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In order to understand the flow profiles of complex fluids, a crucial issue concerns
the emergence of spatial correlations among plastic rearrangements exhibiting
cooperativity flow behaviour at the macroscopic level. In this paper, the rate of
plastic events in a Poiseuille flow is experimentally measured on a confined foam in
a Hele-Shaw geometry. The correlation with independently measured velocity profiles
is quantified by looking at the relationship between the localisation length of the
velocity profiles and the localisation length of the spatial distribution of plastic events.
To complement the cooperativity mechanisms studied in foam with those of other
soft glassy systems, we compare the experiments with simulations of dense emulsions
based on the lattice Boltzmann method, which are performed both with and without
wall friction. Finally, unprecedented results on the distribution of the orientation of
plastic events show that there is a non-trivial correlation with the underlying local
shear strain. These features, not previously reported for a confined foam, lend further
support to the idea that cooperativity mechanisms, originally invoked for concentrated
emulsions (Goyon et al., Nature, vol. 454, 2008, pp. 84—87), have parallels in the
behaviour of other soft glassy materials.
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1. Introduction

Foams and emulsions are dispersions of a fluid phase in a liquid phase, stabilised
by surfactants. The dispersed phase is constituted of gas bubbles in foams and liquid
droplets in emulsions. These discrete objects are packed together and jammed, which
makes foams and emulsions complex fluids: they exhibit a yield stress oy below which
they do not flow, but deform elastically. Above yield stress, they flow like rheothinning
fluids. Rheometric measurements in a Couette cell or in cone—plate geometry have
shown that the shear stress o and the shear rate y obey an empirical Herschel-Bulkley
law: o0 = oy +Ay", with A the plastic viscosity and n an exponent generally lower than
one, and often close to 0.5 (Princen & Kiss 1989; Marze, Langevin & Saint-Jalmes
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2008; Denkov et al. 2009), with some dependence on the surfactants used (Denkov
et al. 2009).

The aforementioned measurements did not give access to the microstructure
under flow, and other techniques have been developed to visualise it. In emulsions,
confocal microscopy on systems of matched optical index has recently enabled the
measurement of the local structure (Jorjadze, Pontani & Bruji¢ 2013) and the velocity
field (Goyon et al. 2008; Goyon, Colin & Bocquet 2010; Mansard, Bocquet & Colin
2014). The latter could also be measured using magnetic resonance imaging (Ovarlez
et al. 2008). In foams, index matching is not possible and the route has been to
devise bidimensional (2D) experiments on either bubble rafts at the surface of a pool
of soap solution, with or without a confining top plate (Lauridsen, Chanan & Dennin
2004; Dollet et al. 2005; Wang, Krishan & Dennin 2006; Katgert, Mobius & Van
Hecke 2008; Katgert er al. 2010), or on bubble monolayers confined between two
plates in a Hele-Shaw cell (Debrégeas, Tabuteau & di Meglio 2001).

Among many interesting features such as shear banding (see e.g. Schall & van
Hecke 2010 for a review), these studies have called the Herschel-Bulkley law found
in rtheometry into question. Among possible flow configurations, the Poiseuille flow
in a straight channel is particularly interesting, since this geometry enforces a linear
variation across the channel of the shear stress, which vanishes at the centre and
reaches its maximum at the sidewalls. Together with an evaluation of the shear rate
from the measured velocity profile, it gives access to the relation o(y) at the local
scale. In particular, Goyon et al. (2008, 2010) have measured this relation in a series
of experiments on emulsions, and they have shown that it does not collapse onto a
single Herschel-Bulkley law. This deviation from a single flow curve was ascribed to
wall effects, more precisely to a non-local influence of plastic events occurring in the
vicinity of the boundaries. The velocity profiles were well fitted by a fluidity model
(Goyon et al. 2008, 2010). This model, based on a kinetic theory approach (Bocquet,
Colin & Ajdari 2009), predicts that the fluidity, defined as f =y /o, is proportional to
the rate of plastic events and follows a non-local diffusion equation when it deviates
from its bulk value. The range of influence £ appearing in this equation, called the
spatial cooperativity, was shown to be of the order of a few times (typically, five)
the size of the elementary microstructural constituent (the drop radius in the case
of emulsions) (Goyon et al. 2008, 2010; Geraud, Bocquet & Barentin 2013). This
picture was later applied to other soft materials, such as Carbopol gels (Geraud et al.
2013), granular media (Amon et al. 2012; Kamrin & Koval 2012) and foams in a 2D
cylindrical Couette geometry (Katgert et al. 2010). The fluidity model agrees with
existing experiments, and provides a convenient framework to rationalise the flow
of complex fluids. However, at least two points remain unclear and deserve further
investigation. The first is the boundary condition at solid walls for fluidity. As a
matter of fact, most experimentalists have set it as a free fitting parameter, which
certainly improves the agreement between the measurements and the predictions from
the fluidity model, but does not provide any insight into the role of the walls. Only
recently, Mansard et al. (2014) explored the role of surface boundary conditions for
the flow of a dense emulsion. They showed that both slippage and wall fluidisation
depend non-monotonically on the roughness, a behaviour that has been interpreted
with a simple model invoking the building of a stratified layer and the activation
of plastic events by the surface roughness. These results are interesting and call for
further verification in terms of numerical simulations (Sbragaglia et al. 2012; Benzi
et al. 2013) and other complex fluids (Katgert er al. 2010). Second, the fluidity
parameter f has not yet been convincingly related to an independent measure of
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the local density of plastic events. In experiments, only indirect indications of such
a relation have been proposed, based on the correlations of the fluctuations of the
shear rate (Jop et al. 2012). Using numerical simulations based on the bubble model
(Durian 1997), Mansard et al. (2013) were able to measure the fluidity and the
density of plastic events independently, but they showed that the two quantities are
not proportional; more precisely, the rearrangement rate was found to be a sublinear
power (with an exponent 0.4) of the fluidity.

Actually, fluidity models offer a potential explanation for the deviation from a
unique relation between the stress and the strain rate, but they are not the only ones.
Another approach has been to develop elasto-viscoplastic models (see e.g. Cheddadi,
Saramito & Graner 2012 for a review of them) which, in essence, supplement the
viscoplastic Herschel-Bulkley rheology with a description of elasticity. These models
are local, but since they treat elastic deformation as an independent variable, they also
predict deviations from a single Herschel-Bulkley relation. They have been compared
with experiments in Couette flows (Cheddadi er al. 2012), but not for Poiseuille
flows.

All these theoretical approaches rely crucially on the modelling of plastic events,
and how they affect the elastic stress and the flow. However, although this connection
between elasticity, plasticity and flow has been studied in foam flows in complex
geometries (Dollet & Graner 2007; Dollet 2010; Cheddadi et al. 2011), there is
no existing experimental measurement of the rate of plastic events in a Poiseuille
flow. Two-dimensional foams are particularly well suited for such a study, because
elementary plastic events (so-called T1 events) are well characterised by the neighbour
swapping of four bubbles (figures 2 and 3) and are accessible by image analysis, more
easily than in other soft glassy materials.

In this paper, we provide experimental measurements of the rate of plastic events in
a Poiseuille flow, on a confined foam in a Hele-Shaw geometry. Such a measurement
has already been made in Couette flows (Kabla & Debrégeas 2003; Wang et al.
2006), but never in a Poiseuille configuration, to the best of our knowledge. We show
that it is closely related to the independently measured velocity profiles, and that
there is still a non-vanishing plastic activity towards the centre of the channel. The
study of the spatial distribution in the number of plastic events and the simultaneous
analysis of the velocity profiles allows us to bridge the gap between the details of the
irreversible plastic rearrangements and the corresponding cooperativity flow behaviour
at the macroscopic level (Goyon et al. 2008, 2010; Geraud et al. 2013). We choose
to explore this connection by looking at the relationship between the localisation
length of the velocity profiles and the localisation length of the number of plastic
events. To complement the cooperativity mechanisms studied in foam with those of
‘other’ soft glassy systems, we compare the experiments with simulations of emulsion
droplets based on the lattice Boltzmann method (LBM) (Sbragaglia et al. 2012).
The numerical model falls within the class of ‘mesoscopic’ models, which have been
vigorously pursued in the literature to study the behaviour of soft glassy flows (Sollich
et al. 1997; Hébraud & Lequeux 1998; Sollich 1998; Bocquet et al. 2009; Mansard
et al. 2013; Nicolas & Barrat 2013). Its elementary mesoscopic rules, at the level of
the lattice units, are designed to reproduce the continuum behaviour of soft glassy
materials, in the very same way that the Boltzmann equation in statistical physics,
once properly averaged, yields the Navier—Stokes equations. The numerical model we
use possesses two advantages that are rarely present together. From one side, it gives
a realistic structure of the emulsion droplets, like, for example, the surface evolver
method (Reinelt & Kraynik 2000; Kern et al. 2004; Cox & Janiaud 2008); at the
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FIGURE 1. (Colour online) (a) Sketch of the side view of the set-up. (b) Snapshot of
an experiment. The distance between the two sidewalls is H = 106.6 mm. The average
bubble size is 12.3 mm? and the liquid fraction is ¢, =4.8 %. The two spots at the left
and right of the image are the points between which the pressure drop is measured.

same time, due to the built-in properties, the model gives direct access to equilibrium
and out-of-equilibrium stresses (Sbragaglia et al. 2012), including elastic and viscous
contributions. In contrast to other mesoscopic models, such as Durian’s bubble model
(Durian 1997), our model naturally incorporates the dissipative mechanisms and the
interfacial stresses. Numerical simulations are particularly helpful to go beyond some
of the limitations of the experiments: because of wall friction, indeed, there is no
simple relation between the shear stress and the shear rate, whereas the numerical
simulations can be performed both with and without wall friction. In this paper,
wall friction will always refer to the friction of the flowing foam on the confining
top and bottom plates (see figure 1), and not on the sidewalls, unless explicitly
stated. Numerical simulations also offer the possibility to test the robustness of some
of the experimental findings versus a change in the viscous ratio x between the
dispersed phase and the continuous phase, this being set to x =1 in all the numerical
simulations, whereas x ~ 102 in foams; in that sense, the simulations look closer to
emulsions.

The paper is organised as follows. In §2, we describe the experimental set-up
along with the tools of image analysis for characterisation of the plastic events. In
§ 3, and supplementary material presented in appendices A and B, we review our
computational model based on the LBM. The review of the computational model will
be accompanied by further benchmark tests on the capability of the model to include
crucial properties such as disjoining pressure and wall friction. Results and discussion
will be the subject of §4. The experimentally measured velocity profiles (§4.1) will
be compared with local linear and nonlinear models (§4.2 and appendix C). Results
of numerical simulations and comparisons with the fluidity model (Goyon et al.
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2008; Bocquet et al. 2009) will be the subject of §4.3. In §4.4, we compare the
localisations of the velocity profiles and of the rate of plastic events. In § 4.5, we will
finally report details on the orientation of the plastic rearrangements in the flowing
material. Conclusions will follow in §5.

2. Experimental methods
2.1. Set-up

We have adapted the set-up described in Dollet (2010). The foam flows in a Hele-
Shaw cell, made of two horizontal glass plates of length 170 cm and width 32 cm,
separated by a gap & =2 mm thin enough that the foam is confined as a bubble
monolayer (figure la). Two plastic plates of thickness 2 mm are inserted inside the
Hele-Shaw cell, so that the width H of the channel is reduced to 10.66 cm (figure 1b).
These plates have a negligible roughness compared with the bubble size. The channel
is connected upstream to a vertical chamber (figure la) in which a soap solution
is fed at a prescribed flow rate Q; thanks to a syringe pump (PHD2000, Harvard
Apparatus). Nitrogen is continuously blown through injectors at the bottom of this
chamber, producing rather monodisperse bubbles (figure 1b). The flow rate in each
injector is independently controlled with an electronic flow-rate controller (Brooks).
We identify the liquid fraction ¢, as the ratio of the liquid flow rate to the total flow
rate: ¢, = Q,;/(Q, + Q)), with Q, the gas flow rate. The resulting foam accumulates on
top of the chamber, then flows through the channel. The transit time through the whole
channel is less than 10 min in all experiments; we do not observe significant change
of bubble size during this time, hence coarsening is negligible. The soap solution is
a mixture of sodium lauryl dioxyethylene sulphate (SLES), cocamidopropyl betaine
(CAPB) and myristic acid (MAc), following the protocol described in Golemanov
et al. (2008). We prepare a concentrated solution of 6.6 wt% of SLES and 3.4 % of
CAPB in ultrapure water, we dissolve 0.4 wt% of MAc by continuously stirring and
heating at 60 °C for about 1 h, and we dilute 20 times in ultrapure water. The solution
has a surface tension of I'=22.4 mN m~!. The contraction region is lit by a circular
neon tube, giving isotropic and nearly homogeneous illumination over a diameter of
approximately 20 cm. Movies of the foam flow are recorded with a CCD camera at a
frame rate of 8 f.p.s., with an exposure time of 8 ms. The movies are constituted of
1000 images of 1312 pixel x 672 pixel. The pressure drop is measured across the
observation zone by a water—water differential manometer connected to two points
of the channel (figure 1b) through tubes full of water. We performed five different
experiments, for which a summary of the parameters is provided in table 1.

2.2. Image analysis

To extract the relevant rheological information from the movies, we follow a
home-made procedure very similar to that presented in Dollet & Graner (2007)
and Dollet (2010); we refer to these papers for full details. The velocity field is
obtained after averaging of all the displacements of all individual bubbles between
consecutive frames (approximately 3 x 10° in total). Averaging is performed along 53
lanes aligned with the flow direction. The T1s are tracked as described in Dollet &
Graner (2007). For the four bubbles concerned by a T1, we denote r; (r,) the vector
linking the centres of the two bubbles that lose (come into) contact, ¢, and 6 the
angles of these vectors with respect to the flow direction, which we can restrict to
the interval [—7/2, /2] because the orientations of r,; and r, are irrelevant (figures 2
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(b)

Flow direction

FIGURE 2. (Colour online) (a) A snapshot of the bubbles in the foam flowing from left to
right. (b) Sketch of a plastic event. By following the displacements of the bubbles between
subsequent images, we are able to determine the features of a Tl rearrangement. In grey
(black) we report the bubble edges just before (after) the T1. With the solid (dashed)
line, we report the link between the centres of the two bubbles that lose (come into)
contact during the T1. From the analysis of the links, we are able to determine the angles
associated with the links that disappear (d) or appear (a) in the Tl rearrangement.

FIGURE 3. (Colour online) (a) A snapshot of the droplets (identified by their
corresponding Voronoi cells) in a concentrated emulsion, flowing from left to right,
obtained in numerical simulations based on the lattice Boltzmann model. (b) Sketch of a
T1 plastic event from the simulations. To systematically analyse plastic events, we perform
a Voronoi tessellation from the centres of mass of the droplets. Following the Voronoi
tessellation in time, we are able to identify T1 events and associated disappearing (red
solid line) and appearing (blue dashed line) links. In grey (black) we indicate the Voronoi
cells soon before (after) a T1 event. The numerical results will be compared with the
experimental results (see also figure 2).

and 3), and x; (x,) the position of the midpoint of the centres of the two bubbles that
lose (come into) contact. In our program, the detection of appearing and disappearing
contacts is first run independently. As a second step, to identify a T1 and minimise
artefacts, we decide that a pair of an appearing and a disappearing contact constitutes
a single T1 if (i) they are in the same image or if the appearing contact occurs in
the image next to the disappearing one; the latter condition is necessary, because it
happens that transient fourfold vertices are erroneously recognised as artificial small
bubbles; (ii) the positions x; and x, are closer than a critical distance (which we
choose to be of the order of the bubble size, to separate from Tls occurring in the
neighbourhood); (iii) [0, — 0/| is larger than a critical angle (we choose 7/4), this
condition being necessary because of the appearance of the aforementioned spurious
bubbles. By visual inspection on 30 images, we estimate that this procedure leads to
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an uncertainty of no more than 5% on the number Ny, of Tls. We then define the
quantity (x; + x,)/2 as the position of a T1, and we ascribe this information to the
box where this position belongs. We thus compute the scalar field of the frequency
of T1s per unit time and area:

Nry

RTI = s
2Abox[m0uie

(2.1)

where A, is the area of a box and ¢,,,;. is the duration of a movie. Our T1 detection
has two major advantages: (i) it is directly based on the topological rearrangements,
in contrast to indirect characterisations based on velocity correlations; (ii) it yields an
unprecedented statistics, up to 2.5 x 10* individual T1s, which enables us to average
over the same lanes as for the velocity and to perform quantitative analysis.

We now address the measurement of stress. Batchelor (1970) has derived the
general expression for the stress in a suspension of force-free particles, including
the effect of surface tension. This was first applied to the calculation of the elastic
stress in foams and emulsions by Khan & Armstrong (1986), and it yields the
same prediction of the elastic shear modulus as Princen (1983), which has been
experimentally validated (Princen & Kiss 1986) and used ever since. Considering a
representative volume element V of foam, the stress is written as

1 r
a:—kaPk1—¢(p1+“/ }'/dV—i—/(l—n@n)dS, (2.2)
% p Vv, Vs

where the index k labels the bubbles contained within V, V, and P, are the volume
and pressure of bubble k, p is the pressure in the continuous phase of volume V, and
viscosity u, p is the rate-of-strain tensor, S is the surface of the gas/liquid interfaces
contained within V, n is the local normal unit vector and 1 stands for the unity
tensor of rank two. The two first terms in (2.2) give the pressure contribution to the
stress, and the third term gives the viscous contribution. We cannot measure these
contributions in our set-up. The last term in (2.2) is the elastic stress ¢ (Cantat
et al. 2013). A specific advantage of quasi-2D foams, confined in a Hele-Shaw cell
so as to form a bubble monolayer, is the possibility to measure elastic stress directly
from image analysis. Neglecting the curvature of the films between two bubbles, i.e.
assuming that they are flat rectangles of height 4 and horizontal side £, which is a
reasonable approximation in practice (figure 2), the elastic stress is

LR
o°=2Ihp, <(§)> , (2.3)

with p, the areal density of bubble edges, and where the average is computed over the
same lanes as for the velocity and plastic events. The total number of bubble edges
£ treated for each experiment is approximately 107

The ‘force-free’ assumption in the approach of Batchelor (1970) amounts to
neglecting the effect of buoyancy on the bubbles or, more precisely, to neglecting
the variation of hydrostatic pressure pgh over the height of the bubbles (with
p=10° kg m~? the density of the soap solution, g=10 m s~ the gravity acceleration,
and 2 =2 mm the cell gap) compared with the capillary overpressure I"/Rpp, Where
Rpp is the radius of the Plateau borders between three neighbouring bubbles, or two
neighbouring bubbles and a plate, the latter ones containing most of the solution
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for foams confined within a Hele-Shaw cell. The quantity Rpp is readily related to
the liquid fraction ¢,. Since in order of magnitude, each bubble of volume A#h is
surrounded by a total length ~+/A of such Plateau borders of cross-section ~R3,,
one has Rpp ~ h'2A'/*¢,"*. Hence, the ratio of the hydrostatic to capillary pressures
is pghRps/T" ~ pgh’*AV*¢,* /T = 0.01 or 0.02 for our experimental values of the
parameters (table 1), much lower than one. Therefore, it is safe to assume that the
bubbles are ‘force-free’ particles.

3. Numerical method

For the numerical simulations, we adopt a dynamic rheological model based on
the LBM (Benzi, Succi & Vergassola 1992; Chen & Doolen 1998; Aidun & Clausen
2010). Historically, the main successful applications of the LBM in the context
of computational fluid dynamics pertain to the weakly compressible Navier—Stokes
equations (Benzi et al. 1992; Chen & Doolen 1998) and models associated with
more complex flows involving phase transition/separation (Shan & Chen 1993, 1994;
Benzi et al. 2009). In particular, we will make use of a computational model for
non-ideal binary fluids, which combines a positive surface tension, promoting the
formation of diffuse interfaces, with a positive disjoining pressure, inhibiting droplet
(or bubble) coalescence. The model has already been validated for a wide spectrum
of problems/phenomena (Benzi et al. 2009, 2010, 2013; Sbragaglia et al. 2012).
Among others, these problems/phenomena include the emergence of non-Newtonian
Herschel-Bulkley rheology (Benzi et al. 2010), the importance of load conditions
on rheology (Benzi er al. 2013), cooperativity flows (Sbragaglia et al. 2012) and
ageing (Benzi et al. 2009). In this section we just review the method and highlight
its essential supramolecular features. The mesoscopic kinetic model considers two
fluids A and B, each described by a discrete kinetic distribution function f;;(r, c;, ),
measuring the probability of finding a particle of fluid { = A, B at position r and
time ¢, with discrete velocity c¢;. In other words, the mesoscale particle represents all
molecules contained in a unit cell of the lattice. The distribution functions evolve
in time under the effect of free-streaming and local two-body collisions, described,

for both fluids (¢ = A, B), by a relaxation towards a local equilibrium ( f;fq)) with a
characteristic time t;5:

1 e 0
feir+ci i t+ 1) — fri(r, ¢, t):_T (f;i— ;,ﬂ)) e )+ S5 e t). (3.
LB

Local equilibria are given by a low-Mach-number expansion of the Maxwellian
distribution, namely

v (cic; — cfl)} (32)

(eq) __ 2 V-C

i =w(leil")p; [1 + = + 208
with w(|¢;|?) a set of weights chosen in such a way as to maximise the algebraic
degree of precision in the computation of the hydrodynamic fields, while ¢, = 1/4/3
is a characteristic velocity (a constant in the model). Our lattice scheme features 25
discrete velocities (Shan, Yuan & Chen 2006; Benzi ef al. 2009), whose details
and associated weights are reported in table 3 in appendix A. Coarse-grained
hydrodynamical densities are defined for both species, o, = >, f;» as well as a
global momentum for the whole binary mixture, j = pv=>_,,f.c;, with p=3"_ p,.
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Non-ideal forces (F,) and a body force term (F,) are introduced with the source term
Sg’i”’) in (3.1). This source term produces the desired force once it is projected on

the momentum field, ie. » . >, Sé’i”’)c,» = > F; + F,. The non-ideal forces include

a variety of interparticle forces, F, = F g’) + FEF ). First, a repulsive (r) force with
strength parameter ¢,z between the two fluids,

9,
FO=-"Fp) Y. wllePpor+ee, (3.3)
Po i=1-8,0'#¢

is responsible for phase separation (Benzi et al. 2009). The parameter p, is a
characteristic normalisation parameter, used as a free parameter in the model. The
‘short’-range interaction in (3.3) is extended up to energy shells |¢;|> =2 (lattice links
have been normalised to a characteristic lattice velocity). Phase separating interactions
(3.3) are nothing but a lattice transcription of continuum mean-field models for phase
segregation (Bastea et al. 2002). When the strength parameter %z/p? in (3.3) is
chosen above a critical value, the model achieves phase separation and promotes
the emergence of stable diffuse interfaces with a positive surface tension, which
allows for the simulation of a collection of droplets. However, the thin films between
neighbouring droplets are not stable against rupture, as the interactions (3.3) give rise
only to negative disjoining pressures (Shan & Chen 1993, 1994). To promote the
emergence of a positive disjoining pressure stabilising the thin films, we introduce
a mechanism for frustration (F) for phase separation with the help of competing
interactions (Shore, Holzer & Sethna 1992; Seul & Andelman 1995). In particular,
we model short-range (nearest neighbour, NN) self-attraction, controlled by strength
parameters %441 < 0, %5 < 0, and ‘long-range’ (next to nearest neighbour, NNN)
self-repulsion, governed by strength parameters %y, , > 0, ¥p, > 0,

FO@) =G () Y wllei e+ edei = Greatre ) > pled ) (r +¢pe,

i=1-8 i=1-24
(3.4)
with ¥, (r) =y.[p(r)] a suitable pseudopotential function. The pseudopotential v, (po,)
is taken in the form originally suggested by Shan & Chen (1993, 1994),

Velpe (M) = poll — e /], (3.5)

The parameter p, actually marks the density value above which non-ideal effects
come into play. The prefactor py in (3.5) is used to ensure that for small densities
the pseudopotential is linear in the density p,. Despite their inherent microscopic
simplicity, the above dynamic rules are able to promote a host of non-trivial collective
effects (Benzi et al. 2009, 2010). The model gives direct access to the hydrodynamical
variables, i.e. density and velocity fields, as well as the local (in time and space)
stress tensor in the system, the latter characterised by both the viscous as well as the
elastic contributions (see (A 1) in appendix A, where both contributions appear).

A direct link between the ‘micromechanics’ of the model (3.3)—(3.4) and the
more familiar ‘macroscopic’ concepts of surface tension and disjoining pressure can
actually be established (Benzi et al. 2009; Sbragaglia et al. 2012). To quantify the
emergence of the surface tension and the disjoining pressure, one has to consider a
1D problem. For a planar 1D interface, developing along y, the surface tension I is
a direct consequence of the pressure tensor developing at the non-ideal interface and
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is computed as the integral of the mismatch between the normal (N) and tangential
(T) components of the pressure tensor. This surface tension scales as (Benzi et al.
2009)

.
r=/ [Py — Pr(»ldyoc— 3 %/ <ddl§‘) dy —@ tﬂ%d (3.6)
- (=A,B

The quantity %, = %1 + (12/7)%;;, comes from a proper combination of the
coefficients in the competing interactions. For repulsive interactions (¢4, > 0), the
second integral on the right-hand side is positive definite, since (dps/dy)(dpp/dy) <O.
With a proper use of the competing interactions, one can choose %, > 0, and the
first term on the right-hand side of (3.6) is negative definite; consequently, one can
decrease the surface tension by simply increasing py. The decrease of the surface
tension goes together with an increase of the disjoining pressure at the thin-film
interface. The emergence of a positive disjoining pressure I1;(h) can be controlled in
numerical simulations by considering a thin film with two non-ideal flat interfaces,
separated by the distance 4. Following Bergeron (1999), we write the relation for the
corresponding tensions

Iy (h)

Iihy=2I + / hdIl,, 3.7)
Iy

(h=00)

where I is the overall film tension. Similarly to what we have done for the surface
tension I, the expression for I} is known in terms of the mismatch between the
normal and tangential components of the pressure tensor (Derjaguin 1989; Toshev
2008), I = fjoooo[PN — Pr(y)]dy, where, in our model, Py — Pr(y) = p,(y) can be
computed analytically (Shan 2008; Sbragaglia & Belardinelli 2013). All the detailed
expressions for the interaction stress tensor are reported in appendix A. From the
relation s(h) = I'y(h) — 2I" it is possible to compute the disjoining pressure: a simple
differentiation of s(k) permits us to determine the first derivative of the disjoining
pressure, ds(h)/dh = hdIl;/dh. This information, supplemented with the boundary
condition I1;(h— o0o0) =0, allows us to completely determine the disjoining pressure
of the film (Sbragaglia et al. 2012). In figure 4 we analyse some of these features
quantitatively. In particular, we consider the interaction parameters ¥,z = 0.405,
Gre1=-9.0, 9%.,=28.1, with py chosen in the interval [0.72:0.84]. All numbers are
reported in Ibu (lattice Boltzmann units). As we can see, by increasing the value of
Po, we enhance the energy barrier at the onset of the film rupture.

The body force F, = Fp + Fp in (3.1) contains the driving due to the imposed
(constant) pressure gradient (Fp) and a drag force (Fp) mimicking the friction between
bubbles and confining plastic plates, as in the experimental set-up (figure 1). This
drag force is taken to be proportional to the velocity vector, as in Janiaud, Weaire
& Hutzler (20006), i.e.

Fp=—pv. (3.8)

Once the droplets are stabilised with a positive disjoining pressure, different packing
fractions and polydispersity of the dispersed phase can be achieved. In the numerical
simulations presented in the following sections, the fraction of the continuous phase
(i.e. the equivalent of the liquid fraction in the foam experiment) is kept approximately
equal to ¢;~7.5%.
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FIGURE 4. (Colour online) This figure shows the emergence of the disjoining pressure in
the lattice Boltzmann model (see (3.1) with phase separating interactions obtained with a
repulsive (r) force (see (3.3)) supplemented with competing interactions (see (3.4)), whose
role is to provide a mechanism for frustration (F). The use of phase separating interaction
is associated with a negative disjoining pressure. Competing interactions stabilise thin films
with the emergence of a positive disjoining pressure, the latter tunable with the parameter
po in (3.3) and (3.4). Further details can be found in Sbragaglia ef al. (2012).

It must be stressed that the micromechanics of the model, (3.3)—(3.4), is not meant
to mimic ‘specific’ physico-chemical details of foams, but rather to model a ‘generic’
soft glassy material with non-ideal fluid behaviour (e.g. non-ideal equation of state,
phase separation), interfacial phenomena (e.g. surface tension, disjoining pressure)
and hydrodynamics. Mesoscale soft glassy models are indeed frequently used to
characterise the rheology and cooperativity flow of soft glassy materials (Durian 1997,
Mansard et al. 2013). As already stressed in the introduction, our numerical model
represents a step forward in this direction, in that it provides two basic advantages
whose combination is not common. On one hand, it provides a realistic structure of
the emulsion droplets, like for instance the surface evolver method (Reinelt & Kraynik
2000; Kern et al. 2004; Cox & Janiaud 2008); at the same time, due to its built-in
properties, the model gives direct access to dissipative mechanisms in thin films. This
latter point will be further discussed and detailed in appendix B. We also remark that
the viscous ratio between the dispersed phase and the continuous phase is kept fixed
to x =1 (the simulation parameters are summarised in table 2). This choice is dictated
by purely numerical reasons, as numerical instabilities emerge when one considers the
case of a viscous ratio much smaller or much larger than unity. Nevertheless, we can
use this as an advantage in our joint numerical and experimental study, as it offers
the possibility to test the robustness of the experimental findings versus a change in
the viscous ratio x between the dispersed phase and the continuous phase. It is also
comforting that the latest version of our GPU code (Bernaschi et al. 2009) allows
for the simulation of emulsion droplets and their statistics in a reasonable amount
of time. The current version runs on multiple GPUs and, by using a combination of
CUDA streams and non-blocking MPI primitives, it is able to overlap completely the
computation within the bulk of the domain with the exchange of the boundaries. Most
simulations have been carried out on Kepler ‘Titan’ GPUs, featuring 14 streaming
multiprocessors, with a total of 2688 cores running at 0.88 GHz and a memory
bandwidth exceeding 200 GB s~'. Each run, spanning multimillion time steps for
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Run Fp letyair] vo B B*
(Ibu) (Ibu) (Ibu) (Ibu)
P1 5% 1077 0 2.15 x 1072 0 0
P2 5% 1077 0 1.05 x 1072 107 100
P3 5x 1077 0 8.05x 1073 2x107° 200
P4 4 x 1077 0 6.10x 1072 2x 107 200
P5 3 x 1077 0 455 x 1073 0 0
P6 3x 1077 0 1.65x 1072 2x107 200
Cl 0 2 x 1072 0 0 0
Cc2 0 2 x 1072 0 1073 100

TABLE 2. Summary of the simulation parameters. The first six rows refer to runs in
the Poiseuille (P#) flow set-up, while the last two are relative to the Couette (C#) flow
numerical simulations. Other relevant parameters (kept fixed among the various runs) are
the fraction of the continuous phase ¢;~7.5 % and the viscous ratio between the dispersed
and the continuous phase xy = 1. The interaction parameters for the phase separating
interactions (see (3.3)) and competing interactions (see (3.4)) are given in the text and the
pseudopotential reference density is pyp=0.83. The disjoining pressure for these interaction
parameters is characterised in figure 4. The total integration time is T, = 2 x 10° lbu
(lattice Boltzmann units), of which T, = 1.25 x 10° steps are in the steady state.

every single set of parameters, takes less than 12 h, to be compared with a running
time of about 30 h on previous generation (Fermi) GPU cards. The speedup with
respect to a highly tuned (multicore) CPU version is above one order of magnitude.
To develop a systematic analysis of plastic events, we perform a Voronoi tessellation
(using the voro++ libraries (Rycroft et al. 2006)) constructed from the centres of
mass of the droplets, a representation that is particularly well suited to the capture and
visualisation of plastic events in the form of droplet rearrangements and topological
changes occurring within the material.

4. Results and discussion
4.1. Experimental velocity profiles

The velocity profiles measured for five experiments are shown in figure 5. They are
quite flat at the centre (y =0) of the channel, although not completely flat as would
be expected from a Herschel-Bulkley model, and decrease significantly close to the
sidewalls (y==+H/2). They are well fitted by an exponential profile, which is written
either as v(y) =v;(1 +Acoshy/L,) or as

cosh(H/2L,) — oy — (1 — ) cosh(y/L,)
o

, 4.1)
cosh(H/2L,) — 1

v(y)=v

with a set of three fitting parameters, vy, «, and L,, which have a clear physical
meaning: vy =v(y=0) is the centreline velocity and

o = LO=FHD 4.2)
Vo

is the relative slip, i.e. the ratio of the slip velocity to the centreline velocity. The
parameter L,, which we will henceforth call the velocity localisation length, describes
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FIGURE 5. (Colour online) Velocity profiles for the five experiments described in table 1.
These data have been symmetrised with respect to the centreline; the error bars denote the
standard deviation resulting from this averaging. Each dashed line is a fit of the data by
the law (4.1); see table 1 for the values of the best fitting parameters. The dotted line is a
fit of the data series A with the law (C6) accounting for nonlinear wall friction and bulk
viscous stress; see §4.2.2 and appendix C for details. It is barely distinguishable from the
dashed line.

the range of influence of the wall friction on the velocity profile. The values of the
best fitting parameters are reported in table 1. Among the four experiments run at
constant control parameters except for the driving flow rate, the relative slip tends
to decrease, and the velocity localisation length to increase, at increasing flow rate,
except for the experiment at a flow rate of 102.5 ml min~'. The fifth experiment is
run at a larger liquid fraction that the other four: it shows a larger relative slip, and
a smaller velocity localisation length, than the experiment with comparable flow rate.

4.2. Comparison of experiments with a local model

4.2.1. Linear model

To provide analytical reference equations for the velocity profiles and place our
work in the context of the existing literature, we start by comparing our velocity
profiles with local models. We start by a comparison to the model of Janiaud
et al. (2006), which we adapt to the Poiseuille configuration and to slip boundary
conditions. It is appealing, due to its simplicity, and it has been shown to reproduce
well experimental velocity profiles for foam flows in plane Couette geometry (Katgert
et al. 2008). The model considers a steady unidimensional flow, where inertia vanishes
identically. We also neglect end effects, and hence assume that the flow is streamwise
invariant. Hence, the flow profile is written as v = v(y)e,, with x the streamwise
direction and y the spanwise one. The streamwise invariance implies a constant
pressure drop: VP =e,dP/dx with dP/dx constant. From depth-averaged momentum
conservation, 0 =V -0 — VP + 2f,/h, with f, the foam/wall friction force per unit
area. The term 2f,/h is analogous to the drag force Fj used in the simulations (see
§ 3). Taking the streamwise component of the equation, we obtain

do dP 2

0=— — —1p, 4.3
dy dx+th 4.3)
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where o is the xy component of the stress tensor. The model assumes that for the
shear stress o = oyf.(y/yy) + ny, with y the shear strain and y = dv/dy the shear
rate, oy and yy the yield stress and the yield strain respectively, n the plastic viscosity
of the foam and f, a function quantifying the variation of the elastic stress with the
shear strain. Insertion of this model in (4.3) yields

0 d*v N dyf/ Y dP p 4.4)
=n—+oy—f | —)—— —Bv, .
T T\ T @

where fp is assumed to be proportional to the velocity, and B is defined as
fo=—3hpv. 4.5)

If we neglect the elastic term for simplicity, we obtain the following ordinary
differential equation (ODE) for the velocity:

d?v v “6)
Ly L '

where we have introduced the friction length

Ly= \/Z 4.7)

A first boundary condition comes from the fact that x is a symmetry axis, hence v
is an even function of y, and we recover the exponential profile (4.1), v(y) = vi[1 +
A cosh(y/Ly)], first proposed in §4.1 as an empirical fit, with the characteristic velocity
vy proportional to the pressure gradient:

L dpP
vy =———. (4.8)

n dx
As shown in §4.1, it turns out that this functional form, with v;, A and L, as free
fitting parameters, reproduces very well the experimental profiles (figure 5). However,
there is a second boundary condition, coming from a force balance of the foam at the

sidewall:

o=4=4fp aty==xH/2, 4.9)

which differs from the original model of Janiaud et al. (2006), who assumed no-slip
boundary conditions. A macroscopic visible signature of the balance (4.9) is the angle
between the bubble edges and the sidewalls in figure 1(b), see also Dollet & Cantat
(2010). Inserting (4.5), (4.7) and (4.8) in (4.3), do/dy = B(v — v;), hence

H/2 y H
oc(y=H/2)=pvA / cosh —dy = Bv,ALy sinh —, 4.10)
0 Ly 2L

which we insert in (4.9) to obtain

h cosh(y/Ly)
2Ly sinh(H /2Ly) + hcosh(H/2Ly) |

v(y) =1, [1 — “4.11)
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FIGURE 6. (Colour online) Relative slip measured in the experiments described in table 1,
as a function of the relative slip (4.12) predicted by the local model.

This new functional form, with vy and L, as free fitting parameters, does not fit the
experiments. Actually, there is a major discrepancy with the relative slip; setting y =
H/2 in (4.11) and using the definition (4.2) of the relative slip, we obtain

1 1
H ~1+h/2L,

7
14+ - coth ——
LT T

(4.12)

oy =

since coth(H/2L,) is very close to 1 for all our experiments. This prediction is much
higher than the experimental value, except for the wet foam (figure 6).

4.2.2. Nonlinear model

A possible reason for the discrepancy lies in the fact that the wall friction force is
nonlinear in velocity, and the bulk viscous stress is nonlinear in shear rate. Following
Denkov et al. (2009), the bulk viscous stress for a 3D foam equals o = (tyr + Tys) /R
(film and interface contribution respectively), with R the bubble radius and

5/6 (0.26 — ¢1)0'1

0.5 ’
1

v = 1.16Ca) " (1 — ¢y) (4.13)

with Cay = uyR/I" the capillary number (u = 1073 Pa s: bulk viscosity) and tys =
9.8nBy%!® with B =2.12 x 10~ S.I. an empirical constant for SLES/CAPB/MAc
foams. Using as orders of magnitude from the experiments R~ \/A/m ~ 2 mm and
y ~vy/L,~1 s~!, we obtain tys/Tyr ~ 0.6, hence the film term is dominant, although
the surface term is not negligible. Keeping only the film term for simplicity, (4.13)
shows that the bulk viscous stress scales sublinearly with the shear rate:

Gzn/)}om’ (414)

where the prefactor n’ (primed to distinguish it from the plastic viscosity in the linear
law used in §4.2.1) is

047 [0.53 0.26 — &)
n = 1.16M7(1 _ ¢1)5/6¢

(4.15)
R053 05
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For solutions giving rigid interfaces, like SLES/CAPB/MAc (Golemanov et al.
2008), foam/wall friction is quantified by the force per unit area (or equivalently the
wall stress) (Denkov et al. 2009):

*)2/3 (4.16)

r
fD = E [1.25C1FV Ca*

with two empirical constants C;r =3.7 and Cy, = 3.5, Ca* = puv/I" another capillary

number, and
=g\ "
Fy;=4/1-32 ( " +7.7> . 4.17)
I

For v~ 1 cm s~ !, the ratio of the second term to the first term in (4.16) is 5, hence
we neglect the second term. Equation (4.16) then shows that the wall friction force
scales sublinearly with the velocity:

=—1hB' Vv, (4.18)

with the following value of the wall friction constant (primed to distinguish it from
its counterpart in the linear law used in §4.2.1):

/

2 5C1F \/7

(4.19)

Like in §4.2.1, see (4.7), we can construct a characteristic length from »" and 8’. To
do so, it is convenient to replace the exponent 0.47 by 1/2 in (4.14), recasting the
factor %% in the definition (4.15) of n'; this factor is almost constant, and equal
to 1, for all our experiments. The characteristic length is then Ly = (n'/B)*°. It is
the extension the friction length L, defined in (4.7) to the case of the nonlinear wall
friction (4.18) and the nonlinear bulk viscous stress (4.14). We compute with all the
experimental values of the parameters appearing in (4.15) and (4.19): L = 1.9 mm
for ¢;=4.8% and 2.7 mm for ¢, =16.9 %. These orders of magnitude are compatible
with the experimental values of the localisation lengths (table 1).

The effect of nonlinear wall friction and bulk viscous stress on the velocity profile
has been theoretically considered for Couette flows (Weaire er al. 2008; Weaire,
Clancy & Hutzler 2009), but not for Poiseuille flows. Therefore, in appendix C, we
compute analytically the velocity profile using the nonlinear laws (4.14) and (4.18),
and we show that the role of these nonlinearities on the velocity is negligible.

Hence, the present model is too simple to capture wall slip in our experiments,
which suggests that the role of elastic stresses is crucial. This is qualitatively supported
by the fact that the only experiment for which the local model is quite accurate in
predicting the amount of slip is for a wet foam, which stores less elastic energy
(Cantat et al. 2013). To further support this idea, we plot the shear component of
the elastic stress and the normal elastic stress difference in figure 7; see the end of
§ 2.2 for the measurement of the elastic stress. The shear elastic stress is indeed about
four times weaker for the wet foam than for the four other experiments. For these
experiments at given bubble area and liquid fraction, its variation across the channel
is as follows: towards the centre of the channel, although with a significant asymmetry
for some experiments, there is a zone of quasilinear increase around oy, = 0. The


https://doi.org/10.1017/jfm.2015.28

https://doi.org/10.1017/jfm.2015.28 Published online by Cambridge University Press

Plastic flow of foams and emulsions in a channel 573

-0.5 0 0.5 -0.5 0 0.5
y/H y/H

FIGURE 7. (Colour online) (a) Shear component of the elastic stress and (b) normal
difference of the elastic stress for the five experiments described in table 1.

width of this region decreases slightly at increasing flow rate. Outside this region, the
elastic shear stress plateaus to a value that does not depend much on the flow rate.
Interestingly, there is still some velocity variation, and a significant plastic activity,
outside those regions where the shear elastic stress plateaus. Except for the experiment
for the wet foam, the normal elastic stress difference oy — o, is always positive, i.e.
the bubbles are elongated streamwise, an effect that is clearly visible in figure 1(b).
It tends to increase towards the wall.

Equation (4.3) expresses the balance between the driving pressure gradient, the
foam/wall friction and the gradient of elastic and bulk viscous stresses. Close to the
middle of the channel, the velocity gradient is very weak, hence bulk viscous stress is
negligible, and the gradient of the shear elastic stress is roughly constant (figure 7). It
is interesting to compare the value of this gradient doy, /dy and the pressure gradient
dP/dx. Their experimental values are reported in table 1; the pressure gradient is
always larger than the gradient of shear elastic stress, the missing part being wall
friction. This is a major difference from Poiseuille experiments in 3D channels
(Goyon et al. 2008, 2010; Geraud et al. 2013), where wall friction is absent. This
prevents us from measuring directly the spanwise stress from the pressure gradient,
in contrast to the aforementioned studies.

4.3. Numerical simulations and comparison with the fluidity model

We have shown the inaccuracies of a local model without elasticity in capturing
our experimental data thanks to the inspection of the boundary condition at the
wall. To test the effects of elasticity, local visco-elastoplastic models could be used
(Cheddadi et al. 2012), but it is not straightforward to deduce testable predictions
from them. Moreover, elasticity is not the only aspect of the physics of foams and
dense emulsions missed by a model such as that discussed in the previous sections.
It has recently been shown in experiments of flowing emulsions in microchannels
(Goyon et al. 2008) that in order to capture the velocity profiles, the intrinsic
non-local rheology of such soft glassy materials must be considered. Non-locality
is due to the long-ranged relaxation of stress released after a plastic rearrangement
occurs. Building on previous models for soft glassy rheology (Sollich et al. 1997,
Hébraud & Lequeux 1998; Sollich 1998), Bocquet et al. (2009) proposed a kinetic
elastoplastic model (KEP henceforth) to describe explicitly spatial interactions among
plastic events. The continuum limit of KEP suggests that the local relation between
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the stress o and the rate of strain y is dictated by a kind of inverse effective viscosity,
the fluidity
=X (4.20)

o

which obeys a non-local diffusion-relaxation equation of the form

E2Af () + [y (0 (1) —f(x) =0, (4.21)

where f, is the bulk fluidity, i.e. the value of the fluidity in the absence of spatial
cooperativity (§ =0), and & is the cooperativity length scale within the material due
to spatial heterogeneities and represents, basically, a correlation length for the fluidity
itself, as can be easily derived from (4.21). The other important result of KEP is that
such fluidity must be expected to be proportional to the rate of occurrence of plastic
events, Ry, in the system, i.e. f o Ry;. Furthermore, KEP encompasses the effect of
elasticity through the non-local relaxation of elastic stress induced by plastic events.
There is, however, a difficulty in testing this non-local model against our experiments.
The role of wall friction is crucial in experiments, whereas the non-local model
has been set up and tested in its absence, although recent studies have considered
the coupled role of wall friction and non-locality (Barry, Weaire & Hutzler 2011;
Scagliarini, Dollet & Sbragaglia 2014). Indeed, wall friction complicates the stress
profile across the channel, as discussed in §4.2, and it is thus not straightforward to
extract relevant flow curves o(y) from our experiments. Hence, it is interesting to
run numerical simulations, where the wall friction can be set off and tuned at will.
Various sets of numerical simulations have been performed in the (Fp, 8*) parameter
space (see table 2 for the numerical values used), where B* is the value of the friction
coefficient (3.8) B8 made dimensionless with the channel width H and viscosity n, i.e.

BH? H?

n L
where the last equality is based on the definition of the friction length L, given in
(4.7). A flat velocity profile in the bulk is shown by all curves (figure 8), including the
case with 8* =0, witnessing the presence of a non-trivial bulk rheology (Goyon et al.
2008, 2010; Geraud et al. 2013). We also report the experimental velocity profile with
flow rate 152.5 ml min~' (see table 1), just to show that we are able to tune the
wall friction parameters in the numerics to achieve the same localisation as observed
in the experiments for which an equivalent wall friction parameter 8* ~ 250 can be
estimated based on the wall friction constant (4.19) and the plastic viscosity (4.15).
While a direct comparison of experiments and numerics in terms of velocity profiles is
complicated by boundary conditions (as observed in the experimental data of figure 5,
slippage is found to occur at the surfaces of the experiments, while the numerical
simulations are performed by imposing no-slip at the walls), an important insight will
be provided by simulations for validation of the picture of the plastic flow (§4.4) for
different values of the wall friction constant, which is a freely tunable parameter in
the numerical model, unlike in experiments.

Figure 9(a) indeed provides some indications that wall friction does not seem to
dramatically affect the distribution of plastic events. There we plot the rate of plastic
rearrangements, normalised by the total number of events, from experiments and
numerics (for the three values of f*). The data show a moderately good collapse
onto each other. At a given driving pressure drop, an increase in wall friction results in

p* = (4.22)
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FIGURE 8. (Colour online) Numerical velocity profiles, normalised by the centreline
velocity vy, for different values of the wall friction constant. Data from three sets of
simulations are shown with dimensionless wall friction parameter (see (4.22)) B* =
0, 100, 200 (runs P1-3 in table 2); the experimental velocity profile with flow rate
152.5 ml min~" (see table 1) is also reported to show that we are able to tune the wall
friction parameters in the numerics to achieve the same localisation as observed in the
experiments. The equivalent §* in the experiments is f* ~ 250 (see text for details). On
the abscissae, the y-location across the channel has been normalised by the total channel
height.

a decrease of the total number of plastic events Nr,. We could estimate the number
Nr, in the numerical simulations, and it is reported in figure 9(b): for the same
simulation time (see caption of table 2) plastic events diminish from Nz, ~ 6 x 10°
to Ny, ~2 x 10° on increasing B* from 0 to 400. A similar trend is observed for
the centreline velocity, which is reported in the inset of figure 9(b). To make this
statement more quantitative, we notice that the overall decrease in the number of
plastic events can be well captured by the function

20N 1
B* cosh(v/B*/b) |’

a scaling behaviour that can be obtained from the expression of the centreline velocity,
vo in (4.1), with oz =0 (no-slip boundary condition for the numerics). The parameter
N}OI) in (4.23) sets the number of plastic events in the limit g* — 0, whereas the
argument /B*/b of the hyperbolic function in (4.23) is inversely proportional to the
velocity localisation length. The choice of (4.23) as a fitting function is suggested
by the consideration that the total number of plastic events is dominated by events
occurring in boundary regions where the shear stress is approximately constant and,
hence, the fluidity f is basically proportional to the shear rate y. Consequently, as
the number of events is, by definition, equal to the integral of the corresponding rate

Rri, and since Ry o« f ~ |y|, we can assume that G(8*) fOH/2 |y |dy, which equals
the centreline velocity. Interestingly, the estimate of b that we obtain from a best fit
procedure (b= 6.0) is greater than the estimate of » based on the friction length L,
in (4.7), which would yield b =2. This is an indication that the velocity localisation
length in the numerical simulations is larger than the localisation length induced by
the wall friction, Fp = —B8v. This is not a surprise, because our numerical simulations

G(B") = 4.23)
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FIGURE 9. (Colour online) (a) Plot of the rate of plastic rearrangements as a function
of y: experiments (A in table 1) are compared with numerical data from runs P1-3. The
dashed line indicates the function sinh(y/L,)/y, representing the fluidity profile based on
the hyperbolic cosine fit of the velocity profile (see §4.1 for details). Numerical data have
been symmetrised. (b) Total number of Tls as a function of * from the simulations; the
dashed line is a fit with the functional form given in (4.23). Inset: the centreline velocity
versus fB* is reported.

had already confirmed the presence of a cooperativity length scale (Sbragaglia et al.
2012), without wall friction, in a Couette flow set-up. This supports the idea that an
effective localisation length results from the combination of the friction length and the
cooperativity length (Barry et al. 2011), an issue that we will further explore in §4.4.

The study of the spatial distribution in the number of plastic events and the
simultaneous analysis of the localisation in the velocity profiles allows us to bridge
the gap between the ‘microscopic’ details of local irreversible plastic rearrangements
and the macroscopic flow. A connection between the rate of T1 events and the fluidity
field is indeed visible in figure 9(a). The dashed line indicates sinh(y/L,)/y, which
is the ‘synthetic’ fluidity profile (up to an unessential numerical scaling factor) based
on the hyperbolic cosine fit of the velocity profile (see §4.1) and a linear variation of
the shear stress across the channel. Interestingly, a significant plastic activity remains
towards the centre of the channel, and it is well correlated to the fluidity field, which
remains finite in such regions, whereas the strain rate goes to zero. Moreover, a
closer inspection reveals that the decrease in the number of plastic events is affected
by the wall friction constant 8*, with a steeper decrease associated with the larger B*.
Figure 9 calls, therefore, for a deeper understanding with regard to the link between
the rate of plastic events and the local flow properties.

4.4. Localisation lengths: comparison of plasticity and shear rate

To go further, we choose to explore the connection between the rate of plastic
events and the local flow properties, by looking at the relationship between the
localisation length of the velocity profiles, L,, and the localisation length of the
number of plastic events, L, (henceforth called the plastic localisation length). This
connection enables us to compare experiments and simulations, despite their different
boundary conditions. The velocity localisation length L, is estimated by a hyperbolic
cosine function cosh(y/L,), from which the decay length L, is extracted (see §4.1).
Simultaneously, the plastic localisation length L, is computed out of an exponential
fit of the symmetrised rate of plastic events close to the wall (figure 10a). Since
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FIGURE 10. (Colour online) (a) Decimal logarithm of the density of Tls per unit time
and area as a function of y/H, for the five experiments described in table 1. These data
have been symmetrised with respect to the centreline; the error bars denote the standard
deviation resulting from this averaging. Data below 10~* mm~2 s~! are not shown because
they are statistically irrelevant (fewer than 10 T1s counted per bin per experiment). Dashed
lines represent the linear fits of the data. (b) Data from numerical simulations complement
the experimental results reported in (a). In particular, to appreciate the effect of wall
friction at fixed pressure gradient, we show the log-lin plot of the rate of plastic events
from simulations P1-3 (fixed pressure drop and different §*) close to the bottom wall (the
dashed lines represent best linear fits of the data). Inset: plastic localisation length as a
function of the wall friction parameter S*.

our numerical simulations have already confirmed the presence of a cooperativity
length scale (Sbragaglia et al. 2012) without wall friction, they are good candidates
to complement the experimental findings, showing how the spatial distribution of
plastic events is affected by a change in the wall friction parameter §. Hence, in
figure 10(b) we also look at the localisation in the numerics, by fixing the pressure
gradient and changing B*, something that cannot be easily done in experiments with
the data at hand. At fixed pressure gradient, we show the log-lin plot of the rate of
plastic events from simulations with different *. The extracted L, is found to be a
decreasing function of S*.

In figure 11 we report a scatter plot of the velocity localisation length L, versus the
plastic localisation length L, for three sets of data: experiments (symbols as in table 1),
simulations with fixed pressure drop and various values of B* (filled squares) and
simulations with fixed * =200 and various pressure drops (filled circles). Figure 11
shows that the two localisation lengths are indeed close to each other. The fact that
the values of L, and L, agree confirms the picture of the ‘plastic flow’; it is also
compatible with the fact that the rate of plastic events and the fluidity seem to be
proportional (§4.3).

Barry et al. (2011) have combined the local model presented in §4.2 with the
non-local equation for the fluidity field (4.21), in the case of a Couette flow with
linear laws for the bulk viscous stress and wall friction (as in § 4.2.1). They predicted
that the velocity localisation length is an increasing function of both the cooperativity
length £ and the friction length L, defined by (4.7). Here, this theoretical prediction
can be tested for the first time versus our experiments and simulations. Some care
is required in doing so because of the nonlinear nature of wall friction and bulk
viscous stress in experiments, and the difference between Couette and Poiseuille
flows. However, we have shown in appendix C that the effect of nonlinear wall
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FIGURE 11. (Colour online) Scatter plot of the velocity localisation length L, (computed
from a hyperbolic cosine fit of the velocity profiles) versus the plastic localisation length
L, (computed out of an exponential fit of the symmetrised rate of plastic events across
the channel) for three sets of data: experiments (symbols as in table 1), simulations of
Poiseuille flow with fixed pressure drop and various values of the normalised friction
coefficient g* (filled squares) and with fixed B* =200 and various pressure drops (filled
circles) and simulations of Couette flow at two values of g* (filled triangles); both lengths
are normalised by the mean bubble diameter. The dashed line is the L, =L, curve.

friction and bulk viscous stress is very weak. Since the velocity localisation length L,
is much smaller than the channel width and the stress does not vary much across the
localisation zone, the comparison with the Couette predictions is relevant. For this
reason, we also repeated some numerical simulations in a Couette flow geometry (see
table 2). The associated data nicely collapse onto the same master curve, stressing
even more the robustness of our findings on changing the load conditions.

In experiments, at given liquid fraction and bubble area, the localisation length L,
increases with increasing flow rate. Moreover, table 1 shows that at given flow rate
(up to 5%) and bubble area, the localisation length is lower for a wet foam than for
a dry one, in qualitative agreement with the experiments of Goyon et al. (2010) on
emulsions. We tried to get further insight into these findings, by investigating the local
effect of single plastic events, namely by measuring the way they affect displacement
and elastic stress fields on their surroundings, in the spirit of Picard er al. (2004) in
theory and Chen, Desmond & Weeks (2012) in experiments. Our hope was to directly
evidence the cooperativity length as the range of influence on displacement and stress
fields of single plastic events, and whether it would depend on the flow rate and
liquid fraction. However, the data turned out to be too noisy to address this specific
question, in particular because of the difficulty in properly subtracting the effect of
the mean flow. Hence, we cannot directly measure the cooperativity length. In some
sense, the work presented here bypasses the problem of an accurate measurement of
the cooperativity length, but directly explores the link between localisation phenomena
in the velocity profiles and the rate of plastic events.

4.5. Orientation of the plastic events

The importance of plastic rearrangements has been stressed in that the occurrence
of these events induces long-range correlations within the soft glassy material. It
is also acknowledged (Picard et al. 2004; Schall, Weitz & Spaepen 2007) that Tls
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FIGURE 12. (Colour online) Normalised distributions of the orientations of plastic events.
Distributions of appearing (a) and disappearing (b) centre-to-centre links of bubbles
involved in rearrangements are shown, from experiment (thin blue line) and simulations
(thick red line). Here, 6 denotes the angle formed by the link and the direction of the
flow, i.e. the positive x-axis. Following Princen (1983), the extreme values are found for
a dry foam at liquid fraction ¢, =0 and are indicated with a dashed line.

possess a non-trivial angular structure with a quadrupolar topology. It seems, then,
reasonable to argue that for a full understanding of the way they determine non-local
effects inside the system, not only the distribution of their locations in space but
also their orientational properties need to be addressed. Therefore, we go further with
the description of plastic events, and study their angular statistics from experiments
and simulations. More precisely, focusing on the four bubbles involved in a T1, we
define as a disappearing link the segment connecting the centres of the two bubbles
that were in contact before the event (and which are then far apart), and as an
appearing link the connector between the other two bubble centres (see also §2 and
figures 2 and 3). We then measure for each event the angle between such links and
the flow direction. We have observed that the angles are reversed between the two
sides of the channel, consistently with the fact that y =0 is an axis of symmetry.
Therefore, we choose to analyse the statistics of the quantities 6, = 6 sign (y) and
0, = 6/sign(y) (see figure 1 for the sign convention of y). We did not observe a
significant variation of the distribution of these angles across the channel, hence
we analyse the distributions of these angles for all Tls, whatever their location
across the channel. Figure 12 shows the histogram of 6, and 6, for one experiment
and one simulation, while the average and standard deviations of these quantities
are summarised for all experiments in table 1. This analysis shows that T1s have
preferential orientations: 6, is peaked around 0.5 rad, with a small dispersion, and
6, around —0.7 rad, with a larger dispersion. The average values do not depend
significantly on the flow rate. For the wet foam, 6, is larger, and 6, slightly smaller.

We now derive some reference values for these angles from a microstructural
analysis. Since our foams are rather monodisperse, it is interesting to use the simple
geometrical model of a sheared 2D hexagonal foam (Princen 1983) (see also Khan
& Armstrong 1986). In this model, the unit cell drawn in dashed lines in figure 13
is sheared, and the locations of the vertices are computed to comply with the
equilibrium rule that the three edges meet at equal angles. To account for the finite
liquid fraction, the vertices are decorated with Plateau borders for which the radius
Rp is an increasing function of the liquid fraction (figure 13a), ¢, = (23 — Tt)Rf, /A,
with A, the area of one hexagon. This structure can be sheared up to the point
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FIGURE 13. (Colour online) Portions of unsheared (a) and sheared (b) hexagonal foam.
The strain is defined as y =4Ax/3a.

where two neighbouring Plateau borders meet, which defines the onset of the Tl
(figure 13b).

The two angles 6/ and 6, can be computed from simple geometry, when the two
Plateau borders come into contact (figure 13b). The length of the edge ¢ between the
two bubbles about to detach is equal to Rp. Now, at a given strain y, this length is
(Khan & Armstrong 1986) ¢ =a(l — y«/§/2)/\/4+ y2, where a is the side length of
the undeformed hexagon. Setting ¢ = Rp in the latter equation yields the strain y, at
which the T1 occurs; ¥, is a decreasing function of Rp. Moreover, y = 1/4/3 — cot«
(Princen 1983), and we compute from geometrical considerations in figure 13(b)
cot ) = 2//3 —cot o = 1/4/3 + y. and cot 0, = —2//3 —cot a = —/3 + ..
Qualitatively, these two expressions show that both 6/ and 6/ are decreasing functions
of y,, hence increasing functions of Rp, hence of the liquid fraction. The extreme
values are found for a dry foam at ¢, =0, for which y.=2/ V3 (Princen 1983), and
for the jamming transition for which y, =0: 6/ varies between m/6 ~0.52 rad (dry
foam) and 7/31.05 rad (jamming transition), and 6 between —1/3 and —m/6. Our
measured values are indeed in these ranges. The values of the disappearing angles for
the four experiments with ¢, =4.8 % are compatible (within experimental dispersion)
with the dry foam prediction, the latter indicated with a vertical dashed line in
figure 12. The predicted increase of the angles with liquid fraction is compatible with
the experiments for 6,, but not for 6,,.

Although the model by Princen (1983) gives useful reference values, it is difficult
to make a more quantitative comparison based on liquid fraction, because the
distribution of liquid is specific to each system. In simulations, the films between
droplets are thick, and contain a significant proportion of the liquid. In experiments,
the distribution of water is complex because of the 3D structure of the bubbles;
there is relatively more water close to the confining plates than in the midplane in
between (Cox & Janiaud 2008). The hexagonal foam model of Princen (1983) is a
good approximation of the structure of our experimental foams across the midplane
between the top and bottom confining plates, but the liquid fraction across this plane,
relevant in the hexagonal model, is significantly lower than the experimental liquid
fraction. Moreover, the measurement of the appearing angle is less precise than that
of the disappearing one, because the relaxation of the four bubbles after a T1 is fast;
hence, the measurements made on the image after the topological rearrangement may
not be representative of the configuration at the instant of a T1. This also explains
why the dispersion is larger for 6, than for 6,.

5. Conclusions

We have reported on the first experimental study measuring the rate of plastic events
in Poiseuille flows of foams. Experiments have been supplemented by numerical
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simulations, capable of capturing the realistic foam structure and of incorporating
naturally the expected mesoscopic dynamics. We have addressed the relation between
T1 distribution and macroscopic rheology and revealed a link between the localisation
length scale of the velocity profiles and that of plastic events across the channel,
confirming the relevance of cooperativity for foams (Katgert et al. 2010). The use
of numerical simulations allowed us to study in a controlled way (something not
easily feasible in the experiments) the effect of wall friction, helping to confirm its
role in the emergence of an extra localisation for the velocity profiles, as predicted
theoretically (Barry et al. 2011). Our study highlighted that the elasticity gives rise to
a complex near-to-wall dynamics which calls for focused studies both experimentally
(in the spirit of the recent work by Mansard et al. (2014)) and numerically, and for a
more refined theoretical modelling of the boundary conditions. Finally, unprecedented
results on the distribution of the orientation of plastic events showed — with good
agreement between experiments and numerics — that there is a non-trivial correlation
with the underlying local shear strain. This suggests that more complex forms for
the propagators invoked in theoretical models of soft glassy materials (Bocquet et al.
2009) may be needed, with an explicit angular structure, especially in the situation
of non-homogeneous stress (as it is for Poiseuille flows).

Acknowledgements

The authors kindly acknowledge funding from the European Research Council under
the EU Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement no.
279004. We acknowledge computational support from CINECA (IT). M.S. and A.S.
gratefully acknowledge M. Bernaschi for computational support and F. Bonaccorso for
helpful visualisations of the flowing emulsions from the numerical simulations.

Appendix A. Pressure tensor in LBM simulations

In this appendix we provide the technical details for the lattice Boltzmann pressure
tensor used in (3.6) and (3.7) to compute both the surface tension and the disjoining
pressure at the non-ideal interface. Given the mechanical model for the lattice
interactions described in (3.3)—(3.5), an exact lattice theory is available (Shan 2008;
Sbragaglia & Belardinelli 2013) which allows us to connect the interaction forces to
the lattice pressure tensor. The exact pressure tensor is given by

Py = _fucicl +) Py, (A1)
I ¢

The term Z Jrictc; represents an internal contribution to the pressure tensor and its
out- of—ethbnum contribution gives the dissipative stress in the system (Gross et al.

2011), while Pg_’ffﬂ, is a contribution coming from the interactions and embeds the
(int)

elastic stresses of the system. As for P, .5, we can separately write the contributions
coming from the repulsive (r) phase separating interactions (see (3.3)), and those
coming from competing interactions providing a mechanism of frustration (F) (see

(3.4)),
in (r) F,1 F)2 F.4 F.,5 F.8
P& =P+ PO+ PO+ P+ P PO (A2)

The contribution coming from the phase separating interactions P op 18 (Sbragaglia &
Belardinelli 2013)

Pl = —p;(r) > wleiPpor+encicl, ¢ #¢, (A3)

i=1-8
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while the contributions coming from the frustrating interactions are given by various
terms, Pgﬁ;};, Pf(ﬁ;), P&?, Pf(;%), Pft;?, labelled with the number of the ‘energy shell’
(see table 3),

Pl =25y 00 3w +encied + B2y S pwrrtepese.
i=1-4 i=1-4
(A4)
P =T 3 weer e + 5200 Y peer e,
i=5-8 i=5-8
(AS)
Plo = % ST W@ Y )+ e)cied
i=9—12
gf(l C; Ci o B
P = Lty S st et
i=13-20
Fe2 o B
+—,p0) [V r 4 €)W (r+ €3) + Yo (r + €)Y (r + ¢7)] ey
9,
+ Zip(5) (Ve (r+ €)W (r +¢a) + Y (r + €)Y (r +¢9)] ¢yl
%,
+ 444,2]7(5) (Ve (r + )V, (r +¢8) + Yo (r + €)W (r + €4) ] ¥5¢hs
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Appendix B. Friction forces in LBM simulations

In this appendix, we propose benchmark tests for the LBM introduced in §3 with
regard to the viscous drag forces acting on individual bubbles. Friction properties
in the thin films between neighbouring droplets/bubbles or between droplets/bubbles
and the walls are important for both foams and concentrated emulsions (Denkov
et al. 2006, 2008, 2009; Katgert et al. 2009). We start by presenting benchmark
computations for the motion of droplets in confined channels with changing capillary
number. The drag force on a single bubble that slides past a solid wall was first
investigated by Bretherton (1961) and has recently received renewed attention
(Denkov et al. 2006, 2008; Katgert et al. 2009). For a single bubble sliding past
a solid wall, Bretherton (1961) showed that the drag force scales nonlinearly with
the capillary number, Ca, defined in terms of the dynamic viscosity of the carrier
liquid and the relative velocity between the bubble and the wall. The lubrication
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Phase separating interactions (3.3) Shell Lattice links
w(lei) le;|? Ci
4/9 0 0,0)
1/9 1 (£1,0); (0, £1)
1/36 2 (£1, £1)
First term, r.h.s. (3.4) Second term, r.h.s. (3.4) Shell Lattice links
w(lei*) p(leil®) le;|? Ci
4/9 2477420 0 0, 0)
1/9 4/63 1 (£1,0); (0, £1)
1/36 4/135 2 (£1, £1)
0 1/180 4 (£2, 0); (0, £2)
0 2/945 5 (£2, £1); (£1, £2)
0 1/15120 8 (£2, £2)

TABLE 3. Links and weights of the two-belt 25-speed lattice (Shan et al. 2006; Benzi
et al. 2009) for all interactions given in (3.3) and (3.4). The first-belt lattice velocities
are indicated with i =1...8, while the second-belt ones are indicated with i=9...24.
Here, p(|c;]*) or w(|c;|?) indicates the weight associated with the ith link in the various
interactions. The weights associated with the velocity at rest, w(0) and p(0), are chosen

to enforce a unitary normalisation, Y=y w(|e;[*) =1 and Y= p(lei]?) = 1.

approximation yields the velocity U of the bubble immersed in the Poiseuille flow to
be approximated at leading order in

U/U, =14 1.29(3Ca)*?, (B1)

where U,, represents the mean flow velocity. This theory can be readily modified
for a 2D bubble placed in the Poiseuille flow between two parallel plates (Afkhami,
Leshansky & Renardy 2011),

U/U, =1+ 0.643(3Ca)*>. (B2)

An extension to droplets with an arbitrary viscosity has been considered in various
papers (Schwartz, Princen & Kiss 1986; Hodges, Jensen & Rallison 2004). For a very
viscous drop, results analogous to the previous equations can readily be found, as the
coefficients 1.29 and 0.643 in (B 1) and (B 2) respectively are reduced by a factor of
27132 0.794, yielding

U/U, =1+ 1.023(3Ca)*? (B3)

for a bubble in a cylindrical capillary and
U/U, =1+0.511(3Ca)** (B4)

for a 2D bubble in a channel. In figure 14 we present our benchmark tests for (B 4).
As we can see, the predicted scaling for the velocity of the bubble agrees well with
the theoretical prediction, confirming a scaling exponent in the capillary number close
to 2/3 and a numerical coefficient in between the case of a very viscous droplet and
the case of a bubble.
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FIGURE 14. (Colour online) Velocity of a 2D droplet in a confined channel. The viscous
ratio between the dispersed phase and the continuous phase is set to y =1 in all the
numerical simulations. In panel (a) we report two snapshots associated with two different
capillary numbers. Blue/white (dark/light) colours indicate regions with majority of the
dispersed/continuous phase. The droplet is driven by a constant pressure gradient. The
average velocity of the droplet is normalised with respect to the mean flow velocity
(U,) in the inlet of the channel. The scaling laws for both a very viscous (x > 1)
droplet (Schwartz et al. 1986; Hodges et al. 2004) and a bubble in a 2D channel are
reported (Bretherton 1961; Afkhami et al. 2011). The velocity scaling agrees well with
the theoretical prediction, confirming a scaling exponent in the capillary number close to
2/3 and a numerical coefficient in between the two extreme cases (x > 1 and y <« 1).

We now continue by presenting benchmark tests for the drag force between two
bubbles sliding past each other, Fj,. Some recent works (Denkov et al. 2006, 2008;
Katgert et al. 2009) have provided evidence that the viscous drag force scales like
F,, < Ca®, with a scaling exponent £ between 1/2 and 2/3. This is an important test
for our numerical simulations: LBM modelling of two-phase flows is intrinsically a
diffuse interface method and involves a finite thickness of the interface between the
two liquids and related model parameters. The values of the interface thickness and
capillary number need to be larger than the ones suggested by physical considerations
in order to make the simulations affordable (Komrakova et al. 2013; Magaletti et al.
2013). Nevertheless, the structure and the dynamical properties of the emulsion
droplets that we reproduce in the numerical simulations share non-trivial features
with the experiments (Goyon et al. 2008, 2010; Mansard et al. 2014). It is therefore
of great importance to investigate the scaling laws associated with friction properties,
to show that they are realistic and in line with those measured in experiments. In
particular, we measure the viscous drag forces between bubbles directly by rheological
experiments where two rows of ordered bubbles are sheared past each other. Results
are reported in figure 15. A scaling law in the velocity difference U between the
two rows of droplets is confirmed, F,, ~ Ca®, with a scaling exponent between 1/2
and 2/3.

Appendix C. Velocity profile in the nonlinear local model

In this appendix, we provide a solution of the velocity profile, obeying momentum
conservation (4.3) with the nonlinear law (4.18) for wall friction, and (4.14) for the
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FIGURE 15. (Colour online) Viscous drag force F,, between droplets measured directly
in rheological experiments where two rows of ordered bubbles are sheared past each other.
The packing fraction of the continuous phase into the dispersed phase is changed in the
interval ¢, = [0.06:0.18]. Panel (a) reports three snapshots of the simulations for two
different packing fractions. Blue/white (dark/light) colours indicate regions with majority
of the dispersed/continuous phase. A scaling law in the capillary number is found, Fj, ~
Ca®, with a scaling exponent between 1/2 and 2/3.

bulk viscous stress but with a velocity exponent 1/2 instead of 0.47, an approximation
that enables us to provide an analytical solution. Hence, we solve for —H/2 <y <0

(so that dv/dy > 0):
d | [/dv\'"?
0=n'— || —
Tdy (dy>

with boundary conditions dv/dy=0 at y=0 and o = —fp at y=—H/2.
We make space and velocity dimensionless, y = y/L;, and v = v/V, by rescaling
them by

dpP
- /v1/2,
dx

CL

Ly=('/B)"?,  V=[(—dP/dy)/BT. (C2)

Then the problem becomes
0= (%) — 82 +1, (C3)

where the subscript denotes derivation, with boundary conditions v5; =0 at y=0 and
1751,/ >=hv'2/2L} at = —H/2L). The velocity thus obeys an autonomous equation of
the form 55 = F(v, v5), with F(x, y) = =2(1 — {/x)/y. This kind of equation can
be recast as a first-order ODE (Polyanin & Zaitsev 2003) by setting w = vy; it then
becomes w; = F(v, w)/w = —2(1 — V) /ﬁ. The latter is an ODE with separable
variables, which is thus simply integrated to yield 2w*?/3 = —2v + 4v*/2/3 + const.
The boundary condition at y = 0 imposes that w = 0 for the unknown centreline
velocity @, hence 2w*?/3 = —2( — Bp) + 43> — 1;/*)/3. In the limit 2L)/H < 1,
which is a good approximation in our experiments, the dimensionless bulk viscous
stress term (1_);1/ 2); is negligible at the centre of the channel. Hence after (C3), vy =1.

Therefore,
/3

3 = {(1—6)2(2\/5“)}2 . (C4)

The right-hand side is a decreasing function over [0, 1], equal to 1 for v=0 and to 0
for v = 1. Therefore, for a given value of the parameter h/2L;, the boundary condition
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at the wall, v; = h*v/4L7, admits a single solution for v and v; at y = —H/2L,,.
The velocity field obeying (C3) and the boundary condition then obeys the implicit
equation y+ H/2L, = @ (v) — & (v,), with

@ (v) :/ zdﬁ 2/3
(040 (i)
_ (1+2ﬁ)1/3 [(1—3/5)‘/3+2U332/3 JF) (1 —g, g, % (1+2¢5)>
A (4 L7 1(1+2¢5)>], (C5)

12 37333

where ,F; denotes the hypergeometric function. With this complicated expression,
fitting of the experimental data is not easy. A simpler alternative consists in
developing (C4) for 1 — v <« 1. This gives 05 = (3/4)*3(1 — v)*?, with general
solution 1 — v = 48/(y + const.)’. This gives an alternative fitting formula for the
velocity profile:

(C6)

48L¢
o=v [1- 2],

O —y0)?

Taking V, L; and y, yields a fit that is close to the exponential fit (4.1), the difference
between the two fits being within the dispersion of the experimental data. This
suggests that the effect of the nonlinearities of wall friction and of the bulk viscous
stress on the flow profile is weak. Finally, we have checked that the qualitative
conclusion given by figure 6, namely that the relative slip is overestimated by the
local model, remains valid with nonlinear laws. Hence, the role of nonlinearities is
secondary in this study, and can be neglected.
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