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Heat flux correlation for high-speed flow in the
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An analytical correlation is developed for stagnation-point heat flux on spherical
objects travelling at high velocity which is accurate for conditions ranging from the
continuum to the free-molecular flow regime. Theoretical analysis of the Burnett
and super-Burnett equations is performed using simplifications from shock-wave and
boundary-layer theory to determine the relative contribution of higher-order heat flux
terms compared with the Fourier heat flux (assumed in the Navier–Stokes equations).
A rarefaction parameter (Wr ≡ M2ω

∞ /Re∞), based on the free-stream Mach number
(M∞), the Reynolds number (Re∞) and the viscosity–temperature index (ω), is
identified as a better correlating parameter than the Knudsen number in the transition
regime. By studying both the Burnett and super-Burnett equations, a general form
for the entire series of higher-order heat flux contributions is obtained. The resulting
heat flux expression includes terms with dependence on gas properties, stagnation
to wall-temperature ratio and a main dependence on powers of the rarefaction
parameter Wr. The expression is applied as a correction to the Fourier heat flux
and therefore can be combined with any continuum-based correlation of choice.
In the free-molecular limit, a bridging function is used to ensure consistency with
well-established free-molecular flow theory. The correlation is then fitted to direct
simulation Monte Carlo (DSMC) solutions for stagnation-point heat flux in high-speed
nitrogen flows. The correlation is shown to accurately capture the variation in heat
flux predicted by the DSMC method in the transition flow regime, while limiting to
both continuum and free-molecular values.

Key words: aerodynamics, compressible flows, rarefied gas flow

1. Introduction
Low-density compressible flow conditions experienced by objects entering the

atmosphere at high speed are challenging to model. The relevant non-dimensional
scaling parameter is the Knudsen number (Kn ≡ λ/L), defined as the ratio between
the mean free path of gas molecules (λ) and a characteristic length scale of interest
(L). The mean free path λ varies by orders of magnitude between low earth orbit
and sea level. Furthermore, L can be large for objects such as meteors and blunt
spacecraft or can be small for space debris and sharp leading edges on flight vehicles
where high heat flux becomes a design constraint.

† Email address for correspondence: singh455@umn.edu
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982 N. Singh and T. E. Schwartzentruber

For Kn > 10 the flow around the object of interest can be considered to be
free-molecular, where analytical solutions exist for heat flux and shear stress
(or piecewise analytic for complex geometries). For Kn < 0.01 the compressible
Navier–Stokes equations with Newtonian and Fourier models for shear stress and
heat flux are accurate and can be solved by methods from computational fluid
dynamics (CFD). In the transition regime, 0.01 < Kn < 10, the Newtonian and
Fourier models become inaccurate and one must revert to the Boltzmann equation
to accurately model the gas flow. Free-molecular solutions can be obtained very
quickly on modern computers, whereas CFD simulations require substantially more
time. Solutions to the Boltzmann equation for high-speed flows are most accurately
and efficiently obtained using the direct simulation Monte Carlo (DSMC) method
(Bird 1994). Direct simulation Monte Carlo calculations are equally (and often more)
expensive compared with CFD.

Although these solution methods are highly accurate, there is a need for simple
correlations for heat flux and drag for the purpose of rapid engineering analysis. Such
correlations are useful in early stages of design, for in-flight analysis required during
space missions, satellite orbit monitoring and energy management when atmospheric
conditions are highly variable, and on-board vehicle control architectures that require
aerodynamic response models. The focus of this article is to develop a physics-based
correlation for heat flux that can be applied across the entire Kn range for objects
that can be approximated by a sphere, for example leading edges with a specific nose
radius, blunt re-entry capsules, and large or small meteors and space debris.

Various correlations for predicting aero-heating have been proposed in the literature,
such as those by Fay & Riddell (1958) and Sutton & Graves (1971), and a recent
correlation developed by Brandis & Johnston (2014). Each of these correlations is
based on the continuum Navier–Stokes equations. The former two correlations result
from simplifying assumptions involving shock-wave and boundary-layer theory, while
the recent correlation of Brandis & Johnston (2014) results from curve-fitting a large
number of CFD solutions for stagnation-point heat flux. The CFD simulations included
a much more precise treatment of dissociation chemistry, vibrational non-equilibrium,
viscosity and thermal conductivity compared with the assumptions used in the former
two correlations, and the resulting correlation was shown to be more accurate (Brandis
& Johnston 2014). However, the most rarefied condition contained in the CFD solution
dataset that was used to fit the correlation corresponded to Kn= 0.035. Therefore, the
abovementioned correlations are likely to be inaccurate for higher Kn conditions as it
is well established that the Navier–Stokes equations do not provide accurate solutions
in the transition regime.

For flow conditions in the transition regime, analysis can be performed using
equations from hydrodynamics beyond Navier–Stokes, for example through applying
higher-order corrections to the Chapman–Enskog series solution (Chapman & Cowling
1970) of the Boltzmann equation. The Chapman–Enskog series is an asymptotic
solution of the linearized Boltzmann equation in terms of Kn. Maintaining the zeroth-,
first-, second- and third-order accurate Kn terms yield the Euler, Navier–Stokes,
Burnett and super-Burnett equations respectively (Chapman & Cowling 1970). It is
important to note that many of these hydrodynamics model equations have unresolved
issues, as reported in the literature (Kogan 1969; Bobylev 1982; Woods 1983;
Agarwal, Yun & Balakrishnan 2001; Struchtrup & Torrilhon 2003; Struchtrup 2005;
Gu & Emerson 2009), for example with regards to series convergence, unknown
coefficient values, etc. An article by García-Colín, Velasco & Uribe (2008) clearly
outlines many of the strengths and limitations of these equations. In addition, these
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Heat flux correlation for high-speed flow in the transitional regime 983

equations involve second-order (Burnett type) and third-order (super-Burnett type)
derivatives of flow quantities such as density, temperature and velocity. This poses
challenges for numerical solution techniques, and analytical solutions are generally
not possible with few exceptions (Singh & Agrawal 2014; Singh, Gavasane &
Agrawal 2014). Despite these challenges, these hydrodynamics models have been
successfully applied to low-speed rarefied problems, for which a number of important
rarefied phenomena have been captured (Zohar et al. 2002; He, Tang & Pu 2008; Gu,
Emerson & Tang 2009; Agrawal & Dongari 2011; Rana, Torrilhon & Struchtrup 2013;
Singh, Dongari & Agrawal 2013; Akintunde & Petculescu 2014; Khalil, Garzó &
Santos 2014; Rahimi & Struchtrup 2014; Singh & Agrawal 2014; Singh et al. 2014),
and have also been applied to hypersonic flows (Agarwal et al. 2001), for which a
simplified set of conventional Burnett equations was recently proposed specifically
for rarefied hypersonic flows (Zhao, Chen & Agarwal 2014).

In this article we employ the Bhatnagar–Gross–Krook (BGK)–Burnett equations
(Agarwal et al. 2001). We choose these equations as they have been used extensively
by previous researchers, they do not suffer numerical instabilities and they include
two-dimensional super-Burnett terms. We do not seek analytical or numerical solutions
to the equations. Rather, we make appropriate simplifications for stagnation-point heat
flux resulting from hypersonic flow over a sphere (§ 2) and quantitatively analyse
the contribution from higher-order heat flux terms relative to the heat flux terms in
the Navier–Stokes equations (§ 3). In this manner, the proposed correlation can be
applied in combination with an existing continuum correlation of choice (for example
the correlation of Brandis & Johnston 2014). Burnett, super-Burnett and higher-order
terms are considered, resulting in an exhaustive analysis of terms contributing to heat
flux in the transitional regime. We bridge the resulting correlation to the analytical
free-molecular solution in the limit of large Kn (§ 3). The new correlation is completed
by fitting free parameters to existing DSMC solution data from the literature (§ 4).

2. Analysis of higher-order heat flux contributions
2.1. Relevant scaling parameters

A schematic of the flow field generated by a sphere moving at hypersonic velocity is
shown in figure 1. In addition to using the sphere radius as the length scale required
to define Kn and Reynolds number (Re), additional gradient length scales must be
defined for the analysis of higher-order derivative terms. Length scales used in the
analysis of this section, shown in figure 1, include the shock layer thickness (ds),
the shock-wave standoff distance (∆), the nose radius (RN) and the boundary-layer
thickness (δ). Free-stream flow conditions are parametrized in terms of the Mach
number (M∞), Knudsen number (Kn∞) and Reynolds number (Re∞).

It should be noted that although figure 1 shows a clear demarcation of the various
layers, these layers will merge as the flow becomes more rarefied. As such rarefied
effects progress, Navier–Stokes predictions for stagnation-point heat flux will become
inaccurate. However, it is important to stress that simplifying assumptions should
remain consistent in the limit of continuum flow. Indeed, many of the approximations
made in this section are based on continuum flow theory, and it is the inclusion of
higher-order terms that provides a physics-based deviation from continuum results. As
the flow becomes highly rarefied, such approximations and the resulting correlations
become inaccurate, and it is in this regime where we bridge to the analytical
free-molecular solution (presented in § 3).
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x

y

FIGURE 1. Schematic diagram of hypersonic flow depicting various length scales.

2.2. Analysis of the super-Burnett heat flux contribution
In this section, we carry out an order-of-magnitude analysis of the full nonlinear
BGK–Burnett equation (Agarwal et al. 2001) and investigate the relative contribution
of higher-order terms to the stagnation-point heat flux on a sphere moving at
hypersonic speed. The y component of the super-Burnett-order heat flux vector
in the BGK–Burnett equation has following form:

qsB = µ3

pρ
R
(
θ18Tyyy + θ18Txxy − θ18

ρy

ρ
Tyy − θ18

ρy

ρ
Txx

)
+ µ

3

pρ
(θ19vyvyy + θ20vyuxy + θ6vyvxx + θ21uxvyy + θ22uxuxy

+ θ7uxvxx + θ23vxuyy + θ24vxvxy + θ6vxuxx + θ23uyuyy + θ24uyvxy + θ6uyuxx)

− µ
3

pρ

(
ρy

ρ
+ Ty

T

)
(θ13u2

x + 2θ14uxvy + 2θ17uyvx + θ17u2
y + θ17v

2
x + θ13v

2
y )

+ µ
3

pρ
R
T
(θ18TyTxx + θ18TyTyy). (2.1)

Here, ρ, T , p and µ are the gas density, temperature, pressure and viscosity, and R
is the specific gas constant. The terms u and v represent the bulk gas velocity in the
x-direction (normal to the stagnation line) and y-direction (parallel to the stagnation
line) respectively, as depicted in figure 1. The subscripts x and y denote partial
derivatives with respect to the independent variables (coordinate directions) x and
y. The values of θ are constant coefficients which result from the evaluation of
collision integrals in the Chapman–Enskog analysis, and in this case would be
specific to the use of the BGK collision operator within the Boltzmann equation. It
is important to note that the form of (2.1) is general to various forms of the BGK
collision operator. Only the coefficients, θ , will have different values depending on
the collision operator assumed, the collision cross-section model assumed or the
interatomic potential assumed. As a result, there is uncertainty in the values of the
coefficients, an important point that will be discussed in more detail later in this
section.
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Along the stagnation line, the flow properties ρ, T , p and v are symmetric about the
y-axis, while u is anti-symmetric. Symmetry dictates that ρx, Tx, px, vx and uy vanish.
The resulting simplified expression is

qsB = µ3

pρ
R
(
θ18Tyyy + θ18Txxy − θ18

ρy

ρ
Tyy − θ18

ρy

ρ
Txx

)
+ µ

3

pρ
(θ19vyvyy + θ20vyuxy + θ6vyvxx + θ21uxvyy + θ22uxuxy + θ7uxvxx)

− µ
3

pρ

(
ρy

ρ
+ Ty

T

)
(θ13u2

x + 2θ14uxvy + θ13v
2
y )+

µ3

pρ
R
T

(
θ18TyTxx + θ18TyTyy

)
.

(2.2)

To further simplify the heat flux expression, certain approximations can be made
based on the hypersonic laminar boundary-layer solution (Matting 1964) in the
vicinity of a stagnation point. Specifically, the pressure does not vary strongly in the
streamwise direction inside the boundary layer, hence ρy/ρ =−Ty/T can be utilized
for further simplification, resulting in the following form:

qsB = µ3

pρ
R
(
θ18Tyyy + θ18Txxy + 2θ18

Ty

T
Tyy + 2θ18

Ty

T
Txx

)
+ µ

3

pρ
(θ19vyvyy + θ20vyuxy + θ6vyvxx + θ21uxvyy + θ22uxuxy + θ7uxvxx). (2.3)

Moreover, the hypersonic laminar boundary-layer solution (Matting 1964) shows
that ∂v/∂y = −2Jβ and ∂u/∂x = −1/(2Jρ)∂(ρu)/∂y = ρsβ/ρ, where β is the
tangential velocity gradient at the edge of the stagnation-point boundary layer, the
subscript s denotes postshock conditions and J = 0 for 2D (cylinder) and J = 1 for
3D (sphere). For hypersonic flow, β can be approximated in terms of the speed
of sound (as = √γRT , where γ is the ratio of the specific heats of the gases)
as β = du/dx ≈ √2/γ as/RN (Anderson 1989). Furthermore, the pressure being
approximately constant along the stagnation streamline in the boundary layer results
in approximating the velocity gradients in terms of the temperature as ∂u/∂x= Tβ/Ts
and ∂2u/∂xy = β/Ts∂T/∂y. Finally, the second-order gradients of the velocities can
be now simplified as ∂2v/∂y2 ≈ 0 and ∂2v/∂x2 ≈ 0, simplifying qsB to the following:

qsB = µ
3

pρ
Rθ18

(
Tyyy + Txxy + 2

Ty

T
Tyy + 2

Ty

T
Txx

)
+ µ

3

pρ
(θ20vyuxy + θ22uxuxy). (2.4)

An additional assumption is made for simplification of the second- and third-order
derivatives of the temperature field:

∇2T
T
≈− 1

∆2
, (2.5)

where ∆ is a length scale which is chosen as the shock-wave standoff distance. In
the transition regime, the shock thickens and merges with the boundary layer, leaving
the shock-wave standoff distance as the only relevant characteristic length scale
for evaluating gradients. Physically, this is the distance over which the temperature
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gradient between postshock conditions and the wall temperature is established. This
additional assumption (2.5) reduces the super-Burnett heat flux term to the following
form:

qsB = µ
3

pρ
Rθ18

(
3
∆2

Ty

)
+ µ

3

pρ

[
θ20(−2)J

(
β2

s

Ts

)
Ty + θ22T

(
βs

Ts

)2

Ty

]
. (2.6)

Defining the ratio of super-Burnett (qsB) and Fourier heat fluxes (qNS) as a new
parameter hr2 gives

hr2 ≡ qsB

qNS
. (2.7)

Next, various flow properties can be related to reference values and free-stream values
in the following manner. A reference temperature (Tr) is set as the average of the
stagnation temperature (Ts) and the wall temperature (Tw). The viscosity is accurately
modelled as a power-law function of temperature and is evaluated at the reference
temperature, µ∝ Tωr , where ω is a constant that may depend on the gas composition
(ω is close to 0.75 for air). The thermal conductivity (k) for a diatomic gas can be
related to its viscosity as k = (9γ − 5)µR/[4(γ − 1)] (Chapman & Cowling 1970).
Substitution leads to

hr2 = −
(

1+ Tw

Ts

)2ω+1 1
22ω+1

[
4(γ − 1)
9γ − 5

] [
−3θ18

(
RN

∆

)2

+ θ20(−2)J

+ θ22(2)J
(

1+ Tw

Ts

)]
1

RTs

(
µs

ρs

)2

. (2.8)

Finally, dependence on the free-stream Mach number and Reynolds number
(Re∞= ρ∞V∞RN/µ∞) is introduced by using the normal shock-wave jump conditions
for density (ρs/ρ∞≈ (γ + 1)/(γ − 1)) and temperature (Ts/T∞≈ (γ − 1)M2

∞/2). With
these approximations, hr2 takes its final form:

hr2 = ζr2(γ , ω)C(θ)
(

1+ Tw

Ts

)2ω+1

W2
r , (2.9)

where we define a ‘rarefaction parameter’, Wr, as

Wr ≡ M2ω
∞

Re∞
, (2.10)

and the two coefficient terms are given by

ζr2(γ , ω)=− (γ − 1)2ω+3

24ω

4γ
9γ − 5

1
(γ + 1)2

, (2.11)

C(θ)=
[
−3θ18

(
∆

RN

)−2

+ θ20(−2)J + θ22

(
1+ Tw

Ts

)]
. (2.12)

Therefore, compared with the Fourier heat flux term appearing in the Navier–Stokes
equations, the relative contribution from the super-Burnett heat flux term has a main
dependence on Wr, a weak dependence on the ratio of wall to stagnation temperature,
a weak dependence on gas properties through ζr2(γ ,ω) and, as discussed next, a weak
dependence on the unknown coefficients (θ ) through the expression C(θ).
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In the C(θ) expression, since typically in a hypersonic flow 0.1< Tw/Ts < 0.5, the
third term will have a weak dependence on the ratio Tw/Ts and will be determined
mainly by the value of θ22. Likewise, the second term will be determined mainly by
the value of θ20. The first term includes the ratio of shock standoff distance to sphere
radius. For continuum conditions this ratio ranges from 0.1 to 0.15, for example
refer to the experimental data reported in Nonaka et al. (2000). For rarefied flow, the
shock layer becomes more diffuse and the standoff distance increases with rarefaction;
however, typically ∆/RN < 1 in the transition regime. The shock standoff distance can
be approximated using the inviscid model of Wen & Hornung (1995), who suggest
∆inv.= 2(1−J)ρ∞as/ρsβ. The displacement thickness of the boundary layer, δ̂≈ 0.285δ,
can then be added to this inviscid expression to provide the following approximation
for ∆:

∆

RN
≈ 21−J

(γ
2

)2 γ − 1
γ + 1

+ 0.285
δ

RN
. (2.13)

Here, δ can be approximated as δ = 2(3−J)/2√µ/ρβ and when evaluated at the
reference temperature gives

δ

RN
≈ 21−J/2−ω γ

1/4(γ − 1)ω/2+1/4

(γ + 1)1/2

(
1+ Tw

Ts

)ω/2
Wr. (2.14)

In the above expressions for ∆/RN (2.13) and (2.14), the dependence on Tw/Ts is
very weak due to the exponent ω/2, and there is a dependence on the rarefaction
parameter Wr, as expected. If one evaluates the above expressions for ∆/RN over a
range of Knudsen numbers (0.01< Kn< 5), one finds 0.1<∆/RN < 1, in agreement
with experiment (Nonaka et al. 2000).

Therefore, the first term in C(θ) may be the most dominant, and its value will
be determined by both ∆/RN and θ18. The value of each θ coefficient, however, is
uncertain. For the BGK–Burnett equations, the values are θ18 = 4.9, θ20 =−0.16 and
θ22=4.24. However, the BGK approximation to the collision integral in the Boltzmann
equation is known to be inaccurate for realistic gases, and therefore, if the full
collision integral were analysed (with accurate cross-section or interatomic potential
models), the θ coefficients would certainly change. In fact, the set of coefficients for
the BGK–Burnett equations is non-unique and has been proposed to ensure numerical
stability and entropy consistency (Agarwal et al. 2001). Furthermore, the two sets
of stable and entropy-consistent BGK–Burnett equations proposed in Balakrishnan
(1999) have different signs for some of the coefficients. Since each term in C(θ)
is likely to be close to unity, and is dependent on coefficients with uncertainty in
magnitude and sign, our approach in later sections will be to replace C(θ) with a
single fitting parameter in the correlation expression.

2.3. Analysis of the Burnett heat flux contribution
A similar analysis can be carried out for the Burnett-order heat flux term in the BGK–
Burnett equations, which has the following form:

qB = µ2

ρ

(
Γ1

1
T

Tyuy + Γ2
1
T

Tyvx + Γ3vyy + Γ4vxx + Γ5uxy + Γ6
1
T

Txuy + Γ7
1
T

Txvx

+ Γ8
1
ρ
ρyvy + Γ9

1
ρ
ρyux + Γ10

1
ρ
ρxvx + Γ11

1
ρ
ρxuy

)
. (2.15)
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Here, the Γ coefficients are determined by collision integrals in the Chapman–Enskog
analysis, analogous to the θ coefficients in (2.1). Using the very same assumptions as
in the previous section, the parameter (hr1), obtained by normalizing the Burnett-order
heat flux with the Fourier heat flux, has the following form:

hr1 ≡ qB

qNS
= ζr1(γ , ω)C(Γ )

(
1+ Tw

Ts

)ω+1

Wr, (2.16)

and the two coefficient terms are given by

ζr1(γ , ω)= (γ − 1)ω+3/2

22ω

4
√
γ

9γ − 5
1

(γ + 1)
, (2.17)

C(Γ )=
[
Γ9

2

(
1+ Tw

Ts

)
−
(
Γ5 + 2Γ8

1+ Tw/Ts

)]
, (2.18)

where Γ5=−2.8, Γ8=−1.271 and Γ9=1.0 for the BGK–Burnett equations. Following
similar arguments as for C(θ), the value of C(Γ ) is mainly determined by the Γ
coefficients, which are associated with a fair amount of uncertainty. It is noted that
Wang, Bao & Tong (2010) carried out a similar analysis for the Burnett-order terms.
By performing the analysis for both Burnett-order and super-Burnett-order terms
(§§ 2.2 and 2.3), and noting the similarity between (2.9) and (2.16), the form of
higher-order contributions can be inferred and utilized in the correlation developed in
the next section.

3. A new correlation for heat flux
3.1. Higher-order contributions compared with Navier–Stokes heat flux

So far, the analysis has been presented in terms of heat flux contributions normalized
with the Navier–Stokes heat flux (2.9) and (2.16). In order to evaluate the actual heat
transfer coefficient, we use the recent correlation from Brandis & Johnston (2014) for
the Navier–Stokes heat flux:

q̂= 7.455× 10−9ρ0.4705
∞ V3.089

∞ R−0.52, 3 km s−1 6 V∞ < 9.5 km s−1, (3.1)
q̂= 1.270× 10−6ρ0.4678

∞ V2.524
∞ R−0.52, 9.5 km s−1 6 V∞ < 17 km s−1, (3.2)

where q̂ has units of W cm−2, V∞ has units of m s−1 and R has units of m. It is
important to note that alternate correlations based on continuum theory, for example
those by Fay & Riddell (1958) and Sutton & Graves (1971), could be used for q̂
instead.

The total heat flux including the contributions from the Burnett and super-Burnett
terms is then

q= q̂(1+ hr1 + hr2), (3.3)

and based on free-stream parameters we define the heat transfer coefficient hc as

hc = q
1
2ρ∞v

3∞
. (3.4)

In figure 2 the relative significance of super-Burnett and Burnett heat flux terms
compared with Navier–Stokes terms is shown along with the dependence on the ratio
Tw/Ts. As is evident from figure 2(a), super-Burnett heat flux terms ((2.9) with listed
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FIGURE 2. (Colour online) The contributions of the higher-order heat flux terms as
functions of Kn. The conditions correspond to M∞ = 10.0, j = 0 and γ = 1.4.
(a) Contribution from super-Burnett terms; (b) contribution from Burnett terms.

θ values) are negligible for Kn 6 1.0, but become significant for Kn > 1.0. These
terms contribute negatively to the heat flux, which is expected since the Navier–Stokes
solutions tend to overpredict the heat flux in the rarefied regime. The ratio of wall
to stagnation temperature is also seen to have a noticeable effect, especially for
Kn > 4. In figure 2(b), Burnett heat flux terms ((2.16) with listed Γ values) become
significant at the start of the transition regime (Kn > 0.1). The ratio of wall to
stagnation temperature has a noticeable effect, although the effect is quite weak.
Interestingly, the Burnett terms add to the heat transfer prediction of Navier–Stokes
(i.e. hr1 > 0). This was also found by Wang et al. (2010) using a similar analysis.
However, this is inconsistent with a number of studies showing that the heat flux
in the transition regime should be lower than that predicted by the Navier–Stokes
equations. Such studies include flow over a flat plate (Chen, Wang & Yu 2014),
stagnation-point heat flux for hypersonic flow over blunt bodies (Schwartzentruber,
Scalabrin & Boyd 2008b,c) and hypersonic flow over a sphere (Lofthouse, Boyd
& Wright 2007; Holman & Boyd 2009, 2011). As discussed earlier, the θ and
Γ coefficients are uncertain, as are the signs of the C(θ) and C(Γ ) terms. This
inconsistency will be remedied in the next subsection.

The significance of higher-order heat flux terms is presented in terms of leading-
edge radius in figure 3. Here, a reduction in radius is equivalent to an increase in
Kn (also plotted on the top axis in figure 3). For approximate conditions at 80 km
altitude and orbital velocity, it is evident that higher-order terms begin to contribute
significantly for radii less than 1 cm, with very large effects for radii of 1 mm. As
noted above, the Burnett and super-Burnett terms are seen to have opposite signs. This
could be due to uncertainty in the C(θ) and C(Γ ) coefficients and/or the need to
include a more complete set of higher-order terms in the series approximation.

3.2. Extension to the full series of higher-order terms
The continuum equations beyond super-Burnett order are not available in the literature.
Therefore it is interesting to look at the next few terms that we can obtain from
the functional forms of hr1 and hr2 derived above. The full heat flux expression,
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FIGURE 3. (Colour online) The coefficients of heat flux including higher-order terms
as functions of the leading-edge radius and Kn. The conditions correspond to V =
14 000 m s−1, ρ = 10−5 kg m−3, j= 0, γ = 1.4 and Tw/Ts = 0.01. (a) Super-Burnett and
Navier–Stokes terms; (b) Burnett and Navier–Stokes terms.

incorporating all higher-order heat flux terms, can be expressed as

q= qNS + qB + qsB + · · · . (3.5)

When normalized by the Navier–Stokes heat flux (q̄), this can be expressed in terms
of hr1 and hr2 in the following manner:

q̄= 1+ hr1 + hr2 + · · · . (3.6)

From (2.9) and (2.16), it is clear that as rarefaction increases, the additional terms
grow as Wn

r ≡ (M2ω
∞ /Re∞)n, where n= 1, 2, 3, . . . , and, furthermore, the nth term in

the series can be written as

hrn =
[

4
9γ − 5

(
1+ Tw

Ts

)
C(θ, Γ, . . . )

] [√
γ (γ − 1)ω+3/2

22ω (γ + 1)

(
1+ Tw

Ts

)ω
Wr

]n

. (3.7)

Based on prior discussion, each term in the first square bracket is of order unity, with
uncertainty in evaluating C(θ, Γ, . . .). It is also important to note that terms involving
γ , ω and Tw/Ts within both square brackets are not exact, rather they are the result
of shock-wave and boundary-layer approximations made in the preceding analysis. In
seeking an accurate yet simple correlation, it is reasonable to replace these terms by
a fitting constant and maintain only the dominant terms in the functional form:

hrn ≈
[
βn

√
γ (γ − 1)ω+3/2

22ω (γ + 1)

(
1+ Tw

Ts

)ω
Wr

]n

. (3.8)

Here, the dominant terms involving gas properties (γ , ω), wall temperature (Tw/Ts)
and rarefaction parameter (Wr) are maintained, and the uncertain (order-unity) terms
are lumped together in a fitting coefficient (βn). Since the wall temperature was shown

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

11
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.118


Heat flux correlation for high-speed flow in the transitional regime 991

to have minor effect (figure 2) and we are presently interested in air (γ = 1.4 and
ω≈ 0.75), we further combine these terms as

hrn ≈ [αnWr]n, (3.9)

where the αn are a set of fitting coefficients to be determined next. Evaluating the heat
flux using N higher-order terms, we have

q= qNS

[
1+

n=N∑
n=1

hrn

]
= qNS

[
1+

n=N∑
n=1

(αnWr)
n

]
. (3.10)

One could use either (3.8) or (3.9) and determine the fitting coefficients (βn or αn) up
to a desired number of terms (n= 1, 2, . . . ,N) by comparison with accurate heat flux
predictions from DSMC, for example.

Finally, it is interesting that in the limit of an infinite series, if one assumes that
the αn coefficients are approximately equal, the resulting expression is simply

q= qNS

1− αWr
for −1<α <+1, (3.11)

and the coefficient of heat flux can be written as

hct = qNS
1
2ρ∞v

3∞(1− αWr)
. (3.12)

In this case, only one free parameter (α) needs to be fitted, and, as shown later in § 4,
this simple expression is able to capture the heat flux in the transition regime predicted
by DSMC simulations. It is worthwhile to note that the value of J is embedded within
the fitting parameter α. Therefore, if simulations of flow over a cylinder are used
for fitting, the value of α may be slightly different from that when using simulations
of flow over a sphere. Moreover, the choice of continuum correlation should also be
consistent; for example, the correlation of Brandis & Johnston (2014) is for flow over
a sphere.

3.3. Bridging function in the limit of free-molecular flow
As is evident from the expression for q in (3.11), as Wr → 0, q approaches qNS as
desired. However, as Wr→∞, q clearly does not approach the correct free-molecular
value since the correlation was derived as a deviation from the Fourier heat flux.
Therefore, we force the expression for q to approach the free-molecular limit using
a bridging function. The analytical expression for the heat flux in the free-molecular
regime is well documented in standard textbooks (Bird 1994) and is reproduced here
for completeness:

qfm = ρ∞
(√

2KBT
m

)3
1

4
√

π

{[
γ

2
M2
∞ +

γ

γ − 1
− γ + 1

2(γ − 1)
Tw

T∞

] [
exp

(
−γ

2
M2
∞
)

+
√

πγ

2
M∞

[
1+ erf

(√
πγ

2
M∞

)]]
− 1

2
exp

(
−γ

2
M2
∞
)}

, (3.13)

where KB is the Boltzmann constant and m is the molecular mass of the gas. The heat
transfer coefficient based on free-stream conditions is

hfm = qfm
1
2ρ∞v

3∞
. (3.14)
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The full correlation for the stagnation-point heat transfer coefficient (h0), valid for
conditions ranging from continuum to free-molecular, is

h0 = hct + (hfm − hct)max
[

Wr −C2

Wr +C3
, 0
]
. (3.15)

Here, hct and hfm are given by (3.12) and (3.14), with qNS taken from a continuum
correlation such as (3.1) and (3.2), C2 is a constant that controls the value of Wr
above which the bridging function becomes active and C3 is a constant that controls
how quickly the function reaches the free-molecular limit.

4. Comparison with DSMC calculations
In this section, we compare our correlation for stagnation-point heat transfer with

DSMC calculations by Glass & Moss (2001) and Holman & Boyd (2009) for nitrogen
gas. In figure 4, we plot the stagnation heat transfer coefficient against Wr≡M2ω

∞ /Re∞.
Macrossan (2007) pointed out that the Knudsen number does not involve flow
parameters and hence represents a state parameter, whereas the rarefaction parameter
Wr involves flow parameters as well as a length scale and is therefore a better
correlation parameter. In fact, this parameter is proportional to one proposed by
Cheng (1961) which has been used to correlate heat transfer data (Nomura 1983). In
figure 4, it is evident that the DSMC results of Glass & Moss (2001) and Holman
& Boyd (2009) are in good agreement with the continuum correlation of Brandis &
Johnston (2014) for Wr 6 0.1. As the rarefaction parameter increases, the heat flux
predicted by DSMC is lower than the continuum correlation (which is based on CFD
calculations). It is noted that Wang et al. (2010) recently proposed the opposite trend,
using similar Burnett-order analysis to that presented in § 2.3 above, where such a
comparison predicted a higher heat flux compared with continuum analysis. However,
the trend of lower heat flux in the transition regime, compared with continuum
predictions, has been verified in a number of articles (for example Lofthouse et al.
2007; Schwartzentruber, Scalabrin & Boyd 2008a; Schwartzentruber et al. 2008b,c;
Holman & Boyd 2009, 2011) in which DSMC calculations have been compared with
matching CFD calculations where both codes used highly consistent physical models.

Figure 4 shows that the correlation proposed by Brandis & Johnston (2014) matches
well with the DSMC results of Glass & Moss (2001) and Holman & Boyd (2009) for
Wr 6 0.1. However, it overpredicts the heat transfer for Wr > 0.1 and quickly predicts
unphysical values. By fitting our new correlation to the DSMC results of Holman &
Boyd (2009) together with free-molecular results, we determine the constants in our
expression as α=−0.476, C2 = 1.10, C3 = 1.8. In figure 4, we see that the proposed
expression for hct matches the DSMC results well in the continuum and transition
regimes. However, as Wr becomes greater than 2.1, we observe that hct fails to capture
heat flux values even qualitatively. This is no surprise since the Chapman–Enskog
series solution (Chapman & Cowling 1970) is based on asymptotic analysis which
assumes Kn to be small in its derivation. Instead, in this range, the bridging function
forces hct to smoothly asymptote to free-molecular values. As shown in figure 4,
the proposed expression for the heat transfer coefficient (h0) correctly captures its
dependence on Wr in the continuum and transition regimes and dependence only
on M∞ in the free-molecular regime. This is evident from the close match of the
correlation with the DSMC data of Glass & Moss (2001), which correspond to
13 6 M∞ 6 21 and 0.001 6 Kn 6 100.0. In the future, more DSMC simulation data
could be produced in the transition regime to further validate the new heat flux
correlation, improve its fitting parameters and determine its overall accuracy.
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FIGURE 4. (Colour online) Comparison of DSMC data with Navier–Stokes (hNS; no slip)
based correlation and the proposed correlation (nitrogen gas; Tw = 500 K, T∞ = 200 K,
RN = 0.1524 m, M∞ = 10, V∞ = 2883.5 m s−1).

5. Conclusions
We propose an analytical correlation for stagnation-point heat flux on spherical

objects travelling at high velocity which can be used for conditions ranging from
continuum to free-molecular. Theoretical analysis of the Burnett and super-Burnett
equations is performed using simplifications from shock-wave and boundary-layer
theory to determine the relative contribution of higher-order heat flux terms
compared with the Fourier heat flux (assumed in the Navier–Stokes equations).
Order-of-magnitude analysis of these terms relative to the Navier–Stokes equations
shows that the Burnett and super-Burnett terms become important for Kn > 0.1 and
Kn > 1.0 respectively.

A rarefaction parameter (Wr ≡M2ω
∞ /Re∞), based on the free-stream Mach number

(M∞), Reynolds number (Re∞) and viscosity–temperature index (ω), is identified
as a better correlating parameter than the Knudsen number (Kn) in the transition
regime. Unlike Kn, this parameter captures the flow parameters in addition to the
state parameters and the length scale. Importantly, by studying both the Burnett and
super-Burnett equations, a general form for the entire series of higher-order heat flux
contributions is obtained. This analysis exhausts the study of Chapman–Enskog series
solutions for heat flux at the macroscopic level. The resulting heat flux expression
includes terms with dependence on gas properties, the stagnation to wall-temperature
ratio and a main dependence on powers of the rarefaction parameter Wr.

Uncertainty due to collision integral quantities and other simplifying assumptions
is discussed in detail, including the fact that even the signs of the contributions from
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higher-order terms are uncertain. While previous analysis using only Burnett-order
terms (Wang et al. 2010) proposed that the heat flux in the transition regime was
larger than that predicted by continuum (Fourier) analysis, there is ample evidence
in the literature that suggests the opposite, that is, the heat flux in the transition
regime should be lower than the Fourier value. Our analysis resolves this issue by
acknowledging the uncertainty in various order-unity terms, replacing with appropriate
coefficients to be fitted with high-quality simulation data and including all higher-order
terms in a limiting expression. In the limit of this full series analysis, a simple
approximate expression for the stagnation-point heat flux is determined.

The expression is applied as a correction to the Fourier heat flux and, therefore, can
be combined with any continuum-based correlation of choice. In this article we use the
recent CFD-based correlation from Brandis & Johnston (2014). In the free-molecular
limit, a bridging function is used to ensure consistency with well-established free-
molecular flow theory. A general correlation is presented which maintains dominant
terms due to gas properties, the stagnation to wall-temperature ratio, powers of Wr
and remaining (order-unity) fitting parameters that could be determined by comparison
with DSMC solutions. A more simplified expression is presented, which replaces the
gas properties and wall-temperature dependence by incorporating these terms into a
fitting coefficient. The simplified correlation is then fitted to DSMC solutions for the
stagnation-point heat flux in high-speed nitrogen flows. The correlation is shown to
accurately capture the variation in heat flux predicted by DSMC in the transition
regime, while limiting to both continuum and free-molecular values.

Future effort could be devoted to obtaining more DSMC results or experimental
data for the heat flux in the transitional regime in order to further validate the
correlation, improve the fitting accuracy, generalize to different gas mixtures and
different stagnation to wall-temperature ratios, and investigate any effects due to
dissociation.
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