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Abstract In this paper, we prove the well-known Erdős–Lax inequality [4] in a sharpened form. As a
consequence, another widely used inequality due to Ankeny and Rivlin [1] gets sharpened. These results
may be useful in various applications that required the Erdős–Lax and the Ankeny–Rivlin inequalities.
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1. Introduction

The well-known Bernstein’s inequalities [3] on polynomials state that if P (z) is a
polynomial of degree n, then

max
|z|=1

|P ′(z)| ≤ n max
|z|=1

|P (z)| (1.1)

and
max
|z|=R

|P (z)| ≤ Rn max
|z|=1

|P (z)|, (1.2)

whenever R ≥ 1.
The inequality (1.1) is a direct consequence of Bernstein’s Theorem on the derivative of

a trigonometric polynomial [8] and the inequality (1.2) follows from the maximum modu-
lus theorem (see [7, Corollary 12.1.3]). For the class of polynomials having no zeros inside
the unit circle, Erdős [4] conjectured, and Lax [6] proved that, if P (z) is a polynomial of
degree n having no zeros in |z| < 1, then

max
|z|=1

|P ′(z)| ≤ n

2
max
|z|=1

|P (z)|. (1.3)

Equality holds in (1.3) if all zeros of P (z) lie on the circle |z| = 1.
The inequality (1.3) appears to be the best inequality for the class of polynomials

having no zeros in the unit disc, but the equality in (1.3) holds when all the zeros of P (z)
are on |z| = 1. Definitely, the bound n

2 given in inequality (1.3) does not depend on how
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far the zeros lie outside the unit circle. Aziz and Dawood [2] made an attempt to address
this issue to some extent and improved the inequality (1.3) by proving that if P (z) is a
polynomial of degree n having no zeros in |z| < 1, then

max
|z|=1

|P ′(z)| ≤ n

2

(
max
|z|=1

|P (z)| − min
|z|=1

|P (z)|
)

. (1.4)

Even though the inequality (1.4) sharpens inequality (1.3) but it has a drawback that if
there is even one zero on |z| = 1, then min|z|=1 |P (z)| = 0, and so the inequality (1.4) fails
to give any improvement over (1.3). Now naturally a question arises; is there any way
to refine the inequality (1.3) for the class of polynomials satisfying the hypothesis of the
Erdős–Lax inequality, by capturing the information on the moduli of zeros? Can we obtain
a bound in terms of the extreme coefficients of P (z) whose ratio is informative about the
distance of zeros from the origin? In this paper, we approach this side of the Erdős–Lax
inequality and obtain a bound which sharpens the inequality (1.3) significantly. Let us
state the result below.

Theorem 1.1. If P (z) = a0 + a1z + · · · + anzn is a polynomial of degree n having no
zeros in |z| < 1, then

max
|z|=1

|P ′(z)| ≤ n

2

[
1 − |a0| − |an|

n(|a0| + |an|)
]

max
|z|=1

|P (z)|. (1.5)

The result is best possible and equality holds in (1.5) for the polynomial P (z) = zn +
azn−1 + z + a, where a ≥ 1.

It is a straightforward fact that the term |a0|−|an|
n(|a0|+|an|) ≥ 0 for any polynomial satisfying

the hypothesis of Theorem 1.1, and hence (1.5) clearly sharpens (1.3). One can observe
that |a0|−|an|

n(|a0|+|an|) is a function of the modulus of the product of the zeros of P (z), which

is |a0|
|an| .
There are a few reasons why we deem Theorem 1.1 interesting. Firstly, the inequality

(1.5) sharpens the inequality (1.3) strictly for the class of polynomials having no zeros
in the open unit disc with at least one zero lying outside the closed unit disc, or more
precisely whenever |a0| �= |an|. One can observe that, as the zeros go farther and farther
from the circle |z| = 1, the value of the term |a0|−|an|

n(|a0|+|an|) increases considerably and hence
the bound given in (1.5) will be much closer to the value of max|z|=1 |P ′(z)| than the
one given in (1.3), which does not take into account, the distance of zeros from the unit
circle. Secondly, it can be used to get the proofs of Bernstein-type inequalities for the
class of polynomials having no zeros in an open disc of any radius greater than or equal
to one and related extensions to polar derivative of the polynomials. Thirdly, Lemma 2.2
can be thought of as a fundamental alternative for Laguerre’s Theorem [5] on the study
of Geometry of polynomials in the circular regions. Fourthly, the polynomial associated
with a given polynomial introduced in Lemma 2.2 is obtained by an operator similar to
the polar derivative operator, which might open up several extensions of results from the
ordinary derivative operator to this operator on the class of polynomials.
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It was Ankeny and Rivlin [1], who improved the inequality (1.2) for the class of poly-
nomials having no zeros in the unit disk by proving that, if P (z) is a polynomial of degree
n having no zeros in |z| < 1, then

max
|z|=R

|P (z)| ≤ 1 + Rn

2
max
|z|=1

|P (z)|, (1.6)

for any R ≥ 1. Ankeny and Rivlin used the Erdős–Lax inequality (1.3) and Bernstein’s
inequality (1.2), and some simple integral properties [1, p. 849–850] to establish (1.6).
Instead of (1.3) if we use the sharpened version of it given in (1.5) and proceeding similarly
as in the proof of the result due to Ankeny and Rivlin [1], without any difficulty we can
arrive at the following refinement of (1.6).

Corollary 1.2. If P (z) = a0 + a1z + · · · + anzn is a polynomial of degree n having no
zeros in |z| < 1 then

max
|z|=R

|P (z)| ≤ (1 + Rn) − λ(Rn − 1)
2

max
|z|=1

|P (z)|, (1.7)

for any R ≥ 1, and λ = |a0|−|an|
n(|a0|+|an|) .

Since the proof does not deviate much from that of Ankeny and Rivlin, we suggest the
readers to understand the proof by referring the paper [1] with our Theorem 1.1. With
the refinement to the Ankeny–Rivlin inequality, Corollary 1.2 may attract researchers
to obtain generalizations and extensions, like we see in the literature on various results
obtained by the Ankeny–Rivlin inequality (1.6).

2. Lemmas

The following few results bring attention to some well-known facts about polynomials
having no zeros in the unit disc. Our first result describes an estimate for the real value
of the logarithmic derivative of a complex polynomial having no zeros in the open unit
disc.

Lemma 2.1. If P (z) = a0 + a1z + · · · + an−1z
n−1 + anzn is a polynomial of degree

n ≥ 1 having no zeros in |z| < 1, then for all z on |z| = 1 for which P (z) �= 0

Re
(

zP ′(z)
P (z)

)
≤ n

2
− |a0| − |an|

2(|a0| + |an|) . (2.1)

Proof. To prove (2.1), it suffices to establish its equivalent form

Re
(

zP ′(z)
P (z)

)
≤ n − 1

2
+

1

1 + |a0|
|an|

. (2.2)

Clearly, without loss of generality, we can assume an = 1. We will prove the above inequal-
ity (2.2) with the assumption an = 1, by the use of the principle of mathematical induction
on the degree n, and for this, we first verify the result for n = 1.
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If n = 1, then P (z) = z − w with |w| ≥ 1, and therefore for |z| = 1 and z �= w, we have

Re
(

zP ′(z)
P (z)

)
= Re

(
z

z − w

)
≤ 1

1 + |w| ,

which is nothing but (2.2) when n = 1.

Let Q(z) := (z − w)P (z) with |w| ≥ 1, where P (z) =
∑n−1

γ=0 aγzγ + zn is a polynomial
of degree n having no zeros in |z| < 1. Then for all z on |z| = 1 where Q(z) �= 0, we get
by using the induction hypothesis

Re
(

zQ′(z)
Q(z)

)
= Re

(
z

z − w

)
+ Re

(
zP ′(z)
P (z)

)

≤ 1
1 + |w| +

n − 1
2

+
1

1 + |a0| .

To complete the induction step, we need to show that on |z| = 1,

Re
(

zQ′(z)
Q(z)

)
≤ n

2
+

1
1 + |w||a0| . (2.3)

Clearly, the inequality (2.3) holds if

1
1 + |w| +

n − 1
2

+
1

1 + |a0| ≤
n

2
+

1
1 + |w||a0| ,

which is equivalent to

1
1 + |w| −

1
2

+
1

1 + |a0| −
1

1 + |w||a0| ≤ 0. (2.4)

But

1
1 + |w| −

1
2

+
1

1 + |a0| −
1

1 + |w||a0| =
(1 − |w|)(1 − |a0|)(1 − |wa0|)
2(1 + |w|)(1 + |a0|)(1 + |wa0|) ≤ 0,

since |w| ≥ 1, and |a0| ≥ 1. Hence (2.3) is also true, and with this, the proof becomes
complete on using the induction hypothesis. �

Lemma 2.1 appears to be best possible and equality holds for some special class of
polynomials. By considering the circle or line onto which |z| = 1 is mapped by the
Möbius transformation T (z) = z

z−w one may easily check that if |w| ≥ 1 and |z| = 1,

then Re
(

z
z−w

)
≤ 1

1+|w| as presented in the proof of Lemma 2.1 with equality if and only

if either |w| = 1 or z = −w
|w| . In view of this, in the inequality (2.1) equality holds only

when all the zeros of P (z) lie on the unit circle or all zeros of P (z) lie on the unit circle
apart from one simple zero say a such that |a| > 1, and z = −a

|a| . Therefore, it is possi-
ble to have the equality in (2.1) for the polynomial P (z) = zn + azn−1 + z + a at z = 1
whenever a ≥ 1.
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The well-known Theorem of Laguerre [5, 9] states that, if P (z) is a polynomial of degree
n having no zeros in the disc |z| < 1, then the polynomial

DαP (z) = nP (z) + (α − z)P ′(z)

has no zeros in |z| < 1 for every α with |α| < 1. The next result is conceptually in line with
Theorem of Laguerre, but includes leading and constant coefficients of the underlying
polynomial P (z), thereby revealing information on the role of coefficients of P (z) in
refining DαP (z).

Lemma 2.2. If P (z) = a0 + a1z + · · · + anzn is a polynomial of degree n having no
zeros in the disc |z| < 1, then the polynomial

n

(
1 − |a0| − |an|

n(|a0| + |an|)
)

P (z) + (α − z)P ′(z)

has no zeros in |z| < 1 for every α with |α| < 1.

Proof. Since P (z) has no zeros in the disc |z| < 1, it follows from Lemma 2.1 that, for
all z on |z| = 1 for which P (z) �= 0, we have

Re

⎛
⎝ zP ′(z)

n
(
1 − |a0|−|an|

n(|a0|+|an|)
)

P (z)

⎞
⎠ ≤ 1

2
,

and hence ∣∣∣∣∣∣1 −
⎛
⎝ zP ′(z)

n
(
1 − |a0|−|an|

n(|a0|+|an|)
)

P (z)

⎞
⎠
∣∣∣∣∣∣ ≥

∣∣∣∣∣∣
⎛
⎝ zP ′(z)

n
(
1 − |a0|−|an|

n(|a0|+|an|)
)

P (z)

⎞
⎠
∣∣∣∣∣∣

for all z on |z| = 1, for which P (z) �= 0. Therefore,∣∣∣∣n
(

1 − |a0| − |an|
n(|a0| + |an|)

)
P (z) − zP ′(z)

∣∣∣∣ ≥ |P ′(z)| (2.5)

on |z| = 1. If P (z) has no zeros in |z| ≤ 1 then Re( zP ′(z)
P (z) ) is harmonic on |z| < 1, and

continuous on |z| ≤ 1. Therefore, it follows from Lemma 2.1 and the Maximum Modulus
Principle that

Re
(

zP ′(z)
P (z)

)
≤ n

2
− |a0| − |an|

2(|a0| + |an|)
holds for all z such that |z| ≤ 1. But then

zP ′(z)
P (z)

�= n

(
1 − |a0| − |an|

n(|a0| + |an|)
)

for all z such that |z| ≤ 1, which further implies that

n

(
1 − |a0| − |an|

n(|a0| + |an|)
)

P (z) − zP ′(z) �= 0
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for all z such that |z| ≤ 1. Therefore

P ′(z)

n
(
1 − |a0|−|an|

n(|a0|+|an|)
)

P (z) − zP ′(z)

is analytic on |z| < 1 and continuous on |z| ≤ 1. Now from (2.5) and applying Maximum
Modulus Principle, we get∣∣∣∣∣∣

P ′(z)

n
(
1 − |a0|−|an|

n(|a0|+|an|)
)

P (z) − zP ′(z)

∣∣∣∣∣∣ ≤ 1

on |z| ≤ 1. In other words, if P (z) has no zeros in |z| ≤ 1, then (2.5) holds for all z such
that |z| ≤ 1. The continuity of the function g(z) with respect to the polynomial P (z),
where

g(z) =
∣∣∣∣n
(

1 − |a0| − |an|
n(|a0| + |an|)

)
P (z) − zP ′(z)

∣∣∣∣− |P ′(z)| ≥ 0

on |z| = 1 ensures that (2.5) continue to hold in |z| ≤ 1, even if we restrict P (z) to have
no zeros in the open unit disc and allow P (z) to have zeros on |z| = 1. Hence (2.5) holds
for all z such that |z| ≤ 1 whenever P (z) has no zeros in |z| < 1 and thus for any α with
|α| < 1 and |z| < 1, we have∣∣∣∣n

(
1 − |a0| − |an|

n(|a0| + |an|)
)

P (z) − zP ′(z)
∣∣∣∣ > |αP ′(z)|.

Therefore for any α with |α| < 1 and |z| < 1, we have

n

(
1 − |a0| − |an|

n(|a0| + |an|)
)

P (z) − zP ′(z) + αP ′(z) �= 0,

and hence the proof is complete. �

Lemma 2.3. Let D be the open unit disc and P (D) = {P (z) : z ∈ D}, where P (z) =
a0 + a1z + · · · + anzn. Then for any α ∈ D and z ∈ D,

(α − z)P ′(z)

n
(
1 − |a0|−|an|

n(|a0|+|an|)
) + P (z) ∈ P (D).

Proof. Suppose δ is outside P (D). Then P (z) �= δ for any z ∈ D. Now applying
Lemma 2.2 to the polynomial P (z) − δ, one can deduce that

(α − z)P ′(z) + n

(
1 − |a0| − |an|

n(|a0| + |an|)
)

P (z) �= n

(
1 − |a0| − |an|

n(|a0| + |an|)
)

δ,

which is equivalent to
(α − z)P ′(z)

n
(
1 − |a0|−|an|

n(|a0|+|an|)
) + P (z) �= δ

for all z ∈ D, α ∈ D and any δ �∈ P (D). This completes the proof. �
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3. Proof of theorem 1.1

In the proof of Lemma 2.2, we have shown that, if P (z) �= 0 in |z| < 1 then

|P ′(z)| ≤
∣∣∣∣zP ′(z) − n

(
1 − |a0| − |an|

n(|a0| + |an|)
)

P (z)
∣∣∣∣ (3.1)

for any z such that |z| ≤ 1. On the other hand, from Lemma 2.3, for any α, z ∈ D,

(α − z)P ′(z)

n
(
1 − |a0|−|an|

n(|a0|+|an|)
) + P (z) ∈ P (D). (3.2)

Thus, we have

n

(
1 − |a0| − |an|

n(|a0| + |an|)
)

max
|z|=1

|P (z)| = n

(
1 − |a0| − |an|

n(|a0| + |an|)
)

sup
z∈D

|P (z)|

or equivalently

n

(
1 − |a0| − |an|

n(|a0| + |an|)
)

max
|z|=1

|P (z)| = n

(
1 − |a0| − |an|

n(|a0| + |an|)
)

sup
w∈P (D)

|w|. (3.3)

Now from (3.2), it is evident that

sup
w∈P (D)

|w| ≥ sup
|α|<1

⎧⎨
⎩ (α − z)P ′(z)

n
(
1 − |a0|−|an|

n(|a0|+|an|)
) + P (z)

⎫⎬
⎭ .

Using this in the above equation (3.3), we get

n

(
1 − |a0| − |an|

n(|a0| + |an|)
)

max
|z|=1

|P (z)|

≥ sup
|α|<1

∣∣∣∣(α − z)P ′(z) + n

(
1 − |a0| − |an|

n(|a0| + |an|)
)

P (z)
∣∣∣∣

on |z| = 1. Now choosing an appropriate argument of α, we obtain

n

(
1 − |a0| − |an|

n(|a0| + |an|)
)

max
|z|=1

|P (z)|

≥ |P ′(z)| +
∣∣∣∣zP ′(z) − n

(
1 − |a0| − |an|

n(|a0| + |an|)
)

P (z)
∣∣∣∣ on |z| = 1. (3.4)

The inequalities (3.1) and (3.4) together yield

n

(
1 − |a0| − |an|

n(|a0| + |an|)
)

max
|z|=1

|P (z)| ≥ 2|P ′(z)|,

as required and hence the proof is complete.
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3. S. N. Bernstein, Leçons sur les propriétés extrémales et la meilleure approximation des
fonctions analytiques d’une variable réelle (Gauthier-Villars, Paris, 1926).
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