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Abstract

We study the limit behavior and performance of no-regret dynamics in general game theoretic settings.
We design protocols that achieve both good regret and equilibration guarantees in general games. We
also establish a strong equivalence between them and coarse correlated equilibria (CCE). We examine
structured game settings where stronger properties can be established for no-regret dynamics and CCE.
In congestion games with non-atomic agents (each contributing a fraction of the flow), as we decrease
the individual flow of agents, CCE become closely concentrated around the unique equilibrium flow of
the non-atomic game. Moreover, we compare best/worst case no-regret learning behavior to best/worst
case Nash equilibrium (NE) in small games. We prove analytical bounds on these inefficiency ratios for
2 × 2 games and unboundedness for larger games. Experimentally, we sample normal form games and
compute their measures of inefficiency. We show that the ratio distribution has sharp decay, in the sense
that most generated games have small ratios. They also exhibit strong anti-correlation between each
other, that is games with large improvements from the best NE to the best CCE present small degrada-
tion from the worst NE to the worst CCE.

1 Introduction

Understanding the outcome of self-interested adaptive play is a fundamental question of game theory. At
the same time understanding systems that arise from coupling numerous intelligent agents together is
central to numerous other disciplines such as distributed optimization, artificial intelligence and robotics.

To take the example of a multi-agent system, the problem of routing a large number of agents with
repeated interactions offers agents the opportunity to learn from these interactions. In particular, we
investigate how much can be gained from the process of learning, synthesized in a ratio which we call the
value of learning (VoL). The reverse is also considered: what agents risk by following no-regret learning
procedures, the price of learning (PoL).

The rich literature of multi-agent studies and algorithmic game theory typically focus on equilibria
and their properties. Since games may have multiple Nash equilibria (NE), two approaches have been
developed: one focusing on worst case guarantees, known as price of anarchy (Koutsoupias &
Papadimitriou, 1999), and one focusing on best-case equilibria known as price of stability (Anshelevich
et al., 2004). Defined as the ratio between the social cost at the worst NE and the optimum, price of
anarchy captures the worst possible loss in efficiency due to individual and self-interested decision-
making. On the other hand, price of stability compares the social cost of the optimal Nash against the
optimum.

Both approaches depend on the assumption that the agents converge to an equilibrium in the first case.
Indeed, classical learning dynamics such as the replicator dynamics do not necessarily converge to a NE
(Sandholm, 2010). That assumption is then weakened to merely asking that the agents’ adaptive behavior
meets some performance benchmark, such as low regret (Young, 2004). An online optimization algorithm
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is said to exhibit vanishing regret when its time average performance is roughly at least as large as the best
fixed action with hindsight.

Contrasting best case equilibria versus best case learning seems to be completely unexplored despite
being a rather natural way to quantify the benefits of improving the design of our current learning
mechanisms. On the other hand, worst case bounds such as the price of anarchy are known for several
classes of games to extend automatically to the class of no-regret learning behavior (Roughgarden, 2009).
This implies that those worst case games are equally bad both for worst case NE as well as for worst case
learning behavior. Nevertheless, this does not mean that for individual games there cannot be significant
gaps between the worst case performance of no-regret dynamics and NE. The existence and size of such
gaps for typical games are not well understood.

1.1 Our results

We study the limits and limitations of no-regret learning dynamics in games. We start by designing a
protocol such that in isolation each such algorithm exhibits vanishing regret against any opponent while at
the same time converging to NE in self-play in any normal form game. This result establishes that
no-regret guarantees do not pose in principle a fundamental obstacle to system equilibration.

We establish a strong equivalence between the time average behavior of no-regret dynamics in
games and coarse correlated equilibria (CCE) which is a relaxation to the notion of correlated equilibria
(CE). Specifically, given any infinite history of play in a game and any time T, we can sample uniformly
at random any of the first T outcomes, forming the empirical distribution of play. It is textbook knowledge
that for all normal form games and no-regret dynamics the distance of this time average distribution
from the set of CCE converges to 0 as T grows (Young, 2004). We complement this result by establishing
an inclusion in the reverse direction as well. Given any CCE we can construct a tuple of no-regret
dynamics whose time average distribution converges pointwise to it as T grows. Hence in any normal
form game, understanding best/worst case no-regret dynamics reduces to understanding best/worst
case CCE.

In the second part of the paper we exploit this reduction to argue properties about best/worst case
no-regret learning dynamics in different classes of games. For non-atomic congestion games, Blum et al.
(2010), shows that regret-minimizing algorithms lead to histories of play where on most days the realized
flow is an approximate Nash.

We provide a shorter, more intuitive argument that extends to the case of many but small agents by
exploiting the connection to CCE. Specifically, we show that for all atomic congestion games as we
increase the number of agents/decrease the amount of flow they control, any CCE concentrates most of its
probability mass on states where all but a tiny fraction of agents have a small incentive to deviate to another
strategy. The uniqueness of the cost of equilibrium flow at the limit implies that for these games the set of
NE coincides with the set of CCE.

The picture gets completely reversed when we focus on games with few agents. We define PoL
as the ratio between the worst case no-regret learning behavior and the worst case Nash, whereas
the VoL compares best case learning behavior to best case Nash. For the class of 2 × 2 (cost minimization)
games PoL is at most two and this bound is tight, whereas VoL is at least 3/2 and we conjecture
that this bound is tight as well. Both PoL and VoL become unbounded for slightly larger games
(e.g. 2 × 3).

We conclude the paper with experimentation where we compute the PoL and VoL for randomly
generated games. We find a high number of games possess a PoL or VoL equal to 1, indicating no
improvement or degradation when moving from NE to CCE. The frequency of higher ratios decreases
sharply with their value, akin to a power-law distribution. Higher values are obtained for 3 × 3 games due
to the unboundedness results proved in Section 7. When plotted against each other, PoL and VoL reveal a
strong anti-correlation effect. High PoL is suggestive of low VoL and vice versa. Understanding the
topology of the Pareto curve on the space of (PoL, VoL) could quantify the tradeoffs between the risk and
benefits of learning.
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2 Related work

2.1 Convergence to Nash equilibria and no-regret dynamics

No-regret dynamics in games are central to the field of game theory and multi-agent learning (Shoham
et al., 2007). Our protocols improve upon prior work that established convergence only in 2 × 2 games
(Bowling, 2005). These dynamics do not converge in polynomial time, for good reason. Complexity
results strongly indicate that no such fast dynamics exist for general games (Hart & Mansour, 2007;
Daskalakis et al., 2009). Instead, this is a characterization result studying the tension between achieving
no-regret guarantees and equilibration.

Brafman and Tennenholtz (2004) introduce a normative approach to learning in games where the
learning algorithms themselves are required to be in equilibrium . That is, a deviation from the
learning algorithm by a single agent (while the others stick to their algorithms) will eventually (after
polynomial number of steps) become irrational. On the other hand, if all agents stick to their
prescribed learning algorithms then the expected payoff obtained by each agent will after polynomial
number of steps be (close to) the value it could have obtained in a NE, had the agents known the game from
the outset.

The AWESOME learning procedure (Conitzer & Sandholm, 2007) also leads to convergence to NE of
the one-shot game. It presents the same concept of increasing periods of time after which the algorithm
‘forgets’ and restarts. A probabilistic bound akin to Hoeffding—Chebyshev—is used to tune the length of
these periods. Our algorithm differs in that the learning happens over the first three stages, while the last
one is simply an implementation of the NE.

Repeated games often employ tit-for-tat strategies to enforce higher payoffs (Littman & Stone, 2005),
a concept that appears in the algorithm of Section 4. But where we focus on achieving a NE of the one-shot
game, repeated games exhibit a larger set of enforceable NE following the so-called Folk theorem
(Friedman, 1971).

The ‘weak’ convergence of time average no-regret dynamics to the set of CCE (Young, 2004) has been
useful in terms of extending price of anarchy (Roughgarden, 2009) guarantees from NE to no-regret
learning, which is usually referred to as the price of total anarchy (Blum et al., 2008). Our equivalence
result reduces the search for both best/worst case no-regret dynamics to a search over CCE which define
a convex polytope in the space of distributions over strategy outcomes. Similar results can be proven for
calibrated forecasting rules in almost every game (Foster & Vohra, 1997). Our conclusions extend easily to
no-internal-regret algorithms and CE, using Φ-regret (Greenwald & Jafari, 2003), which encompasses
both no-internal and no-external regret.

2.2 No-regret in congestion games

In non-atomic congestion games regret-minimizing algorithms lead to histories of play where on most
days the realized flow is an approximate equilibrium (Blum et al., 2010). In atomic congestion games
general no-regret dynamics do not converge to NE. If we focus on specific no-regret dynamics such as
multiplicative weight updates, equilibration can be guaranteed (Kleinberg et al., 2009, 2011; Palaiopanos
et al., 2017). Our findings establish a hybrid. In atomic congestion games as the size of individual agents
decreases, the set of CCE focuses most of its probability mass on states where all but a tiny fraction of
agents have a small incentive to deviate to another strategy. When the size of each agent becomes
infinitesimally small, CCE become arbitrarily focused on the unique non-atomic Nash flow.

2.3 Equilibrium hierarchy and inefficiency ratios

In the case of utility games, two different social welfare ratios were introduced: the value of mediation
defined as the ratio between the best CE and the best NE and the value of enforcement, which compares the
worst CE to the worst NE (Ashlagi et al., 2008). The value of mediation is shown to be a small constant for
2 × 2 games while the value of enforcement is unbounded, and they both are unbounded for larger games.
Parallel results were obtained for cost games (negative utility) (Bradonjic et al., 2009), the setting we adopt
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in this study. It is NP-hard to compute a CCE with welfare strictly better than the lowest-welfare CCE
(Barman & Ligett, 2015). As a result our experimentation focuses on small instances but nevertheless
reveals a tension between the risks and benefits of learning.

3 Preliminaries

Let I be the finite set of players of the game Γ. Each player i∈ I has a finite strategy set Si and a cost
function ci: Si× S− i → [0, 1], where S− i = Πj≠ i Sj. A player i∈ I may choose his strategy from his set of
mixed strategies Δ(Si), that is the set of probability distributions on Si. We extend the cost function’s
domain to the mixed strategies naturally, following the linearity of expectation.

DEFINITION 3.1. A NE is a vector of distributions p�i
� �

i2I2
Q

i2I Δ Sið Þ such that ∀ i∈ I, ∀ pi∈Δ(Si):

ci p
�
i ; p

�
�i

� �
⩽ ci pi; p

�
�i

� �
An ϵ-NE for ϵ> 0 is one such that

ciðp�i ; p��iÞ⩽ ciðpi; p��iÞ + ϵ

This notion of equilibrium comes with a few caveats. First, a game may possess several distinct NE.
Second, computing a NE is hard (Daskalakis et al., 2009). Third, in general, it is also not the case
that learning procedures in a game always converge to a NE (Sandholm, 2010). Thus, subsequent efforts at
finding the solution of a game yielded two new concepts: the CE and the CCE, fixing caveats two and
three. Caveat one is obviously still an issue since the set of NE is a subset of the set of CE, itself a subset of
the set of CCE. We defer further comparisons between the different equilibrium concepts until Section 7.

We first give the definition of a CE (Aumann, 1974).

DEFINITION 3.2. A CE is a distribution π over the set of action profiles S =
Q

iSi such that given any
player i and pair of distinct strategies si, s'i∈ Si, si≠ s′i,X

s�i2S�i

ciðsi; s�iÞπðsi; s�iÞ⩽
X

s�i2S�i

ciðs′i; s�iÞπðsi; s�iÞ

Given now is the definition of CCE (Young, 2004).

DEFINITION 3.3. A CCE is a distribution π over the set of action profiles S =
Q

iSi such that given any
player i and any strategy si∈ Si,X

s2S
ciðsÞπðsÞ⩽

X
s�i2S�i

ciðsi; s�iÞπiðs�iÞ

where πiðs�iÞ=
P

si2Si πðsi; s�iÞ is the marginal distribution of π with respect to i.

The next definitions outline a framework to what ‘learning’means for agents involved in a game. They
stem from the literature of online algorithms, where an agent with a restricted set of actions repeatedly
makes choices that yield a certain payoff.

An online learning algorithm is an online algorithm for choosing a sequence of elements of some fixed
set of actions, in response to an observed sequence of cost functions mapping actions to real numbers. The
tth action chosen by the algorithm may depend on the first t− 1 observations but not on any later obser-
vations; thus the algorithm must choose an action at time t without knowing the payoffs of any actions at
that time. More formally,

DEFINITION 3.4. An online sequential problem consists of a feasible set F∈Rm, and an infinite sequence of
cost functions {c1, c2 ... ,}, where ct : Rm → R.
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At each time step t, an online algorithm selects a vector xt∈Rm. After the vector is selected,
the algorithm receives f t, and collects a payoff of f t(xt). All decisions must be made online, in the sense
that an algorithm does not know f t before selecting xt, that is, at each time t, a (possibly randomized)
algorithm can be thought of as a mapping from a history of functions up to time t, f 1,… , f t − 1, to
the set F.

Given an algorithm A and an online sequential problem (F,{c1, c2,… }), if {x1, x2,… } are the vectors
selected by A, then the cost of A until time T is

PT
t = 1 c

tðxtÞ. Regret compares the performance of an
algorithm with the best static action in hindsight.

DEFINITION 3.5. The regret of algorithm A at time T is defined as

RðTÞ=
XT
t = 1

ctðxtÞ�min
x2F

XT
t = 1

ctðxÞ

An algorithm is said to have no-regret or that it is Hannan consistent (Young, 2004), if for every online
sequential problem, its regret at time T is o(T). For the context of game theory, which is our focus here, the
following definition of no-regret learning dynamics suffices.

DEFINITION 3.6. The regret of agent i at time T is defined as

RðTÞ=
XT
t = 1

ciðstÞ�min
s0i2Si

XT
t = 1

ciðs0i; st�iÞ

We will also make use of Hoeffding’s (1963) inequality.

THEOREM 3.1 Suppose ðXkÞnk = 1 are independent random variables taking values in the interval [0, 1]. Let
Y denote the empirical mean Y = 1

n

Pn
k= 1

Xk . Then for t> 0

P Y�E½Y �j j⩾ tð Þ⩽ 2 exp ð�2nt2Þ

4 No-regret dynamics converging to Nash equilibrium in self-play

A key question of interest when analyzing extremal behavior of no-regret dynamics in general games is
whether there exists a hidden implicit tension between achieving no-regret guarantees against malicious
agent behavior while at the same time converging to NE in self-play. The following theorem establishes
that this is not the case:

THEOREM 4.1. In a finite game with N players, for any ϵ> 0, there exist learning dynamics that satisfy
simultaneously the following two properties:

∙ Against arbitrary opponents their average regret is at most ϵ.
∙ In self-play they converge pointwise to a ϵ-NE with probability 1.

PROOF . We divide the play in four stages. In the first stage, players explore their strategy space sequentially
and learn the costs obtained from every action profile. In the second stage, they communicate
their costs, using a procedure akin to cheap talk (Aumann & Hart, 2003). For example, they can use their
actions as encoders for the payoffs previously revealed during the exploration stage, and transmit the
knowledge they gained then to the other players. In the third stage, they compute the desired ϵ-NE
that is to be reached, for ϵ> 0. In the fourth stage, players are expected to use their equilibrium strategies
and they monitor other players in case these deviate from equilibrium play. Below the proof, we give
a pseudocode version of the algorithm implemented by the players, to summarize the four stages
(in Algorithm 4).

The players are expected to follow a communication procedure and implement a no-regret strategy in
the case of another player’s deviation. Since the first three stages have finite length (though very long:
exponential in the size of the cost matrix (Hart & Mansour, 2007)), the no-regret property follows.

Limits and limitations of no-regret learning in games 5

https://doi.org/10.1017/S0269888917000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888917000133


The restriction on convergence to an ϵ-NE, instead of a mixed NE (so ϵ = 0) arises from the fact that even
games with rational costs can possess equilibria that are irrational (Nash, 1951).

Settlement on a particular NE can be decided by a fixed rule before play, such as lexicographically in
the players’ actions or the NE that has the lowest social cost.

In the fourth stage, players have settled on an equilibrium and will implement it. To fulfill the
requirement of pointwise convergence, it is not enough for the players to stick to a deterministic sequence
of plays.We want them to pick randomly a move from their equilibrium distribution of actions. During this
process, the generated sequence of play of an opponent may not closely match his equilibrium distribution.
In that case, the players need to decide whether the opponent has been truthful but ‘unlucky’ or delibe-
rately malicious.

We achieve this by dividing the fourth stage in blocks of increasing length. Let n 2 N denote the
block number, we set block n to have a length of l(n) = n2 turns. On these blocks, the players will
make use of tests to verify that all other opponents are truthful, in the sense that they follow the prescribed
mixed NE. We want to find a test such that a truthful but possibly unlucky player will fail almost
surely a finite number of these tests, while a malicious player will almost surely fail an infinite number
of these.

We first look at the case where we have N players with only two strategies, 0 and 1. We can then
identify the equilibrium distribution of a player i, to the probability p�i that he chooses action 1.

Suppose the play is at the nth block and player i chooses to implement the mixed strategy pi. Let
Xi
k

� �
k= 1;:::;lðnÞ denote the sequence of strategies chosen by player i, such that Xi

k � BðpiÞ and all are
independent. Let Yi

n be the empirical frequency of strategy 1 during block n:

Yi
n =

1
lðnÞ

XlðnÞ
j= 1

Xi
j

If the player is truthful and implements the prescribed NE, then we have pi = p�i and we
expect the empirical frequency of strategy 1 Yi

n to be close to p
�
i . Otherwise, a malicious player will choose

pi ≠ p�i .
Let Ai

n denote the event A
i
n = Yi

n�p�i
�� ��⩾ tn
� �

. In other words, we are trying to determine how far the
empirical frequency of strategy 1 is from the expected equilibrium distribution. If the event Ai

n is realized,
then the test is failed: the empirical distribution of play is too far from the expected NE distribution. The
idea is to make block after block the statistical test more discriminating, that is get a decreasing sequence
(tn)n such that a truthful player will only see a finite number of events Ai

n happen, while a malicious one will
face an infinite number of failures.

We claim that picking tn = n−α with 0<α< 1 is enough. Indeed by Hoeffding’s inequality we
have that

P Ai
n

� �
⩽ 2 exp �2n2t2n

� �
if the player is truthful (remember that block n has length l(n) = n2).

Extending the proof to the case where a player i has finite strategy set Si is not hard. Let ðpisÞs2S be the
distribution that the ith player decides to implement, while pi;�s

� �
s2S is the NE distribution for player i.

Let Xi;s
k follow a multinomial distribution of parameters ðpisÞs2S. Then Yi;s

n is the empirical frequency of
strategy s during block n for player i. We define events

Ai;s
n = Yi;s

n �pi;�s
�� ��⩾ tn
� �

Then we define our test Ai
n to be ∪ s2SiA

i;s
n . Using Hoeffding’s inequality again we obtain:

P Ai
n

� �
=P ∪ s2SiA

i;s
n

� �
⩽
X
s2Si

P Ai;s
n

� �
⩽ Sij j ´ 2 exp �2n2t2n

� �
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Thus
P

P Ai
n

� �
< +1 for 0< α< 1, so by Borel–Cantelli we know that the Ai

n will only ever happen a
finite number of times if the player is truthful, that is if E Yi;s

n

� �
= pi;�s .

To satisfy the no-regret property, we do the following: if one of the opponents failed the statistical
test described earlier, then all players will implement a no-regret strategy for a time n2 + δ to compensate
for that. We call this block of size n2 + δ a compensating block.

If a finite number of tests fails, then the whole sequence satisfies the ϵ-regret property, since players are
arbitrarily close to the ϵ-NE. When one of the tests fails, say, at block n, the maximum regret accumulated
is of size n2. The following compensating block guarantees that overall regret has grown by a value
bounded by n1− δ, so sublinearly.

We also guarantee that the expected turn number that ends the last of the truthful player’s potential
failed block is not infinity. Indeed let Bn be the event that the last failed block is the nth one. Then, if
An = ∪ N

i= 1A
i
n,

PðBnÞ=PðAnÞ ´P Ac
n + 1

� �
¼

⩽ 2 exp �2n2t2
� �

´ 1 ¼

⩽ 2 exp �2n2t2
� �

We use Ac to denote the complement of event A. The first equality holds by independence of the blocks,
the second inequality is true from Hoeffding’s and the fact that a probability is less or equal to 1. We then
define L to be the index of the turn that ends the last compensating block of a truthful player. L is a random
variable on the integers. We have

E½L�⩽
X
n

Xn
k= 1

k2 + k2 + δ
� � !

´ 2 exp �2n2t2
� �

< +1

We bound E½L� by assuming a truthful player got every test wrong up to the latest failed one. Then the
last turn L occurs at index∑n(n

2 + n2 + δ). We multiply this by the bound on PðBnÞ and use the property of
the exponential to conclude that E½L� is bounded. □

5 Equivalence between coarse correlated equilibria and no-regret dynamics

The long-run average outcome of no-regret learning converges to the set of CCE (Young, 2004). Here, we
argue the reverse direction.

THEOREM 5.1. Given any CCE C of a normal form game with a finite number of players N and finite
number of strategies, there exist a set of N no-regret processes such that their interplay
converges to the CCE C.

PROOF. Suppose that we are given a CCE C of a N-player game1. There exists a natural number K,
such that all probabilities are multiples of 1/K. We can create a sequence of outcomes V of length K, such
that the probability distribution that chooses each such outcome with probability 1/K is identical to the
given CCE C. The high level idea is to have the agents play this sequence in a sequential, cyclical manner
and punish any observed deviation from it by employing any chosen no-regret algorithm (e.g. Regret
Matching).

Let us denote the jth element of this sequence as < xj1; x
j
2; :::; x

j
N > , where 0⩽ j⩽K − 1. Each element of

this sequence will act as a recommendation vector for the no-regret algorithm. Given the sequence above
we are ready to define for each of the N players a no-regret algorithm, such that their interplay converges to
the given CCE C.

1 We will assume that all involved probabilities are rational. Since the set of coarse correlated equilibria is a convex
polytope defined Ax⩽ b where all entries of A, b are rational every correlated equilibrium involves rational prob-
abilities or can be approximated with arbitrarily high accuracy by using rational probabilities.
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Data: N players
Data: ϵ> 0
Data: 0< α< 1
Data: δ> 0
Step 1: Exploration
begin
while One profile has not been played do
Play new profile

end
end
Step 2: Communication
begin
Players communicate their costs by encoding them using their actions

end
Step 3: Computation
begin
The ϵ-Nash Equilibrium to be played is computed from the costs

end
Step 4: Implementation
Data: ϵ-NE p*

begin
n ← 1 // n is the block number
while n> 0 do
l ← n2

t ← n− δ

Ci,s ← 0, ∀ i, s // C counts use of strategy s by player i
for j ← 1 to l do
Players move according to S = (s1,… , sN)
for i ← 1 to N do
Ci,S(i) ← Ci,S(i) + 1

end
end
if ∃i, s such that Ci;s

l �pi;�s
��� ���⩾ t then

All players play a no-regret procedure for n2+δ rounds
end
n ← n + 1

end
end

Algorithm 1: Proof of Theorem 4.1. Players converge to an ϵ-NE in self-play while maintaining
no-regret.

The algorithm for the ith player is as follows: at time zero she plays the ith coordinate of the first
element in V. As long as the other players’ responses up to any point in time t are in unison with V, that is
for every t′< t and j≠ i the strategy implemented by player j at time t′ was xt0 modK

j then the ith player will
follow the recommendation of the sequence V sequence playing xtmodK

i . However, as soon as the player
recognizes any sort of deviation from V by another player then the player will just disregard any following
recommendations coming from V and will merely follow from that point on a no-regret algorithm of
her liking.

It is straightforward to check that in self-play this protocol converges to the given CCE C. We
need to also prove that all of these algorithms are no-regret algorithms. When analyzing the accumulated
regret of any of the algorithms above we split their behavior into two distinct segments. The first
segment corresponds to the time periods before any deviation is recorded from the recommendation
provided by C. For this segment, the definition of CCE implies that each agent experiences bounded total
regret (only corresponding to the last partial sequence of length at most K). Once a first deviation is
witnessed by the player in question, she turns to her no-regret algorithm of choice and the no-regret
property then follows from this algorithm. As a result, each algorithm exhibits vanishing (average) regret
in the long run. □
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Data: N players
Data: Coarse correlated equilibrium C = (πs)s∈ S, πs rational
Data: K integer such that all πs are multiple of 1/K
Data: Sequence V of strategy profiles such that frequency of each profile s is equal to πs
begin
b ← True
while b do
for j ← 1 to |V| do
Players follow V(j)
if One player does not follow V(j) then
b ← False
Break For

end
end

end
All players follow a no-regret protocol

end

Algorithm 2: Proof of Theorem 5.1.

6 Collapsing equilibrium classes

6.1 Congestion games with small agents

We have a finite ground set of edges E. There exist a constant number k of types of agents and each agent of
type i has an associated set of allowable strategies/paths Si. S is the set of possible strategy outcomes.
Let Ni be the set of agents of type i. We assume that each agent of type i controls a flow of size 1/|Ni|, which
he assigns to one of his available paths Si. This can also be interpreted as a probability distribution over the
set of strategies Si. Each edge e has a non-decreasing cost function of bounded slope ce : R ! R

which dictates its latency given its load. The load of an edge e is ‘eðsÞ=
P

i
ki
Nij j, where ki denotes the

number of agents of type i which have edge e in their path in the current strategy outcome. The
cost of any agent of type i for choosing strategy si∈ Si is csiðsÞ=

P
e2si ce ‘eðsÞð Þ. In many cases, we abuse

notation and write ‘e; csi instead of ‘eðsÞ; csiðsÞ when the strategy outcome is implied. The social cost,
that is, the sum of agents’ costs, is equal to CðsÞ= Pe ceð‘eÞ‘e. Finally, it is useful to keep track of the
flows going through a path si or an edge e when focusing on agents of a single type i. We denote these
quantities as ‘isiðsÞ and ‘ieðsÞ=

P
si3e ‘

i
si
ðsÞ. For any strategy outcome s and any type i,

P
si2Si ‘

i
si
ðsÞ= 1

defining a distribution over Si.
We normalize the cost functions uniformly so that the cost of any path as well as the increase to the cost

of any path due to the deviation by a single agent are both upper and lower bounded by absolute positive
constants. To simplify the number of relevant parameters we treat the number of resources, paths as
a constant.

THEOREM 6.1. In congestion games with cost functions of bounded slope, as long as the flow that each
agent controls is at most ϵ, any CCE applies 1 −O(ϵ1/4) probability to set of outcomes
where (at most) O(ϵ1/8) fraction of agents have Ω(ϵ1/8) incentive to deviate.

PROOF. Let π be a CCE of the game and let π(s) the probability that it assigns to strategy outcome s. By
definition of CCE, the expected cost of any agent cannot decrease if he deviates to another strategy. We
consider two possible deviations for each agent of type i. Deviation A has the agent deviating to a strategy
that has minimal expected cost according to π (among his available strategies). Deviation B has the agent
deviating to the mixed strategy that corresponds to expected flow of all the agents of type i in π. If each
agent controlled infinitesimal flow then his cost would be equal to

min
si2Si

Es� π

X
e2Si

ce ‘eðsÞð Þ
" #
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and X
si2Si

Es� π ‘isiðsÞ
h i

Es� π

X
e2Si

ce ‘eðsÞð Þ
" #

when deviating to A and B, respectively.

Furthermore, his expected cost at πwould be less or equal to his cost when deviating to A, which would
again be less or equal to his cost when deviating to B. Due to the normalization of the cost functions and the
small flow ⩽ϵ that each agent controls this ordering is preserved modulo O(ϵ) terms. This ordering and
size of error terms is preserved when computing the (expected) social costs according to π, the sum of the
deviation costs when each agent deviates according to A and the sum of all deviation costs when they
deviate according to B. Thus,

Es� π ½CðsÞ�⩽
X
i

min
si2Si

Es� π

X
e2Si

ce ‘eðsÞð Þ
" #

+OðϵÞ

⩽
X
i

X
si2Si

Es� π ‘isiðsÞ
h i

Es� π

X
e2Si

ce ‘eðsÞð Þ
" #

+OðϵÞ

By applying Chebyshev’s sum inequality we can derive that for each edge e

Es� π ‘eðsÞ½ �Es� π ce ‘eðsÞð Þ½ �⩽Es� π ‘eðsÞce ‘eðsÞð Þ½ �

Taking summation over all edges, we produce the inverse of our first inequality, since
‘eðsÞ=

P
i

P
si3e ‘

i
si
ðsÞ, implying that all related terms are equal to each other up to errors of O(ϵ).

By linearity of expectation we have that

Es� π ‘eðsÞ�Es� π ‘eðsÞ½ �ð Þce Es� π ‘eðsÞ½ �ð Þ½ �= 0

Combining everything together we derive that

Es� π

X
e

‘eðsÞ�Es� π ‘eðsÞ½ �ð Þ � ceð‘eðsÞð Þ�ce Es� π ‘eðsÞ½ �ð Þ
" #

=OðϵÞ

Since costs ce(x) are non-decreasing, the function whose expectation we are computing is always non-
negative. In fact, since we have assumed that the slope of the cost functions is upper, lower bounded by
some fixed constants we have that

Es� π

X
e

‘eðsÞ�Es� π ‘eðsÞ½ �ð Þ2 =OðϵÞ

By applying Cauchy–Schwarz inequality, we derive that

Es� π

X
e

j‘eðsÞ�Es� π½‘eðsÞ� j =Oð ffiffiffi
ϵ

p Þ

The CCE π is closely concentrated around its ‘expected’ flow Es� π ‘eðsÞð Þ. For simplicity we denote
this continuous flow y. The set of strategy outcomes S′⊂Swith

P
e ‘eðs0Þ�‘eðyÞj j> ϵ1 = 4 must receive (in π)

cumulative probability mass less than O(ϵ1/4). If we consider the rest strategy outcomes, which we denote
as ‘good’, then we have that in each ‘good’ outcome both the social cost (i.e. the sum of the costs of all
agents) as well as the cost of the optimal path are always within O(ϵ1/4) of the respective social cost and
cost of the optimal path under flow y. Finally, by combining our main inequality with the fact that
Es� π

P
e ‘eðsÞ�Es� π ‘eðsÞ½ �j j=Oð ffiffiffi

ϵ
p Þ we have that the social cost under flow y are within Oð ffiffiffi

ϵ
p Þ of the

cost of the optimal path under y.
Indeed, since we have

Es� π

X
e

‘eðsÞ�Es� π½‘eðsÞ�j j=O
ffiffiffi
ϵ

p� �
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the terms

X
i

min
si2Si

Es� π

X
e2Si

ce ‘eðsÞð Þ
" #

and X
i

min
si2Si

X
e2Si

ce Es� π ‘eðsÞ½ �ð Þ

as well as the pair of

X
i

X
si2Si

Es� π½‘isiðsÞ�Es� π

X
e2Si

ceð‘eðsÞÞ
" #

with the term X
i

X
si2Si

Es� π ‘isiðsÞ
h iX

e2Si
ce Es� π ‘eðsÞ½ �ð Þ

are within Oð ffiffiffi
ϵ

p Þ of each other, but the first and last term are within O(ϵ) of each other, implying that all
terms are within Oð ffiffiffi

ϵ
p Þ.

Hence, all of the ‘good’ outcomes have social cost within O(ϵ1/4) of the cost of their own optimal path.
So, at most O(ϵ1/8) agents in each ‘good’ outcome can decrease their cost by Ω(ϵ1/8) by deviating to
another path. □

6.2 Correlated equilibria = coarse correlated equilibria for N agents two strategy games

We present another result allowing us to collapse two equilibrium classes in a specific case: any number
N of players having two strategies each.

PROPOSITION 6.1. For games where all players have only two strategies, the set of CCE is the same as the set
of CE.

PROOF. Let i be one of the players, suppose his two strategies are A and D, where we pick D to be the
deviating one. Then the requirement for CE states that

X
s�i2S�i

uiðs�i;DÞπðs�i;AÞ⩾
X

s�i2S�i

uiðs�i;AÞπðs�i;AÞ

while the corresponding one for CCE is

X
s�i2S�i

uiðs�i;DÞðπðs�i;AÞ + πðs�i;DÞÞ⩾X
s�i2S�i

ðuiðs�i;DÞπðs�i;DÞ + uiðs�i;AÞπðs�i;AÞÞ

which is equivalent after removing the
P

s�i2S�i

uiðs�i;DÞπðs�i;DÞ term on both sides. □

7 Social welfare gaps for different equilibrium concepts

We define a measure to compare equilibria obtained under no-regret algorithms to NE: the VoL. This
measure quantifies by how much the players are able to decrease their costs when relaxing the equilibrium
requirements from Nash to CCE.
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DEFINITION 7.1. Define the VoL in cost games VoL as the ratio of the social cost of the best NE to that of the
best CCE.

VoL Γð Þ= best NE
best CCE

Since the set of NE is included in the set of CCE, then the best NE in terms of social cost will
always be greater than the best CCE. Thus, we take the ratio so that the VoL is always ⩾1, a convention
also found in other papers related to the price of anarchy (Ashlagi et al., 2008; Bradonjic et al., 2009).

Conversely, we define the PoL as the ratio of the worst CCE to the worst NE.

DEFINITION 7.2. Define the PoL in a cost game Γ as the ratio of the social cost of the worst CCE to that of
the worst NE.

PoL Γð Þ= worst CCE
worst NE

The ratio of the worst CE to the worst NE was previously defined as the price of mediation (PoM)
(Bradonjic et al., 2009). With the help of Proposition 6.1, we can extend this result to learning algorithms
that possess the no-regret property.

7.1 2× 2 games

Denote by Γ2 × 2 the class of 2 × 2 games. We are interested in the best-case scenario: how high the ratio of
the VoL can get for all 2 × 2 games.

1e+01

1e+03

1e+05

1.0 1.1 1.2

Value of Learning (2 players)

C
o

u
n

t

Figure 1 Histogram of values of learning obtained over 107 simulations for 2 × 2 games. A log10 scale is used for
the y-axis
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DEFINITION 7.3. Denote by VoL Γ2 ´ 2ð Þ= supΓ2Γ2´ 2
VoLðΓÞ the VoL for the class of 2× 2 games.

PROPOSITION 7.1. VoL Γ2 ´ 2ð Þ⩾ 3
2

PROOF. Consider the following cost game for x> 1

L R
T
B

0; x�1
1; 1



x; x

x�1; 0

�

The game admits three NE: (T, L), (B, R) and ((0.5, 0.5), (0.5, 0.5)). The first two have social cost equal
to x− 1 while the mixed equilibrium’s is x. The minimum social cost is thus obtained for the pure
equilibria, at x − 1.

The CE that minimizes social cost assigns probability 1/3 to every action profile except for (T, R). Its
social cost is 2x/3. Hence, in this game, VoL= 3ðx�1Þ

2x . Taking x → +∞, we derive VoL Γ2 ´ 2ð Þ⩾ 3
2. □

We conjecture that this (3)/(2) bound is tight, that is, there is no 2 × 2 game Γ such that VoL(Γ)> 3/2. To
support this claim, we run numerical simulations on games generated from a random uniform distribution.
A notable result is the predominance of games for which the ratios are 1, that is mediation does not better
the social welfare/cost. We then observe higher ratios at a lower rate, hence our histograms look like those
of a power law (Figure 1). The obtained ratios come close to the 3/2 threshold, without going further (only
a few ratios approaching 1.4 were observed over 107 simulations).
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Figure 2 Two-dimensional histogram of value of learning and price of learning over 106 simulations for 2 × 2
games. The count legend is to be interpreted as a power of 10 (where a count of 5 is 105 observations)
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PROPOSITION 7.2. PoL(Γ2 × 2) = 2

PROOF. By Proposition 6.1, the social cost of the worst CE is equal to the social cost of the worst CCE,
since the set of CE is the same as the set of CCE. Then by Bradonjic et al. (2009), we have that PoL
(Γ2 × 2) = 2. □

In Figure 2 we present a two-dimensional (2D) histogram of the joint distribution of the VoL and PoL.
106 games were generated and for each we compute both values. The size of the dot is representative of
how many games possess particular values for the VoL and the PoL.

7.2 Larger games

Next, we examine larger games, that is, games with more than two players and/or more than two
strategies per player. Let Γm1;m2 denote a two player game with, respectively m1 and m2 strategies for each
player.

PROPOSITION 7.3. For sets of games Γm1;m2 , maxðm1;m2Þ> 2, we have VoLðΓm1;m2Þ= +1:

PROOF. Consider for ϵ< 1
2 the game

L C R
T
B

1�ϵ; 1�ϵ
1
2 ; 2ϵ



2ϵ ; 3ϵ2
ϵ; 1�ϵ

2ϵ; 1
2

1; 2ϵ

�
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Figure 3 Histogram of ratios best Nash equilibrium/best coarse correlated equilibria (value of learning) obtained
over 106 simulations for 3 × 3 games
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The game admits three NE: (L, B), ((0, 1), (2/3, 0, 1/3)) and (2/3, 1/3), (0, 1 − ϵ, ϵ). Of the three, the latter
has the lowest social cost, equal to 1/3 + o(ϵ), where o(ϵ) → ϵ→ 0 0.

We can define the following CE π:

L C R
T
B

0
ϵ



1� 5ϵ

2
0

ϵ
ϵ=2

�

The best social cost in a CE will be lower than that of π, which is o(ϵ). We also have that the best social
cost in a CCE will be lower than that of a CE. Thus taking ϵ → 0, we obtain an unbounded VoL. □

The set of CE being included in the set of CCE, we can again extend some results from previous papers
to CCE.

PROPOSITION 7.4. For games Γm1;m2 , maxðm1;m2Þ> 2, we have PoL Γm1;m2

� �
= +1:

PROOF. Since CE⊆CCE, the social cost of the worst CCE is higher than that of the worst CE. By Bradonjic
et al. (2009) we have that PoM = +∞, hence PoL = +∞. □

We run a number of simulations to see how VoL is distributed for random games (Figure 3). We have
also included a 2D histogram (Figure 4) showing (VoL, PoL) for a number of generated games. Some
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Figure 4 Two-dimensional histogram of value of learning and price of learning over 106 simulations for 3 × 3
games. The count legend is to be interpreted as a power of 10 (where a count of 5 is 105 observations). We zoomed
in the portion [1, 2.5]2 to show finer results
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sampled games have high VoL and some high PoL but not both, indicating a competitive relationship
between the two quantities.

8 Conclusion

No-regret is shared by many natural learning procedures implemented in multi-agent settings. Due to their
convergence (to the set of CCE) they are useful in practice. But if we look closer, it is not clear where this
convergence leads the play. We have first shown that we can steer it using a somewhat unnatural algorithm
to any NE of the one-shot game, while maintaining the no-regret property. In the next sections, we have
understood better how the class of CCE relates to no-regret dynamics, and to the smaller class of CE. This
lead us to define more general measures of the price of anarchy: if it is hard to predict where the play
following no-regret dynamics will go, we are at least able to give some price of anarchy-type bounds on the
resulting payoffs. We have concluded with experimental results that show a concentration of small ratios,
indicating a closeness to NE payoffs. An interesting open question is to prove our conjecture about the
VoL for 2 × 2 games, with our proven lower bound of 3/2, which we believe to be tight.
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