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Abstract

Objective: To investigate genetic and lifestyle factors and their interactions on
plasma homocysteine (Hcy) concentrations in the Boston Puerto Rican population.
Design: Cross-sectional study. Plasma concentrations of Hcy, folate, vitamin B12 and
pyridoxal phosphate were measured, and genetic polymorphisms were determined.
Data on lifestyle factors were collected in interviews.
Setting: A population survey of health and nutritional measures.
Subjects: A total of 994 Puerto Rican men and women residing in the Boston
metropolitan area.
Results: Smoking status was positively associated with plasma Hcy. Genetic poly-
morphisms MTHFR 677C-T, FOLH1 1561C-T, FOLH1 rs647370 and PCFT 928A-
G interacted significantly with smoking for Hcy. MTHFR 1298A-C (P 5 0?040) and
PCFT 928A-G (P 5 0?002) displayed significant interactions with alcohol intake in
determining plasma Hcy. Subjects with PCFT 928GG genotype had significantly
higher plasma Hcy concentrations compared with carriers of the A allele (AA1AG;
P 5 0?030) among non-drinking subjects. When consuming alcohol, GG subjects
had lower plasma Hcy levels compared with AA1AG subjects. Physical activity
interacted significantly with MTR 2756A-G in determining plasma Hcy (P for
interaction 5 0?002). Smoking interacted with physical activity for plasma Hcy (P for
interaction 5 0?023).
Conclusions: Smoking and drinking were associated plasma Hcy concentrations.
Genetic variants involved in folate metabolism further modify the effects of lifestyle
on plasma Hcy.
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Plasma homocysteine (Hcy) is a thiol-containing amino

acid product of methionine metabolism(1). Methionine is

converted to S-adenosylmethionine via methionine adenosyl-

transferase(2). S-Adenosylhomocysteine, a product of this

methyl-transferase reaction, is hydrolysed to Hcy in a rever-

sible reaction via the S-adenosylhomocysteine hydrolases.

Once synthesized, Hcy can be converted back to methionine

in the remethylation pathway via 5-methyltetrahydrofolate

reductase (MTHFR) and methionine synthase (MTR) using

cofactors such as vitamin B12 and folate(3). Hcy can also

be condensed with serine to form cystathionine via vitamin

B6-dependent cystathionine b-synthase in the transsulfuration

pathway; subsequently, cystathionine is converted to cysteine,

a-ketosuccinic acid, taurine and H2S via vitamin

B6-dependent cystathionine g-lyase(4).

Elevated plasma Hcy concentration is generally con-

sidered an independent risk factor for various pathologies

such as CVD, endothelial damage, venous thrombosis,

atherosclerosis, abnormal collagen cross-linking, oxidative

stress, osteoporotic fracture, preterm birth, neural-tube

defects, pregnancy complications and several disorders of

the central nervous system(5–9), but the causes of high

plasma Hcy are not fully understood. The aetiology of

hyperhomocysteinaemia (HHcy) is considered to be

multi-factorial, including dietary and lifestyle and genetic

factors(10). In the USA, two-thirds of cases with HHcy in

an elderly population were associated with inadequate

plasma/serum concentrations of one or more of the vita-

min B group(11). In addition, low intake of n-3 PUFA(12–14),

smoking(15,16), drinking(17,18) and physical activity(19) were
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also related to elevated plasma Hcy. The genetic causes

of HHcy include rare inborn errors of Hcy metabolism,

such as variants affecting cystathionine b-synthase and

MTHFR(20–22). Genetic polymorphisms in folate metabolism

genes have been reported to be associated with elevated

Hcy levels(22,23). Of the genes involved in folate uptake and

retention, that encoding folate hydrolase 1 (FOLH1), which

hydrolyses dietary folate, has received the most attention

with regard to its potential to modulate plasma folate

status(22). Studies reported that the 1561C-T single-

nucleotide polymorphism (SNP) in FOLH1 was associated

with elevated plasma folate concentrations(24–26). Genetic

variation in the proton-coupled folate transporter (PCFI ),

which was recently identified to absorb folate from the

gut(27), may also be associated with plasma folate and Hcy

concentrations. We previously also reported that methionine

adenosyltransferase variants (MAT1A) affect plasma Hcy

levels and CVD(28).

Although numerous studies have investigated the

relationship between lifestyle factors such as smoking,

drinking and physical activity, and genetic variants

involved in folate metabolism and plasma Hcy levels(16),

the results are inconsistent across different populations.

Little is known about the combined effects of lifestyle

factors and genetic polymorphisms on plasma Hcy in the

general population. In the present study, we hypothe-

sized that genetic variants in genes involved in the folate

metabolic pathway modulate the effects of smoking,

drinking and physical activity on plasma Hcy concentra-

tion. The goal of the present study was to examine the

interactions between lifestyle factors and selected genetic

variants in genes of the folate metabolic pathway in

relationship to plasma Hcy in an adult population of

Puerto Ricans.

Methods

Study design and subjects

The current study was conducted in the ongoing Boston

Puerto Rican Health Study (BPRHS) as described pre-

viously(29). Briefly, areas of high Hispanic density in the

Boston metropolitan area were identified from the year

2000 census, and one Puerto Rican adult from each

household with at least one Puerto Rican person between

45 and 75 years of age was randomly selected for parti-

cipation. Nine hundred and ninety-four participants with

complete phenotypes and genotype data were included

in the present study. Interviews were conducted in the

home. In addition to health-related and anthropometric

data, detailed dietary intake data were collected using

a questionnaire previously adapted from the National

Cancer Institute/Block food frequency form and validated

for this population(30). Fasting blood samples were col-

lected the morning following the health interviews in the

volunteer’s home. Approval for the BPRHS was obtained

from the Institutional Review Board of the Tufts Medical

Center and Tufts University Health Sciences.

Genetic analysis

DNA was isolated from blood samples using QIAamp

DNA Blood Mini kits according to the manufacturer’s

instructions (Qiagen, Valencia, CA, USA). Seven SNP of

four methionine metabolism genes – MTHFR 1298A-C

(rs1801131), MTHFR 677C-T (rs1801133), FOLH1

1561C-T (rs202712), FOLH1 (rs647370), MAT1A 3U150

(rs7087728), MAT1A_i15752 (rs4933327) and PCFT

928A-G (rs2239907) – chosen for genotyping are listed

in Supplemental Table 1. These variants were genotyped

using the TaqMan SNP genotyping system (Applied Bio-

systems, Foster City, CA, USA)(28). Based on our internal

quality control and that estimated independently by

external laboratories, the genotyping error rate was ,1 %.

Measurement of anthropometric and plasma

biochemical parameters

Anthropometric data including height and weight were

measured in duplicate consistent with the technique

used by the National Health and Nutrition Examination

Survey(31). BMI was calculated as weight in kilograms

divided by the square of height in metres. Physical

activity was estimated as physical activity score using the

Paffenbarger questionnaire of the Harvard Alumni Activity

Survey(32). The physical activity score is constructed by

weighting time spent in various activities by factors that

parallel increasing oxygen consumption rates associated

with physical activity intensity(33). Fasting blood samples

were collected by venepuncture from all participants.

Total plasma Hcy was measured using HPLC with fluor-

escence detection as previously described(34). Plasma

pyridoxal phosphate (PLP) was determined using the

radio-enzymatic method of Camp et al.(35). Plasma folate

and vitamin B12 were measured using Immulite chemi-

luminescent kits according to the manufacturer’s instruc-

tions (Diagnostic Products Corporation/Siemens, Los

Angeles, CA, USA).

Dietary assessment

Dietary intake was assessed using an FFQ that was

designed for and validated in this population(30). Dietary

data were linked to the Minnesota Nutrient Data System

1999, version 25 (University of Minnesota Nutrition Coor-

dinating Center, Minneapolis, MN, USA) for nutrient ana-

lysis. Intakes of fatty acids were expressed as percentages

of total energy intake.

Statistical analyses

The data analyses were performed using the SAS for

Windows statistical software package version 9?1 (SAS

Institute, Cary, NC, USA). All continuous variables were

examined for normal distribution. Men and women were

analysed together to ensure adequate statistical power.
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The x2 test was used to examine whether the genotype

frequencies of the selected SNP were in Hardy–Weinberg

equilibrium. Correlations between smoking status, plasma

parameters and anthropometric measures were per-

formed using ANOVA. Interactions between lifestyle

factors and genotypes were tested in a general linear

model while adjusting for potential confounders (age,

sex, BMI, population admixture, drinking, energy intake,

plasma folate, plasma vitamin B12 and plasma PLP,

MTHFR 1298A-C, MTHFR 677C-T). The main effect of

lifestyles as categorical or binary variables and genotypes

as categorical variables were included in the model. All

data are expressed as mean and standard deviation.

Differences between groups were considered to be sta-

tistically significant at P # 0?05.

Population admixture

For BPRHS participants, population admixture was esti-

mated using principal component analysis(36,37). We esti-

mated population admixture based on a panel of 100 SNP

as informative ancestral markers that were genotyped in

this population(37). All analyses were adjusted for the

estimated population admixture using the first major

principal component with linear regression models(37).

Results

Demographic, anthropometric and biochemical

data in Boston Puerto Rican population

All seven SNP, where minor allele frequencies ranged

from 0?05 to 0?42, were in Hardy–Weinberg equilibrium

(x2 test; Supplemental Table 1). Plasma Hcy, plasma

folate and BMI differed significantly between men and

women (P , 0?01; Table 1). Plasma Hcy concentration for

all subjects ranged from 3?9 to 30?4 mmol/l. Men had

higher Hcy levels than women (P , 0?001; Table 1). In

addition, plasma Hcy was positively correlated with age

(P , 0?001).

Associations between lifestyle and plasma

homocysteine

Plasma Hcy (P 5 0?001), folate (P 5 0?011) and vitamin B12

(P 5 0?012) were significantly associated with smoking

status. Current smokers had higher plasma Hcy (9?64 (SD

4?18) mmol/l), but lower plasma folate and PLP compared

with non-smokers (Table 2). We did not observe significant

associations between drinking status and plasma Hcy,

folate, PLP and vitamin B12 when drinking status was

compared across three groups (current drinkers, former

drinkers and non-drinkers) or when current drinkers were

compared with non-drinkers and former drinkers com-

bined (Table 2). Physical activity was positively associated

with plasma PLP (P 5 0?001) and vitamin B12 (P 5 0?041),

but not with plasma Hcy (P 5 0?068; Table 2).

Interactions between smoking status and genetic

variants on plasma homocysteine

Four polymorphisms (MTHFR 677C-T, FOLH1 1561C-T,

FOLH1 rs647370, PCFT 928A-G) interacted significantly

with smoking in determining plasma Hcy while adjusted

for age, sex, drinking, BMI, plasma folate, PLP and vita-

min B12, dietary energy and population admixture

(P 5 0?002 to 0?038; Table 3). In subjects with the geno-

type FOLH1 1561TT, plasma Hcy concentrations were

significantly different among the three smoking statuses

(P for trend 5 0?011); subjects who were smokers had the

highest plasma Hcy, while subjects who never smoked

had the lowest plasma Hcy. However, in subjects with

FOLH1 1561CT genotype, there was no significant dif-

ference in plasma Hcy levels among the three smoking

statuses (P for trend 5 0?631). For PCFT 928A-G, in GG

subjects smoking significantly affected the plasma Hcy

Table 1 Demographic, anthropometric and biochemical characteristics of participants by sex among men and women
in the Boston Puerto Rican Health Study

Men (n 292) Women (n 702)

Characteristic Mean or n SD or % Mean or n SD or %

Age (years) 57?6 7?6 57?8 7?2
BMI (kg/m2) 29?7 5?1 33?0* 6?9
Current smoker, n (%) 80 31?1 126* 19?8
Current drinker, n (%) 132 51?3 219* 34?4
Physical activity (score) 32?6 5?7 31?1 3?9
Alcohol (g/d) 9?2 30?4 1?5* 6?5
Energy intake (kJ/d) 11 277 5528 9099 4666
Energy intake (kcal/d) 2695?8 1321?3 2174?6* 1115?2
Total fat (% of energy) 31?9 5?4 30?8* 5?2
Plasma folate (ng/ml) 17?7 8?7 20?1* 9?4
Plasma vitamin B12 (pg/ml) 526?5 276?1 549?6 284?3
Plasma PLP (nmol/l) 61?4 20?3 59?2 23?3
Plasma Hcy (mmol/l) 10?7 6?2 8?8* 4?2

PLP, pyridoxal phosphate; Hcy, homocysteine.
Data are presented as mean and SD or n and %.
*Significantly different from men (P , 0?01).
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level (P for trend 5 0?050), while we did not find any

significant effect in subjects with PCFT 928AG or AA

(P for trend 5 0?795; Table 3).

Interactions between drinking status and PCFT

928A-G on plasma homocysteine

PCFT 928A-G displayed significant interactions with

drinking status for plasma Hcy (P 5 0?002) after adjusting

for age, sex, smoking, population admixture, dietary

energy, dietary total fat, plasma folate, plasma vitamin B12

and plasma PLP. Further analysis showed that GG homo-

zygotes had significantly higher plasma Hcy concentrations

compared with homozygous (AA) and heterozygous (AG)

subjects combined (P 5 0?030) among non-drinkers.

Among current drinkers, GG homozygotes had lower

plasma Hcy concentrations when compared with homo-

zygous (AA) and heterozygous (AG) subjects (Fig. 1).

Influence on plasma homocysteine of the

interaction between physical activity and

the MTR 2756A-G/smoking association

MTR 2756A-G significantly interacted with physical

activity in influencing plasma Hcy level (P 5 0?002).

When the physical activity score was low (,40), there

was no significant difference between MTR 2756AA and

minor allele (AG1GG) carriers. Interestingly, minor allele

carriers had significantly higher plasma Hcy than homo-

zygous (AA) subjects (P 5 0?034) when the physical

activity score was $40 (Fig. 2). Smoking interacted sig-

nificantly with physical activity to influence plasma Hcy

level (P 5 0?023; Fig. 3). When the physical activity score

was low (,40), there was no significant difference

between Hcy concentrations in smokers and non-

smokers. However, when physical activity score was high

($40), we observed that minor allele carriers (AG1GG)

Table 2 Association between lifestyle and plasma vitamins and metabolites among men and women in the Boston Puerto Rican Health
Study

Plasma Hcy
(mmol/l)

Plasma folate
(ng/ml)

Plasma vitamin B12

(pg/ml)
Plasma PLP

(nmol/l)

Lifestyle factor Mean SD Mean SD Mean SD Mean SD

Smoking status Non-smoker- (n 753) 9?0 3?5 20?0 7?0 552?1 281?3 63?16 24?34
Current smoker (n 241) 9?6 4?2 17?4 9?0 512?3 241?1 49?66 26?76
P-

-

0?001 0?011 0?012 0?068
Drinking status Non-drinkery (n 527) 9?1 3?6 19?5 9?4 535?4 249?0 56?9 26?2

Current drinker (n 349) 9?4 4?3 19?0 8?8 554?8 302?7 64?1 29?4
P|| 0?454 0?693 0?330 0?091

Physical activity PA score #30 (n 392) 9?5 3?7 18?8 9?7 520?8 273?7 52?4 19?2
PA score .30 (n 498) 9?0 3?9 19?7 8?8 559?9 287?5 65?6 20?6
Pz 0?068 0?119 0?041 0?001

Hcy, homocysteine; PLP, pyridoxal phosphate; PA, physical activity.
-Current smokers compared with former and never smokers combined.
-

-

Adjusted for age, sex, BMI, population admixture, drinking, energy intake, plasma folate, plasma vitamin B12 and plasma PLP, MTHFR 1298A-C and
MTHFR 677C-T.
yCurrent drinkers compared with former and never drinkers combined.
||Adjusted for age, sex, BMI, population admixture, smoking, dietary energy, plasma folate, plasma vitamin B12 and plasma PLP, MTHFR 1298A-C and
MTHFR 677C-T.
zAdjusted for age, sex, BMI, population admixture, smoking, drinking, dietary energy, plasma folate, plasma vitamin B12 and plasma PLP, MTHFR 1298A-C
and MTHFR 677C-T.

Table 3 Effect of the interaction between folate metabolic gene polymorphisms and smoking status on plasma homocysteine (Hcy) among
men and women in the Boston Puerto Rican Health Study

Plasma Hcy (mmol/l)

Non-smoker (n 451) Past smoker (n 302) Current smoker (n 241)
P for

Single-nucleotide polymorphism Mean SD Mean SD Mean SD P for trend- interaction

MTHFR 677C-T CC 8?7 3?7 9?2 3?7 9?6 4?5 0?425 0?002
CT1TT 8?9 3?7 9?5 3?7 9?8 3?9 0?192

MTHFR 1298A-C AA 8?7 4?0 9?5 3?7 9?6 4?3 0?235 0?332
AC1CC 9?1 3?7 9?3 3?7 9?7 3?9 0?546

FOLH1 1561C-T CT 9?4 4?6 9?2 4?0 9?5 3?9 0?631 0?038
TT 8?3 2?9 9?5 3?7 10?0 4?7 0?011

FOLH1 (rs647370) GG 8?7 3?3 9?4 3?6 9?5 3?7 0?422 0?024
AG1AA 9?1 4?4 9?3 3?9 10?0 4?6 0?304

PCFT 928A-G GG 8?7 3?6 9?4 3?3 9?9 4?5 0?050 0?029
AG1AA 9?0 4?0 9?3 3?8 9?5 4?0 0?795

MTHFR, 5-methyltetrahydrofolate reductase; FOLH1, folate hydrolase 1; PCFT, proton-coupled folate transporter.
-Adjusted for age, sex, BMI, population admixture, drinking, dietary energy, plasma folate, plasma vitamin B12 and plasma pyridoxal phosphate, MTHFR
1298A-C and MTHFR 677C-T. After adjusting for n-3 PUFA in the model, the results remained the same.
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had significantly higher plasma Hcy than major allele

homozygotes (AA; P 5 0?012).

Discussion

In the present study conducted in the BPRHS, we

demonstrated that lifestyle factors such as smoking were

associated with elevated plasma Hcy concentration but that

drinking and physical activity were not directly associated

with plasma Hcy. Moreover, we observed that smoking,

drinking and physical activity each interacted with genetic

polymorphisms in genes involved in the methionine

metabolic pathway in determining plasma Hcy levels.

Elevated plasma Hcy plays an important role in the

pathology of CVD(3). HHcy is a complex, multi-factorial

condition and its environmental and genetic contributors

continue to be identified and refined. However, these

factors often have been evaluated mainly independently

of one another. In the present study, we examined pre-

viously unreported interactions between lifestyle and

genetic variants in modulating plasma Hcy levels.

Plasma Hcy concentrations were significantly higher in

men than in women, which is consistent with previous

studies(16,38). This sex difference can be explained in part

by folate intake, as the plasma folate concentrations in

women were significantly higher than in men in this

population. Other factors such as sex hormones may also

contribute to gender-related differences in Hcy. Further-

more, plasma Hcy is higher in postmenopausal women

compared with premenopausal women and is reduced in

response to oestrogen replacement therapy(34,35). All of

these factors may contribute to the higher plasma Hcy

concentrations observed in men compared to women.
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In accordance with other studies in large popula-

tions(14,36) and a randomized control trial(39), we also

observed that cigarette smoking was positively associated

with plasma Hcy concentrations, while smoking was

negatively associated with plasma folate and PLP. The

mechanism for this relationship is not fully understood,

but one possibility is smoking might reduce the avail-

ability of folate for the remethylation of Hcy to methio-

nine(40). Additional proposed mechanisms are smoking,

which induces local effects in cells exposed to cigarette

smoke, may influence the Hcy concentration by changing

plasma thiol redox status, or could inhibit enzymes

involved in the metabolism of Hcy(40).

In the present study, we observed the same interaction

between smoking status and MTHFR 677C-T as reported

previously(14). In addition, we identified previously

unreported interactions between smoking and genetic

polymorphisms (FOLH1 1561C-T, FOLH1 rs647370,

PCFT 928A-G) for plasma Hcy. The suboptimal plasma

folate status among smokers observed in our study might

explain this interaction, because plasma folate has been

shown to interact with MTHFR 677C-T(15). Another

study which reported that smoking interacted with dietary

folate further supports this relationship(41).

Moderate alcohol consumption in social drinkers

increased plasma Hcy levels(18). MTHFR 677T, MTRR 66A,

GCPII 1561T and alcohol intake were also associated with

higher plasma Hcy among South Indians(16). However, we

did not confirm these results in the present study. One

possible explanation for this discrepancy is genetic variants

involved in folate metabolism may modify the effect of

drinking on plasma Hcy and folate levels. Therefore, to

evaluate our hypothesis, we examined the interactions of

drinking and critical genes involved in folate metabolism on

plasma Hcy. Interestingly, we observed that PCFT 928A-G

interacts significantly with drinking status for plasma Hcy,

which suggests that the effect of drinking on plasma Hcy

depended on PCFT genotype, and may account for the

inconsistencies with previous studies. Studies also suggested

that higher plasma Hcy concentrations in consumers of

large quantities of alcohol may be related to trapping of

5-methyltetrahydrofolate by alcohol and impaired remethy-

lation associated with genetic polymorphisms(17) or to

ethanol-induced B vitamin depletion(40) and interference of

alcohol with intestinal absorption of folate(42). Therefore,

these results suggest that the effect of drinking on plasma Hcy

depends on folate metabolism-related gene polymorphisms.

Despite the inconsistent results of effects of physical

activity on plasma Hcy levels, several studies have

reported beneficial effects on Hcy in response to exercise.

Plasma Hcy level is inversely related to level of physical

activity, especially in older subjects(38). In contrast, other

studies reported that physical exercise does not reduce

plasma Hcy levels or may even be associated with higher

concentrations(43). In the present study we also observed

that physical activity was not associated with plasma Hcy.

Therefore, questions about the nature of the relationship

between Hcy and physical activity remain unanswered(43).

However, these inconsistencies reported in previous

studies can be explained by our present results which

identified a previously unreported interaction between

MTR 2756A-G and physical activity on Hcy. This result

suggests that not all subjects in a population have the

same response to physical activity, as the effect of phy-

sical activity on plasma Hcy depends on MTR genotype.

Additionally, it has been shown that the thermolabile

variant of MTHFR 677C-T (rs1801133, a regulating

enzyme in Hcy metabolism) modified the relationship

between several lifestyle factors and Hcy(44). Thus, the

effect of the changes in lifestyle-related factors on

Hcy may depend on MTHFR C677T genotype(45). Better

understanding of the complex relationships between life-

style and Hcy will require additional studies focusing on the

interaction between physical activity and genetic poly-

morphisms involved in folate metabolic pathways. The

biological mechanism through which physical activity

lowers plasma Hcy levels remains to be determined.

In summary, the present study reinforces earlier evi-

dence demonstrating that lifestyle factors are important

modifiers of plasma Hcy concentration. In addition, our

work extends this knowledge to demonstrate that genetic

polymorphisms in genes whose proteins function in the

methionine metabolic pathway further modulate the

effects of lifestyle factors which influence plasma Hcy. It

is essential to determine whether changes in these life-

style factors reinforce effects in the context of interaction

with genetic variation on Hcy metabolism and to clarify

the potential mechanism(s) by which this can take place.
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