the length of the longest reduction sequence of strongly normalizing terms could

be adapted to our framework. Extensions of this ideas and techniques to classical logic

can also be considered.

Appendix

Lemma 11.1.

1. If o′ = t[x\u]l0l1 . . . ln ∈ SN (E\w), then o = (λx.t)(u; l0)l1 . . . ln ∈ SN (E\w).
2. If o′ = x(m@l0)l1 . . . ln ∈ SN (E\w), then o = (xm)l0l1 . . . ln ∈ SN (E\w).
3. If o′ = t(m@l0)l1 . . . ln ∈ SN (E\w), then o = (tm)l0l1 . . . ln ∈ SN (E\w).
4. If o′ = C[[vl]][x\v] ∈ SN (E\w) and |C[[xl]]|x > 1, then o = C[[xl]][x\v] ∈ SN (E\w).
5. If o′ = C[[vl]] ∈ SN (E\w) and |C[[xl]]|x = 1, then o = C[[xl]][x\v] ∈ SN (E\w).

Proof. Let us treat Point 1. To prove o ∈ SN (E\w), it is sufficient to prove that all

the one-step reducts of o are in SN (E\w). For that, we first remark that the hypothesis

implies that t, u, li (i = 0 . . . n) ∈ SN (E\w) so that ηE\w(t), ηE\w(u) and ηE\w(li) (i = 0 . . . n) are

all well-defined. We then reason by induction on ηE\w(t) + ηE\w(u) +
∑n

i=0 ηE\w(li).

— If o → o′, then o′ ∈ SN (E\w) by hypothesis.

— If o → (λx.t′)(u; l0)l1 . . . ln, where t → t′, then ηE\w(t
′) < ηE\w(t) so that we conclude by

the i.h.

— If o → (λx.t)(u′; l0)l1 . . . ln, where u → u′, then ηE\w(u
′) < ηE\w(u) so that we conclude by

the i.h.

— If o → (λx.t)(u; l′0)l1 . . . ln, where l0 → l′0 or o → (λx.t)(u; l0)l1 . . . l
′
i . . . ln, where li → l′i ,

then ηE\w(l
′
i) < ηE\w(li), so that we conclude by the i.h.

— There is no other possible reduct of o.

Points 2 and 3 use Lemma 7.2 to infer in particular m, l0 ∈ SN (E\w), then proceeds

similarly. Points 4 and 5 use Corollary 7.1 to infer in particular C[[xl]] ∈ SN (E\w), then

proceeds similarly.

Lemma 7.5. SN (E\w) = ISN (E\w).

Proof. If o ∈ SN (E\w), then we show o ∈ ISN (E\w) by induction on 〈ηE\w(o), |o|〉. We

reason by cases. If o = ε, o = t; l, o = λx.t, o = xl or o = t[x\u] with |t|x = 0, then the

property is straightforward. Otherwise,

— If o = t[x\v] with |t|x > 1, i.e. t = C[[xl]], then every o′ such that o → o′ verifies o′ ∈
SN (E\w) and in particular o′ = C[[vl]][x\v]. Since ηE\w(o

′) < ηE\w(o), then o′ ∈ ISN (E\w)
by the i.h. so that we can conclude o ∈ ISN (E\w) by rule (C).

— If o = t[x\v] with |t|x = 1, i.e. t = C[[xl]], then every o′ such that o → o′ verifies

o′ ∈ SN (E\w) and in particular o′ = C[[vl]]. Since ηE\w(o
′) < ηE\w(o), then o′ ∈ ISN (E\w)

by the i.h. so that we can conclude o ∈ ISN (E\w) by rule (D).

— If o = vl is an application, then we reason by cases on v.

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

A resource aware semantics 123

– If o = u0[x\u1]l0 . . . ln (n � 0) and o ∈ SN (E \ w), then Lemma 7.1.1 gives

ηE\w(u0[x\u1]l0 . . . ln) = ηE\w((u0l0 . . . ln)[x\u1]). Thus, in particular, ηE\w(u0l0 . . . ln),

ηE\w(u1) � ηE\w(o). Since |u0l0 . . . ln|, |u1| < |o|, u0l0 . . . ln, u1 ∈ ISN (E\w) holds by

the i.h. We now consider three cases.

If |u0l0 . . . ln|x = 0, then (u0l0 . . . ln)[x\u1] ∈ ISN (E \w) by rule (W) and thus

o ∈ ISN (E\w) by several applications of rule (E).

If |u0l0 . . . ln|x > 1, then (u0l0 . . . ln)[x\u1] = C[[xl]][x\u1] →c C[[u1l]][x\u1] and thus

we have that ηE\w(C[[u1l]][x\u1]) < ηE\w(C[[xl]][x\u1]). The i.h. gives C[[u1l]][x\u1] ∈
ISN (E\w) so that (u0l0 . . . ln)[x\u1] = C[[xl]][x\u1] ∈ ISN (E\w) holds by (C) and

o ∈ ISN (E\w) holds by several applications of rule (E).

If |u0l0 . . . ln|x = 1, then (u0l0 . . . ln)[x\u1] = C[[xl]][x\u1] →d C[[u1l]] and thus we

have that ηE\w(C[[u1l]]) < ηE\w(C[[xl]][x\u1]). The i.h. gives C[[u1l]] ∈ ISN (E\w) so

that (u0l0 . . . ln)[x\u1] = C[[xl]][x\u1] ∈ ISN (E\w) holds by (D) and o ∈ ISN (E\w)
holds by several applications of rule (E).

In all the three cases, we get o ∈ ISN (E\w).

– If o = xl0l1 . . . ln, with n � 1, then o →@var
x(l0@l1) . . . ln = o′. Moreover, ηE\w(o

′) <

ηE\w(o) so that the i.h. gives o′ ∈ ISN (E\w). We conclude by rule (@var).

– If o = tl0 . . . ln, with n � 0, we reason similarly to the previous case but we conclude

with rule (@app).

– If o = (λx.t)l0 . . . ln, with n � 0, then we reason by cases on l0. In every case, we

can conclude as before but using rules (dBnil) and (dBcons).

For the converse, we reason by induction on the definition of o ∈ ISN (E\w). If o = ε,

o = t; l, o = λx.t, o = xl or o = t[x\v] with |t|x = 0, then the property is straightforward

by using the i.h. The remaining cases are as follows:

— If o = (λx.t)(u; l0)l1 . . . ln ∈ ISN (E\w) where o′ = t[x\u]l0l1 . . . ln ∈ ISN (E\w), then

the i.h. gives o′ ∈ SN (E\w) so that in particular u ∈ SN (E\w). We conclude by

Lemma 11.1:1.

— If o = (λx.t)εl1 . . . ln ∈ ISN (E\w) where o′ = (λx.t)l1 . . . ln ∈ ISN (E\w), then the i.h.

gives o′ ∈ ISN (E\w) and we proceed similarly to the previous case.

— If o = (xm)l0l1 . . . ln ∈ ISN (E \w) where o′ = x(m@l0)l1 . . . ln ∈ ISN (E \w), then

o′ ∈ SN (E\w) by the i.h. so that we conclude by Lemma 11.1:2.

— If o = (tm)l0l1 . . . ln ∈ ISN (E \ w) where o′ = t(m@l0)l1 . . . ln ∈ ISN (E \ w), then

o′ ∈ SN (E\w) by the i.h. so that we conclude by Lemma 11.1:3.

— If o = C[[xl]][x\v] ∈ ISN (E\w) where |C[[xl]]|x > 1 and o′ = C[[vl]][x\v] ∈ ISN (E\w),
then o′ ∈ SN (E\w) by the i.h. so that we conclude by Lemma 11.1:4.

— If o = C[[xl]][x\v] ∈ ISN (E\w) where |C[[xl]]|x = 1 and o′ = C[[vl]] ∈ ISN (E\w), then

o′ ∈ SN (E\w) by the i.h. so that we conclude by Lemma 11.1:5.

— If v[x\u]l ∈ ISN (E\w) where (vl)[x\u] ∈ ISN (E\w), then (vl)[x\u] ∈ SN (E\w) by the

i.h. so that v[x\u]l ∈ SN (E\w) since ηE\w(v[x\u]l) =Lemma 7.1.1 ηE\w((vl)[x\u]).

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

D. Kesner and D. Ventura 124

References

Accattoli, B. (2012). An abstract factorization theorem for explicit substitutions. In: LIPIcs, vol. 15,

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 6–21.

Accattoli, B., Bonelli, E., Kesner, D. and Lombardi, C. (2014). A nonstandard standardization

theorem. In: Sewell, P. (ed.) Proceedings of the 41st Annual ACM Symposium on Principles of

Programming Languages (POPL), ACM, 659–670.

Accattoli, B. and Kesner, D. (2010). The structural lambda-calculus. In: Dawar, A. and Veith, H.

(eds.) Proceedings of 24th EACSL Conference on Computer Science Logic (CSL), Lecture Notes

in Computer Science, vol. 6247, Springer-Verlag, 381–395.

Andreoli, J. (1992). Logic programming with focusing proofs in linear logic. Journal of Logic and

Computation 2 (3) 297–347.

Baader, F. and Nipkow, T. (1998). Term Rewriting and All That, Cambridge University Press.

Barendregt, H. (1984). The Lambda Calculus: Its Syntax and Semantics (revised edition), Studies

in Logic and the Foundations of Mathematics, vol. 103, Elsevier Science, Amsterdan, The

Netherlands.

Barendregt, H., Coppo, M. and Dezani-Ciancaglini, M. (1983). A filter lambda model and the

completeness of type assignment. Bulletin of Symbolic Logic 48 (4) 931–940.

Bernadet, A. and Lengrand, S. (2011). Complexity of strongly normalising λ-terms via non-

idempotent intersection types. In: Hofmann, M. (ed.) Proceedings of the 14th International

Conference on Foundations of Software Science and Computation Structures (FOSSACS), Lecture

Notes in Computer Science, vol. 6604, Springer-Verlag.

Bernadet, A. and Lengrand, S. (2013). Non-idempotent intersection types and strong normalisation.

Logical Methods in Computer Science 9 (4). doi: 10.2168/LMCS-9(4:3)2013

Boudol, G., Curien, P.-L. and Lavatelli, C. (1999). A semantics for lambda calculi with resources.

Mathematical Structures in Computer Science 9 (4) 437–482.

Bucciarelli, A., Kesner, D. and Ronchi Della Rocca, S. (2014). The inhabitation problem for non-

idempotent intersection types. In: IFIP Theoretical Computer Science (TCS), LNCS, Springer-

Verlag, 341–354.

Coppo, M. and Dezani-Ciancaglini, M. (1978). A new type-assignment for lambda terms. Archiv für

Mathematische Logik und Grundlagenforschung 19 (1) 139–156.

Coppo, M. and Dezani-Ciancaglini, M. (1980). An extension of the basic functionality theory for

the λ-calculus. Notre Dame, Journal of Formal Logic 21 (4) 685–693.

Coppo, M., Dezani-Ciancaglini, M. and Venneri, B. (1981). Functional characters of solvable terms.

Mathematical Logic Quarterly 27 (2–6) 45–58.

Damiani, F. and Giannini, P. (1994). A decidable intersection type system based on relevance. In:

International Symposium on Theoretical Computer Science (TACS), Lecture Notes in Computer

Science, vol. 789, Springer-Verlag, 707–725.

Danos, V. and Regnier, L. (2003). Head Linear Reduction. Available at http://iml.univ-mrs.

fr/~regnier/articles/pam.ps.gz.

De Benedetti, E. and Ronchi Della Rocca, S. (2013). Bounding normalization time through

intersection types. In: Paolini, L. (ed.) Proceedings of 6th Workshop on Intersection Types and

Related Systems (ITRS), EPTCS, Cornell University Library, 48–57.

de Carvalho, D. (2007). Sémantiques de la logique linéaire et temps de calcul. These de doctorat,

Université Aix-Marseille II.

Dı́az, J., Lanese, I. and Sangiorgi, D. (eds.) (2014). IFIP Theoretical Computer Science (TCS), LNCS,

Springer-Verlag.

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

A resource aware semantics 125

Dyckhoff, R. and Urban, C. (2003). Strong normalization of herbelin’s explicit substitution calculus

with substitution propagation. Journal of Logic and Computation 13 (5) 689–706.

Espı́rito Santo, J. (2000). Revisiting the correspondence between cut elimination and normalisation.

In: Montanari, U., Rolim, J. D. P. and Welzl, E. (eds.) Proceedings of the Automata, Languages and

Programming, 27th International Colloquium, ICALP 2000, Lecture Notes in Computer Science,

vol. 1853, Springer-Verlag, 600–611.

Espı́rito Santo, J. (2009). The lambda-calculus and the unity of structural proof theory. Theory of

Computing Systems 45 (4) 963–994.

Espı́rito Santo, J., Ivetic, J. and Likavec, S. (2012). Characterising strongly normalising intuitionistic

terms. Fundamenta Informaticae 121 (1–4) 83–120.

Gardner, P. (1994). Discovering needed reductions using type theory. In: Hagiya, M. and Mitchell,

J. C. (eds.) Proceedings of the Theoretical Aspects of Computer Software, International Conference

TACS ’94, Lecture Notes in Computer Science, vol. 789, Springer, 555–574.

Gentzen, G. (1969). The collected papers of Gerhard Gentzen. In: Szabo, M. E. (ed.) Studies in

Logic and the Foundations of Mathematics, North-Holland Pub. Co.

Ghilezan, S., Ivetic, J., Lescanne, P. and Likavec, S. (2011). Intersection types for the resource control

lambda calculi. In: Antonio Cerone, P. P. (ed.) Proceedings of the 8th International Colloquium

on Theoretical Aspects of Computing (ICTAC), Lecture Notes in Computer Science, vol. 6916,

Springer-Verlag, 116–134.

Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science 50 1–102.

Girard, J.-Y. (1996). Proof-nets: The parallel syntax for proof-theory. In: Aglianò, P. and Ursini, A.

(eds.) Logic and Algebra, Lecture Notes in Pure and Applied Mathematics, vol. 180, CRC Press,

97–124.

Herbelin, H. (1995). A lambda-calculus structure isomorphic to Gentzen-style sequent calculus

structure. In: Pacholski, L. and Tiuryn, J. (eds.) The 8th International Workshop on Computer

Science Logic (CSL), Lecture Notes in Computer Science, vol. 933, Springer-Verlag, 61–75.

Kesner, D. and Ventura, D. (2014a). Quantitative types for intuitionistic calculi. Technical Report

hal-00980868, Paris Cité Sorbonne.

Kesner, D. and Ventura, D. (2014b). Quantitative types for the linear substitution calculus. In: IFIP

Theoretical Computer Science (TCS), LNCS, Springer-Verlag, 296–310.

Kesner, D. and Ventura, D. (2015). A resource aware computational interpretation for herbelin’s

syntax. In: Leucker, M., Rueda, C. and Valencia, F. D. (eds.) 12th International Colloquium

Theoretical Aspects of Computing – ICTAC 2015, Lecture Notes in Computer Science, vol. 9399,

Springer-Verlag, 388–403.

Kfoury, A. (1996). A linearization of the lambda-calculus and consequences. Technical report,

Boston Universsity.

Kfoury, A. and Wells, J. B. (2004). Principality and type inference for intersection types using

expansion variables. Theoretical Computer Science 311 (1–3) 1–70.

Kikuchi, K. (2014). Uniform proofs of normalisation and approximation for intersection types.

In Proceedings of the 7th Workshop on Intersection Types and Related Systems (ITRS), Vienna,

Austria.

Krivine, J.-L. (1993). Lambda-Calculus, Types and Models, Ellis Horwood.

Lengrand, S., Lescanne, P., Dougherty, D., Dezani-Ciancaglini, M. and van Bakel, S. (2004).

Intersection types for explicit substitutions. Information and Computation 189 (1) 17–42.

Miller, D., Nadathur, G., Pfenning, F. and Scedrov, A. (1991). Uniform proofs as a foundation for

logic programming. Annals of Pure and Applied Logic 51 (1–2) 125–157.

Milner, R. (2007). Local bigraphs and confluence: Two conjectures: (extended abstract). Electronic

Notes in Theoretical Computer Science 175 (3) 65–73.

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

D. Kesner and D. Ventura 126

Neergaard, P. M. and Mairson, H. G. (2004). Types, potency, and idempotency: why nonlinearity

and amnesia make a type system work. In: Okasaki, C. and Fisher, K. (eds.) Proceedings of the 9th

ACM SIGPLAN International Conference on Functional Programming (ICFP), ACM, 138–149.

Ong, L. and Ramsay, S. J. (2011). Verifying higher-order functional programs with pattern matching

algebraic data types. In: Ball, T. and Sagiv, M. (eds.) Proceedings of the 38th Annual ACM

Symposium on Principles of Programming Languages (POPL), ACM, 587–598.

Pagani, M. and Ronchi Della Rocca, S. (2011). Solvability in resource lambda-calculus. In: Ong, L.

(ed.) Foundations of Software Science and Computation Structures (FOSSACS), Lecture Notes in

Computer Science, vol. 6014, Springer-Verlag, 358–373.

Pottinger, G. (1977). Normalization as a homomorphic image of cut-elimination. Annals of

Mathematical Logic 12 323–357.

Pottinger, G. (1980). A type assignment for the strongly normalizable λ-terms. In: Seldin, J. P.

and Hindley, J. R. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and

Formalism, Academic Press, 561–578.

Prawitz, D. (1965). Natural Deduction: A Proof-Theoretical Study. Phd thesis, Stockholm University.

Regnier, L. (1994). Une équivalence sur les lambda-termes. Theoretical Computer Science 2 (126)

281–292.

Urzyczyn, P. (1999). The emptiness problem for intersection types. Journal of Symbolic Logic 64 (3)

1195–1215.

Valentini, S. (2001). An elementary proof of strong normalization for intersection types. Archive of

Mathematical Logic 40 (7) 475–488.

van Bakel, S. (1992). Complete restrictions of the intersection type discipline. Theoretical Computer

Science 102 (1)135–163.

Zucker, J. (1974). The correspondence between cut-elimination and normalization I. Annals of

Mathematical Logic 7 (1) 1–112.

https://doi.org/10.1017/S0960129517000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000111

