Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2010), 24, 397-423.

© Cambridge University Press, 2010. 0890-0604/10 $25.00
doi:10.1017/S08900604099901 14

Formal analysis of design process dynamics

TIBOR BOSSE,! CATHOLIJN M. JONKER,? anp JAN TREUR!

'Department of Artificial Intelligence, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
2Department of Mediametics, Delft University of Technology, Delft, The Netherlands

(REcEIveD July 25, 2007; Acceptep June 5, 2009)

Abstract

This paper presents a formal analysis of design process dynamics. Such a formal analysis is a prerequisite to come to a
formal theory of design and for the development of automated support for the dynamics of design processes. The analysis
was geared toward the identification of dynamic design properties at different levels of aggregation. This approach is spe-
cifically suitable for component-based design processes. A complicating factor for supporting the design process is that not
only the generic properties of design must be specified, but also the language chosen should be rich enough to allow
specification of complex properties of the system under design. This requires a language rich enough to operate at these
different levels. The Temporal Trace Language used in this paper is suitable for that. The paper shows that the analysis
at the level of a design process as a whole and at subprocesses thereof is precise enough to allow for automatic simulation.
Simulation allows the modeler to manipulate the specifications of the system under design to better understand the interlevel
relationships in his design. The approach is illustrated by an example.

Keywords: Declarative Modeling; Design Processes; Dynamics; Logical Analysis; Simulation

1. INTRODUCTION

Providing automated support to manage the dynamics of a de-
sign process is in most cases far from trivial. For example,
some of the requirements put forward by Corkill (2000) are
that a complete design process representation is needed,
with sufficient detail to allow for direct execution. Brown
and Chandrasekaran (1989), Heller and Westfechtel (2003),
Baldwin and Chung (1995), and Gero and Kannengiesser
(2006) also stated that supporting the management of the dy-
namics of a design process is an important challenge to be ad-
dressed. The current paper aims to provide a formal represen-
tation of a complete design process in sufficient detail to
allow for automatic simulation of the process.

The type of design considered is the design of component-
based (e.g., software) systems for dynamic applications. It al-
lows the (re)use of components for which the (dynamic) prop-
erties are known. The required overall dynamics is obtained
by the correct combination of a number of such components.
Finding a correct combination is not straightforward, in par-
ticular with respect to the dynamics in the overall system in
relation to the available reusable components and their dy-

Reprint requests to: Tibor Bosse, Department of Artificial Intelligence,
Vrije Universiteit Amsterdam, De Boelelaan 1081a, Amsterdam 1081 HV,
The Netherlands. E-mail: tbosse@cs.vu.nl

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

397

namic properties. This aspect especially motivates the goal
of this paper to formally analyze the design process and
provide an automated simulation of the design process. The
simulation presented here is still a long way off from being
a design support system, because the whole aspect of the us-
ability of the system and user interaction are not addressed.
This paper contributes to such a design support system by
providing the fundamental analysis up to the level where au-
tomatic simulation can be performed. The complexity of the
intended analysis is high, as the following main tasks of a de-
sign process are by themselves complex:

. maintaining the property specifications of (reusable)
components,

maintaining the requirements on the overall system to
be designed (usually in close contact with a representa-
tive of the party that asked for the design process: a
stakeholder),

. refinement of requirements to more specific require-
ments (usually in cooperation with the stakeholder),
revision of requirements on the basis of the process thus
far (usually in cooperation with the stakeholder),
determination of proper reusable components on the
basis of their properties in order to find (a description
of) acomponent-based system that satisfies the require-
ments,


https://doi.org/10.1017/S0890060409990114

398

6. checking whether [a design object description (DOD)
of] a component-based system with known properties
of its components satisfies the requirements,

7. revision of a DOD that does not fully satisfy the require-
ments, and

8. coordination of the different processes within the de-
sign task.

Some of these tasks only concern requirements specification
and specification and evaluation of dynamic properties of
DOD:s, in particular, the first, second, and sixth task. These tasks
abstract from the dynamics of the actual design process as a
whole; they have been addressed in Jonker et al. (2002). The other
tasks essentially deal not with (required) dynamics of design ob-
Jjectsbut with the dynamics of design as a process. The analysis of
this design process dynamics is the subject of the current paper.

During a design process, two important concepts play a
role: a design problem statement and a solution specification.
A design problem statement consists of

e a set of requirements in the form of dynamic properties
on the overall system behavior that have to be fulfilled;

e a partial description of (prescribed) system architecture
that has to be incorporated; and

e a partial description of (prescribed) dynamic properties
of elements of the system that have to be incorporated,
for example, for components, transfers, parts, and inter-
actions between parts.

A solution specification for a design problem is a specifica-
tion of a design object (both structure and behavior) that fulfills
the imposed requirements on overall behavior, and includes the
given (prescribed) descriptions of structure and behavior. Here
“fulfilling” the overall behavior requirements means that they
are implied by the dynamic properties for components, trans-
fers, and interactions between parts within the specification.

The approach used for the formal analysis emphasizes the
difference between the generic aspects of the design process
and the specific aspects of a system to be designed during the
process. The logical specification of the generic aspects refers
to such generic concepts as the system requirements and
DODs. As a result, we provide a multilevel specification:
the generic level and the example specific level of the system
to be designed. Note that the specific level can contain var-
ious complex specifications as well, corresponding to the
complexity of the system to be designed.

This paper is organized as follows. Section 2 discusses a
formalization of design process dynamics in terms of design
states and design traces. Section 3 addresses some dynamic
properties of design processes. Section 4 gives an overview
of an example design process. A relevant global requirement
for the example system to be designed is given in Section 5.
This global requirement for the overall system is refined to local
requirements for parts of the system. In Section 6, based on the
adopted design problem, an example design trace is discussed.
After that, Section 7 describes a simulation model of the exam-

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

T. Bosse et al.

ple design process, whereas Section 8 discusses some example
simulation traces. In Section 9 the example design process is
analyzed in terms of dynamic properties. In particular, it dis-
cusses results of automated checks of these dynamic properties
against the example simulation traces discussed in Section
8. Section 10 presents some of the logical relationships between
these dynamic properties. Finally, Section 11 is a discussion.

2. DESCRIBING DESIGN PROCESS DYNAMICS

The analysis of the dynamics of a design process requires a
formalization of the concepts involved. The formalization in-
troduced in this section is based on Treur (1991) and Jonker
and Treur (2002), which identified such fundamental con-
cepts as design state and design trace, where design states
and design traces are composed of a part for requirements
and a part for DODs, an approach adopted from Treur
(1991). More information can be found in Gavrila and Treur
(1994) and Brazier et al. (1994, 1996).

2.1. States of a design process

The state of a design process at a certain time point is de-
scribed as a combined design state consisting of two states,
S = (8, Sp) where S; is the requirements state (including
the current requirements set) and S, is the DOD state (includ-
ing the current DOD).

A particular design process shows a sequence of states of
requirements sets and of DODs over time. A design state on-
tology Ont includes ontology for DODs and for require-
ments. The set of ground state atoms over Ont is denoted by
GSTATOMS(Ont). A design state S over a design state on-
tology Ont (including ontology for design objects and require-
ments) is a mapping assigning truth values to the ground atoms
S: GSTATOMS(Ont) — {true, false, undefined}. The set
of all possible states over Ont is denoted by STATES(Ont).

2.2. Traces of a design process

Design traces are time-indexed sequences of such design states.
To describe such sequences a fixed time frame T is assumed,
which is linearly ordered (e.g., the real or natural numbers).
A trace y over a design state ontology Ont and time frame T
is a mapping y: T — STATES(Ont), that is, a sequence of
states y¢ (t € T) in STATES(Ont). The set of all traces over
state ontology Ont is denoted by TRACES(Ont). Depending
on the application, the time frame T may be dense (e.g., the
real numbers), or discrete (e.g., the set of integers or natural
numbers or a finite initial segment of the natural numbers), or
any other form, as long as it has a linear ordering.

3. DYNAMIC PROPERTIES OF DESIGN
PROCESSES

Specification of dynamic properties of a design process has at
least two different aspects of use. First, models for the


https://doi.org/10.1017/S0890060409990114

Formal analysis of design process dynamics

dynamics can be specified to be used as a basis for simula-
tion, also called executable models. These types of models
can be used to perform (pseudo)experiments. Second, specif-
ication of dynamic properties of a process can be done to ana-
lyze its dynamics, for example, to find out how certain prop-
erties of a design process as a whole relate to properties of a
certain subprocess, or to verify or test a design model.

3.1. Specifying dynamic properties of a design
process

To formally specify dynamic properties that express character-
istics of dynamic processes (such as design) from a temporal
perspective an expressive language is needed. To this end the
Temporal Trace Language (TTL) is used as a tool (cf. Jonker
& Treur, 2002; Bosse et al., 2006a). This language can be clas-
sified as a predicate logic-based reified temporal language; see
Galton (2003, 2006). Other classes of temporal languages are
the modal temporal logics such in Barringer et al. (1996),
Goldblatt (1992), and Fisher (2005). The expressivity of these
languages (within a world) is usually limited to propositional
logic. TTL is briefly defined in the following.

3.1.1. TTL for dynamic properties

To start, an order-sorted predicate logic ontology Ont to
describe state properties is assumed, consisting of sorts, subsort
relations, constants in sorts, and functions and relations over
sorts (e.g., Manzano, 1996). Among these sorts are also sorts
for real and integer numbers, and among the functions the stan-
dard arithmetical functions. This makes TTL a hybrid declara-
tive language. Moreover, in TTL traces vy, time points ¢ and
state properties p can be used as first class citizens in sorts
TRACES, TIME, and STATPROP, respectively. The set of
dynamic properties DYNPROP(Ont) is the set of temporal
statements that can be formulated with respect to traces based
on the state ontology Ont in the following manner. Given a trace
~ over state ontology Ont, a certain state during a design pro-
cess at time point ¢ is denoted by state(vy, f). These states can
be related to state properties via the formally defined satisfac-
tion relation denoted by the infix predicate |=. Here state(y, t)
|= p denotes that state property p holds in trace vy at time 7. This
predicate is comparable to the Holds-predicate in the situation
calculus and event calculus (cf. Kowalski & Sergot, 1986;
Reiter, 2001). Notice that here state properties are represented
(reified) by terms to denote them as objects in TTL. Based
on these statements, dynamic properties can be formulated in
aformal manner in a sorted first-order predicate logic with sorts
TIME for time points, TRACES for traces, and STATPROP
for state formulae, using quantifiers and ordering relations over
time and the usual first-order logical connectives such as =, &,
V, =, V, and 3.

Because TTL uses order-sorted predicate logic as a point of
departure, it inherits the standard semantics of this variant of
predicate logic. That is, the semantics of TTL is defined in a
standard way, by interpretation of sorts, constants, functions
and predicates, and a variable assignment. In addition the

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

399

semantics involves some specialized aspects. A number of
standard sorts are present, so the elements of these sorts are
limited to instances of specified terms in these sorts as usual,
for example, in logic programming semantics. For example,
for the sort TIME it is assumed that in its semantics its ele-
ments consist of the time points of the fixed time frame cho-
sen. Moreover, for the sort TRACE, it is assumed that in its
semantics its elements consist of a (limited) number of traces
named by constants. Furthermore, for the sort STATPROP
for state properties it is assumed that in its semantics its ele-
ments consist of the set of terms denoting the propositions
built in a chosen state language (this is called reification). A
full description of the technical details of TTL’s semantics
is beyond the scope of the current paper. For this purpose,
see Sharpanskykh and Treur (2005).

3.1.2. The language LEADSTO for executable
dynamic properties

To be able to perform some automated experiments with de-
sign processes, the full expressivity of TTL is not required.
Therefore, a simpler temporal logical language to specify simu-
lation models has been used for this purpose. This language
LEADSTO (Bosse et al., 2007), which is a sublanguage of
TTL, enables to model direct temporal dependencies between
two state properties in successive states, as occur in specifica-
tions of a simulation model (e.g., if in the current state, state
property p holds, then in the next state, state property g holds).
This language is executable, and therefore enables the auto-
matic generation of simulated traces; for other executable tem-
poral languages based on modal logic, see Barringer et al.
(1996). This section briefly introduces the logical format used
for these LEADSTO simulation models. This executable for-
mat is defined as follows. Let o and 3 be state properties of
the form “conjunction of atoms or negations of atoms.” In
the LEADSTO language the notation o — ¢ 1 g 13, means

IF: state property o holds for a certain time interval with
duration g

THEN: after some delay (between e and f') state property 3
will hold for a certain time interval of length £

Note that within the atoms free variables may occur, which
are considered universally quantified over the whole formula.
Moreover, numerical functions may be used to perform calcu-
lations. In this way, LEADSTO allows us to represent and
execute difference/differential equations with arbitrary (and
possibly dynamic) step size (see also Bosse et al., 2008).
For the complete syntax and semantics of LEADSTO, see
Bosse et al. (2007). For a formal definition of the LEADSTO
language in terms (as a sublanguage) of the language TTL,
see Jonker et al. (2003) and Bosse et al. (2006a).

3.2. Dynamic properties at different levels
of aggregation

Based on their different levels of aggregation (or by con-
sidering in how far they cover the process as a whole or


https://doi.org/10.1017/S0890060409990114

400

only part of the process), two different types of dynamic
properties can be distinguished: local properties and global
properties.

3.2.1. Local properties

Local properties only concern the smallest steps (taken into
account in the conceptualization of the process) in the process
under analysis. An example local property of a design process
might be (simplified, and in semiformal notation) the follow-
ing: at every point in time,

IF: arequirement r is imposed on the object to be designed
AND: this requirement can be refined into subrequire-
ment q

THEN: at the next point in time, subrequirement q will be
imposed on the object to be designed

3.2.2. Global properties

In contrast, a global property is a nonlocal property that
concerns the overall process (taken into account) in the pro-
cess under analysis. An example is

Eventually there is a committed requirement set R and
a DOD D such that, for each requirement r in R,
the DOD D satisfies requirement r

Note that often, but not always, local properties can be repre-
sented as executable dynamic properties (e.g., using the
LEADSTO format introduced above). As a result, these execut-
able local properties can be used to generate simulation traces.
Instead, global properties often have a higher complexity, for
example, because they relate states at multiple time points to
each other in a manner that is beyond a simple causal relation-
ship (e.g., “if X and later Y then earlier Z,” or “eventually X or Y
happens”). Therefore, the more expressive TTL is needed to
formalize these global properties. In the approach taken in
this paper, executable local properties are used to generate sim-
ulation traces, and global properties are used to analyze these
simulation traces, that is, to check (using automated tools)
whether they show the expected behavior. More complex local
and global dynamic properties for design processes and their
formalizations will be presented in subsequent sections.

4. AN EXAMPLE DESIGN PROCESS

To address in more detail the analysis of design process dynam-
ics, an example design process was taken. The analysis approach
is described and evaluated for this example design process. The
example design process concerns the design of a cooperative in-
formation gathering agent system (see Section 4.2). The design
approach is by requirements refinement (see Section 4.1).

4.1. Designing by requirements refinement

A design process of a complex system (e.g., a software sys-
tem) usually starts by specifying requirements for the overall

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

T. Bosse et al.

system behavior. They express the dynamic properties that
should “emerge” if appropriate components are designed
and combined in a proper manner. Given these requirements
on overall system behavior, the system is designed in such a
manner that the requirements are fulfilled.

Between dynamic properties at different levels of aggrega-
tion within a complex system (to be) designed, certain inter-
level relationships can be identified; overall behavior of the
design object can be related to dynamic properties of parts
of the design object and properties of interaction between
these parts via the following pattern:

dynamic properties for the parts
& dynamic properties for interaction between parts
= dynamic properties for the design object

Thus, if for a design problem, requirements in the form of dy-
namic properties for the overall system behavior are given,
this scheme shows that to fulfill these overall dynamic prop-
erties, dynamic properties for certain parts and for interaction
between these parts are needed that together imply the overall
behavior requirements. The process to identify new, refined
requirements for behavior of parts of the system and their in-
teraction is called requirements refinement. Subsequently, the
required dynamic properties of parts can be refined to dy-
namic properties of certain components and transfers, making
use of the pattern:

dynamic properties for components
& dynamic properties for transfer between components
= dynamic properties for a part

4.2. An example design problem

As a case study, the process of designing a multiagent system
for cooperative information gathering (Jonker & Treur, 2002)
will be analysed in more detail. To get the idea, assume the
system to be designed has to consist of three agents: A, B,
and C (see Fig. 1). The resulting behavior of the system
must be as follows: agent A and B are able to do some investi-
gations and make up a report on some topic, and communicate
that to the third agent C. Both A and B have access to useful

Fig. 1. The example agent system to be designed.


https://doi.org/10.1017/S0890060409990114

Formal analysis of design process dynamics

sources of information, but this differs for the two agents. By
cooperation they can benefit from the exchange of information
that is only accessible to the other agent. If both types of infor-
mation are combined, conclusions can be drawn that would not
have been achievable for each of the agents separately. Why
could such a cooperation fail? One of the agents, say A, may
not be proactive in its individual search for information. This
might be compensated if the agent B is proactive in asking
the other agent for information, but then at least A has to be re-
active (and not entirely inactive in information search). Some
other reasons for failure are one of the agents may not be willing
to share its acquired information, or none of them is able or will-
ing to combine different types of information and deduce new
conclusions. Thus, agent properties such as information acqui-
sition proactiveness and conclusion proactiveness could be de-
sirable requirements for parts of the system to be designed.

To make the example more precise: the example agent
model is composed of three components: two information
gathering agents A and B, agent C, and environment compo-
nent E representing the external world (see Fig. 1). In this fig-
ure the ovals denote the three agents. The arrows depict chan-
nels for flow of information (so-called information links).
Each of the agents is able to acquire partial information
from an external source by initiated observations. Initiated
observations are modeled by an arrow from the agent to E,
transferring information on what is to be observed, and by
an arrow back transferring information on the results of the
observation. For communication the arrows (information
links) between the agents are used.

For reasons of presentation, this by itself quite common sit-
uation for cooperative information agents is materialized in
the following more concrete form. The world situation con-
sists of an object that has to be classified. One agent can ob-
serve only the bottom view of the object, the other agent only
the side view. By exchanging and combining observation in-
formation they are able to classify the object. An agent may
be able to draw a conclusion on the object type if it has input
on the two views on the object, in the sense that, for example,
if the agent knows that the views are a circle and a square, it is
concluded that the object is a cylinder.

In most multiagent systems it is common that each agent
has its own characteristics or attitudes. In the current system
to be designed, the agents used as components in the design
can differ in their attitudes toward observation and communi-
cation: an agent may or may not be proactive, in the sense
that it takes the initiative with respect to one or more of the
following:

e perform observations,

e communicate its own observation results to the other
agent,

e ask the other agent for its observation results, and

e draw conclusions about the classification of the object.

Moreover, an agent may be reactive to the other agent in the
sense that it responds to a request for observation information

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

401

e by communicating its observation result as soon as they
are available and
e by starting to observe for the other agent.

The successfulness of the system to be designed will de-
pend on the combination of attitudes of the agents. For exam-
ple, if both agents are proactive and reactive in all respects,
then they can easily come to a conclusion. However, it is
also possible that one of the agents is only reactive, and still
the other agent comes to a conclusion. Alternatively, an agent
that is only reactive in reasoning and in information acquisi-
tion may come to a conclusion because of proactiveness of the
other agent. Thus, successfulness can be achieved in many
ways and depends on subtle interactions between proactive-
ness and reactiveness attitudes of both agents. The analysis
of the example in the following section provides a detailed
picture of these possibilities.

5. REQUIREMENTS OF THE EXAMPLE
DESIGN PROBLEM

In this section the example agent system to be designed as dis-
cussed in the previous section is further elaborated in terms of
relevant requirements. Section 5.1 presents the design prob-
lem statement, consisting of the requirements on the overall
agent system behavior, which includes the dynamic proper-
ties for transfer, and the dynamic properties for the environ-
ment. Section 5.2 describes a number of variants of a sys-
tematic design process (by requirements refinement) to
obtain one or more design solutions.

5.1. Design problem statement

The design problem statement of this agent system design
problem consists of the overall agent system behavior require-
ment, interaction dynamics (transfers), and prescribed behav-
iors for the component E. The main requirement imposed on
the current agent system is whether or not a result will be gen-
erated. This requirement is called DOD global property
(DODGP).

DODGP successfulness: For any trace of the system, there
exists a point in time such that in this trace at that point in time
agent C will receive a correct conclusion, either from A or
from B (or from both).

As part of the design problem statement, the behavior of £
is prescribed by the following environment property for each
agent X from the set {agent A, agent B}.

DODERP(X) information provision effectiveness:

IF: E receives an information acquisition initiation by X
THEN: E will generate the correct relevant information for X

Furthermore, the behavior about information transfer between
agents is prescribed by the following transfer property for
several combinations of components X and Y from the set
{agent A, agent B, agent C, external world E}.


https://doi.org/10.1017/S0890060409990114

402

DODTP(X, Y) information transfer:

IF: X generates information for Y
THEN: Y will receive this information

Thus, it is prescribed that all information generated by an
agent for another agent (but no other information) is automat-
ically transferred, without any time duration.

5.2. Design process: Refining requirements

In virtue of which combination of dynamic properties of the
agents can success be achieved? In other words, which dy-
namic properties for the agents imply the property successful-
ness? How can the requirement on the overall agent system
behavior be refined to requirements on agent behaviors?
Such a requirements refinement process can be managed
more effectively if the overall requirements are not directly
related to agent behavior requirements, but one or more inter-
mediate levels are created. The idea is that for the agent sys-
tem to be successful it is necessary that

e both information sources within the environment E are
addressed;

o if they are addressed, they provide the relevant informa-
tion; and

e if the relevant information is provided by the informa-
tion sources, a conclusion is drawn.

This first requirements refinement (see top level of Fig. 2)
provides the dynamic properties DODGP1, DODGP2, and
DODGP3:

DODGPI information request effectiveness:

At some points in time A and B will start information
acquisition to E

DODGP?2 information source effectiveness:

IF: at some points in time A and B start information
acquisition to £

THEN: E will generate all the correct relevant information
for both

DODGP3 concluding effectiveness:

IF: at some points in time E generates all the correct rel-
evant information
THEN: C will receive a correct conclusion

These properties are logically related to DODGP (see also
Fig. 2) by the implication

DODGP1 & DODGP2 & DODGP3 = DODGP

A next step in the requirements refinement process is to re-
late each of the dynamic properties DODGP1, DODGP2, and

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

T. Bosse et al.

DODGP3 to agent behavior properties. The complete refine-
ment of these properties is elaborated in Appendix A. In the
following, we only present the tree with logical relationships
between dynamic properties, without showing the exact defi-
nitions of the properties.

In Figure 2, in the form of and AND/OR tree an overview is
shown of all possible refinements as discussed. Here X and Y
are variables over the set {agent A, agent B}, where X # Y.
Connections between boxes indicate upward logical implica-
tions, and the circles indicates labels of the implications
(which we call branches), in such a way that the combination
of properties below the circle (logically) entail the property
above the circle. For example, property DODGP1, DODGP2,
and DODGP3 imply (via branch B11) property DODGP.
Similarly, property DODBP1(A) and DODBP1(B) imply
(viabranch B1) property DODGP1. Note that the different al-
ternative branches are indicated by nodes labeled B1 to BS5,
and that the labels B11 to B16 indicate branches in situations
when there are no alternatives. Conjunctions of branches are
indicated by arcs connecting them.

Complicated as it may look at first sight, the tree depicted
in Figure 2 has been constructed by hand, using natural de-
duction techniques. Although the full proofs of all interlevel
relationships are beyond the scope of this paper, some proof
sketches are provided in Appendix A. More background in-
formation is also provided in (Jonker & Treur, 2002). To con-
sider a simple (informal) example, consider the interlevel re-
lationship indicated by B1. This states that the properties
DODBPI1(A) and DODBP1(B) imply DODGPI. The first
two properties denote, respectively that “agent A is informa-
tion acquisition proactive” and that “agent B is information
acquisition proactive” (see Appendix A). Assuming these
two properties already satisfies property DODGP1, namely,
that “At some points in time A and B will start information ac-
quisition to E,” which is nothing more that the conjunction of
the two.

6. AN EXAMPLE DESIGN TRACE

To illustrate how such a design process works, for the design
problem discussed in the previous sections, a simple example
design trace is presented (in an informal format) in Table 1.
The purpose of this trace is to demonstrate which subsequent
steps may be performed for such a design process. In the next
sections, a simulation model will be presented that is able to
automatically generate such traces.

The subsequent steps shown in Table 1 involve the follow-
ing activities:

1. Determine what the initial, global design objectives are.
Usually, this is something like “designing a certain ob-
ject X,” which is defined in cooperation with a stake-
holder.

2. Specify which global requirements need to be fulfilled
to reach the design objectives. These requirements are
usually domain dependent. For example, in case the


https://doi.org/10.1017/S0890060409990114

Formal analysis of design process dynamics 403
DODGP
BIl
DODGPI DODGP2 DODGP3
Bl B2 B3 B12
DODBP1(A) DODBP1(X) DODBP2(A)
DODBP1(B) DODBP2(X) DODBP4(A) DODII(A) DODII(B) DODIZ(X.Y) DODI3(X,Y.C)
DODBPA(Y) DODBP2(B)
DODTP(X.Y) DODBP4(B)
DODTP(AB)
DODTP(B.A)
DODEP(A) DODEP(B) DODBP3(X)
DODTP(AE) DODTP(B,E) DODTP(Y.X)
DODTP(E.X)
DODTP(X.C)

DODBP6(Y) DODBP2(X)
DODTP(E,Y) DODBP5(Y)
DODTP(X.Y)
DODTP(E,Y)

Fig. 2. The overview of all possible requirement refinements.

object to be designed is an information gathering sys-
tem, then, obviously, one of the requirements it that it
should be successful in gathering the desired informa-
tion. In addition, nonfunctional requirements may be in-
cluded here, such as “the design process should be fin-
ished within n months,” or “the design process should
not cost more than ¢ Euros.”

. Refine the global requirements (about the design object
as a whole) into more detailed requirements (about
components and interactions between components),
based on refinement knowledge. Such refinement
knowledge may be based on strict logical relationships

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

between dynamic properties that are known (such as the
tree shown in Fig. 2), or may be of a more heuristic na-
ture. The refinement process may have an iterative char-
acter, taking numerous aggregation levels of the tree of
logical relationships into account, until the leaves of the
tree are reached. For example, in case of the AND/OR
tree shown in Figure 2, a set of local requirements is ob-
tained by following all AND alternatives and selecting
one OR alternative for each branch. In case of OR
branches, additional background knowledge (e.g.,
about the expected costs or time to fulfill the branch)
may be used to make an appropriate choice.


https://doi.org/10.1017/S0890060409990114

404 T. Bosse et al.

Table 1. Example design trace

Step Informal Description Effect
1 Initial design process objectives are given. “A design solution for the example design problem has to be
found.”
2 Initial requirements are identified. A set of requirements is created, which Requirement set (1): {DODGP}
initially only consists of one requirement: DODGP.
3 Using refinement knowledge, the requirements are refined into requirements Requirement set (2): {DODBP1(A), DODBP1(B), DODBP3(X),

for components and interactions (transfers) between components, DODBP6(Y), DODEP(A), DODEP(B), DODTP(A,E),

resulting in a more refined set of requirements. Refinement knowledge,
for example, can be based on strict logical relationships between dynamic

properties but it can also be of a more heuristic nature.

4 Components (from the library) are identified that satisfy the component

DODTP(B,E), DODTP(Y,X), DODTP(E,X), DODTP(E,Y),
DODTP(X,C)}

DOD(1): {C2A, C2B, C3A, EW}

requirements obtained, and they are included in the initial DOD state,
called DOD(1). The library indicates for each component which of the
properties it has [e.g., component C2A satisfies property DODBP1(A)].

5 The connections are made according to the transfer requirements and

DOD(2): {C2A, C2B, C3A, EW, L1, L2, L3}

included in the DOD state, thereby creating the next version of the DOD,
called DOD(2). This can also make use of the library, or it can be done in a

standard manner.

6 It is evaluated whether the overall requirements hold for the DOD, based on

the logical relationships.

“All requirements evaluated”

Note: DODGP, design object description global property (see Section 5.1).

4. As soon as the lowest level requirements have been
identified (which usually are requirements about basic
components, or about connections between compo-
nents), select basic components that satisfy these re-
quirements. Often, such standard components are avail-
able in a library (which is assumed in the example used
in the next sections). Otherwise, they have to be created.

5. To satisfy lowest level requirements that address transfer
between components, select standard components for
transfer (e.g., certain predefined communication chan-
nels, or information links). In case a certain component
can directly communicate with another component, no
communication channel is needed at all, and the transfer
requirement is automatically satisfied. The total set of all
components and “links” makes up the final DOD.

6. Once the final DOD has been established, evaluate
whether it indeed satisfies all requirements. Again,
this can be done based on knowledge that relates higher
level requirements to lower level requirements (see the
next section for a discussion about this): once all lower
level requirements have been fulfilled, also the higher
level requirements have been fulfilled.

In Table 1, the names DODGP, DODBP1(A), and so forth in-
dicate requirements, similar to the ones introduced in the pre-
vious section (and of which the formal descriptions are pro-
vided in Appendix A); C2A, C2B, EW, and so forth
indicate available components that are used in the design pro-
cess; and L1, L2, and L3 indicate connections or links be-
tween components. Examples of such components may be
“a piece of memory,” “a component for communication,”
or “a reasoning engine.” For more concrete examples for
the case study addressed, see Jonker and Treur (2002).

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

7. A SIMULATION MODEL FOR THE
EXAMPLE DESIGN PROCESS

Making use of the formal approach described in the
previous section, the dynamics of an example design process
can be simulated. This particular example concerns the design
of the agent system for cooperative information gathering pre-
sented earlier. To be able to simulate the dynamics of such a
design, several kinds of domain-specific information (in par-
ticular, the logical relationships shown in Fig. 2 and the char-
acteristics of components as stored in the library) have been
modeled by means of sorts and facts. The domain-independent
information (e.g., rules that refine a requirement to its sub-
requirements) has been modeled by means of local properties
in an executable format. However, notice that one of these local
properties is domain specific, namely, the initialization prop-
erty LPO.

7.1. Sorts

Sorts are used to define all constants that are used within the
simulation, and to distinguish different types of constants
from each other. Our example contains six sorts: property,
nonlocalproperty, localproperty, branch, component,
and DOD. Note that the “links,” the connections between
components, are also modeled as components. Some exam-
ples of objects or terms within sorts are

e property: DODGP, DODGP1,...,
DODI1(B),..., DODBP1(X),...

¢ nonlocalproperty: DODGP, DODGP1,...,DODI1(A),
DODI1(B),...

e localproperty: DODBP1(X),...

DODI1(A),


https://doi.org/10.1017/S0890060409990114

Formal analysis of design process dynamics

e branch: B1, B2, B3, B4, B5, B11, B12, B13, B14,
B15, B16

e component: C1A, C1B, C2A, C2B, C3A, C3B,
C4A, C4B, C5A, C5B, EW, L1, L2, L3, L4

e DOD: DOD(1), DOD(2), DOD(3), ...

7.2. Facts

Facts are used to express knowledge that is true during the
whole simulation process. The first set of facts represents
the logical relationships of Figure 2 in a formal notation.
For example, is_a_subrequirement_of_via(DODBP1(A),
DODGP1, B1) expresses that property DODBP1(A) is a
subrequirement of property DODGP1 via branch B1 (see
the lower left edge in Fig. 2). Another example of such a
fact representing the logical relationships between require-
ments is

is_a_subrequirement_of_via(DODGP2, DODGP, B11)

Note that in the latter case there is just one possible branch to
choose.

During simulation, these logical relationships are used as
heuristics to guide the refinement process. Note that in this
example, the tree of logical relationships is complete: it cov-
ers all possible combinations of local requirements that to-
gether satisfy global property DODGP. However, in more
realistic situations this is very unlikely to be the case.! Often
the logical relationships between requirements that are known
beforehand are erroneous and incomplete. Therefore, it is use-
ful to perform an additional evaluation of the resulting DOD
at the end of the design process. To perform such an
evaluation, a similar tree as in Figure 2 is used, but this
time the information is complete and bottom up.? It is repre-
sented by the following type of facts:

is_implied_by(DODGP, [DODGP1, DODGP2, DODGP3])

In our simplified example, however, the information used
for the evaluation fully corresponds to the information repre-
sented by the relation is_a_subrequirement_of_via(. . .).

The last set of facts represents the characteristics of the li-
brary components. For instance, the fact that component

! The only reason why we know in the current example that the tree is com-
plete, is that all possible local behaviors of a component (such as DODBP1,
“being information acquisition proactive”) are given beforehand in the descrip-
tion of Section 4.2. As a result, by common sense reasoning, one can explore all
different combinations of such behaviors and construct a complete tree of com-
binations that satisfy global property DODGP (e.g., it is quite easy to see that if
all agents are only information acquisition reactive, and none of them is request
proactive, the resulting system will not be successful).

2 As opposed to the situation at the start of a design process, after the de-
sign process it is much easier to construct a “complete” tree of logical rela-
tionships between the overall desired property and the local properties of
the components, because the components have been selected. As a result,
these relationships can be used to evaluate the behavior of the designed
DOD according to the following principle: if the DOD satisfies all local prop-
erties, then it also satisfies the global property.

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

405

C1A satisfies requirement DODBP1(A) is denoted by the
fact holds_for(DODBP1(A), C1A). The fact that component
C1A’s costs are 500 is denoted by costs(C1A, 500). Moreover,
some additional information has been included, such as a qual-
ity factor for each component, and the predicted costs for each
branch. These kinds of information may be used as heuristic
knowledge in the refinement process (see the next section).

holds_for(DODBP1(A), C1A)
holds_for(DODBP2(A), C1A)
holds_for(DODBP3(A), C1A)
holds_for(DODBP4(A), C1A)

costs(C1A, 500)
costs(C1B, 501)
costs(EW, 0)

A
A

quality(C1A, 100)
quality(C1B, 100)
quality(EW, 1000)

predicted_costs(B1, 60)
predicted_costs(B2, 300)
predicted_costs(B3, 900)

7.3. Local properties

As mentioned earlier, local properties are used to model the
domain-independent dynamics of the design process. Three
types of local properties are distinguished: those that model
the dynamics of requirements states, and those that model
the dynamics of the DOD states. In this section, only a subset
of the local properties used for the simulation is shown. For
simplicity, the timing parameters e, f, g, and & have been
left out here. The complete specification of the simulation
is shown in Appendix B. The local properties shown below
make use of the state ontology shown in Table 2.

7.3.1. Properties concerning requirements

Within the process requirements are determined and re-
fined. This process takes into account whether the stakeholder
asserts that certain requirements are undesirable.

LPO initialization. The first local property LPO expresses
that the initial requirements for the system are DODGP and
DODCHEAP. Note that, if desired, the user can modify this
property by choosing different initial requirements. Formalization:

start — is_a_current_requirement(DODGP)
A is_a_current_requirement(DODCHEAP)

LP2 undesirable branch determination. These two local
properties are used to determine which branches are undesir-
able. There are two cases: a requirement that belongs to it is un-
desirable and its total costs are higher than predicted, whereas
the requirement DODCHEAP is present. Formalization:

is_a_subrequirement_of_via(p, n, b)

A undesirable_requirement(p) — undesirable_branch(b)
is_a_current_requirement(DODCHEAP)

A total_branch_costs(b, x) A predicted_costs(b, y)

A X >y — undesirable_branch(b)

LP4 requirement refinement. Local property LP4 ex-
presses that, if currently a requirement p exists that can be


https://doi.org/10.1017/S0890060409990114

406

Table 2. StateOntology

T. Bosse et al.

State Property

Description

is_a_current_requirement(p)
is_a_subrequirement_of_via(p1, p2, b)
undesirable_requirement(p)

undesirable_branch(b)
undesirable_component(c)

total_branch_costs(b, x)
intermediate_branch_costs(b, x)
predicted_costs(b, x)

requirement_refined(p)
requirement_refined_via(p, b)
best_branch_for(b, p)

best_component_for(c, p)

costs(c, x)

‘DOD_counter’(x)
current_DOD(DOD(x))
part_of_DOD(c,DOD(x))
local_requirement_satisfied(p)
holds_for(p, c)

Property p is part of the current requirement set.

Property p1 is a subrequirement of property p2 via branch b.

Property p is an undesirable requirement [e.g., because the stakeholder has indicated that (s)he is not interested
in that requirement anymore].

Branch b is an undesirable branch (e.g., because it contains only undesirable requirements).

Component c is an undesirable component [e.g., because the stakeholder has indicated that (s)he does not like
the component].

The total costs of developing a DOD that satisfies branch b are x.

During design, the costs of developing a DOD that satisfies branch b are estimated to be x.

Before the design process starts, the total costs of developing a DOD that satisfies branch b are estimated
to be x.

Requirement p has currently been refined to subrequirements.

Requirement p has been refined to subrequirements via branch b.

Branch b is considered to be the best option to satisfy requirement p (e.g., because it has the lowest predicted
costs).

Component ¢ is considered to be the best component to satisfy requirement p (e.g., because it has the lowest
predicted costs).

The costs of developing component ¢ are x.

As yet, x different versions of a DOD have been considered.

The DOD that is currently considered is called DOD(x).

Component c is part of DOD(x).

Local requirement p is satisfied by the DOD under consideration.

Property p holds for component c.

Note: DOD, design object description.

refined to a subrequirement g, and it has not been refined yet,

component C for which this requirement holds. Formalization:

then this should be done by refining via the best branch b (e.g.,

the one with the lowest predicted costs). Formalization:

is_a_current_requirement(p) A is_a_subrequirement_of_

current_DOD(d) A part_of_DOD(c, d) A holds_for(l, c)
A is_a_current_requirement(l) — local_requirement_
satisfied(l)

via(q, p, b) A not(requirement_refined(p)) A best_branch_

for(b, p) A not(undesirable_branch(b)) — is_a_current_

8. EXAMPLE SIMULATION TRACES

requirement(q) A requirement_refined(p) A requirement_

refined_via(p, b)

7.3.2. Properties concerning the DOD
The process concerning DODs determines DODs for sets

Using the simulation model described in Section 7, a number
of experiments were performed. In such experiments, differ-
ent types of revision might be needed with an increasing im-
pact on the design process:

of requirements given as input. Within this process it is taken

into account whether or not the stakeholder asserts that certain
components are undesirable as part of a design object.

LP6 DOD generation. This property expresses that each
local requirement | should be satisfied by adding the best
component C for that requirementp to the current DOD,

DOD(x). Formalization:

e revision of the DOD for given requirements based on the
stakeholders judgment that a component used in the
DOD is undesirable,

e revision of the refined requirements based on the stake-
holder’s judgment that one of these requirements is un-
desirable, and

e revision of a whole branch based on the calculation that
the costs of the DOD found are higher than expected.

is_a_current_requirement(l) A best_component_for(c, I)

A not(undesirable_component(c)) A costs(c, y)

A is_a_subrequirement_of_via(l, n, b) A “DOD_counter”(x)
—» current_DOD(DOD(x)) A part_of_DOD(c, DOD(x))

A intermediate_branch_costs(b, y)

LPS8 local requirement satisfaction determination. This
property determines when a local requirement | is satisfied by
a DOD. This is the case when the current DOD contains a

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

The simulation has been performed within the LEADSTO soft-
ware environment. Basically, the temporal rules are processed
(in parallel) over time, thereby maintaining time intervals for
which certain state properties hold. For an extensive description
of the algorithm, see Bosse et al. (2007).

The first trace depicted in Figure 3 shows a design process
in which no revision is needed. In this and the next figure,
time is on the horizontal axis, the derived state properties


https://doi.org/10.1017/S0890060409990114

Formal analysis of design process dynamics 407

DOD_generation_terminated -
current_DOD(dod(1))+
part_of_DOD(c2a, dod(1))-
part_of_DOD(c2b, dod(1)) 4 )
part_of_DOD(c3a, dod(1)) ]

part_of _DOD(ew, dod(1))- ]

part_of DOD(I1, dod(1)) ]
part_of_DOD(I2, dod(1))- )
part_of_DOD(I3, dod(1))- /
part_of_DOD(l4, dod(1)) ]
is_a_current_requirement(dodcheap){
is_a_current_requirement(dodgp) 4
is_a_current_requirement(dodgp1) 4 ]
is_a_current_requirement(dodgp2) - ]
is_a_current_requirement(dodgp3)-
is_a_current_requirement(dodbp1(a)) - {
is_a_current_requirement{dodbp1 (b))
is_a_current_requirement(dodbp3(x))
is_a_current_requirement{dodbp6&(y)) -
is_a_current_requirement(dodep(a))
is_a_current_requirement(dodep(b))
is_a_current_requirement(dodi1(a))-
is_a_current_requirement(dodi1 (b))
is_a_current_requirement(dodi2(x, y))
is_a_current_requirement(dodtp(a, e)) 4
is_a_current_requirement(dodtp(b, e)) ]
is_a_current_requirement(dodtp(e, x)) ! '
is_a_current_requirement(dodtp(e, y))-
is_a_current_requirement(dodtp(x, c))-
is_a_current_requirement(dodtp(y, x)) -
is_a_current_requirement(dodi3(x, y, c)) /
requirement_evaluated(dodcheap) {
requirement_evaluated(dodgp) - {
requirement_evaluated(dodgp1) -
requirement_evaluated(dodgp2) -
requirement_evaluated(dodgp3) -
requirement_evaluated(dodbp1(a)) 4
requirement_evaluated(dodbp1(b)) 4 .
requirement_evaluated(dodbp3(x)) :
requirement_evaluated(dodbp6(y)) 1
requirement_evaluated{dodep(a))
requirement_evaluated({dodep(b))
requirement_evaluated(dodi1(a))
requirement_evaluated(dodi1 (b)) 4
requirement_evaluated(dodi2(x, y)) 4
requirement_evaluated(dodtp(a, e))
requirement_evaluated(dodtp(b, e))-
requirement_evaluated(dodtp(e, x}) .
requirement_evaluated(dodtp(e, y)) ! ]
requirement_evaluated(dodtp(x, c}) 4 !
requirement_evaluated(dodtp(y, x))4 ]
requirement_evaluated(dodi3(x, y, c))
all_requirements_evaluated f

time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Fig. 3. Simulation trace 1. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060409990114

408

are on the vertical axis. A dark box on top of a line indicates
that a state property is true at that time point, whereas a light
box below a line indicates that a state property is false. To fa-
cilitate understanding, only the most relevant of the derived
atoms are shown (not in any particular order). In the simula-
tions shown in this paper, for all local properties the values (0,
0, 1, 1) have been chosen for the timing parameters €, f, g,
and h. This means that for each local property, the consequent
is derived for one time unit directly (with zero delay) after the
antecedent has been true for one time unit. In cases the mod-
eler desires to specify the durations of the different parts of the
design process explicitly, these parameters can be replaced by
choosing more realistic values (e.g., in terms of seconds) for
each individual local property.

As shown in Figure 3, when the process starts, first the
initial requirements DODGP and DODCHEAP are iden-
tified. After this, these requirements are refined into sub-
requirements DODGP1, DODGP2, and DODGP3 (based
on the logical relationships of the tree in Fig. 2, also see the
representation of this tree by means of the relation is_a_
subrequirement_of_via in Section 7). This process contin-
ues until the most elementary requirements (i.e., those that
have no subrequirements; the leaves of the tree) have been
reached. Then a new DOD [called DOD(1)] is created, which
consists of a number of components (and connections
between them) that satisfy all local requirements.

During this process, if possible only the components
with the lowest predicted costs are selected, according to a sim-
ple mechanism that prefers branches with lower costs (see local
property LP3 for the implementation). As soon as a satisfactory
DOD has been found (at least according to the requirements
that were derived), DOD generation finishes, and after this,
all (local and nonlocal) requirements that are part of the
DOD are evaluated once more (this time based on the logical
relationships represented by the relation is_implied_by(. . .)
above). As they all turn out to be satisfied (see the require-
ment_evaluated(. . .) atoms), the design process terminates.

An example of a process where revision is needed is
shown in Figure 4. Initially, this trace has exactly the same dy-
namics as the previous one. In the beginning, only the re-
quirements DODGP and DODCHEAP are present. Then, re-
quirements are refined until the leaves of the tree (the local
requirements) have been reached, and subsequently a DOD
is selected using the same components as in trace 1, but at
time point 9 something different happens. Here, the atom
undesirable_component(C2A) becomes true (representing
the fact that the stakeholder has indicated that this component
is not desirable). As a consequence, that component is re-
moved from the current DOD and replaces it by another (prob-
ably more expensive) component, C1A. Finally, the design
process succeeds in finding a satisfactory DOD. This resulting
DOD is then evaluated and its total costs are calculated.

In addition to the simulation trace shown here, two other ex-
amples of simulation traces are described in Appendix C.
Because these kinds of simulations can be performed at an
abstract level, they are very appropriate to perform (pseudo)ex-

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

T. Bosse et al.

periments. Such experiments may be useful, for example, for
analysts of design processes, because it allows them to explore
what happens in certain critical situations, without having to
perform actual design processes.

9. GLOBAL DYNAMIC PROPERTIES
OF A DESIGN PROCESS

For design processes like the one described above, in addition
to local dynamic properties, a number of global dynamic
properties can be identified that are expected to hold.

e During (or after termination of) the design process, the
design process objectives are fulfilled. After termination
of the design process the final DOD satisfies the require-
ments of the final requirements state.

e After termination of the design process the requirements
in the final requirements state have been declared suffi-
cient by the stakeholder at some point during the process.

e If one of the design process objectives is that the design
process should be fast and cheap, then any DOD generated
during the process solely consists of standard components.

Section 9.1 presents a number of such dynamic properties
expressed as TTL statements. These properties as listed are
relevant to be considered and were checked for a number of
design reasoning traces. They need not be satisfied by all de-
sign reasoning traces; they may be used to distinguish be-
tween different types of design reasoning traces as well.
Next, Section 9.2 introduces the TTL Checking Tool, which
can be used to verify such properties against (simulated and
empirical) traces. Section 9.3 presents the results of checking
the properties presented in Section 9.1 against a number of
simulated traces. Finally, in Section 9.4 the advantages of
this approach are discussed, in particular, in comparison
with verification approaches such as model checking.

9.1. Global dynamic properties

The following global properties have been identified and for-
mally specified in TTL.

GPI local requirement satisfaction: Eventually there is a
DOD that contains a satisfactory component for each local re-
quirement that exists at that moment. Formalization:

3t 3d:DOD state(y, t) |= current_DOD(d) & Vr:localreq
[state(, t) |= is_a_current_requirement(r)
= 3 c:component state(v, t) |= part_of_DOD(c, d)
& state(y, t) |= holds_for(r, c)]

GP2 termination of the design process: Eventually the pro-
cess will terminate. Formalization:

t state(y, t) |= DOD_generation_terminated

GP3 cheapest components per local requirement: For each
local requirement, if there is a component that satisfies it, then


https://doi.org/10.1017/S0890060409990114

Formal analysis of design process dynamics

DOD_generation_terminated-

409

current_DOD(dod(1))

part_of_DOD(c1a, dod(1))

part_of_DOD(c2a, dod(1))

part_of_DOD(c2b, dod(1))-

part_of_DOD(c3a, dod(1))-

part_of_DOD(ew, dod(1))-

part_of_DOD(I1, dod(1))-

part_of_DOD(I2, dod(1))-

part_of_DOD(I3, dod(1))-

part_of _DOD(l4, dod(1))

undesirable_component(c2a)

is_a_current_requirement(dodcheap)
is_a_current_requirement(dodap)
is_a_current_requirement(dodgp1) -
is_a_current_requirement(dodgp2) -
is_a_current_requirement(dodgp3) -
is_a_current_requirement(dodbp1(a))

is_a_current_requirement(dodbp1(b))
is_a_current_requirement(dodbp3(x))
is_a_current_requirement(dodbp6(y))
is_a_current_requirement(dodep(a)) - ]
is_a_current_requirement(dodep(b)) -

is_a_current_requirement(dodii(a)) -

is_a_current_requirement(dodi1 (b))
is_a_current_requirement(dodi2(x, y))
is_a_current_requirement(dodtp(a, €))
is_a_current_requirement(dodtp(b, e))
is_a_current_requirement(dodtp(e, x)) ]
is_a_current_requirement(dodip(e, y))

is_a_current_requirement(dodtp(x, ¢))- !

is_a_current_requirement(dodtp(y, x))-
is_a_current_requirement(dodi3(x, y, c})- d
all_requirements_evaluated- :

tme o0 2 4 6

8 10 12 14 16 18 20 22 24 26 28 30 3‘2

Fig. 4. Simulation trace 2. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

the cheapest component that satisfies it will be added to the
DOD. (Note that this is a refinement of GP4.) Formalization:

vt Vr:localreq Yc:component state(w, t) |= is_a_current_
requirement(r) & state(vy, t) |= holds_for(r, c)
= 3t > t 3d:DOD 3c’:component Jp:integer state(y, t')
|= part_of_DOD(c/, d) & state(, t') |= holds_for(r, ¢’)
& state(y, t') |= costs(c/, p) & — [3c":component Ip’ < p
state(y, t') |= holds_for(r, c”) & state(vy, t') |= costs(c”, p’)]

GP4 DOD successfulness: For each local requirement, if
there is a component that satisfies it, then such a component
will be added to the DOD. Formalization:

vt Vr V:localreq Vc:component state(vy, t) |= is_a_current_
requirement(r) & state(vy, t) |= holds_for(r, c)
= Jt' > t 3d:DOD 3c":component state(y, t') |= part_of_
DOD(c', d) & state(y, t') |= holds_for(r, c')

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

GP5(c) total costs: Eventually the system generates a DOD
of which the costs are exactly c. Formalization:

St state(y, t) |= total_DOD_costs(c)

GP6 requirement persistence: Once it is derived that a re-
quirement is needed for the system, this requirement persists
forever. Formalization:

Vt Vrireq state(v, t) |= is_a_current_requirement(r)
= Wt > t state(y, t') |= is_a_current_requirement(r)

GP7 new DOD grounding: If an old DOD is replaced by a
new one, then there is an undesirable branch. Formalization:

Vivt' > t vx:integer [state(y, t) |= current_DOD(x)
& state(y, t') |= current_DOD(x + 1) ]
= db:branch state(y, t') |= undesirable_branch(b)


https://doi.org/10.1017/S0890060409990114

410

GPS8 requirements refinement successfulness: At a certain
point in time, all nonlocal requirements will be refined.
Formalization:

3t Vn:nonlocalreq state(y, t) |= is_a_current_requirement(n)
= state(y, t) |= requirement_refined(n)

GP9 cheap requirement satisfaction: If there is a require-
ment that the system should be cheap, then eventually a
DOD will be of which the costs are at most 8. In the current
case study, we use & = 1500. Formalization:

vt state(y, t) |= is_a_current_requirement(DODCHEAP)
= 3t2 >t Ixiinteger state(y, t) |= total_DOD_costs(x) & x <&

Note that all global properties shown in this section, as well
as the local properties introduced in Section 7.3 are generic.
As can be seen from their formalizations, they contain (do-
main-independent) variables for requirements, components,
DODs, and so on. As a result, it is relatively easy to reuse
them for any arbitrary design process. Nevertheless, in case
a different domain is chosen, obviously the domain specific
information represented as facts (see Section 7.2) should be
filled in for the new domain.

9.2. The TTL Checking Tool

To enable automated verification of TTL properties against
traces, a dedicated software tool has been developed:
the TTL Checking Tool (Bosse et al., 2006a). This tool,
which was implemented in SWI-Prolog, takes a formal
TTL property and a set of traces as input, and determines
whether the property holds for the traces or not. In case the
property does not hold, the software provides a counter
example, that is, a particular combination of instantiated vari-
ables for which the property fails. Traces may be obtained in
several ways, for example, by simulation, but also based on
empirical data.

The verification algorithm is a backtracking algorithm
that systematically considers all possible instantiations of
variables in the TTL formula under verification. However,
not for all quantified variables in the formula the same back-
tracking procedure is used. Backtracking over variables oc-
curring in “holds atoms” [e.g., the variable n in state(vy, t)
|=is_a_current_requirement(n)] is replaced by backtrack-
ing over values occurring in the corresponding holds atoms
in traces under consideration. Because there are a finite num-
ber of such state atoms in the traces, iterating over them often
will be more efficient than iterating over the whole range of
the variables occurring in the holds atoms. Formulae that con-
tain variables quantified over infinite sorts not occurring in a
holds atom cannot be checked by the TTL checker.

As time plays an important role in TTL formulae, spe-
cial attention is given to continuous and discrete time range
variables. Because of the finite variability property of TTL
traces (i.e., only a finite number of state changes occur be-

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

T. Bosse et al.

tween any two time points), it is possible to partition the
time range into a minimum set of intervals within which
all atoms occurring in the property are constant in all traces.
Quantification over continuous or discrete time variables is re-
placed by quantification over this finite set of time intervals.

To increase the efficiency of verification, the TTL
formula that needs to be checked is compiled into a Prolog
clause. Compilation is obtained by mapping conjunctions,
disjunctions and negations of TTL formulae to their Prolog
equivalents, and by transforming universal quantification
into existential quantification. Thereafter, if this Prolog clause
succeeds, the corresponding TTL formula holds with respect
to all traces under consideration.

The complexity of the algorithm has an upper bound in the
order of the product of the sizes of the ranges of all quantified
variables. However, if a variable occurs in a holds atom, the
contribution of that variable is no longer its range size, but
the number of times that the holds atom pattern occurs
(with different instantiations) in trace(s) under consideration.
The contribution of an isolated time variable is the number of
time intervals into which the traces under consideration are
divided.

The specific optimizations discussed above make it possi-
ble to check realistic dynamic properties with reasonable
performance. To give an impression, all of the checks men-
tioned in the next section can be performed within a couple
of seconds. With the increase of the number of traces with
similar complexity as the first one, the verification time grows
linearly. However, the verification time is polynomial in the
number of isolated time range variables occurring in the
formula under verification. Nevertheless, the complexity
of the checking process is still much smaller than that of
exhaustive forms of verification such as model checking
(see Section 9.4 for an elaborate discussion).

9.3. Checking results

In this section, the properties mentioned in Section 9.1 have
been checked against four different simulation traces (i.e.,
those shown in Section 8 and Appendix C). As can be seen
in Table 3, most global properties hold for all traces. For
trace 2, GP3 does not hold. The reason for this is that
component c2a (which is the cheapest component for several
requirements) is eventually rejected by the stakeholder. Prop-
erty GP6 does not hold for traces 3 and 4, because in these
traces requirement revision takes place. Obviously, property
GP5(1403) only holds for trace 4, because in the other traces
the final DODs have different costs.

9.4. Checking of traces

Within the literature on analysis of properties (verification),
generally two types of verification are distinguished: an em-
pirical type of verification or validation [i.e., verifying
whether a certain property holds for a (limited) set of traces],


https://doi.org/10.1017/S0890060409990114

Formal analysis of design process dynamics

Table 3. Results of automated checking

Property Trace 1 Trace 2 Trace 3 Trace 4
GP1 + + + +
GP2 + + + +
GP3 + - + +
GP4 + + + +
GP5(1403) - - - -
GP6 + + — _
GP7 + + + +
GPS8 + + + +
GP9 + + + +

and an exhaustive type of verification [i.e., verifying whether
a certain property holds for a model (thus for all possible
traces) of a system]. In the literature, much emphasis is put
on the latter type of analysis, of which model checking (Mc-
Millan, 1993; Clarke et al., 1999) is one of the most famous
examples. This essentially comes down to the problem of
justifying entailment relations between sets of properties de-
fined at different aggregation levels of a system’s representa-
tion. In general, entailment relations can be established either
by logical proof procedures or by checking properties of a
higher aggregation level on the set of all theoretically possible
traces generated by executing a system specification that con-
sists of properties of a lower aggregation level. To make that
feasible, expressivity of the language for these properties has
to be sacrificed to a large extent (because for many relevant
properties of design processes, an exhaustive verification is
simply undecidable). However, checking properties on a
practically given set of traces (instead of all theoretically pos-
sible ones) is computationally much cheaper, and therefore,
the language for these properties can be more expressive
(see Clarke et al., 1999; Bosse et al., 2006a) for an extensive
discussion about this topic). TTL is an example of such an
expressive language. For example, the possibility of explicit
reference to time points and time durations enables modeling
of the dynamics of continuous real-time phenomena. This
feature goes beyond the expressive power available in stan-
dard linear or branching time temporal (modal) logics such
as LTL and CTL (e.g., van Benthem, 1983; Goldblatt,
1992). Furthermore, the possibility to quantify over traces
in TTL allows for specification of more complex adaptive be-
haviors, such as the property “exercise improves skill.” This
is a relative property in the sense that it involves the compar-
ison of two alternatives for the history. Similarly, in the con-
text of the current paper, an example of such a relative prop-
erty would be “for any two traces y1 and 2, if in y1 there are
more initial requirements than in y2, then the design process
takes longer in -y1.” This is a property that does not necessar-
ily hold for all traces, but it can be useful in order to distin-
guish different classes of design processes. These kinds of
relative properties can easily be expressed in TTL, whereas
in standard forms of temporal logic different alternative
histories cannot be compared. Moreover, the presented frame-

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

411

work allows the designer to generate a large number of simu-
lation traces, and automatically check in which situations the
properties hold and when they do not hold.

10. LOGICAL INTERLEVEL RELATIONSHIPS
BETWEEN DYNAMIC PROPERTIES

In addition to the above, logical relationships can be and have
been identified between dynamic properties at different ab-
straction levels. Such interlevel relations relate the global
properties presented in this section to some of the local prop-
erties presented in Section 7. They can be specified by means
of logical implications or graphically by means of AND/OR
trees (see also Jonker & Treur, 2002). In these relationships,
also properties at an intermediate level of aggregation (inter-
mediate properties) occur, addressing smaller steps than
global properties do, but bigger steps than local properties
do. Such interlevel relations can play an important role in
the analysis of design processes, because of their hierarchical
structure. In case the properties involved are of reasonable
complexity, the interlevel relations can be automatically ver-
ified using techniques from (McMillan, 1993; Clarke et al.,
1999; Sharpanskykh & Treur, 2006). However, as mentioned
in the previous section, this is often not feasible. In such sit-
uations, the approach of checking the global properties
against simulation traces that were generated on the basis of
the local properties might be a useful alternative. Neverthe-
less, in this section, as an example some relationships be-
tween global properties and local properties of a design pro-
cess are discussed. For the purposes of presentation they will
only be described in an informal/semiformal form. The ex-
haustive verification of the relationships (using model check-
ing or similar techniques) is, however, beyond the scope of
this article.

One of the most relevant global properties of a design pro-
cess is whether or not a set of requirements and a DOD are
generated such that the DOD fulfills the set of requirements
and both satisfy the stakeholder. However, without further as-
sumptions this property is not guaranteed. Some of the rea-
sons why it may be hard to come to a result are the following:

e the stakeholder may impose a set of requirements that is
too strong (inconsistent), such as wanting a very cheap
solution of very high quality, and is not willing to com-
promise them;

o the stakeholder may keep changing his or her mind on
whether certain requirements or design object compo-
nents are undesirable; and

o the available set of components is too limited to fulfill
the stakeholder’s requirements.

In the first case the requirements can be inconsistent so that
no design object exists that fulfills them all. In that case the
outcome of such a design process asserts this. In the second
case a design process may go on forever, all the time adapting
to the latest preferences of the stakeholder, but never coming


https://doi.org/10.1017/S0890060409990114

412

to an end: every DOD or requirement set is rejected by the
stakeholder. The third case may have a similar outcome as
the first case.

Under reasonable environment assumptions on the stake-
holder’s behavior, however, it may be guaranteed that a de-
sign process has a successful outcome. Especially if finite-
ness assumptions are made for the number of different
types of components for DODs that are available, and for
the sets of requirements that are possible, such assumptions
may be reasonable. To exclude the cases mentioned above,
environment assumptions made as described below. Here,
the following abbreviation is used for a state property p to ex-
press that in trace v this state properties stabilizes:

stabilizes(y, p, pos) = 3tvt' >t state(y, t) |=p

stabilizes(y, p, neg) = 3tvt' > t state(y, t') |= not(p)

stabilizes(y, p) = 3t [vt' > t state(y, t') [=p vV V' >t
state(y, t') |= not(p)]

10.1. EP1

After some time the stakeholder’s (un)desirability prefer-
ences for requirements stabilize: a time point exists after
which he or she does not provide any new input with respect
to (un)desirability of requirements. Formally:

Vv Vr stabilizes(ry, undesirable_requirement(r))

10.2. EP2

After some time the stakeholder’s (un)desirability prefer-
ences for DOD components stabilize: a time point exists after
which he or she does not provide any new input with respect
to (un)desirability of components. Formally,

Vv Vc stabilizes(y, undesirable_component(c))

10.3. EP3

At least one fully refined set of requirements exists that does
not contradict a stakeholder’s stabilized (un)desirability pref-
erences for requirements. Formally,

Fy Ary, ... 1y [ Vr [ stabilizes(y, R(r), pos) < Vir=r;]
& Vr [stabilizes(ry, undesirable_requirement(r), pos)
= not stabilizes(y, R(r), pos) ] &vr [stabilizes(vy, R(r),
pos) = [ stabilizes(wy, undesirable_requirement(r), neg)
V [ stabilizes(y, 3 r, b is_a_subrequirement_of_via(r, r, b)
A R(r), pos) & stabilizes(wy, R(r'), pos) ] ] & Vr stabilizes
(y, R(r), pos) = [ [ stabilizes(y, 3 q, bis_a_subrequirement_
of_via(q, r, b) A R(q), pos) & stabilizes(ry, R(q), pos)]
V Jc stabilizes(wy, holds_for(r, c), pos) 11

104. EP4

At least one DOD exists that fulfills a set of fully refined re-
quirements that does not contradict a stakeholder’s stabilized

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

T. Bosse et al.

(un)desirability preferences for requirements, and that does
not contradict the stakeholder’s stabilized (un)desirability
preferences for components. Formally,

Fy 3rq, ... [ Vr [ stabilizes(y, R(r), pos) < Vir=r]
& Vr [stabilizes(ry, undesirable_requirement(r), pos)
= not stabilizes(v, R(r), pos) ] & r [stabilizes(y, R(r), pos)
= [ stabilizes(wy, undesirable_requirement(r), neg)
V [ stabilizes(vy, 3 r, b is_a_subrequirement_of_via(r, r', b)
A R(r), pos) & stabilizes(wy, R(r'), pos) 1] & Vr stabilizes
(v, R(r), pos) = [ [ stabilizes(y, 3 q, bis_a_subrequirement_
of_via(q, r, b) A R(q), pos) & stabilizes(ry, R(q), pos)]
Vv Jc stabilizes(y, holds_for(r, c), pos) ] & 3d stabilizes
(vy, Vr R(r) = Jc part_of (c, d) & holds_for(r, c), pos) ]

Note that, also under such assumptions (leaving no doubt
on the existence of a suitable requirement set and DOD),
the design process has to face serious challenges: for exam-
ple, the challenge to uncover such a stable requirements set
and the challenge to find such a DOD. Moreover, note that
the assumptions do not imply a unique stable stakeholder sit-
uation: different design traces may exist in which the stake-
holder’s stable preferences are different.

Next, the relevant dynamic properties of different parts of
the design process are considered. For the construction and
maintenance of the DOD two properties are relevant. The first
expresses that if after some time the stakeholder does not
change his or her mind about (un)desirability of components,
then after some time the branch costs stabilize. This property
is related to the fact that the number of branches is finite, and
that for a given (stabilized) set of undesirable components, for
each branch a unique number is determined. These properties
can be formalized in a manner similar as the ones above.

10.5. IPDOD1

IF: after some time the stakeholder’s (un)desirability
preferences for design object description compo-
nents stabilize

after some time a stabilized fully refined stable set of
current requirements occurs

THEN: after some time the branch costs stabilize

AND:

The second property expresses that if for the given context a
design solution exists, it will be generated.

10.6. IPDOD2

IF: after some time a stabilized fully refined stable set of
current requirements occurs

AND: after some time the stakeholder’s (un)desirability
preferences for design object description compo-
nents stabilize

AND: atleast one DOD exists that fulfills the stabilized set

of fully refined requirements that does not contradict
the stakeholder’s stabilized (un)desirability prefer-


https://doi.org/10.1017/S0890060409990114

Formal analysis of design process dynamics

ences for components, with branch costs below the
expected branch costs

THEN: after some time a stabilized DOD occurs that fulfills
the stabilized set of fully refined requirements that
does not contradict the stakeholder’s stabilized (un)-
desirability preferences for components, with branch
costs below the expected branch costs

For the processes related to requirements it is expressed if the
input received satisfies the environmental assumptions given
above, then a stable set of current requirements will occur.

10.7. IPRQ1

IF: after some time the stakeholder’s (un)desirability
preferences for requirements stabilize

AND: after some time the stakeholder’s (un)desirability
preferences for design object description compo-
nents stabilize

AND: after some time the branch costs stabilize

AND: atleastone DOD exists that fulfills a set of fully refined

requirements that does not contradict a stakeholder’s
stabilized (un)desirability preferences for requirements
and that does not contradict the stakeholder’s stabilized
(un)desirability preferences for components

THEN: after some time a stabilized fully refined stable set of
current requirements occurs that does not contradict
the stakeholder’s stabilized (un)desirability prefer-
ences for requirements

The top level property that was considered is GPO.

10.8. GPO

After some time a stabilized fully refined stable set of current
requirements occurs that does not contradict a stakeholder’s
stabilized (un)desirability preferences for requirements; and
after some time a stabilized DOD occurs that fulfills this sta-
bilized set of fully refined requirements that does not contra-
dict the stakeholder’s stabilized (un)desirability preferences
for components, with branch costs below the expected branch
COsts.

413
The logical interlevel relationships are as follows:
EP1 & EP2 & EP3 & EP4 & IPDOD1 & IPDOD2 & IPRQ1 = GPO

where EP represents all (required) environmental properties.
These interlevel relationships are depicted in the graphical
form of an AND-tree in Figure 5. Notice the difference be-
tween the trees depicted in Figure 2 and in Figure 5. The for-
mer tree is about properties of the design object, whereas the
latter shows properties of the design process.

In combination with the automated checks of simulation
traces described in Section 9, a hierarchy of interlevel rela-
tions can play an important role in the analysis of design pro-
cesses. More specifically, if a certain global property turns
out not to hold for a given design process trace (either a simu-
lation trace or an empirical trace), then in a top-down fashion,
the logical relationships can be consulted in order to pinpoint
which local properties are candidates for causing the failure,
and hence, to be verified in a given trace of a design process.
For example, suppose for a given trace it has been detected
(using the checker tool described in Section 9.2) that the dy-
namic property GPO at the highest aggregation level of the
tree does not hold, that is, no satisfactory set of requirements
or DOD is generated. Then, given the AND-tree structure in
Figure 5, at least one of the children of GPO will not hold (if
they all would hold for the given trace, also GPO would hold
for this trace), which means that EP, IPRQ1, IPDODI, or IP-
DOD?2 will not hold. Suppose by further checking it is found
that EP does not hold. Then the diagnostic process can be
continued by focusing on this property. It follows that EP1,
EP2, EP3, or EP4 does not hold (see Fig. 5). Checking these
four properties will pinpoint the cause of failure. Notice that
this diagnostic process is economic in the sense that, if EP
holds, the whole subtree under EP is not examined, because
there is no reason for that.

11. DISCUSSION

To develop automated support for the dynamics of nontrivial
design processes, the challenge of modeling and analyzing
such dynamics in a formal manner has to be addressed (cf.

GPO

EP IPRQ!I

IPDOD1 IPDOD?2

EP1 EP2

EP3 EP4

Fig. 5. The logical interlevel relationships between the dynamic properties of a design process.

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060409990114

414

Brown & Chandrasekaran, 1989; Baldwin & Chung, 1995;
Corkill, 2000; Heller & Westfechtel, 2003). In the literature
about the application of formal techniques to design pro-
cesses, often a distinction is made between simulation
methods and verification methods (see, e.g., Kern & Green-
street, 1999). Basically, simulation methods are used to pro-
vide the user more insight in the dynamics of a particular de-
sign process. For example, Mavris et al. (1999) apply
probabilistic simulation techniques to study the dynamics of
design processes over time and meanwhile deal with aspects
of uncertainty. Similarly, Sosa and Gero (2005) describe
(creative) design as a social process, of which they study
the dynamics using multiagent-based simulation. Con-
versely, verification methods can be applied to prove certain
expected properties of design processes, such as successful-
ness and efficiency. Among the approaches used are model
checking (McMillan, 1993; Clarke et al., 1999), but also au-
tomata-theoretic techniques (Thomas, 1990) and theorem
proving techniques (Duffy, 1991). This paper proposes
some first steps to integrate (a restricted variant of) verifica-
tion techniques (the idea of checking properties against a
set of traces) with simulation techniques. More specifically,
the complex dynamics of a design process has been analyzed
in such a precise way that properties of the process as a whole
can be specified and, moreover, part of the analysis contains
enough detail to allow for simulation. The results of the simu-
lation have been checked against the properties of the design
process as a whole. As has been shown, this type of analysis is
computationally cheaper than exhaustive verification ap-
proaches such as model checking (McMillan, 1993; Clarke
et al., 1999), which allows the properties to be checked to
be more expressive. Obviously, an inevitable drawback is
the fact that there is no guarantee that the selected traces cover
all possible scenarios.

Compared to the references mentioned above, the approach
put forward is a declarative, hybrid logical and numerical ap-
proach supported by a formal language TTL for specification
of dynamic properties of design processes, which has a high
expressivity, including the use of variables over sorts, and
sorts for real and integer numbers, and arithmetical calcula-
tions for these sorts (cf. Jonker & Treur, 2002; Bosse et al.,
2006a). Because of this expressivity, the full TTL is undecid-
able and full model checking will not work in general. How-
ever, checking properties on given traces can be done in an
efficient manner.

Furthermore, also simulation models are specified in a
declarative, both logical and numerical manner, in the lan-
guage LEADSTO, which allows using these specifications
in a declarative analysis as well (see also Bosse et al.,
2008). Both TTL and LEADSTO assume (simulated) parallel
processing, expressed by states at each point in time that in-
clude all state properties, and in LEADSTO a processing al-
gorithm for the temporal rules that execute them in parallel.

An example of the use of TTL is establishing logical inter-
level relationships between dynamic properties of different
levels (cf. Bosse et al., 2007). Alternative approaches such

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

T. Bosse et al.

as CSP, temporal logic, interval temporal logic, and assump-
tion—commitment specifications, do not allow such an ex-
pressive hybrid representation format.

The paper shows the potential of this formal analysis as a
technique for analysis at a high level of abstraction, and for
constructing simulations at an abstract level to experiment
with dynamics of a design process. The simulation actually
is entailed by the analysis and requires no additional program-
ming, thus basically, getting a simulation for free when doing
an analysis. Such experiments may be particularly beneficial
for analysts of design processes, since it allows them to per-
form “what-if” analyses, that is, to explore what happens in
certain critical situations, without having to perform actual
design processes.

Furthermore, the presented approach is generic in the sense
that the presented properties of design processes as well as the
analysis techniques are independent of any specific design
problem. The analysis approach that is for the first time ap-
plied to design processes here, has (at least in part) previously
been applied to complex and dynamic reasoning processes
other than design, such as reasoning by dynamically adding
and evaluating assumptions (Jonker & Treur, 2003; Bosse
et al., 2006b), and reasoning based on multiple representa-
tions (Bosse et al., 2003). In these cases in addition to
simulated traces, empirical (human) reasoning traces have
also been formally analyzed. For further research it is planned
to formally analyze protocols of human design processes in a
similar manner, using methods as, for example, described in
Nagai and Taura (2006).

To have a solid foundation for process descriptions is con-
sidered a fundamental issue for design science, which needs
to be considered (e.g., Smithers, 1996, 1998). This is a main
focus of this paper. Another central foundational issue that
has a close relationship to the work reported here is the chal-
lenge to develop a general theory of design. In the past, a few
authors have addressed this challenge and contributed some
proposals or discussions (see, e.g., Yoshikawa, 1981; Tom-
iyama & Yoshikawa, 1985; Dixon, 1987; Hubka & Eder,
1988, 1995; Treur, 1991; Tomiyama, 1994; Warfield, 1994,
Reich, 1995; Brazier et al., 1996; Smithers, 1996, 1998;
Hooker, 2004). The foundational approach contributed in
this paper may provide new input for further developments
on the area of design theory.

ACKNOWLEDGMENTS

An earlier, shorter report of part of this work was presented at ECAI
2004. The paper benefited from the constructive comments by the
anonymous reviewers.

REFERENCES

Baldwin, R.A., & Chung, M.J. (1995, February). A formal approach to man-
aging design processes. [EEE Computer 54-63.

Barringer, H., Fisher, M., Gabbay, D., Owens, R., & Reynolds, M. (1996).
The Imperative Future: Principles of Executable Temporal Logic. New
York: Wiley.


https://doi.org/10.1017/S0890060409990114

Formal analysis of design process dynamics

Bosse, T., Jonker, C.M., & Treur, J. (2003). Simulation and analysis of
controlled multi-representational reasoning processes. Proc. 5th Int.
Conf. Cognitive Modelling, ICCM’03, pp. 27-32. Universitats-Verlag
Bamberg.

Bosse, T., Jonker, C.M., & Treur, J. (2006). Reasoning by assumption: for-
malisation and analysis of human reasoning traces. Cognitive Science
Journal 20, 147-180.

Bosse, T., Jonker, C.M., van der Meij, L., Sharpanskykh, A., & Treur, J.
(2006). Specification and verification of dynamics in cognitive agent
models. Proc. 6th Int. Conf. Intelligent Agent Technology, IAT’06 (Nish-
ida, T., Klusch, M., Sycara, K., & Yokoo, M., Eds.), pp. 247-254.
New York: IEEE Computer Society Press.

Bosse, T., Jonker, C.M., van der Meij, L., & Treur, J. (2007). A language and
environment for analysis of dynamics by SimulaTiOn. International
Journal of Artificial Intelligence Tools 16(3), 435-464.

Bosse, T., Sharpanskykh, A., & Treur, J. (2008). Modelling complex systems
by integration of agent-based and dynamical systems models. Proc.
6th Int. Conf. Complex Systems, ICCS’06 (Minai, A., Braha, D., &
Bar-Yam, Y., Eds.). New York: Springer—Verlag.

Brazier, FM.T., van Langen, P.H.G., Ruttkay, Zs., & Treur, J. (1994). On
formal specification of design tasks. Artificial Intelligence in Design
‘94, Proc. AID’94 (Gero, J.S., & Sudweeks, F., Eds.), pp. 535-552.
Dordrecht: Kluwer Academic.

Brazier, FM.T., van Langen, P.H.G., & Treur J. (1996). A logical theory of
design. Advances in Formal Design Methods for CAD, Proc. 2nd Int.
Workshop Formal Methods in Design (Gero, J.S., Ed.), pp. 243-266.
New York: Chapman & Hall.

Brown, D.C., & Chandrasekaran, B. (1989). Design Problem Solving:
Knowledge Structures and Control Strategies. London: Pitman.

Clarke, E.M., Grumberg, O., & Peled, D.A. (1999). Model Checking. Cam-
bridge, MA: MIT Press.

Corkill, D.D. (2000). When Workflow doesn’t work: issues in managing
dynamic processes, Proc. Design Project Support using Process
Models Workshop, 6th Int. Conf. Artificial Intelligence in Design, pp.
1-13.

Dixon, J.R. (1987). On research methodology towards a scientific theory of
engineering design. Artificial Intelligence for Engineering Design, Anal-
ysis and Manufacturing 1, 145-157.

Duffy, D.A. (1991). Principles of Automated Theorem Proving. New York:
Wiley.

Fisher, M. (2005). Temporal development methods for agent-based systems.
Journal of Autonomous Agents and Multi-Agent Systems 10, 41-66.
Galton, A. (2003). Temporal logic. Stanford Encyclopedia of Philosophy.

Accessed at http:/plato.stanford.edu/entries/logic-temporal/#2

Galton, A. (2006). Operators vs arguments: the ins and outs of reification.
Synthese 150, 415-441.

Gavrila, LS., & Treur, J. (1994). A formal model for the dynamics of
compositional reasoning systems. Proc. 11th European Conf. Artificial
Intelligence, ECAI'94 (Cohn, A.G., Ed.), pp. 307-311. New York:
Wiley.

Gero, J., & Kannengiesser, U. (2006). A function—behaviour—structure ontol-
ogy of processes. Proc. 2nd Int. Conf. Design Computing and Cognition,
DCC’06 (Gero, 1.S., Ed.), pp. 407—422. New York: Springer—Verlag.

Goldblatt, R. (1992). Logics of Time and Computation, 2nd ed., LNCS, Vol.
7. New York: Springer—Verlag.

Heller, M., & Westfechtel, B. (2003). Dynamic project and workflow
management for design processes in chemical engineering. Proc. 8th
Int. Conf. Process Systems Engineering (PSE 2003), Kunming, China,
June.

Hooker, J.N. (2004). Is design theory possible? Journal of Information Tech-
nology: Theory and Application 6, 73-82.

Hubka, V., & Eder, W.E. (1988). Theory of Technical Systems. Berlin:
Springer.

Hubka, V., & Eder, W.E. (1995). Design Science: Introduction to the Needs,
Scope and Organization of Engineering Design Knowledge. New York:
Springer—Verlag.

Jonker, C.M., & Treur, J. (2002). Compositional verification of multi-agent
systems: a formal analysis of pro-activeness and reactiveness. Interna-
tional Journal of Cooperative Information Systems 11, 51-92.

Jonker, C.M., & Treur, J. (2003). Modelling the dynamics of reasoning pro-
cesses: reasoning by assumption. Cognitive Systems Research Journal 4,
119-136.

Jonker, C.M., Treur, J., & Wijngaards, W.C.A. (2002). Requirements specif-
ication and automated evaluation of dynamic properties of a component-

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

415

based design. Proc. 7th Int. Conf. Al in Design, AID’02 (Gero, J., Ed.),
pp. 547-570. New York: Kluwer Academic.

Jonker, C.M., Treur, J., & Wijngaards, W.C.A. (2003). A temporal modelling
environment for internally grounded beliefs, desires and intentions. Cog-
nitive Systems Research Journal 4(3), 191-210.

Kern, C., & Greenstreet, M.R. (1999). Formal verification in hardware de-
sign: a survey. ACM Transactions on Design Automation of Electronic
Systems 4(2), 123-193.

Kowalski, R., & Sergot, M.A. (1986). A logic-based calculus of events. New
Generation Computing 4, 67-95.

Manzano, M. (1996). Extensions of First Order Logic. New York: Cam-
bridge University Press.

Mavris, D.N., Bandte, O., & DeLaurentis, D.A. (1999). Robust design simu-
lation: a probabilistic approach to multidisciplinary design. AIAA Journal
of Aircraft 36(1), 298-307.

McMillan, K.L. (1993). Symbolic model checking: an approach to the state
explosion problem. PhD Thesis. New York: Kluwer Academic.

Nagai, Y., & Taura, T. (2006). Formal description of concept-synthesizing
process for creative design. Proc. 2nd Int. Conf. Design Computing
and Cognition, DCC’06 (Gero, J.S., Ed.), pp. 443-460. New York:
Springer—Verlag.

Reich, Y. (1995). A critical review of General Design Theory. Research in
Engineering Design 7, 1-18.

Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying
and Implementing Dynamical Systems. Cambridge, MA: MIT Press.
Sharpanskykh, A., & Treur, J. (2005). Verifying Interlevel Relations within
Multi-Agent Systems: Formal Theoretical Basis. Technical Report TR-
1701AI Vrije Universiteit, Amsterdam. Accessed at http:/hdl.handle.

net/1871/9777

Sharpanskykh, A., & Treur, J. (2006). Verifying interlevel relations within
multi-agent systems. Proc. 17th European Conf. Artificial Intelligence,
ECAI’06, pp. 290-294. New York: IOS Press.

Smithers, T. (1996). On knowledge level theories of design process. Proc. 4th
Int. Conf. Artificial Intelligence in Design, AID’96 (Gero, J.S., & Sud-
weeks, F., Eds.), pp. 561-579. New York: Kluwer.

Smithers, T. (1998). KLDE—a knowledge level theory of design process.
Proc. 5th Int. Conf. Artificial Intelligence in Design, AID’98 (Gero,
J.S., & Sudweeks, F., Eds.), pp. 3-21. New York: Kluwer.

Sosa, R., & Gero, J.S. (2005). A computational study of creativity in design.
Artificial Intelligence for Engineering Design, Analysis and Manufactur-
ing 19(4), 229-244.

Thomas, W. (1990). Automata on infinite objects. In Handbook of Theoreti-
cal Computer Science: Formal Models and Semantics (van Leeuwen, J.,
Ed.), Vol. B, pp. 133-191. Cambridge, MA: MIT Press.

Tomiyama, T. (1994). From General Design Theory to knowledge intensive
engineering. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 8, 319-333.

Tomiyama, T., & Yoshikawa, H. (1985). Extended general design theory. In
Design Theory for CAD (Yoshikawa, H., & Warman, E.A., Eds.), pp. 95—
130. Amsterdam: Elsevier Science.

Treur, J. (1991). A logical framework for design processes. Intelligent
CAD Systems IllI. Proc. 3rd Eurographics Workshop on Intelligent
CAD Systems (ten Hagen, P.J.W., & Veerkamp, P.J., Eds.), pp. 3-20.
New York: Springer—Verlag.

van Benthem, J.F.A K. (1983). The Logic of Time: A Model-Theoretic Inves-
tigation Into the Varieties of Temporal Ontology and Temporal Dis-
course. Dordrecht: Reidel.

Warfield, J.N. (1994). A Science of Generic Design: Managing Complexity
Through Systems Design. Ames, IA: ITowa State University Press.

Yoshikawa, H. (1981). General design theory and a CAD system. Man—Ma-
chine Communication in CAD/CAM, Proc. IFIP Working Group 5.2
Working Conf. 1980 (Sata, T., & Warman, E.A., Eds.), pp. 35-58. Am-
sterdam: North-Holland.

Tibor Bosse has been an Assistant Professor of artificial in-
telligence in the Agent Systems Research Group at Vrije Uni-
versiteit Amsterdam (VUA) since June 2006. In 2005 he ob-
tained his PhD in artificial intelligence on the topic “Analysis
of the Dynamics of Cognitive Processes.” Since 2002 his
research has been situated at the intersection of artificial


https://doi.org/10.1017/S0890060409990114

416

intelligence, cognitive science, and ambient intelligence. His
main research interest is computational modeling of human-
directed (e.g., cognitive, biological, and social) processes
for theoretical and practical purposes. Dr. Bosse is a coorga-
nizer of the series of international workshops on human as-
pects in ambient intelligence.

Catholijn M. Jonker has been a Professor in human—compu-
ter interaction and artificial intelligence at the Delft Univer-
sity of Technology since 2006. From 1995 to 2004 she was
an Assistant Professor and Associate Professor in the Depart-
ment of Artificial Intelligence at VUA, and she then held a
position as a Professor in artificial intelligence and cognitive
science at Radboud University Nijmegen for 2 years. She re-
ceived her PhD degree in computer science in 1994 from
Utrecht University. Dr. Jonker’s research focuses on the
design and analysis of agent systems and their applications
to information agents and electronic commerce. The current
general theme of her research interests is the dynamics of
the behavior of multiple agents (human and software) in a
dynamic environment.

Jan Treur has been a Professor of artificial intelligence at
VUA since 1990. He is the Head of the Department of Artifi-
cial Intelligence, consisting of about 45 researchers. Prof. Treur
is an internationally recognized expert in agent technology,
cognitive modeling, and knowledge engineering. He has
been a member of the program committees of many of the
main conferences and workshops and many journals in these
areas. His extensive list of publications covers major scientific
publication media in artificial intelligence and cognitive sci-
ence, including the top level conferences and journals. Some
of his recent involvements are organizing and chairing the ser-
ies of international workshops on human aspects in ambient in-
telligence. Dr. Treur initiated and designed a strongly multi-
disciplinary bachelor study program in human ambience at
VUA, combining subjects from artificial intelligence, compu-
ter science, psychology, and biomedical sciences.

APPENDIX A: DYNAMIC PROPERTIES FOR THE
CASE STUDY ON A MULTIAGENT SYSTEM FOR
INFORMATION GATHERING

This appendix provides formal definitions of the dynamic properties
that are used in the case study (see Section 5). In addition, for some
of the interlevel relationships depicted in Figure 2, proof sketches are
given. The reader is advised to consult Figure 2 frequently.

A.1. Global properties

DODGP Successfulness. For any trace of the system, there exists a
point in time such that in this trace at that point in time agent C will re-
ceive a correct conclusion, either from A or from B (or from both).

Yy, 3t, X, o: [ state(y(C), t) |= communicated_by(object_
type(0), true, X) & correct_value_for(object_type(0), true)]

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

T. Bosse et al.

DODGPI. For each type of information there is a component that
initiates information acquisition.

Vv, v, 3X, t: [ state(y(X), t) |= to_be_observed(v)]

where y(X) denotes that part of the trace that corresponds to the
states of X.

DODGP?2. For each type of information, if there is a component
that initiates information acquisition, then the external world (£) will
generate the relevant information.

v, X, v, t: [ state(y(X), t) |= to_be_observed(v) = 3t,
s: state(y(E), t') |= observation_result_for(v, s, X)
& correct_value_for(v, s)]

DODGP3. If E generates correct information of each type, then C
will receive a correct conclusion.

Vv, [VX, s, v, 3t: [ state(y(E), t) |= observation_result_for
(v, s, X) & correct_value_for(s, v) ] = 3X, t, o: [ state
(v(C), t') |= communicated_by(object_type(o), true, X)
& correct_value_for(object_type(0), true)] ]

Note that for the case study, only two types of information are re-
quired to draw a conclusion about the object type. The formalization
allows for more complex situations in which more information might
be needed to draw a conclusion.

A.2. Theorem DODGP1 & DODGP2 & DODGP3
= DODGP

From DODGPI we get state(y(X), t) |= to_be_observed(v),
which we can use in DODGP2 (with the correct substitutions)
state(y(E), t') |= observation_result_for(v, s, X) & correct_
value_for(v, s) and given that we did not need any specific in-
formation about v, s, or X, we can deduce the precondition of
DODGP3 for the chosen instantiation of . Thus, we can deduce
by modus ponens that

X, t, o: [ state(y(C), t') |= communicated_by(object_
type(0), true, X) & correct_value_for(object_type(0),
true)]

Because we made no specific conditions on vy, we can deduce that
the statement does in fact hold for all traces.

A.3. Interaction properties

DODII(X). If X initiated information acquisition, then E will provide
the required information for X.

WV, v, t: [ state(y(X), t) |= to_be_observed(v) = 3t, s:
state(y(E), t') |= observation_result_for(v, s, X)
& correct_value_for(v, s)]

Note that this property corresponds to DODGP2 in the form of a
scheme, with variable X.


https://doi.org/10.1017/S0890060409990114

Formal analysis of design process dynamics

DODI2(X, Y). If E provides information of type IT for Y, then Y
will communicate this information to X.

Yy, [VX, s, v, 3t: [ state(y(E), t) |= observation_result_for
(v, s, Y) & correct_value_for(s, v) ] = 3X, t, o: [ state
(v(Y), t') |= to_be_communicated_to(v, s, X) & correct_
value_for(v, s)] ]

DODI3(X, Y, Z). If Y communicated its information of type IT1
to X and E provided information of the different type IT2 for X,
then X will generate a conclusion on the object and communicate
itto C.

vs1, 82, v1, v2, IT1, IT2, t1, t2: [ state(y(Y), t1) |= to_be_
communicated_to(v1, s1, X) & type(v1, IT1) & state(y(E),
t2) |= observation_result_for(v2, s2, X) & type(v2, IT2)
= 3t, o: [ state(y(X), t') |= to_be_communicated_to
(object_type(0), true, C) & correct_value_for(object_
type(0), true)] ]

Note that this is also a schematic property in which X, ¥, and y can be
instantiated.

A.4. Behavioral properties for a component X

DODBPI(X). Here, X is information acquisition proactive.

Yy, t, v: [ state(y(X), t) |= — belief(X, v, true) & state(y(X), t)
|= — belief(X, v, false) & state(y(X), t) |= observable_for
(v, X) = 3t' > t state(y(X), t') |= to_be_observed(v) ]

This expresses that whenever X has no beliefs about some property
v, and thinks that component Y might know about v, then sometime
later X will initiate a request to Y to learn about v.

DODBP2(X). Here, X is request proactive.

VX, Y # X, v, t, v: [ state(y(X), t) |= — belief(X, v, true)
& state(y(X), t) |= — belief(X, v, false) & state(y(X), t)
|= belief(might_know_about(Y, v), true) = 3t' > t state
(v(X), t') |= to_be_communicated_to(request, v, Y) ]

This expresses that whenever X has no beliefs about some property
v, and thinks that component ¥ might know about v, then sometime
later X will initiate a request to Y to learn about v.

DODBP3(X). Here, X is conclusion proactive.

VX, v, t, o: [ entails(state(y(X), t), object_type(0)) = It' >t
state(y(X), t') |= belief(X, object_type(o), true) ] & [ entails
(state(y(X), t), — object_type(0)) = 3t' > t state(y(X), t')
|= belief(X, object_type(0), false) ]

This expresses that whenever X has enough beliefs to infer some-
thing about the object type (i.e., the classification of the object at
hand), then sometime later X will have the corresponding belief
about the object type.

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

417

DODBP4(X). Here, X is information acquisition reactive.

VX, Y # X, v, 1, vi [ state(y(X), t) |= — belief(X, v, true)
& state(y(X), t) |= — belief(X, v, false) & state(y(X), t)
|= belief(observable_for(v, X), true) & state(y(X), t)
|= requested(v, Y) = 3t' > t state(y(X), t)
|=to_be_observed(v) ]

This expresses that whenever X has no beliefs about observable
property v, and he is requested information about v, then some
time later X will initiate an observation activity to learn about v.

DODBP5(X). Here, X is information provision reactive.

VX, Y # X, v, 1, v, s: [ state(y(X), t) |= belief(X, v, s)
& state(y(X), t) |= requested(v) = 3t' > t state(y(X), t)
|=to_be_communicated_to(v, s, Y) ]

This expresses that whenever X has believes something about prop-
erty v, and Y has requested him information about v, then sometime
later X will communicate what he knows about v to Y.

DODBP6(X). Here, X is information provision proactive.

VX, Y # X, v, 1, v, s: [ state(y(X), t) |= belief(X, v, s) = 3t >t
state(y(X), t') |= to_be_communicated_to(v, s, Y) ]

This expresses that whenever X believes something about property v,
then sometime later X will communicate what he knows about v to
everybody else.

A.5. Properties for component £

DODEP(X). Initiation of information acquisition by X leads to mak-
ing available the required information for X.

W, X, v, t: [ state(y(E), t) |= to_be_observed_for(v, X)
= 3t, s: state(y(E), t') |= observation_result_for(v, s, X)
& correct_value_for(v, s)]

A.6. Transfer properties
DODTP(X, Y). Communication generated by X for Yis received by Y.
VX, Y # X, v, t, v, s: [ state(y(X), 1)

|= to_be_communicated_to(v, s, Y)
= 3t' > t state(y(Y), t') |= communicated_by(v, s, X) ]

DODTP(X, E). Initiated information acquisition by agent X is re-
ceived by component E.

Y, X, v, t: [ state(y(X), t) |= to_be_observed(v)
= 3t >t (state(y(E), t') |= to_be_observed_for(v, X) ]

DODTP(E, X). Information made available by E for X is received
by X.

Y, X, v, t: [ state(y(E), t) |= observation_result_for(v, s, X)
= 3t' >t (state(y(X), t') |= observation_result(v, s) ]


https://doi.org/10.1017/S0890060409990114

418

A.7. Properties for branches

These properties for branches have only been added for the conve-
nience of the reader and are therefore not formalized.

B1. For each type of information, there is a component that
proactively initiates information acquisition.

B2. For information of type IT1 there is a component that proac-
tively initiates information acquisition, and for information
of the different type IT2 there is a component that proactively
requests the information and another component that reac-
tively initiates information acquisition.

B3. For each type of information, there is a component that
proactively requests the information and another component
that reactively initiates information acquisition.

B4. If E provides information of type IT for ¥, then Y will proac-
tively provide this information for X.

BS5. If E provides information of type IT for Y, then Y will reac-
tively provide this information for X.

A.8. Proof of DODGP1

We have to prove that for each type of information there is a compo-
nent that initiates information acquisition. Formally,

v, v, 3X, t: [ state(y(X), t) |= to_be_observed(v) ]

Note that this property is proved by three disjuncts (see Fig. 2). Be-
cause each of the agents has only the capability to observe the object
to be classified from one dimension, both agents need to supply
some information. The disjunction in Figure 2, comes from the
fact that various configurations ensure that all necessary information
is acquired. For this it is easiest to read properties B1, B2, and B3.
Note that with less proactiveness in the agents, not enough observa-
tions will be made by them. The proof of this part is tedious but easy
and thus left to the reader.

It remains to be proven that in each of the subcases property
DODGP1 will be satisfied.

Consider case B1, and assume that DODBP1(A) and DODBP1(B)
are given. That is, both agents are information acquisition proactive:

Yy, t, v: [ state(y(X), t) |= — belief(X, v, true) & state(y(X), t)
|= — belief(X, v, false) & state(y(X), t) |= observable_for
(v, X) = 3t' > t state(y(X), t') |= to_be_observed(v) ]

The predicate observable_for(v, X) refers to the different viewing
capabilities of the agents. Suppose that X can only observe informa-
tion of some type IT1, then for all possible aspects of the object that
are of type IT1, X will either already have the relevant information or
obtain it by observation. As both agents initially have no information
on the object, the effect is that both will obtain all information they
possibly can observe. As there are only two information types in the
domain, and agents A and B each observe one type, all possible in-
formation is indeed obtained.

To proof B2, one has to consider that one of the agents, say X, ac-
quires all necessary information of the type it can observe, say type
IT1 [because of property DODBP1(X)]. Furthermore, X is request
proactive, meaning that if it lacks information that another agent, say
Y, can secure for it, then X will request the information from Y. Because
Y has access to information from type IT2, we would now get all rele-

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

T. Bosse et al.

vant information under the following conditions. The request from X to
Y must arrive at Y [see property DODTP(X, Y)], ¥ must be willing to
make observations upon request [see property DODBP(4)].

The proof of B3 is similar, although more information exchange
is entailed. In this case none of the agents starts to acquire informa-
tion proactively, but both are proactive in asking the other for infor-
mation, and both are reactive in making observations (i.e., willing to
make them upon request). Of course, also in this case the communi-
cation between the two must work correctly.

The proofs of the remaining properties are of the same complexity and
as the proofs already given, and left out for reasons of page limitation.

APPENDIX B: LEADS TO SPECIFICATION

B.1. Sorts

property: { dodgp, dodgp1, dodgp2, dodgp3, dodii(a), dodi1 (b),
dodi2(x, y), dodi3(x, y, c), dodbp1(x), dodbp1(a), dodbp1(b),
dodbp?2(x), dodbp2(a), dodbp2(b), dodbp3(x), dodbp4(y),
dodbp4(a), dodbp4(b), dodbp5(y), dodbp6(y), dodtp(a, b),
dodtp(b, a), dodtp(a, e), dodtp(b, ), dodtp(x, y), dodtp(y, x),
dodtp(e, x), dodtp(e, y), dodtp(x, c), dodep(a), dodep(b),
dodcheap}

nonlocalproperty: { dodgp, dodgp1, dodgp2, dodgp3, dodii(a),
dodi1(b), dodi2(x, y), dodi3(x, y, ¢) }

localproperty: { dodbp1(x), dodbp1(a), dodbp1(b), dodbp2(x),
dodbp2(a), dodbp2(b), dodbp3(x), dodbp4(y), dodbp4(a),
dodbp4(b), dodbp5(y), dodbp6(y), dodtp(a, b), dodtp(b, a),
dodtp(a, e), dodtp(b, e), dodtp(x, y), dodtp(y, x), dodtp(e, x),
dodtp(e, y), dodtp(x, c), dodep(a), dodep(b), dodcheap}

branch: { b1, b2, b3, b4, b5, b10, b11, b12, b13, b14, b15,
b16}

/* Note: branch b10-b16 are “fictive” branch names that
are used when there is only one option */

component: {c1a, c1b, c2a, c2b, c3a, c3b, cda, cdb, cha,
c5b, ew, 1, 12, 13, 14}

dod: {dod(1), dod(2), dod(3), . . .}

B.2. Facts

is_a_subrequirement_of_via(dodgp1, dodgp, b11)
is_a_subrequirement_of_via(dodgp2, dodgp, b11)
is_a_subrequirement_of_via(dodgp3, dodgp, b11)
is_a_subrequirement_of_via(dodbp1(a), dodgp1, b1)
is_a_subrequirement_of_via(dodbp1(b), dodgp1, b1)
is_a_subrequirement_of_via(dodbp1(x), dodgp1, b2)
is_a_subrequirement_of_via(dodbp2(x), dodgp1, b2)
is_a_subrequirement_of_via(dodbp4(y), dodgp1, b2)
is_a_subrequirement_of_via(dodtp(x, y), dodgp1, b2)
is_a_subrequirement_of_via(dodbp2(a), dodgp1, b3)
is_a_subrequirement_of_via(dodbp4(a), dodgp1, b3)
is_a_subrequirement_of_via(dodbp2(b), dodgp1, b3)
is_a_subrequirement_of_via(dodbp4(b), dodgp1, b3)
is_a_subrequirement_of_via(dodtp(a, b), dodgp1, b3)
is_a_subrequirement_of_via(dodtp(b, a), dodgp1, b3)
is_a_subrequirement_of_via(dodi1(a), dodgp2, b12)
is_a_subrequirement_of_via(dodi1(b), dodgp2, b12)


https://doi.org/10.1017/S0890060409990114

Formal analysis of design process dynamics

is_a_subrequirement_of_via(dodi2(x, y), dodgp3, b13)
is_a_subrequirement_of_via(dodi3(x, y, ¢), dodgp3, b13)
is_a_subrequirement_of_via(dodep(a), dodi1(a), b14)
is_a_subrequirement_of_via(dodtp(a, e), dodi1(a), b14)
is_a_subrequirement_of_via(dodep(b), dodi(b), b15)
is_a_subrequirement_of_via(dodtp(b, e), dodi1(b), b15)
is_a_subrequirement_of_via(dodbp6(y), dodi2(x, y), b4)
is_a_subrequirement_of_via(dodtp(e, y), dodi2(x, y), b4)
is_a_subrequirement_of_via(dodbp2(x), dodi2(x, y), b5)
is_a_subrequirement_of_via(dodbp5(y), dodi2(x, y), b5)
is_a_subrequirement_of_via(dodtp(x, y), dodi2(x, y), b5)
is_a_subrequirement_of_via(dodtp(e, y), dodi2(x, y), b5)
is_a_subrequirement_of_via(dodbp3(x), dodi3(x, y, c), b16)
is_a_subrequirement_of_via(dodtp(y, x), dodi3(x, y, ¢), b16)
is_a_subrequirement_of_via(dodtp(e, x), dodi3(x, y, c), b16)
is_a_subrequirement_of_via(dodtp(x, c¢), dodi3(x, y, c), b16)

costs(c1a, 500)
costs(c1b, 501)
costs(c2a, 350)
costs(c2b, 351)
costs(c3a, 120)
costs(c3b, 121)
costs(c4a, 90)
costs(c4b, 91)
costs(cha, 50)
costs(cbsb, 51)
costs(ew, 0)

predicted_costs(b1, 60)
predicted_costs(b2, 300)
predicted_costs(b3, 900)
predicted_costs(b4, 200)
predicted_costs(b5, 500)
predicted_costs(b11, 700)
predicted_costs(b12, 350)
predicted_costs(b13, 350)
predicted_costs(b14, 150)
predicted_costs(b15, 150)
predicted_costs(b16, 200)

quality(c1a, 100)
quality(c1b, 100)
quality(c2a, 250)
quality(c2b, 250)
quality(c3a, 50)

quality(c3b, 50)

quality(c4a, 400)
quality(c4b, 400)
quality(c5a, 150)
quality(c5b, 150)
quality(ew, 1000)

B.3. Local properties

Note that the timing parameters e, f, g, and & have been left out in
these local properties. However, they can be filled in at will. For
example, by setting them to {0, 0, 1, 1} for LPO, this would imply
that immediately after the start of the system (i.e., with a delay

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

419

of zero time units), the initial requirements are derived for one
time unit.

B.4. Requirements

B.4.1. LPO initialization

The first local property LPO expresses that the initial requirements
for the system are dodgp and dodcheap. Formalization:

start — is_a_current_requirement(dodgp)
A is_a_current_requirement(dodcheap)

B.4.2. LPla requirement persistence

Local property LP1a expresses that, once it is derived that a require-
ment is needed for the system, this requirement will persist, as long as
the stakeholder does not indicate that the requirement (or the branch it
belongs to) is undesirable. Formalization:

is_a_current_requirement(p) A not(undesirable_
requirement(p)) A is_a_subrequirement_of_via(p, q, b)
A best_branch_for(b, q) A not(undesirable_branch(b))
—» is_a_current_requirement(p)

B.4.3. LPIDb refined requirement persistence

Local property LP1b expresses that, once a local requirement has
been refined via a certain branch, this will remain the case, and the
branch will be marked as “current” branch (needed within LP9). For-
malization:

requirement_refined_via(n, b) A not(undesirable_branch
(b)) — requirement_refined(n) A requirement_refined_
via(n, b) A is_a_current_branch(b)

B.4.4. LP2 undesirable branch determination

These local properties are used to determine which branches are
undesirable. There are two cases: a requirement that belongs to it
is undesirable and its total costs are higher than predicted while
the requirement dodcheap is present. Formalization:

is_a_subrequirement_of_via(p, n, b) A undesirable_
requirement(p) — undesirable_branch(b) is_a_current_
requirement(dodcheap) A total_branch_costs(b, x)
A predicted_costs(b, y) A x >y — undesirable_branch(b)

B.4.5. LP3 branch selection

These five local properties are used to determine which is the best
branch (or subtree) that can be selected to satisty a given nonlocal
requirement. In case the requirement dodcheap is present, the selec-
tion criterion is the predicted costs: the branch of which these are the
lowest is selected. However, other criteria (such as the quality) can
be implemented as well. Furthermore, we have to check whether
the stakeholder has not indicated that the branch is undesirable. For-
malization:

is_a_subrequirement_of_via(p, n, b) — branch_for(b, n)
is_a_current_requirement(dodcheap) A branch_for(a, n)
A branch_for(b, n) A not(undesirable_branch(a))
A predicted_costs(a, x) A predicted_costs(b, y) AXx <y
— better_branch_than_for(a, b, n)


https://doi.org/10.1017/S0890060409990114

420

branch_for(a, n) A branch_for(b, n) A not(undesirable_
branch(a)) A undesirable_branch(b) —
better_branch_than_for(a, b, n)

branch_for(a, n) A not(branch_for(b, n))
—» better_branch_than_for(a, b, n)

[ vb:branch better_branch_than_for(a, b, n) ]
—» best_branch_for(a, n)

B.4.6. LP4 requirement refinement

Local property LP4 expresses that, if a requirement exists that can be
refined to a subrequirement, then this should be done by refining via the
best branch (e.g., the one with the lowest costs, see LP3). Formalization:

is_a_current_requirement(p) A is_a_subrequirement_of_
via(q, p, b) A not(requirement_refined(p))
A best_branch_for(b, p) A not(undesirable_branch(b))
— is_a_current_requirement(q) A requirement_
refined(p) A requirement_refined_via(p, b)

B.5. DODs

B.5.1. LP5 component selection

These four local properties are used to determine which is the best
component that can be selected in order to satisfy a given require-
ment. Again, when the requirement dodcheap is present, the selec-
tion criterion is the price: the component that satisfies the require-
ment with the lowest costs is selected. Furthermore, we have to
check whether the stakeholder has not indicated that the component
is undesirable. Formalization:

is_a_current_requirement(dodcheap) A holds_for(l, c)
A holds_for(l, d) A not(undesirable_component(c))
A costs(c, x) A costs(d, y) A x <y — better_component_
than_for(c, d, 1)

holds_for(l, c) A holds_for(l, d) A not(undesirable_component(c))
A undesirable_component(d) — better_component_
than_for(c, d, 1)

holds_for(l, ¢) A not(holds_for(l, d)) — better_component_
than_for(c, d, I)

[ Vd:comp better_component_than_for(c, d, 1) ]
— best_component_for(c, I)

B.5.2. LP6 DOD generation

This property expresses that, if DODM (i.e., a specific module
for DOD generation and manipulation) is active, then each local re-
quirement should be satisfied by adding the best component for that
requirement to the current DOD. Moreover, the costs of that compo-
nent should be stored as “intermediate branch costs” (needed by
LP10). Formalization:

“DODM_active” A is_a_current_requirement(l)
A best_component_for(c, I) A not(undesirable_
component(c)) A costs(c, y) A is_a_subrequirement_
of_via(l, n, b) A “DOD_counter’(x)
—» current_DOD(dod(x)) A part_of_DOD(c, dod(x))
A intermediate_branch_costs(b, y)

B.5.3. LP7a DOD persistence

Local property LP7a expresses that, once a DOD is the current
DOD, this will remain the case until the DOD_counter has been in-

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

T. Bosse et al.

creased. Formalization:

current_DOD(dod(x)) A “DOD_counter’(x)
— current_DOD(dod(x))

B.5.4. LP7b DOD component persistence

Local property LP7b expresses that, once a certain component
has been added to a DOD, it will remain part of that DOD forever.
Formalization:

part_of_DOD(c, d) — part_of_DOD(c, d)

B.5.5. LPS8 requirement satisfaction determination

This property determines when a certain (local) requirement is
satisfied by a DOD. This is the case when the current DOD contains
a component for which this requirement holds. Formalization:

current_DOD(d) A part_of_DOD(c, d) A holds_for(l, c)
A is_a_current_requirement(l) — local_
requirement_satisfied(l)

B.5.6. LP9 requirement “dodcheap” satisfaction
determination

These properties determine when the requirement that “the costs
of the branches should not be higher than the predicted costs™ is sat-
isfied by a DOD. This is only the case if, for each branches, it is not a
current branch OR it is not a “leaf”” branch OR its costs do not exceed
the predicted costs. Formalization:

“DODM_active” A not(is_a_current_branch(b))
— branch_covered(b)
“DODM_active” A is_a_current_branch(b)
A is_a_subrequirement_of_via(p, g, b)
—» branch_covered(b)
“DODM_active” A is_a_current_branch(b)
A total_branch_costs(b, x) A predicted_costs(b, y) A x <y
— branch_covered(b)
[ vb:branch branch_covered(b) ]
—» local_requirement_satisfied(dodcheap)

B.5.7. LPI10 total branch costs calculation

These properties are used to calculate the total costs for a certain
branch. To do this, all x for which intermediate_branch_costs(b,
X) holds should be added. This is done by giving the lowest x the in-
dex 0, giving the next x the index 1, and so on. Next, all x are added
stepwise. Note that this approach assumes that each component has a
different price. Formalization:

intermediate_branch_costs(b, x) A intermediate_branch_
costs(b, y) A x >y — not_index(b, 0, x)

intermediate_branch_costs(b, x) A intermediate_branch_
costs(b, y) A x >y A not_index(b, I, x) A not_index(b, I, y)
— not_index(b, | + 1, x)

intermediate_branch_costs(b, x) A intermediate_branch_
costs(b, y) A x <y A not_index(b, I, y) A not(not_index
(b, 1, x)) A not(hasindex(b, x)) A sum(b, I, s) — index(b, 1 + 1, x)
A hasindex(b, x) A hassum(b, | + 1) A sum(b, | + 1, s + x)

intermediate_branch_costs(b, x) — intermediate_branch_

costs(b, 10000) A intermediate_branch_costs(b, x)


https://doi.org/10.1017/S0890060409990114

Formal analysis of design process dynamics

hasindex(b, x) — hasindex(b, x)

hassum(b, x) — hassum(b, x)

index(b, x, y) — index(b, X, y)

sum(b, x, y) — sum(b, X, y)

sum(b, x, y) A not(hassum(b, x + 1))
—» total_branch_costs(b, y)

B.5.8. LPI1 total DOD costs calculation

These properties are used to calculate the total costs for the
final DOD. To do this, the same algorithm is used as in LP10. For-
malization:

DOD_generation_terminated A is_a_current_branch(b)
A total_branch_costs(b, x) — intermediate_DOD_costs(x)
intermediate_DOD_costs(x) A intermediate_DOD_costs(y)
A X >y — not_index(0, x)
intermediate_DOD_costs(x) A intermediate_DOD_costs(y)
A X >y A not_index(l, x) A not_index(l, y)
—» not_index(l + 1, x)
intermediate_DOD_costs(x) A intermediate_DOD_costs(y)
A X <y A not_index(l, y) A not(not_index(l, x))
A not(hasindex(x)) A sum(l, s) — index(l + 1, x)
A hasindex(x) A hassum(l + 1) A sum(l + 1, s + x)
intermediate_DOD_costs(x) — intermediate_DOD_
costs(10000) A intermediate_DOD_costs(x)
hasindex(x) — hasindex(x)
hassum(x) — hassum(x)
index(x, y) — index(x, y)
sum(x, y) — sum(x, y)
sum(x, y) A not(hassum(x + 1)) — total_DOD_costs(y)

B.5.9. LP12 ROSM activity determination

Local property LP12 expresses that, as long as there are nonlocal
requirements that have not been refined yet, RQSM (i.e., a specific
module for requirements refinement) is still active. Formalization:

is_a_current_requirement(n) A not(requirement_refined(n))
— “RQSM_active”

B.5.10. LP13 DODM activity determination

These three properties express that DODM will be active when
RQSM is not active but has been active before. Formalization:

“RQSM_active” — “RQSM_earlier_active”
“RQSM_earlier_active” — “RQSM_earlier_active”
“RQSM_earlier_active” A not(“RQSM_active”)

— “DODM_active”

B.5.11. LP14 DOD counter

These properties are used to keep track of the index of the current
DOD. Initially, the counter is set to 0. It is increased each time that
RQSM changes from active to inactive. Formalization:

start — “DOD_counter”(0)
“RQSM_active” — “DOD_counter_ready”
“DOD_counter’(x) A not(“RQSM_active”)

A “DOD_counter_ready” — “DOD_counter’(x + 1)

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

421

“DOD_counter’(x) A not(“DOD_counter_ready”)
— “DOD_counter’(x)

“DOD_counter’(x) A not(*“RQSM_active”)
— “DOD_counter”(x)

B.5.12. LP15 determination of treated requirements

These three properties express the three situations when a require-
ment has been “covered” (and thus should not be treated anymore).
These situations are when the requirement is not required for the
given design object, when the requirement has been refined, and
when the requirement is satisfied. Formalization:

“DODM_active” A not(is_a_current_requirement(p))
—» requirement_covered(p)

“DODM_active” A requirement_refined(n)
— requirement_covered(n)

“DODM_active” A local_requirement_satisfied(l)
—» requirement_covered(l)

B.5.13. LPI16 termination determination

Local property LP16 expresses that, as soon as all requirements
have been covered, the process will terminate. Formalization:

[ Vp:prop requirement_covered(p) ]
— DOD_generation_terminated

APPENDIX C: ADDITIONAL SIMULATION
TRACES

C.1. Trace 1 and Trace 2

See Section 8.

C.2. Trace 3

The beginning of this trace is similar to that of Trace 1 and 2 (Fig. C.1).
However, at the exact moment that all present requirements have been
refined (time point 8) and the system just started to create a first DOD
(DOD(1)), the atom undesired_requirement(DODBP1(b)) be-
comes true (representing the fact that the stakeholder has indicated
that this requirement is not desirable). Notice that this is a more radical
decision than rejecting only acomponent. The resultis that the process
has to switch back to the phase of requirement refinement. Here, “re-
quirement revision” takes place; that is, the undesirable requirement is
rejected and its parent is now refined via another requirement. When
this has happened, a second attempt is made to generate a satisfying
DOD [DOD(2)], on the basis on the new set of requirements. How-
ever, note that the information concerning the first DOD [DOD(1)]
is not completely deleted. Instead, it is kept in memory, just in case
it will be needed in a later stage of the process.

C.3. Trace 4

This is a trace where “branch revision” occurs several times (Fig. C.2).
Branch revision happens as follows: the system first chooses a branch
and refines it to local requirements. Next, a DOD is created, consisting
of an assignment of components to the local requirements. Based on
the costs of these components, the system calculates the total costs


https://doi.org/10.1017/S0890060409990114

422 T. Bosse et al.

DOD_generation_terminated-
current_DOD({dod(1))+ ., "
current_DOD({dod(2))-

part_of DOD(c2a, dod(1))- {
part_of_DOD(c2a, dod(2))+
part_of DOD(c2b, dod(1)) ]
part_of_DOD(c2b, dod(2))
part_of_DOD(c3a, dod(1))+ .
part_of_DOD(c3a, dod(2))-
part_of_DOD(c4b, dod(2))-
part_of_DOD(ew, dod(1)) 1
part_of DOD(ew, dod(2))
part_of_DOD(I1, dod(1)) ]
part_of_DOD(I1, dod(2))
part_of_DOD(I2, dod(1))- '
part_of DOD(I2, dod(2))-
part_of_DOD(I3, dod(1)) !
part_of_DOD(I3, dod(2))+
part_of_DOD(I4, dod(1))- ]
part_of_DOD(l4, dod(2))
undesirable_requirement(dodbp1 (b)) - I
is_a_current_requirement(dodcheap)
is_a_current_requirement(dodgp) - =
is_a_current_requirement(dodgp1)
is_a_current_requirement({dodgp2) {
is_a_current_requirement(dodgp3)-
is_a_current_requirement(dodbp1(a)) - ,
is_a_current_requirement(dodbp1 (b)) { | 1
is_a_current_requirement(dodbp1(x))- |
is_a_current_requirement(dodbp2(x)) 1 7
is_a_current_requirement(dodbp3(x}) - ]
is_a_current_requirement(dodbp4(y)) - ]
is_a_current_requirement(dodbp6(y)) - 1
is_a_current_requirement{dodep(a)) - y
is_a_current_requirement(dodep(b))- !
is_a_current_requirement(dodii(a))-
is_a_current_requirement(dodi1 (b)) {
is_a_current_requirement(dodi2(x, y))-
is_a_current_requirement(dodtp(a, e))- !
is_a_current_requirement(dodtp(b, €))- ]
is_a_current_requirement(dodtp(e, x)) ]
is_a_current_requirement(dodip(e, y))- S —

is_a_current_requirement(dodip(x, c¢)) ]
is_a_cument_requirement(dodtp(x, y})- ]
is_a_current_requirement(dodtp(y, x})- !
is_a_current_requirement(dodi3(x, y, c)) -
requirement_refined_via(dodgp, b11)-
requirement_refined_via(dodgp1, b1)- 1
requirement_refined_via(dodgp1, b2)- .
requirement_refined_via(dodgp2, b12)
requirement_refined_via(dodgp3, b13)-
requirement_refined_via(dodii(a), b14)- .
requirement_refined_via(dodi1(b), b15) 3
requirement_refined_via(dodi2(x, y), b4)+ !
requirement_refined_via(dodi3(x, y, ¢), b16) ]
all_requirements_evaluated J—

time g 5 10 15 20 25 30 35 40

Fig. C.1. Simulation trace 3. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060409990114

Formal analysis of design process dynamics

423

DOD_generation_terminated - !

current_DOD(dod(1)) - ———

current_DOD(dod(2)) -

current_DOD(dod(3)) -

requirement_refined_via(dodgp, b11)-
requirement_refined_via(dodgp1, b1)-
requirement_refined_via(dodgp1, b2)-

requirement_refined_via(dodgp1, b3)-

requirement_refined_via{dodgp2, b12)-

requirement_refined_via(dodgp3, b13)-
requirement_refined via(dodii(a), b14)- |
requirement_refined_via(dodi1(b), b15)- ]
requirement_refined_via(dodi2(x, y), b4) - ]

requirement_refined_via(dodi2(x, y), b5)-

requirement_refined_via(dodi3(x, y, c), b16)- )
all_requirements_evaluated

total_branch_costs(b1, 701)-

total_branch_costs(b14, 0)-

total_branch_costs(b15, 0)-

total_branch_costs(b16, 120)-

total_branch_costs(b2, 441)

total_branch_costs(b3, 882)

total_branch_costs(b4, 351)-

total_branch_costs(b5, 401)

total_DOD_costs(1403)-

1

time 5 10

15 20 25 30 35 40 45 50 55 60 65

Fig. C.2. Simulation trace 4. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

for that branch. In case this number is higher than the predicted costs
for that branch, the branch is marked as undesirable. As a result, the
system switches back to the phase of requirements refinement to “back-
track” in the tree and choose another branch. In total, three branches are

https://doi.org/10.1017/50890060409990114 Published online by Cambridge University Press

revised in trace 4 (B1, B4, and B2). Notice that, instead of revising a
branch because the costs are too high, there could be several other reasons
as well. In the end of the process, the total costs of the resulting DOD are
calculated.


https://doi.org/10.1017/S0890060409990114

