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A variational framework for the identification and analysis of general nonlinear
optimal disturbances in compressible flows is derived. The formulation is based on
the compressible Navier–Stokes equations in conserved variables for an ideal gas
with temperature-dependent viscosity. A discretely consistent implementation based
on generalized coordinates allows the accurate analysis of a wide range of settings.
An application in the identification of the optimal disturbances which experience
the highest amplification in kinetic energy in pipe flow is presented. At low Mach
numbers and moderate initial amplitude, the disturbances undergo a sequence of
Orr mechanism, oblique nonlinear interaction and lift-up mechanism, and the energy
amplification is consistent with results reported for incompressible flow (Pringle &
Kerswell, Phys. Rev. Lett., vol. 105, 2010, 154502). When the Mach number is
increased, the gain in perturbation kinetic energy grows appreciably, and the initial
disturbance field becomes increasingly localized. Nonlinear optimal disturbances
which are rescaled to higher initial kinetic energy than prescribed in the optimization
procedure are demonstrated to evolve into a chaotic state. For a constant time horizon,
the initial perturbation energy to reach a high-energy state decreases monotonically
with Mach number.

Key words: nonlinear instability, variational methods

1. Introduction
Compressible flows commonly exhibit richer physics than observed in the

incompressible regime. In particular, compressibility fundamentally affects the physics
of laminar–turbulent transition. High speeds alter linear growth mechanisms and
open new pathways for the amplification of infinitesimal disturbances. If the initial
amplitude of disturbances is sufficiently high, their evolution deviates from linear
predictions, resulting in faster growth and the potential of earlier breakdown to
turbulence. The study of the particular, optimal disturbances which translate the
additional degrees of freedom provided by nonlinearity most effectively into a gain,
for instance in kinetic energy, has been hitherto restricted to flows at constant density.
In this work, we introduce a variational framework for the identification and analysis
of general nonlinear optimal disturbances in compressible flows.

† Email addresses for correspondence: zhuhuang@stanford.edu, mjph@stanford.edu
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The field of laminar-turbulent transition was appreciably advanced by the under-
standing of the non-normality of the linearized Navier–Stokes equations which enables
significant transient amplification of disturbances in the absence of exponential
instability (e.g. Reddy et al. 1993; Trefethen et al. 1993). This insight led to the
development of linear transient growth theory based on non-modal stability analysis
and its application in the study of a variety of shear flows (see Schmid 2007; Luchini
& Bottaro 2014). The relevance of classical transient growth analysis derives from
the view that finite-amplitude disturbances can be amplified to levels sufficiently high
to induce the amplification of secondary instabilities (see e.g. Hack & Zaki 2014).
For many parallel shear flows, the optimal disturbances which maximize transient
growth are found to be streamwise independent (Gustavsson 1991) and to generate
streamwise streaks by means of the lift-up mechanism (Butler & Farrell 1992). If the
base flow is non-parallel, the effectiveness of lift-up may be enhanced by interaction
with the Orr mechanism (Cherubini et al. 2010; Monokrousos et al. 2010; Hack &
Moin 2017), which describes the second pathway for the transient amplification of
disturbances in shear flows and amplifies disturbances of finite streamwise wavelength
by tilting via the mean shear.

In various settings, the sequential consideration of linear transient growth theory
and linear secondary instability analysis reveals the main features of laminar–turbulent
transition (see e.g. Reddy et al. 1998; Andersson et al. 2001; Roizner, Karp & Cohen
2016). As a whole, the transition process is nonetheless strongly nonlinear, with the
nonlinear terms of the governing equations redistributing energy between different
scales of the disturbances. Specifically, nonlinear interactions have been found to
fundamentally affect the generation of streaks in transient growth, including the
observed fluid structures and the maximal energy gain (Pringle & Kerswell 2010).
A variational approach was applied in the identification of optimal disturbances
in miscellaneous incompressible flow configurations, including plane Couette flow
(Monokrousos et al. 2011; Rabin, Caulfield & Kerswell 2012; Eaves & Caulfield
2015), pipe flow (Pringle, Willis & Kerswell 2012), boundary layers (Cherubini et al.
2010, 2011) and plane Poiseuille flow (Farano et al. 2015). The variational method
has also been extended to identify exact coherent states (Olvera & Kerswell 2017)
and heteroclinic connections between turbulent equilibrium states (Farano et al. 2019).

The variational method is commonly implemented in terms of a Lagrange function
whose stationary points identify extrema of the objective functional (e.g. Kerswell
2018). In this setting, the adjoint variables are formally introduced as Lagrange
multipliers which enforce the governing equations as constraints. A variety of possible
choices exist for the objective functional, including the disturbance kinetic energy at
a given time horizon (Pringle & Kerswell 2010) and the time-averaged dissipation
(Monokrousos et al. 2011; Eaves & Caulfield 2015).

For sufficiently large time horizons, the variational nonlinear optimization method
can identify the disturbance field which triggers transition to turbulence at minimal
initial energy, sometimes referred to as the minimal seed of turbulence (Pringle et al.
2012; Kerswell 2018). This interpretation of the minimal seed, which is also used
in the present work, differs to some extent from that introduced by Cherubini et al.
(2011), who defined the minimal seed as a basic building block of the nonlinear
optimal solution, and more specifically as the smallest flow structure that causes
energy growth over short times.

More recently, Rigas, Sipp & Colonius (2020) studied nonlinear optimal disturbances
in the frequency domain by extending resolvent analysis (Jovanovic & Bamieh
2005; McKeon & Sharma 2010) to the nonlinear setting. The application to a
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transitional boundary layer reproduced the mechanisms of canonical breakdown
scenarios identified in Hack & Moin (2018).

Nonlinear optimal disturbances and minimal seeds in particular are spatially
localized and comprise a multitude of wavenumbers and frequencies. As such, they
qualitatively differ from the monochromatic solutions to the classical linear transient
growth problem. The evolution of nonlinear optimal disturbances often begins with
amplification via the Orr mechanism, followed by oblique nonlinear interactions and
lift-up. This amalgamation of multiple growth mechanisms allows nonlinear optimal
initial conditions to attain considerably higher amplification than observed in linear
transient growth (Pringle & Kerswell 2010). From an applications point of view,
nonlinear optimal disturbances and minimal seeds can be understood as an upper
bound in terms of the effectiveness of inducing transition to turbulence. In a general
setting with broadband excitation of disturbances inside a shear layer, perturbations
which conform to these solutions can thus be expected to rapidly advance the flow
towards a turbulent state.

Although the study of general nonlinear optimal disturbances has received consid-
erable attention in recent years, these analyses have been limited to incompressible
flows. Transition to turbulence is nonetheless of particular practical relevance in
various settings which exhibit non-negligible compressibility effects. Our study
implements the first analysis of general nonlinear optimal disturbances in com-
pressible flows. Herein, we derive a variational framework based on the compressible
Navier–Stokes equations in conserved variables. The algorithm is applied in the study
of the amplification of perturbations in compressible pipe flow at various Mach
numbers.

2. Variational method for compressible flow
In the following, we introduce a formulation enabling the identification of general

nonlinear optimal disturbances in compressible flows. The framework is generic and
compatible with a wide range of objective functionals. Within the scope of this
study, we nonetheless restrict ourselves to the optimization of the kinetic energy
of the computed disturbances. For the pipe setting considered within this work, all
quantities are non-dimensionalized by the centreline speed of sound, the centreline
density and the pipe diameter.

The governing equations for a compressible Newtonian fluid in the conserved state
vector q= (ρ,mi, e)T are

∂ρ

∂t
+
∂mj

∂xj
= 0, (2.1)

∂mi

∂t
+
∂mimj/ρ

∂xj
=−

∂p
∂xi
+

∂

∂xj

µ

Re

(
∂mi/ρ

∂xj
+
∂mj/ρ

∂xi
−

2
3
∂mk/ρ

∂xk
δij

)
, (2.2)

∂e
∂t
+
∂(e+ p)mj/ρ

∂xj
=

∂

∂xj

µ

Re Pr

∂

(
e−

1
2

mimi/ρ

)
γ

ρ

∂xj

+
∂

∂xj

µ

Re

(
mk/ρ

(
∂mk/ρ

∂xj
+
∂mj/ρ

∂xk
−

2
3
∂ml/ρ

∂xl
δjk

))
,

(2.3)

where i, j, k ∈ {1, 2, 3} and mj = ρuj are the mass fluxes aligned with the Cartesian
components of the fluid velocity vector, uj. Further, e= p/(γ − 1)+ 1/2ρuiui is the
total energy, ρ is density, p denotes pressure, µ the molecular viscosity, γ = 1.4 the
ratio of the specific heats, Re is the Reynolds number based on the speed of sound,
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a=
√
γ p/ρ, and Pr is the Prandtl number which takes a constant value of 0.70 within

this study. The dependence of the viscosity, µ, on the temperature, T , is modelled
using a power law of the form µ= ((γ − 1) T)n with n= 0.7. The governing equations
are closed by the equation of state for an ideal gas:

p=
γ − 1
γ

ρT. (2.4)

We note that the above equations describe the evolution of the Cartesian components
of the velocity and mass flux vectors, in alignment with the quantities that are
being solved within our computational framework. The cylindrical pipe setting is
accounted for via metric factors in a discretely consistent curvilinear discretization
which satisfies geometric conservation properties (Thomas & Lombard 1979) and thus
enables a highly accurate treatment of a variety of configurations, including pipes.

Without loss of generality, we separate the flow variables into a steady base state,
marked by an overbar, and a perturbation component, denoted by a prime, χ =χ +χ ′.
Introduction into (2.1)–(2.3) yields the five equations

C0 :
∂ρ ′

∂t
+
∂(mj +m′j)

∂xj
= 0, (2.5)

Ci :
∂m′i
∂t
+

∂

∂xj

(mi +m′i)(mj +m′j)

ρ + ρ ′
+
∂(p+ p′)
∂xi

−
∂

∂xj

µ

Re

(
∂

∂xj

mi +m′i
ρ + ρ ′

+
∂

∂xi

mj +m′j
ρ + ρ ′

−
2
3
∂

∂xk

mk +m′k
ρ + ρ ′

δij

)
= 0,

(2.6)

C4 :
∂e′

∂t
+

∂

∂xj

(e+ e′ + p+ p′)(mj +m′j)

ρ + ρ ′

−
∂

∂xj

µ

Re Pr
∂

∂xj

(e+ e′ − (1/2)(mi +m′i)(mi +m′i)/(ρ + ρ
′))γ

ρ + ρ ′

−
∂

∂xj

µ

Re

(
mk +m′k
ρ + ρ ′

(
∂

∂xj

mk +m′k
ρ + ρ ′

+
∂

∂xk

mj +m′j
ρ + ρ ′

))
−
∂

∂xj

µ

Re

(
mk +m′k
ρ + ρ ′

(
−

2
3
∂

∂xl

ml +m′l
ρ + ρ ′

δjk

))
= 0, (2.7)

which govern perturbations in density (C0), the three mass fluxes (Ci) and total energy
(C4).

The optimization procedure operates on the functional

J(t)=
∫
Ω

m′i(t)m
′

i(t)
2ρ

dV. (2.8)

We note that in the present setting of a state vector, q = (ρ,mi, e)T, there exists
no positive definite norm that would yield a direct equivalent to the kinetic energy
commonly considered in the incompressible regime. Since m′i= ρu′i+ ρ

′ui+ ρ
′u′i, with

ρ ′ an independent variable in the kernel of J(t), the maximization of (2.8) effectively
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maximizes the kinetic energy of the perturbations,

E(t)=
ρu′i (t) u′i (t)

2
. (2.9)

The objective of identifying the initial perturbations whose evolution during the
finite time interval t1 results in the highest gain in perturbation kinetic energy, is hence
represented by maximizing the objective functional

J = J(t1). (2.10)

Naturally, we wish to prescribe the initial amplitude of the perturbations at the
initial time t = 0, and we require the computed perturbations to be solutions to
the compressible Navier–Stokes equations (2.5)–(2.7). The resulting constrained
optimization problem may be expressed as the Lagrangian

L = L(ρ ′,m′i, e′, η, λi, θ, α; E0, t1)=J − α(J(0)− E0)

−

∫ t1

0
〈η,C0〉 dt−

∫ t1

0
〈λi,Ci〉 dt−

∫ t1

0
〈θ,C4〉 dt, (2.11)

whose stationary points identify the optimal solution. The integral inner product in
(2.11) is defined as

〈a, b〉 =
∫
Ω

aHb dV. (2.12)

The Lagrange multipliers η, λi and θ can be interpreted as the adjoint density, mass
flux and energy perturbations. The stationary points of the Lagrangian are found by
setting its first variations with respect to each multiplier to zero. For η, λi, θ and α,
doing so recovers the direct Navier–Stokes equations, C0–C4, as well as the constraint
on the initial condition

δL
δα
= J(0)− E0 = 0. (2.13)

Setting the first variation of the Lagrangian with respect to perturbations in density,
mass fluxes and total energy to zero yields the following set of adjoint equations,
which must be satisfied within the computational domain,

δL
δρ ′
= ηt −

mimj

ρ2
(λi)xj +

(γ − 1)mjmj

2ρ2
(λi)xi −

[
γ e− (γ − 1)

mimi

ρ

]
mj

ρ2
θxj

−
γ

ρ2Re Pr

(
e−

mimi

ρ

) (
θxjµ

)
xj

−
1

ρ2Re

(
mi

[
µ(λi)xj +µθxi

mj

ρ

]
xj

+mj

[
µ(λi)xj +µθxi

mj

ρ

]
xi

−
2
3

mj

[
µ(λi)xi +µθxi

mi

ρ

]
xj

−µmjθxiτij

)
−

1
Re
∂µ

∂ρ ′

(
(λi)xjτij + θxj

mi

ρ
τij

)
= 0,

(2.14)
δL
δm′i
= (λi)t + ηxi +

mj

ρ
(λj)xi −

mi

ρ
(γ − 1)(λj)xj +

mj

ρ
(λi)xj

+
γ e− 1/2(γ − 1)mjmj/ρ

ρ
θxi −

mjmi

ρ2
(γ − 1)θxj −

γmi

ρ2Re Pr

(
θxjµ

)
xj
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894 A5-6 Z. Huang and M. J. P. Hack

+
1
ρRe

([
µ(λj)xi +µθxj

mi

ρ

]
xj

+

[
µ(λi)xj +µθxi

mj

ρ

]
xj

−
2
3

[
µ(λj)xj +µθxj

mj

ρ

]
xi

−µθxjτij

)
−

1
Re

∂µ

∂m′i

[
(λk)xjτkj + θxj

mk

ρ
τkj

]
= 0,

(2.15)
δL
δe′
= θt + (λi)xi

(γ − 1)+ γ θxj

mj

ρ

+

(
θxj

µ

Re Pr

)
xj

γ

ρ
−

1
Re
∂µ

∂e′

(
(λi)xj

τij +
mk

ρ
θxjτij

)
= 0. (2.16)

Here, τ is the shear stress tensor, τij≡ ∂(mi/ρ)/∂xj+ ∂(mj/ρ)/∂xi− 2/3∂(mk/ρ)/∂xkδij.
The derivatives of the viscosity with respect to ρ ′, m′i and e′ are

∂µ

∂ρ ′
=Ψγ (mimiρ

−3
− eρ−2);

∂µ

∂m′i
=−Ψγmiρ

−2
;

∂µ

∂e′
=Ψγρ−1, (2.17a−c)

with Ψ ≡ n(γ − 1)[(γ − 1)(γ /ρ)(e− 1
2(mimi/ρ))]

n−1.
Coupling conditions for the initialization of the perturbation and adjoint perturbation

states are derived by setting the first variation of the Lagrange function with respect
to the perturbations at initial time, t= 0, and the time horizon, t= t1, to zero,

δL
δρ ′(0)

=−η(0)= 0;
δL

δm′i(0)
= αm′i(0)/ρ − λi(0)= 0;

δL
δe′(0)

=−θ(0)= 0;

(2.18a−c)

δL
δρ ′(t1)

=−η(t1)= 0;
δL

δm′i(t1)
=m′i(t1)/ρ − λi(t1)= 0;

δL
δe′(t1)

=−θ(t1)= 0.

(2.19a−c)

These relations do not impose compatibility constraints on the density and total
energy components of the perturbation state. In our implementation, the optimization
procedure thus starts with an initial guess for the optimal initial disturbances,
q′0 = (0, m′i(0), 0)T. In the absence of a solution from an earlier computation for
similar parameters, the procedure is initiated by applying a random field throughout
the computational domain for the mass flux perturbations which is normalized so as
to satisfy (2.13). In spectral terms, this implies broadband content within the range of
wavenumbers supported by the computational grid. The initial condition is advanced
to the target time t1 by integrating the Navier–Stokes equations, providing the final
state q′1 = (ρ ′(t1), m′i(t1), e′(t1))

T. Subsequently, the adjoint state vector is initialized,
as described in (2.19), followed by time marching of the adjoint governing equations
from t = t1 to the initial time, t = 0. If the objective functional attains an extremum,
equation (2.18) is satisfied exactly. Otherwise, it yields an estimate for the gradient
g = δL/δm′i(0) which is used to update the initial condition before repeating the
looping procedure as follows:

g(n)i =
δL

δm′i(0)(n)
= αm′i(0)

(n)/ρ − λi(0)(n). (2.20)
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The initial condition is subsequently updated using steepest ascent,

m′i(0)
(n+1)
=m′i(0)

(n)
+ ε(αm′i(0)

(n)/ρ − λi(0)(n)), (2.21)

where α is chosen to satisfy the normalization condition

J(0)=
∫
Ω

m′i(0)m
′

i(0)
2ρ

dV, (2.22)

and ε is an adjustable parameter that regulates convergence and whose choice follows
the strategy proposed by Pringle et al. (2012). The convergence of the optimization
procedure can be assessed by evaluating the normalized residual at the nth iteration:

Rn = 〈g
(n)
i , g(n)i 〉/〈λi(0)(n), λi(0)(n)〉. (2.23)

Within this work, the iterative procedure stops when the relative difference of the
perturbation kinetic energy gain between two consecutive iterations is sufficiently
small, as will be discussed in § 3.

The iterative optimization scheme based on the time integration of the forward
and adjoint equations has been implemented into a compressible flow solver. The
solver supports complex geometries via a consistent curvilinear formulation aligned
with geometric conservation properties (Thomas & Lombard 1979). The spatial
discretization employs fourth-order finite differences based on summation-by-parts
operators (Strand 1994). Boundary conditions are weakly enforced via simultaneous
approximation terms (Svärd & Nordström 2008), supplemented by a sponge layer at
the inflow and outflow of the computational domain. The boundary conditions at the
inflow and outflow impose an axial pressure gradient and temperature gradient on
the base flow. Homogeneous boundary conditions are imposed on the full fluctuation
state vector at the inflow and outflow. Isothermal viscous boundary conditions are
imposed at the pipe wall on both the base flow and the fluctuations. Time integration
is facilitated by a second-order Runge–Kutta scheme, and linear checkpointing is
applied in the time integration of the adjoint governing equations. The reader is
referred to Flint & Hack (2018) for a full description of the computational framework.

A validation case of the implemented optimization procedure considers the evolution
of the optimal disturbances identified with the present framework for parallel periodic
pipe flow at Re = 1750. Consistent with the study by Pringle & Kerswell (2010)
based on the incompressible Navier–Stokes equations, the simulated axial extent of
the pipe is Lx=π/2. The grid contains 128× 64× 128 points in the axial, radial and
azimuthal dimensions, respectively, and the time step is 1t = 10−4. The centreline
convective speed is chosen to be one fifth of the speed of sound. In this setting,
a base flow that is strictly periodic in the streamwise dimension is computed by
supplementing the streamwise momentum and energy equations with forcing terms.
At the resulting Mach number, Ma= 0.20, compressibility effects are negligible and
thus allow a comparison with results reported by Pringle & Kerswell (2010). That
work employed a spectral discretization based on 11 Fourier modes axially, 29 Fourier
modes azimuthally and 25 modified Chebyshev polynomials in the radial dimension.

For sufficiently small initial kinetic energy, E0 = 1.0 × 10−8, the contribution of
the nonlinear terms becomes negligible, and the computed disturbances undergo an
effectively linear evolution. Specifically, the effective absence of nonlinear interactions
causes the solution to maintain the azimuthal wavenumber, β = 1, imposed at the
initiation of the iteration scheme. For the considered flow parameters, the scaling
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FIGURE 1. Energy growth for linear and nonlinear optimal perturbations in pipe flow.
Linear results computed with the presented methodology (red dashed) and linear results
by Pringle & Kerswell (2010) (black diamonds). Nonlinear results computed with the
presented methodology (solid red) and nonlinear results by Pringle & Kerswell (2010)
(black circles).

reported by Schmid & Henningson (1994) for the linearized incompressible governing
equations predicts a gain in kinetic energy, E(t)/E(0) = 214.4, after approximately
tlin,opt = 21.35 non-dimensional time units. The results obtained with the present
implementation, provided in figure 1, demonstrate excellent agreement with both the
linear scaling and the result by Pringle & Kerswell (2010).

When the initial perturbation energy is sufficiently large, here E0 = 2.0 × 10−5,
the optimal perturbations identified in the optimization scheme change qualitatively
into three-dimensional, localized structures which evolve under the effect of nonlinear
interactions. Figure 1 shows the computed evolution of the perturbation kinetic energy
as a solid line. Comparison with the nonlinear incompressible results by Pringle &
Kerswell (2010) shows good agreement for the evolution of the kinetic energy.
Specifically, the present results recover the three distinct stages reported in Pringle &
Kerswell (2010). Initially, the perturbations amplify by means of the Orr mechanism,
followed by nonlinear oblique interaction and a redistribution of energy leading to
the generation of streamwise vortices which is represented in the evolution of the
energy norm by an intermediate plateau around t = 2.5. Past this stage, the energy
amplification increases again as the vortices drive the formation of highly energetic
streaks by means of the lift-up mechanism, which is eventually overcome by viscous
decay.

3. Results
The nonlinear optimization scheme for compressible flow is applied in the

calculation of nonlinear optimal perturbations in compressible pipe flow. Nonlinear
optimal disturbances are computed for a normalized initial kinetic perturbation
energy of E0/Ma2

= 3.75 × 10−7. To isolate the effect of compressibility, we follow
Pringle & Kerswell (2010) in the choice of Re = 1750 and a convective distance,
1L = Ma × acentre × t1 = 44, based on the speed of sound at the pipe centreline.
The length of the pipe is 80 diameters, Lx = 80, and the computational grid used
1600× 64× 128 points in the axial, radial and azimuthal dimensions.

The base flow of the analyses is obtained by converging the solution of the Navier–
Stokes equations to steady-state. Four different settings, corresponding to the Mach
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U

FIGURE 2. Base flow at Re= 1750. Contours of the Mach number from Ma= 0.00 (blue)
to Ma= 0.95 (red) for cases Ma= {0.20, 0.50, 0.65, 0.80}.

(a) (b)

(c) (d)

FIGURE 3. Base flow. Contours of the radial gradient of the axial component from
1/Ma ∂u1/∂r=0 (blue) to 1/Ma ∂u1/∂r=6 (red) in cross-plane at x=5 for Mach numbers
(a) Ma= 0.20, (b) Ma= 0.50, (c) Ma= 0.65, (d) Ma= 0.80.

numbers 0.20, 0.50, 0.65 and 0.80, measured at the streamwise and radial centre of the
pipe are considered. The base flow is driven by an axial pressure gradient, dp/dx=
−16T0/Re where T0 denotes the wall temperature imposed via an isothermal boundary
condition over the length of the computational domain. With increasing Mach number,
a higher streamwise pressure gradient is required to sustain the flow through the pipe.
As a consequence, the base-flow temperature increases from T0= 1 for the case Ma=
0.20 to values of T0=2, 2.5 and 3 for the cases Ma=0.50, 0.65 and 0.80, respectively.
The axial component of the base flow is presented in figure 2 for the considered range
of Mach numbers. With growing Ma, the velocity field increasingly deviates from the
axially homogeneous state attained in the incompressible range, and the flow at the
pipe centreline accelerates along the axial dimension.

Cross-sections of the base flow at x=5 visualizing contours of the normalized radial
gradient of the axial base flow component, 1/Ma ∂u1/∂r, are presented in figure 3. The
shear in the vicinity of the wall is approximately constant for the cases Ma= 0.20 to
Ma= 0.65. For the case Ma= 0.80, there exists no choice for the boundary conditions
which increases the speed of sound sufficiently to match the same level of radial shear
without choking the flow in the pipe. As a consequence, the radial gradient in the
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(a) (b)

(c) (d)

FIGURE 4. Nonlinear optimal perturbations. Axial perturbation component (colour
contours) with radial and azimuthal perturbation components (vectors) in cross-plane at
x= 5 for Mach numbers (a) Ma= 0.20, (b) Ma= 0.50, (c) Ma= 0.65, (d) Ma= 0.80.

axial velocity component at the wall is markedly lower in this setting, which affects
the computed disturbance field as discussed below.

The identified nonlinear optimal initial perturbations in a cross-plane at x = 5 are
visualized in figure 4. Vectors indicate the radial and azimuthal perturbation velocity
components, superimposed onto contours of the axial velocity perturbation. For the
case Ma= 0.20, an effectively harmonic initial perturbation field with unity azimuthal
wavenumber is computed. Higher Mach numbers lead to an asymmetric arrangement
with the region of highest intensity situated in the vicinity of the wall where the
mean shear attains a maximum. A similar effect was observed for the optimal initial
disturbance field identified for incompressible flow (see Kerswell 2018). In that setting,
the initial disturbance field is harmonic in the cross-plane for low initial disturbance
kinetic energy, and transforms into an asymmetric pattern concentrated near the wall
as the initial kinetic energy is increased.

The absolute perturbation kinetic energy and the normalized gain are presented
in figure 5 as a function of time. A noteworthy outcome is the limited sensitivity
of the initial amplification, t . 5, to the Mach number. This result suggests that the
effectiveness of the initial tilting of the flow structures by the Orr mechanism is
virtually independent of the Mach number. A clear separation between the different
cases occurs only during the later stages of the amplification which are governed by
the normal displacement of the mean momentum through the lift-up mechanism. The
cases at higher Mach number also lack the intermediate plateau between the Orr and
lift-up stages which is commonly associated with a redistribution of energy between
harmonics by oblique interactions. The amplification instead accelerates and carries
the perturbations to considerably higher energy levels than attained at low Mach
number. The reduced gain in the case Ma = 0.80 may likely be attributed to the
reduced shear in the region near the wall where the perturbations are concentrated.
Also shown for reference is the energy amplification of linear optimal disturbances
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FIGURE 5. Evolution of nonlinear optimal perturbations. (a) Perturbation kinetic energy,
E(t). (b) Perturbation kinetic energy normalized by the initial perturbation kinetic energy,
E(t)/E0. Ma = 0.20 (black), Ma = 0.50 (red), Ma = 0.65 (purple), Ma = 0.80 (blue) and
linear optimal for Ma= 0.80 (blue dashed).

computed for the case Ma= 0.80 using the same time horizon as in the nonlinear case.
The linear disturbances initially grow moderately stronger but display markedly lower
amplification of perturbation kinetic energy than the nonlinear optimal solutions as
the target time is approached. The results suggest that an increase in Mach number in
the compressible regime has similar consequences to an increase in the initial kinetic
energy of the perturbations (see e.g. figure 1 in the review by Kerswell (2018)). We
note that this outcome is qualitatively consistent with linear transient growth analyses
(e.g. Tempelmann, Hanifi & Henningson 2012) which also reported an enhanced
amplification in the presence of compressibility, albeit in a different setting.

Three-dimensional perturbations fields for all cases are presented in figure 6 at
several time instants. We recall that the inverse scaling of the target time with the
Mach number leads to shorter optimization time intervals for higher Mach numbers.
As a consequence, the convective effect of the mean flow is comparable in all
considered cases. The concentration of the perturbation field closer to the centreline
at Ma= 0.20, however, causes the perturbations to be convected farther downstream
than at higher Mach numbers. In all cases, the nonlinear optimal perturbations
are initially localized near the pipe inlet, although the local confinement is more
pronounced when compressibility effects become appreciable. The initial perturbations
are generally tilted against the mean shear, leading to primary amplification by the
Orr mechanism up to t≈ 4.5. Past this point, oblique interactions redistribute energy
between different harmonics before the lift-up mechanism induces the growth of
highly energetic streaks.

The localized nature of the computed disturbances is qualitatively comparable
to the results by Pringle, Willis & Kerswell (2015) who studied the nonlinear
optimal perturbations in the incompressible flow in a long pipe at the moderately
higher Reynolds number of 2400. They found 99 % of the kinetic energy of their
perturbations to be confined within an axial extent of seven times the pipe diameter.
The present case Ma = 0.20 shows a comparable concentration of 99 % of the
perturbation kinetic energy within approximately 7.5 diameters. Higher Mach numbers
further enhance the localization, with the same percentage of the kinetic energy
confined to approximately 3.5 diameters at Ma= 0.65.
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x

Ma = 0.20

Ma = 0.50

Ma = 0.65

Ma = 0.80

FIGURE 6. Nonlinear optimal solutions for Ma= {0.20, 0.50, 0.65, 0.80} at solution times
t = {0, 3, 4.5, 15}. Isosurfaces of the streamwise perturbation component, u′1 = 0.60 ×
max(u′1) (red) and u′1 =−0.60×max(u′1) (blue).

For the purpose of comparison, figure 7 presents the time evolution of the linear
optimal solution computed for Ma = 0.80. The structure of the perturbation field
qualitatively differs from the nonlinear case and describes an azimuthally harmonic
pattern with a wavenumber of two. Owing to the non-parallel base flow introduced
by compressibility effects, the perturbations vary in the axial dimension. In the
absence of short-scale structures, the perturbation field immediately evolves into
axially elongated streaks which amplify as they are convected downstream. As shown
in figure 5(b), this growth mechanism is more effective for short times, but falls
behind the nonlinear cases as the target time is approached.
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x

FIGURE 7. Linear optimal solution for Ma = 0.80 at solution times t = {0, 3, 4.5, 15}.
Isosurfaces of the streamwise perturbation component, u′1= 0.60×max(u′1) (red) and u′1=
−0.60×max(u′1) (blue).
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FIGURE 8. Convergence statistics of the optimization procedure as a function of the
iteration number, n. (a) Normalized residual, Rn. (b) Computed gain in perturbation kinetic
energy at target time. Ma= 0.20 (black), Ma= 0.50 (red), Ma= 0.65 (purple) and Ma=
0.80 (blue).

To assess the convergence of the optimization scheme, the residual of the individual
computations as well as the perturbation kinetic energy gain as a function of the
iteration number n of the optimization procedure are presented in figure 8. In all
cases, the normalized residual, Rn, as defined in (2.23) is less than 10−4, and the
results can thus be considered to be well converged. Consistently, the energy of
the computed perturbation field plateaus after approximately 10 iterations without
discernible changes.

The results presented so far have shown the energy amplification of nonlinear
disturbances in orderly laminar flow. To investigate the potential of the nonlinear
optimal perturbations to trigger a chaotic state, we increase the initial kinetic energy
by multiplying the optimal initial condition computed for the case Ma = 0.50 by
a factor of 5.3, so that E0/Ma2

= 2.0 × 10−6. The rescaled perturbation field is
used as an initial condition and advanced over an increased horizon of 71 time
units. The resulting evolution of the perturbation kinetic energy is presented in
figure 9. The perturbations initially amplify via the Orr and lift-up mechanisms
before the emergence of a chaotic state at t ≈ 26 further enhances the energy level.
Eventually, the convection of the perturbation field out of the computational domain
gradually decreases the integral perturbation kinetic energy level. A visualization of
the perturbation field at t= 35 is presented in figure 10 and shows that the pattern of
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FIGURE 9. Evolution of the rescaled nonlinear optimal solution at Ma = 0.50. Kinetic
energy normalized by the square of the Mach number as a function of time, E(t)/Ma2.

x

FIGURE 10. Evolution of the rescaled nonlinear optimal solution at Ma=0.50. Isosurfaces
of u′1 = 0.60×max(u′1) (red) and u′1 =−0.60×max(u′1) (blue) at t= 35.

streaks has begun to develop into a broadband chaotic state which should, however,
not be confused with developed turbulence. We also note that this type of analysis
is not a substitute for the identification of an actual minimal seed which may induce
turbulence at lower kinetic energy and at an earlier time.

Lastly, we compare the evolution of nonlinear optimal perturbations at high kinetic
energy at different Mach numbers. For this purpose, we iteratively rescale the initial
energy level of the optimal perturbations computed for the various Mach numbers so
as to attain the same kinetic energy of E(t)/Ma2

= 0.016 at time t= 22. This energy
level matches that observed in figure 9 at the onset of the chaotic regime, at t≈ 26.
The identified scaling factors by which the initial energy is modified are A = 8.90,
6.80, 2.50 and 1.90 for the cases Ma = 0.20, 0.50, 0.65 and 0.80, respectively. As
evidenced in figure 11(a), the level of kinetic energy required to reach the target
value thus decreases with Mach number, demonstrating that the cases at higher Mach
number require lower initial kinetic energy to reach the same kinetic energy at final
time. Consistent with this result, the evolution of the normalized energy, E(t)/E0,
presented in figure 11(b), substantiates a strong increase of the associated growth
with Mach number.

4. Conclusions
A variational framework for the identification of general nonlinear optimal

perturbations in compressible flows has been presented. The formulation is based
on the compressible Navier–Stokes equations in conserved variables for an ideal gas
with temperature-dependent viscosity. The implemented method was validated in the
limit of low Mach numbers against published data on incompressible, effectively
periodic pipe flow. Both the linear and nonlinear optimal perturbations are captured
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FIGURE 11. Time evolution of kinetic energy for high-energy perturbations. (a) Kinetic
energy normalized by the square of the Mach number, E(t)/Ma2. (b) Kinetic energy
normalized by the initial perturbation kinetic energy, E(t)/E0. Ma = 0.20 (black), Ma =
0.50 (red), Ma= 0.65 (purple) and Ma= 0.80 (blue).

and the transient energy gain were shown to match results reported by Pringle
& Kerswell (2010). At higher Mach numbers, the pipe flow becomes increasingly
non-periodic. The associated nonlinear optimal perturbations are spatially localized and
their growth describes a sequence of Orr mechanism, oblique nonlinear interaction and
lift-up mechanism. Qualitatively, the amplification of the perturbations is thus similar
to incompressible periodic pipe flow (Pringle et al. 2012), although the observed
amplification in kinetic energy is appreciably higher than in the incompressible
regime. Nonlinear optimal disturbances which have been rescaled to a higher initial
kinetic energy than prescribed in the optimization procedure were shown to eventually
reach a chaotic state. It was further shown that for a constant time horizon, the initial
perturbation energy to reach a prechaotic high-energy state decreases monotonically
with Mach number.
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