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Abstract

Characterizations of semi-stable and stage extensions in terms of two-valued logical models

are presented. To this end, the so-called GL-supported and GL-stage models are defined.

These two classes of logical models are logic programming counterparts of the notion of

range which is an established concept in argumentation semantics.

KEYWORDS: Logic programming semantics, argumentation semantics, non-monotonic
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1 Introduction

Argumentation has been regarded as a non-monotonic reasoning approach since it

was suggested as an inference reasoning approach (Prakken and Vreeswijk 2002).

Dung showed that argumentation inference can be regarded as a logic programming

inference with negation as failure (Dung 1995). In his seminal paper (Dung 1995),

Dung introduced four argumentation semantics: grounded, stable, preferred and

complete semantics. Currently, it is known that these four argumentation semantics

introduced by Dung can be regarded as logic programming inferences by using

different mappings, from argumentation frameworks (AFs) into logic programs, and

different logic programming semantics (see Section 4).

Following Dung’s argumentation style, several new argumentation semantics have

been proposed. Among them, ideal, semi-stable, stage and CF2 have been deeply

explored (Baroni et al. 2011). Semi-stable and stage semantics were introduced

from different points of view; however, they have been defined in terms of the

so-called ranges of complete extensions and conflict-free sets, respectively. It seems

that by using the concept of range, one can define different classes of argumentation
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semantics as is the case with the semi-stable and stage semantics. Given that the

concept of range seems a fundamental component of definitions of argumentation

semantics such as semi-stable and stage semantics, the following question arises:

[Q1] How the concept of range can be captured from the logic programming point

of view?

This question takes relevance in the understanding of argumentation as logic

programming.

In this paper, we argue that for capturing the idea of range from the logic

programming point view, logic programming reductions which have been used for

defining logic programming semantics such as stable model (Gelfond and Lifschitz

1988) and p-stable (Osorio et al. 2006) semantics are important. To show this, we

introduce a general schema SC1 which takes as input a logic program P and a set of

atoms M, then considering a function R which maps P into another logic program,

SC1 returns a subset of atoms of the signature of P 1. In order to infer ranges from

the argumentation point of view using SC1, the logic program P has to capture an

argumentation framework. Let us observe that there are different mappings from AFs

into logic programs which have been used for characterizing Dung’s argumentation

semantics as logic programming inferences (Dung 1995; Carballido et al. 2009;

Caminada et al. 2013; Strass 2013). In this sense, the following question arises:

[Q2] Can the mappings used for characterizing Dung’s argumentation semantics

characterize range-based argumentation semantics using SC1?

In order to give an answer to Q2, we consider the mappings ΠAF and Π−AF
which have been used for characterizing Dung’s argumentation semantics in terms

of logic programming semantics. ΠAF has been shown to be a flexible mapping to

characterize the grounded, stable, preferred, complete and ideal semantics by using

logic programming semantics such as, the well-founded, stable, p-stable, Clark’s

completion and well-founded+ semantics, respectively (Nieves et al. 2008; Carballido

et al. 2009; Nieves and Osorio 2014). Π−AF has been used to characterize the grounded,

stable, preferred, complete, semi-stable and CF2 (Dung 1995; Nieves et al. 2011;

Strass 2013).

Considering ΠAF and Π−AF for defining two different instantiations of SC1, we

will define the so-called GL-supported and GL-stage models. We will show that GL-

supported and GL-stage models characterize the semi-stable and stage extensions,

respectively. In these instantiations of SC1, we will instantiate the function R with

the well-known Gelfond–Lifschitz reduction which is the core of the construction of

the stable model semantics (Gelfond 2008). Moreover, we will point out that R can

be instantiated with the RED reduction, which is the core of the p-stable semantics

(Osorio et al. 2006), getting the same effect in the constructions of the GL-supported

and GL-stage models.

To the best of our knowledge, SC1 is the first schema designed to capture the

range concept from a logic programming point of view. It is worth mentioning that

a range-based semantics as semi-stable semantics has been already characterized as

1 The formal definition of SC1 is presented in Section 3.1
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logic programming inference (Caminada et al. 2013; Strass 2013); however, these

characterizations do not offer a schema for capturing the concept of range from

a logic programming point of view in order to characterize (or construct) other

range-based argumentation semantics such as stage semantics.

The rest of the paper is structured as follows: In Section 2, a basic background

about logic programming and argumentation is introduced. In Section 3, by con-

sidering a couple of instantiations of SC1, we introduce the so-called GL-supported

and GL-stage models; moreover, we show how these models characterize both semi-

stable and stage extensions. In Section 4, a discussion of related work is presented.

In the last section, our conclusions are presented.

2 Background

In this section, we introduce the syntax of normal logic programs and the p-stable

and stable model semantics. After this, some basic concepts of argumentation theory

are presented. At the end of the section, the mappings ΠAF and Π−AF are introduced.

2.1 Logic programs: syntax

A signature L is a finite set of elements that we call atoms. A literal is an atom a

(called a positive literal ), or the negation of an atom not a (called a negative literal ).

Given a set of atoms {a1, . . . , an}, we write not {a1, . . . , an} to denote the set of literals

{not a1, . . . , not an}. A normal clause C is written as:

a0 ← a1, . . . , aj , not aj+1, . . . , not an

where ai is an atom, 0 � i � n. When n = 0 the normal clause is called a fact and is

an abbreviation of a0 ← �, where � is the ever true atom. A normal logic program is

a finite set of normal clauses. Sometimes, we denote a clause C by a← B+, not B−,

where B+ contains all the positive body literals and B− contains all the negative

body literals. When B− = ∅, the clause C is called a definite clause. A definite

program is a finite set of definite clauses. LP denotes the set of atoms that occurs

in P. Given a signature L, ProgL denotes the set of all the programs defined over

L. Given a normal logic program P , Facts(P ) = {a|a← � ∈ P }.
In some cases, we treat a logic program as a logical theory. In these cases, each

negative literal not a is replaced by ¬a where ¬ is regarded as the classical negation

in classical logic. Logical consequence in classical logic is denoted by �. Given a set

of proposition symbols S and a logical theory (a set of well-formed formulae) Γ,

Γ � S if ∀s ∈ S Γ � s.

Given a normal logic program P, a set of atoms is a classical model of P if the

induced interpretation evaluates P to true. If M ⊆ LP , we write P � M when:

P � M and M is a classical two-valued model of the logical theory obtained from

P (i.e. atoms in M are set to true, and atoms not in M to false). We say that a

model M of a program P is minimal if a model M ′ of P different from M such that

M ′ ⊂M does not exist.
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2.2 Stable model and p-stable semantics

Stable model semantics is one of the most influential logic programming semantics

in the non-monotonic reasoning community (Baral 2003) and is defined as follows:

Definition 1

Gelfond and Lifschitz (1988) Let P be a normal logic program. For any set S ⊆ LP ,

let PS be the definite logic program obtained from P by deleting

(i) each clause that has a formula not l in its body with l ∈ S , and then

(ii) all formulæ of the form not l in the bodies of the remaining rules.

Then, S is a stable model of P if S is a minimal model of PS . Stable(P ) denotes

the set of stable models of P

From here on, whenever we say Gelfond–Lifschitz (GL) reduction, we mean the

reduction PS . As we can observe GL reduction is the core of the stable model

semantics.

There is an extension of the stable model semantics which is called p-stable

semantics (Osorio et al. 2006). P-stable semantics was formulated in terms of

Paraconsistent logics. Like stable model semantics, p-stable semantics is defined

in terms of a single reduction, RED, which is defined as follows:

Definition 2 (Osorio et al. 2006 )

Let P be a normal program and M be a set of atoms. We define RED(P ,M) :=

{l ← B+, not (B− ∩M)|l ← B+, not B− ∈ P }.

As we can see, GL reduction and RED reduction have different behaviors. On the

one hand, the output of GL reduction always is a definite program; on the other

hand, the output of RED reduction can contain normal clauses.

By considering RED reduction, the p-stable semantics for normal logic programs

is defined as follows:

Definition 3 (Osorio et al. 2006 )

Let P be a normal program and M be a set of atoms. We say that M is a p-stable

model of P if RED(P ,M) � M. P -stable(P ) denotes the set of p-stable models

of P .

The stable model and p-stable semantics are two particular two-valued semantics

for normal program. In general terms, a logic programming semantics SEM is a

function from the class of all programs into the powerset of the set of (two-valued)

models.

Before moving on, let us introduce the following notation. Let P be a logic

program, 2SEM(P ) denotes the two-valued models of P . Given two logic program-

ming semantics SEM1 and SEM2, SEM1 is stronger than SEM2 if for every logic

program P , SEM1(P ) ⊆ SEM2(P ). Let us observe that the relation stronger than

between logic programming semantics is basically defining an order between logic

programming semantics.
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2.3 Argumentation theory

In this section, we introduce the definition of some argumentation semantics. To

this end, we start by defining the basic structure of an AF.

Definition 4

Dung (1995) An argumentation framework is a pair AF := 〈AR, attacks〉, where

AR is a finite set of arguments, and attacks is a binary relation on AR, i.e. attacks

⊆ AR × AR.

We say that a attacks b (or b is attacked by a) if (a, b) ∈ attacks holds. Similarly,

we say that a set S of arguments attacks b (or b is attacked by S) if b is attacked by

an argument in S . We say that c defends a if (b, a) and (c, b) belongs to attacks.

Let us observe that an AF is a simple structure which captures the conflicts

of a given set of arguments. In order to select coherent points of view from a set

of conflicts of arguments, Dung introduced the so-called argumentation semantics.

These argumentation semantics are based on the concept of an admissible set.

Definition 5 (Dung 1995 )

• A set S of arguments is said to be conflict-free if there are no arguments a, b

in S such that a attacks b.

• An argument a ∈ AR is acceptable with respect to a set S of arguments if for

each argument b ∈ AR: If b attacks a then b is attacked by S .

• A conflict-free set of arguments S is admissible if each argument in S is

acceptable w.r.t. S .

Let us introduce some notation. Let AF := 〈AR, attacks〉 be an AF and S ⊆ AR.

S+ = {b|a ∈ S and (a, b) ∈ attacks}.
Definition 6 (Caminada 2006; Dung 1995 )

Let AF := 〈AR, attacks〉 be an argumentation framework. An admissible set of

arguments S ⊆ AR is:

• stable if S attacks each argument which does not belong to S .

• preferred if S is a maximal (w.r.t. set inclusion) admissible set of AF .

• complete if each argument, which is acceptable with respect to S , belongs to S .

• semi-stable if S is a complete extension such that S ∪ S+ is maximal w.r.t. set

inclusion.

In addition to argumentation semantics based on admissible sets, there are other

approaches for defining argumentation semantics (Baroni et al. 2011). One of these

approaches is the approach based on conflict-free sets (Verheij 1996). Considering

conflict-free sets, Verheij introduced the so-called stage semantics:

Definition 7

Let AF := 〈AR, attacks〉 be an argumentation framework. E is a stage extension if

E is a conflict-free set and E ∪ E+ is maximal w.r.t. set inclusion.

Let us observe that both semi-stable and stage semantics are based on the so-

called range which is defined as follows: If E is a set of arguments, then E ∪ E+ is

called its range. According to the literature, the notion of range was first introduced

by Verheij (1996).
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2.4 Mappings from argumentation frameworks to normal programs

In this section, two mappings from an AF into a logic program will be presented.

These mappings are based on the ideas of conflictfreeness and reinstatement which

are the basic concepts behind the definitions of conflict-free sets and admissible sets.

In these mappings, the predicate def(x) is used, with the intended meaning of def(x)

being “x is a defeated argument”.

A pair of mapping functions w.r.t. an argument is defined as follows:

Definition 8

Let AF := 〈AR, attacks〉 be an AF and a ∈ AR. We define a pair of mappings

functions:

Π−(a) =
⋃

b:(b,a)∈attacks
{def(a)← not def(b)}

Π+(a) =
⋃

b:(b,a)∈attacks
{def(a)←

∧
c:(c,b)∈attacks

def(c)}.

Let us observe that Π−(a) suggests that an argument a is defeated when anyone

of the arguments which attack a is not defeated. In other words, an argument

that has an attacker that is not defeated has to be defeated; hence, Π−(a) stands

for conflictfreeness. Π+(a) suggests that an argument a is defeated when all the

arguments that defends a are defeated. In other words, any argument that is not

defeated has to be defended; therefore Π+(a) stands for admissibility.

One can see that if a given argument a has no attacks, then Π−(a) = {} and

Π+(a) = {}. This situation happens because an argument that has no attacks is an

acceptable argument which means that it belongs to all extensions sets of an AF .

By considering Π−(a) and Π+(a), two mappings from an AF into a logic program

are introduced.

Definition 9

Let AF := 〈AR, attacks〉 be an argumentation framework. We define their associated

normal programs as follows:

Π−AF :=
⋃
a∈AR
{Π−(a)}

ΠAF := Π−AF ∪
⋃
a∈AR
{Π+(a)}.

Observing Definition 9, it is obvious that Π−AF is a subset of ΠAF . However,

each mapping is capturing different concepts: Π−AF is a declarative specification of

the idea of conflictfreeness and ΠAF is a declarative specification of both ideas:

conflictfreeness and reinstatement. Indeed, one can see that the two-valued logical

models of Π−AF characterize the conflict-free sets of an AF and the two-valued logical

models of ΠAF characterize the admissible sets of an AF .
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3 Semi-stable and Stage extensions as two-valued models

This section introduces the main results of this paper. In particular, we will show

that the following schema SC1 suggests an interpretation of range from the logic

programming point of view:

SC1(P ,M) = Facts(R(P ,M)) ∪ {LP \M}

in which P is a logic program, R is a function which maps a logic program into

another logic program considering a set of atoms M ⊆ LP .

In order to show our results, we will introduce two instantiations of the schema

SC1. These instantiations will lead to the so-called GL-supported models and GL-

stage models. We will show that the GL-supported models of ΠAF characterize the

semi-stable extensions of a given AF (Theorem 1); moreover, the GL-stage models

of Π−AF characterize the stage extensions of a given AF (Theorem 2).

3.1 Semi-stable semantics

We start presenting our results w.r.t. semi-stable semantics. To this end, let us start

defining the concept of a supported model.

Definition 10 (Supported model )

Let P be a logic program and M be a two-valued model of P . M is a supported

model of P if for each a ∈ M, there is a0 ← B+, not B− ∈ P such that a = a0,

B+ ⊆M and B− ∩M = ∅.

As we saw in Definition 6, semi-stable extensions are defined in terms of complete

extensions. It has been shown that the supported models of ΠAF characterize the

complete extensions of a given AF (Osorio et al. 2013). By having in mind this result,

we introduce an instantiation of the schema SC1 in order to define the concept of

GL-supported-model.

Definition 11 (GL-supported-model )

Let AF = 〈AR,Attacks〉 be an AF and M be a supported model of ΠAF . M is a

GL-supported-model of ΠAF if Facts((ΠAF )M) ∪ {LΠAF
\M} is maximal w.r.t. set

inclusion. GLModels(ΠAF ) denotes the GL-supported models of ΠAF .

In other words, a supported model M of ΠAF is a GL-supported-model if for every

supported model N of ΠAF such that N is different of M, SC(ΠAF ,M) �⊂ SC(ΠAF ,N)

where SC(ΠAF , X) = Facts((ΠAF )X) ∪ {LΠAF
\X}.

Let us observe that the function R of the schema SC1 was replaced by the

GL-reduction in the construction of a GL-supported model. One of the main

constructions of the definition of a GL-supported model is Facts((ΠAF )M). This

part of the construction of a GL-supported model is basically characterizing the

set E+ where E is a complete extension. We can see that the GL reduction is quite

important for this construction. As we saw in Definition 1, GL reduction is the core

of the definition of stable models.

We want to point out that the definition of GL-supported models can also be

based on the RED reduction which is the reduction used for defining p-stable
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models (see Definition 3). This similarity between RED and GL reductions argues

that both RED and GL reductions can play an important role for capturing the idea

of range of an AF from a logic programming point of view. As we will see in the

following theorem, GL-supported models characterize semi-stable extensions; hence,

both RED and GL reductions play an important role for capturing semi-stable

extension as two-valued logical models.

In order to simplify the presentation of some results, let us introduce the following

notation. Let EM = {x|def(x) ∈ LΠAF
\M} and E+

M = {x|def(x) ∈ Facts((ΠAF )M)}
where M ⊆ LΠAF

. As we can see, EM and E+
M are basically sets of arguments which

are induced by a set of atoms M.

Theorem 1

Let AF = 〈AR, attacks〉 be an argumentation framework and M ⊆ LΠAF
. M is a

GL-supported model of ΠAF iff EM is a semi-stable extension of AF .

Proof

Let us start introducing the following result from Osorio et al. (2013):

R1: Let AF = 〈AR, attacks〉 be an AF. M is a supported model of ΠAF iff EM is a

complete extension of ΠAF .

The proof goes as follows:

=> Let M be a GL-supported model of ΠAF and M∗ = Facts((ΠAF )M). Then by

definition of a GL-supported model, M∗∪LΠAF
\M is maximal w.r.t. set inclusion.

Moreover, M is a supported model. Therefore, by R1, EM is a complete extension.

Hence, it is not hard to see that EM ∪ E+
M is a range with respect to the complete

extension EM . Since M∗ ∪ LΠAF
\M is maximal w.r.t. set inclusion, EM ∪ E+

M is

also maximal w.r.t. set inclusion. Hence, EM is a semi-stable extension.

<= Let us suppose that E is a semi-stable extension of AF . By definition E ∪E+ is

maximal w.r.t. set inclusion and E is a complete extension. By R1, there exists a

supported model M of ΠAF such that EM = E; moreover, any supported model

N of ΠAF has the property that EN ∪ E+
N is maximal w.r.t. set inclusion. Then

LΠAF
\N∪Facts((ΠAF )N) is maximal w.r.t. set inclusion. Then N is a GL-supported

model of ΠAF .

�

An interesting property of GL-supported models is that they can be characterized

by both the set of p-stable models of ΠAF and the set of two-valued models

of ΠAF .

Proposition 1

Let AF = 〈AR, attacks〉 be an argumentation framework.

(1) M is a GL-supported model of ΠAF iff EM ∪ E+
M is maximal w.r.t. set inclusion

where M is a two-valued model of ΠAF .

(2) M is a GL-supported model of ΠAF iff EM ∪ E+
M is maximal w.r.t. set inclusion

where M is a p-stable model ΠAF .
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Proof

We start introducing the following observations from the state of the art:

(1) Let M ⊆ LΠAF
. M is a two-valued model of ΠAF iff EM is an admissible

extension of AF (Nieves and Osorio 2014).

(2) According to Proposition 4 by Caminada et al. (2012) the following statements

are equivalent:

(a) E is a complete extension such that E ∪ E+ is maximal (w.r.t. set inclusion).

(b) E is an admissible set such that E ∪ E+ is maximal (w.r.t. set inclusion).

(3) Let M ⊆ LΠAF
. M is a p-stable model of ΠAF iff EM is a preferred extension of

AF (Carballido et al. 2009).

Now let us prove each of the points of the proposition

(1) M is a GL-supported model of ΠAF iff Facts((ΠAF )M)∪ {LΠAF
\M} is maximal

w.r.t. set inclusion and M is a supported model. By Theorem 1, EM ∪ E+
M is

maximal w.r.t. set inclusion and M is a supported model iff EM ∪E+
M is maximal

and EM is a complete extension of AF . By Observation 2, EM ∪ E+
M is maximal

and EM is a complete extension of AF iff EM ∪ E+
M is maximal and EM is an

admissible extension of AF . Hence, the result follows by Observation 1 which

argues that any two-valued model of ΠAF characterizes an admissible set of AF .

(2) Let us start by observing that semi-stable extensions can be characterized by

preferred extensions with maximal range which means: E is a semi-stable

extension iff E ∪ E+ is maximal (w.r.t. set inclusion) and E is a preferred

extension (see Proposition 13 from Baroni et al. (2011)). Hence, the result

follows by Observation 3 and Theorem 1.

�

A direct consequence of Proposition 1 and Theorem 1 is the following corollary

which introduces a pair of characterizations of semi-stable extensions as two-valued

models and p-stable models of ΠAF .

Corollary 1

Let AF = 〈AR, attacks〉 be an argumentation framework.

(1) Let M be a p-stable model of ΠAF . EM is a semi-stable extension of AF iff

EM ∪ E+
M is maximal w.r.t. set inclusion.

(2) Let M be a two-valued model of ΠAF . EM is a semi-stable extension of AF iff

EM ∪ E+
M is maximal w.r.t. set inclusion.

Observing Corollary 1, we can see that there is an interval of logic program-

ming semantics which characterizes semi-stable extensions. This interval of logic

programming semantics is defined by the order-relation between logic programming

semantics: stronger than. This result is formalized by the following corollary:
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Corollary 2

Let AF = 〈AR, attacks〉 be an argumentation framework and SEM be a logic

programming semantics such that SEM is stronger than 2SEM and P -stable is

stronger than SEM. If M ∈ SEM(ΠAF ), then EM is a semi-stable extension of AF

iff EM ∪ E+
M is maximal w.r.t. set inclusion.

Given the relation of semi-stable extensions with the stable and preferred exten-

sions, we can observe some relations between GL-supported models w.r.t. the stable

model semantics (Gelfond and Lifschitz 1988) and p-stable semantics.

Proposition 2

Let AF = 〈AR, attacks〉 be an argumentation framework.

(1) If M is a stable model of ΠAF then M is a GL-supported model of ΠAF .

(2) If M is a GL-supported model of ΠAF then M is a p-stable model of ΠAF .

Proof

(1) It follows from Theorem 1 and Theorem 2 by Caminada et al. (2012).

(2) It follows from Theorem 1 and Theorem 3 by Caminada et al. (2012).

�

Proposition 3

Let AF = 〈AR, attacks〉 be an argumentation framework such that Stable(ΠAF ) �= ∅.
Then, Stable(ΠAF ) = GLModels(ΠAF ).

Proof

We know that E is a stable extension of AF iff E = EM where M is a stable model

of ΠAF (Theorem 5 by Carballido et al. (2009)). Hence, the result follows from

Theorems 1 and 5 by Caminada et al. (2012). �

3.2 Stage semantics

We have seen that the idea of range w.r.t. complete extensions can be captured

by instantiating the schema SC1 considering supported-models, the GL-reduction

and ΠAF .

In Section 2.4, the mappings Π−AF and ΠAF were introduced. We have observed

that Π−AF is basically a declarative specification of conflict-free sets. Given that stage

semantics is based on conflict-free sets, we will consider Π−AF for instantiating SC1

and defining the so-called GL-stage models:

Definition 12

Let AF = 〈AR, attacks〉 be an argumentation framework and M be a two-valued

model of Π−AF . M is a GL-stage model of Π−AF if Facts((Π−AF )M) ∪ {LΠ−AF
\M} is

maximal w.r.t. set inclusion.

In other words, a two-valued model M of Π−AF is a GL-stage-model if for

every two-valued model N of Π−AF such that N is different of M, SC ′(Π−AF ,M) �⊂
SC ′(Π−AF ,N) where SC ′(Π−AF , X) = Facts((Π−AF )X) ∪ {LΠ−AF

\X}.
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In this characterization of SC1, once again we are replacing the function R of SC1

by the GL-reduction; however, one can use RED reduction for defining GL-stage

models.

One can observe that GL-stage models characterize stage extensions. In order to

formalize this result, the following notation is introduced: Let E ′M = {x|def(x) ∈
LΠ−AF

\M} and E
′+
M = {x|def(x) ∈ Facts((Π−AF )M)} where M ⊆ LΠ−AF

. Like EM and

E+
M , E ′M and E

′+
M return sets of arguments given a set of atoms M from Π−AF .

Theorem 2

Let AF := 〈AR, attacks〉 be an argumentation framework. M is a GL-stage model

of Π−AF iff E ′M is a stage extension of AF .

Proof

Let us start with one observation

O1: Let AF = 〈AR, attacks〉 be an argumentation framework. E ′M is a conflict-free

set of AF iff M is a two-valued model of Π−AF .

=> Let M be a GL-stage model of Π−AF and M∗ = Facts((Π−AF )M). Then by

definition of a GL-stage model, M∗ ∪LΠ−AF
\M is maximal w.r.t. set inclusion and

M is a two-valued model. Hence, by O1, E ′M is a conflict-free set. One can see that

E ′M ∪E
′+
M is a range with respect to the conflict-free set E ′M . Since M∗ ∪LΠ−AF

\M
is maximal w.r.t. set inclusion, E ′M ∪E

′+
M is also maximal w.r.t. set inclusion. Hence,

EM is a stage extension.

<= Let us suppose that E is a stage extension of AF . By definition E ∪ E+ is

maximal w.r.t. set inclusion and E is a conflict-free set. By O1, there exists a

two-valued model M of Π−AF such that E ′M = E; moreover, any two-valued model

N of Π−AF has the property that E ′N ∪ E
′+
N is maximal w.r.t. set inclusion. Then

LΠ−AF
\ N ∪ Facts((Π−AF )N) is maximal w.r.t. set inclusion. Then N is a GL-stage

model of Π−AF .

�

Let us observe that Facts((Π−AF )M)∪{LΠ−AF
\M}, which is the key construction of

GL-stable models, is basically characterizing ranges w.r.t. conflict-free sets.

Dvorák and Woltran have shown that the decision problems of the credulous

and sceptical inferences are of complexity ΣP
2 -hard and Πp

2-hard, respectively, for

both semi-stable and stage semantics (Dvorák and Woltran 2010). Hence, it is

straightforward to observe that the decision problems of the credulous and sceptical

inferences are of complexity ΣP
2 -hard and Πp

2-hard, respectively, for both GL-

supported models and GL-stage models. Let us remember that GL-supported models

and GL-stage models are defined under the resulting class of programs of the

mappings ΠAF and Π−AF , respectively.

4 Related work

Dung showed that argumentation can be viewed as logic programming with negation

as failure and vice versa. This strong relationship between argumentation and
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logic programming has given way to intensive research in order to explore the

relationship between argumentation and logic programming (Dung 1995; Nieves

et al. 2005, 2008; Carballido et al. 2009; Wu et al. 2009; Nieves et al. 2011;

Caminada et al. 2013; Osorio et al. 2013; Strass 2013). A basic requirement for

exploring the relationship between argumentation and logic programming is to

identify proper mappings which allow us to transform an AF into a logic program

and vice versa. The flexibility of these mappings will frame the understanding of

argumentation as logic programming (and vice versa). Therefore, defining simple

and flexible mappings which regard argumentation as logic programming (and

vice versa) will impact the use of logic programming in argumentation (and vice

versa). Currently, we can find different mappings for regarding argumentation as

logic programming (and vice versa) (Dung 1995; Carballido et al. 2009; Gabbay

and d’Avila Garcez 2009; Caminada et al. 2013). All of them offer different

interpretations of argumentation as logic programming (and vice versa). Depending

on these interpretations, one can identify direct relationships between argumentation

inferences and logic programming inferences.

In this paper, we have limited our attention to the interpretation of argumentation

as logic programming. In this sense, there are some characterizations of semi-stable

inference as logic programming inference (Caminada et al. 2013; Strass 2013).

Caminada et al. (2013), showed that the semi-stable semantics can be characterized

by the L-stable semantics and the mapping PAF which is defined as follows: Given

an AF AF := 〈AR, attacks〉:

PAF =
⋃

x∈AR

⎧⎨
⎩x←

∧
(y,x)∈attacks

not y

⎫⎬
⎭

Unlike GL-supported models which are two-valued models, the models of the

L-stable semantics are three-valued. Moreover, unlike ΠAF which is a declarative

specification of admissible sets, PAF is a declarative specification of conflict-free sets.

Strass (2013) has also showed that the semi-stable semantics can by characterized

by both the so-called L-supported models and L-Stable models. Unlike Caminada’s

characterization and our characterizations, Strass considered the mapping Π−AF . As

we have observed in Section 2.4, the clauses of Π−AF are a subset of ΠAF which

is the mapping that we considered in both Theorem 1 and Corollary 2. It is

worth mentioning that the mapping introduced by Dung (1995) can be transformed

into Π−AF .

We cannot argue that one characterization is better than the other; however, we

can observe that all these characterizations, including the ones introduced in this

paper, offer different interpretations of semi-stable inference. Moreover, given that

semi-stable inference has been characterized in terms of both L-stable semantics and

L-supported modes, it seems that these logic programming semantics are related to

GL-supported semantics.

In the literature, there are different characterizations of argumentation semantics

in terms of logic programming semantics. A summary of these characterization is

presented in Table 1.
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Table 1. Characterization of argumentation semantics as logic programming inferences

Argumentation

semantics

Logic programming

semantics using

PAF

Logic programming

semantics using

ΠAF

Logic programming

semantics using

Π−AF
Grounded

semantics

Well-founded

semantics

(Caminada et al.

2013), the

Kripke–Kleene

model (Strass

2013)

Well-founded

semantics

(Carballido et al.

2009)

Well-founded

semantics (Dung

1995), the

Kripke–Kleene

model (Strass 2013)

Stable semantics Stable model

semantics

(Caminada et al.

2013; Nieves et al.

2005), Supported

models (Strass

2013)

Stable model

semantics

(Carballido et al.

2009)

Stable models

semantics (Dung

1995), Supported

models (Strass

2013)

Preferred

semantics

Regular semantics

(Caminada et al.

2013),

M-supported

models, M-stable

models (Strass

2013)

P-stable Semantics

(Carballido et al.

2009)

M-supported models,

M-stable models

(Strass 2013)

Complete

semantics

3-valued stable

semantics (Wu

et al. 2009; Strass

2013), 3-valued

supported models

(Strass 2013)

Supported Models

(Osorio et al. 2013)

3-valued stable

semantics, 3-valued

supported models

(Strass 2013)

Semi-stable

Semantics

L-Stable (Caminada

et al. 2013; Strass

2013),

L-Supported

models (Strass

2013)

GL-supported models

(Theorem 1)

L-supported models,

L-stable models

(Strass 2013)

Ideal semantics WFS+ (Nieves and

Osorio 2014)

CF2 semantics MM∗ (Nieves et al.

2011)

Stage semantics GL-stage models

(Theorem 2)

Table 1 argues for a strong relationship between argumentation inference and

logic programming inference. Moreover, we can observe that the argumentation

semantics which have been characterized by logic programming semantics have

been studied from different points of view, e.g., Labelings (Baroni et al. 2011). This

evidence argues that any well-defined argumentation semantics must be characterized

by a logic programming semantics. However, further research is required in order to
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identify the necessary conditions which could support a basic definition of a Well-

defined Non-monotonic Inference of any argumentation semantics. These conditions

can be identified in terms of non-monotonic reasoning properties which have been

explored in both fields argumentation and logic programming, e.g., the property of

relevance (Caminada 2006; Nieves et al. 2011).

The exploration of argumentation as logic programming inference is not limited

to the characterization of argumentation semantics in terms logic programming

semantics. Since Dung’s presented his seminal paper (Dung 1995), he showed that

logic programming can support the construction of argumentation-based systems.

Currently there are quite different logic-based argumentation engines which support

the inference of argumentation semantics (Egly et al. 2010; Toni and Sergot 2011;

Charwat et al. 2015). It is well-known that the computational complexity of the

decision problems of argumentation semantics ranges from NP-complete to Π(p)
2 -

complete. In this setting, Answer Set Programming has consolidated as a strong

approach for building argumentation-based systems (Nieves et al. 2005; Egly et al.

2010; Toni and Sergot 2011; Charwat et al. 2015).

5 Conclusions

Currently, most of the well-accepted argumentation semantics have been character-

ized as logic programming inference (Table 1). This evidence argues that whenever

a new semantics appears, it is totally reasonable to search for a characterization of

it as a logic programming inference.

According to Theorem 1, semi-stable semantics can share the same mapping

(i.e. ΠAF ) with grounded, stable, preferred, complete and ideal semantics for being

characterized as logic programming inference. This result argues that all these

argumentation semantics can share the same interpretation of an AF as a logic

program. Certainly, the logic programming semantics which are considered for

characterizing these argumentation semantics share also a common interpretation

of the argumentation inference which is restricted to the class of programs defined

by ΠAF . We have also showed that stage semantics can be also characterized by a

logic programming semantics (Theorem 2). This result argues that stage semantics

has also logic programming foundations. Considering Theorem 1 and Theorem 2,

we can give a positive answer to Q2.

An interesting observation, from the results of this paper, is that the concept

of range which is fundamental for defining semi-stable and stage semantics can be

captured from the logic programming point of view by considering SC1 which can be

based on well-acceptable reductions from logic programming. It is worth mentioning

that reductions as GL and RED suggest some general rules for managing negation

as failure. This evidence suggests that SC1 defines an approach for answering Q1.

We argue that SC1 suggests a generic approach for exploring the concept of

range in two directions: to explore ranges as logic programming models and to

explore new argumentation semantics based on both logic programming models and

ranges.
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