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Nearly invariant Brangesian subspaces

Arshad Khan, Sneh Lata , and Dinesh Singh

Abstract. This article describes Hilbert spaces contractively contained in certain reproducing kernel
Hilbert spaces of analytic functions on the open unit disc which are nearly invariant under division
by an inner function. We extend Hitt’s theorem on nearly invariant subspaces of the backward shift
operator on H2(D) as well as its many generalizations to the setting of de Branges spaces.

1 Introduction

In this paper, we study nearly invariant subspaces from a Brangesian point of view. A
subspace M of the Hardy space H2(D) is called nearly invariant under the backward
shift operator S∗ on H2(D) if S∗( f ) belongs to M whenever f vanishes at zero. These
subspaces first arose in the work of Hitt [11] while characterizing the shift invariant
subspaces of the Hardy space of an annulus. The kernels of Toeplitz operators are
particular examples of nearly S∗-invariant subspaces, and this special case of Hitt’s
theorem was independently established by Hayashi [10] by developing ideas similar
to those used by Hitt. Hitt called these subspaces “weakly invariant” rather than
“nearly invariant”. Sarason, [13], coined the term “nearly invariant subspaces” and—
more importantly—gave a new proof of Hitt’s theorem by utilizing ideas based on de
Branges–Rovnyak spaces, [3]. See also [14]. In doing so, Sarason engendered new ideas
that gave rise to some very interesting papers such as [1, 2, 8, 15]. Since the time [10, 11],
and particularly [13] appeared nearly invariant subspaces have established themselves
as an important area of research and they can be deemed to be a proper generalization
of the concept of invariant subspaces. In addition, they connect with many diverse
areas including with mathematical physics. See D. Vukotić (2011). [Review of the
book The Hardy spaces of a slit domain, by A. Aleman, N. Feldman, and W. Ross].
MR2548414 (2011m:30095).

Theorem 1.1 (Hitt’s theorem). Let M be a non-trivial nearly invariant subspace of
H2(D) under S∗ , and let g be a function in M of unit norm that is orthogonal to
M ∩ zH2(D) and positive at the origin. Then there exists a S∗-invariant subspace N

of H2(D) such that M = gN and ∣∣g f ∣∣ = ∣∣ f ∣∣ for all f ∈ N.

In 2010, Chalendar, Chevrot, and Partington [4] generalized Hitt’s result to the
backward shift operator on a vector-valued Hardy space. A few years later, the first
and third author from [4], in collaboration with Gallardo–Gutierrez, introduced and
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described in [5] nearly invariant subspaces with finite defect for the backward shift
operator on H2(D). This work was further extended to the vector-valued case by
Chattopadhyay, Das, and Pradhan in [7].

Simultaneously, Erard [9] in 2004 introduced the notion of nearly invariant
subspaces in the vastly general situation of multiplication operators that are bounded
below on reproducing kernel Hilbert spaces. He first deduced a factorization theorem
in the general setting and later used it to describe nearly invariant subspaces of the
backward shift on general reproducing kernel Hilbert spaces of analytic functions
on the open unit disc D on which the operator of multiplication with z is well-
defined and bounded below. As a particular case, his result also described nearly
invariant subspaces of the backward shift on H2(D). His description turns out to be
the same as Hitt’s. However, since he was working in a much more general setting, his
method could not capture two crucial pieces of information about the representation,
namely, the norm equality (as it appears in Hitt’s theorem) and the closedness of the
backward shift invariant subspaces that appear in the representation. In 2021, Liang
and Partington used Erard’s factorization theorem ([9, Theorem 3.2]) to describe
nearly invariant subspaces of Dirichlet-type spaces Dα , −1 ≤ α ≤ 1 with respect to
the operator of multiplication with a finite Blaschke factor. This work of Liang and
Partington has been extended to the finite defect setting in 2022 by Chattopadhyay
and Das in [6].

Let H1 and H2 be two Hilbert spaces with norms ∣∣ ⋅ ∣∣1 and ∣∣ ⋅ ∣∣2 , respectively. We
say H1 is contractively contained in H2 if H1 is a vector subspace (not necessarily
closed) ofH2 and the inclusion map is a contraction, that is, ∣∣h∣∣2 ≤ ∣∣h∣∣1 for all h ∈H1 .
In this paper we shall investigate the above-mentioned avenues of research associated
with nearly invariant subspaces for contractively contained Hilbert spaces.

The organization of the paper is as follows. Section 2 contains definitions and
terminologies that will be used throughout the paper. In Section 3, we describe
Hilbert spaces that are contractively contained in the Hardy space H2(D,Cn) and
which are nearly invariant under the backward shift operator on H2(D,Cn). Our
result (Theorem 3.3) is, in a sense, the best possible generalization-in the setting
of de Branges spaces-of Hitt’s theorem (Theorem 1.1) and also its vector-valued
generalization by Chalendar et al. (Theorem 3.1). This is so, since the representations
obtained in both these theorems can be easily derived from our version once we
assume that our general de Branges space is the special case of the scalar valued
Hardy space of Hitt or the n-dimensional valued Hardy space of Chalendar et al. At
the same time, we show through specific counterexamples that our characterization
per se in the general setting of the contractively contained de Branges space cannot
be improved. In other words we show that in the conclusion of Theorem 3.3, our
inequality between the de Branges space and the Hardy space cannot be improved to
an equality (Example 3.5) nor can we conclude in the general case that the backward
shift invariant subspace in our description is closed, see (Example 3.6). Afterwards, in
Section 4 (Theorem 4.3), we extend a work of Erard from [9, Theorem 5.1] (stated here
as Theorem 4.1) to the case of contractively contained Hilbert spaces. Our Theorem 4.3
is in fact also an extension of Liang and Partington’s result ([12, Theorem 3.4]) that
used Erad’s result to describe subspaces of the Dirichlet-type spaces Dα (0 ≤ α ≤ 1)
which are nearly invariant under “division by a finite Blaschke factor”. Lastly, in
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Section 5, we extend our study from Section 4 to the finite defect setting. Theorem 5.3
is an extension of Chattopadhay and Das’ result [6, Theorem 3.9] to multiplication
with inner function on general reproducing kernel Hilbert spaces which in turn is a
generalization of Liang and Partington’s above-mentioned work to the finite defect
setting.

2 Terminologies and definitions

Let D be the open unit disc in the complex plane C. For a given Hilbert space K,
let H2(D,K) denote the familiar Hardy space of K-valued analytic functions on D.
Recall that

H2(D,K) = {
∞
∑
m=0

Amzm ∶ Am ∈K,
∞
∑
m=0

∣∣Am ∣∣2K < ∞}

and it is a Hilbert space with respect to the norm ∣∣ f ∣∣22,K = ∑∞m=0 ∣∣Am ∣∣2K , where
f (z) = ∑∞m=0 Amzm belongs to H2(D,K). The Hardy space H2(D,C) is denoted
simply as H2(D). Note that if {x i ∶ i ∈ I} is an orthonormal basis ofK, then H2(D,K)
can be identified (under an isometric isomorphism) with �2-direct sum of I copies
of H2(D). Thus, each f ∈ H2(D,K) can be identified with an I-tuple ( f i)i∈I , where
each f i ∈ H2(D) and ∣∣ f ∣∣22,K = ∑i∈i ∣∣ f i ∣∣22,C . Henceforth, for notational convenience,
we shall not mention K in the norm ∣∣ ⋅ ∣∣2,K; instead, we shall write it as ∣∣ ⋅ ∣∣2.

The forward shift or simply the shift operator S on H2(D,K) is defined as S f (z) =
z f (z) and it’s adjoint S∗, known as the backward shift operator, is given by

S∗ f (z) = f (z) − f (0)
z

for f ∈ H2(D,K).
In the introduction, we have used the term subspace to refer to a closed subspace,

and we shall keep following the same terminology throughout the paper. But very
often, in what follows, we shall encounter subspaces that are not necessarily closed;
to make them stand out, we shall refer to them as vector subspaces.

Definition 2.1 A vector subspaceM of H2(D,K) is said to be nearly invariant under
the backward shift S∗ if S∗ f ∈M whenever f ∈M and f (0) = 0.

In light of the fact that S∗ is a left inverse of S, the definition of nearly invariant
under S∗ is equivalent to saying f ∈M whenever S f ∈M. This motivated Erard in [9]
to extend the notion of nearly invariant to the setting of bounded below multiplication
operators on reproducing kernel Hilbert spaces. Before giving Erard’s version, first, we
provide the following relevant definitions.

Definition 2.2 A set of complex-valued functions on a set X is called a reproducing
kernel Hilbert space (RKHS) if
1. H is a vector space with respect to pointwise addition and scalar multiplication;
2. H has a norm with which it is a Hilbert space;
3. for each fixed x ∈ X , the point evaluation map f ↦ f (x) is continuous on H.
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Suppose H is an RKHS on a set X. Further, suppose ϕ is a function on X which
multiplies H into itself. Let Mϕ denote this multiplication map. Then it can be seen
that Mϕ is linear and bounded. The following is Erard’s analog of nearly invariant in
the context of a multiplication operator on an RKHS.

Definition 2.3 Let H be an RKHS on a set X and suppose Mϕ is a multiplication
operator on H which is bounded below. Then, a vector subspace M of H is said to be
nearly invariant under division by ϕ if ϕ f ∈M implies f ∈M.

Note that when Mϕ is bounded below on H, then nearly invariant under a left
inverse of Mϕ , as we discussed above, would mean f ∈M whenever ϕ f ∈M which
clearly justifies Erard’s choice for the terminology “nearly invariant under division by
ϕ”. Moreover, the advantage of this terminology is that it brings to light the essence of
the definition for multiplication operators. Also, the absence of an explicit mention
of a left inverse makes the definition much simpler to follow.

The following are straightforward but yet important observations.

Lemma 2.4 Let W be an open subset of the complex plane, H be an RKHS on W

consisting of analytic functions on W, and let ϕ be an analytic function on W that
multiplies H into itself. If ϕ vanishes at a point in W, then the only vector subspace of H
that is nearly invariant under division by ϕ and contained in ϕH is the zero subspace.

Proof Suppose, M is a vector subspace of H that is nearly invariant under division
by ϕ and it is contained in ϕH. Then for h ∈M, h = ϕ f for some f ∈H. Since M is
nearly invariant under division by ϕ, therefore f ∈M. Again, using the fact that M is
contained in ϕH and it is nearly invariant under division by ϕ, we conclude f = ϕ f1
for some f1 ∈M. Then h = ϕ2 f1. Continuing in the similar fashion, we obtain that
for each n, h = ϕn+1 fn , for some fn ∈M. Now since ϕ has a zero in W, say at z0, we
deduce that the analytic function h has a zero at z0 of every order. This implies that
h = 0. Hence M = {0}; this completes the proof. ∎

Lemma 2.5 Let M be a non-zero Hilbert space contractively contained as a vector
subspace in H. If R is closed in H, then M ∩R is closed in M.

Proof Let {hn}∞n=0 be a sequence in M ∩R that converges to h in M. Since M is
contractively contained in H, therefore {hn} converges to h in H. But, each hn ∈ R
and R is closed in H. Therefore, h ∈ R which implies that h ∈M ∩R. Thus M ∩R is
closed in M. ∎

We end this section by recalling a few more terminologies. If ϕ is a bounded
analytic function on D, then it multiplies H2(D) into itself, and in this case, the
multiplication operator Mϕ is a particular example of a Toeplitz operator which is
generally denoted as Tϕ . Further, a bounded analytic function on D is said to be an
inner function if lim

r→1−
∣ϕ(re i t)∣ = 1 a.e. If ϕ is an inner function on D and ϕ(0) = 0,

then the composition operator, denoted as Cϕ , is an isometry on H2(D). Suppose, K
is a Hilbert space with an orthonormal basis indexed by a set I. Then, direct sum of
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Tϕ and Cϕ on H2(D,K)(identified as �2-direct sum of I-copies of H2(D) are again
bounded operator which we shall denote again by Tϕ and Cϕ .

3 Nearly invariant Brangesian subspaces for the backward shift on
vector-valued Hardy spaces

In [4], Chalendar, Chevrot, and Partington extended Hitt’s theorem (Theorem 1.1)
to the vector-valued setting. They described subspaces of H2(D,Cn) that are nearly
invariant under the backward shift operator S∗ on H2(D,Cn). In this section, we
investigate their result in the de Branges setting. We describe Hilbert spaces contrac-
tively contained in H2(D,Cn) and nearly invariant under S∗ . It is crucial to note that
we do not assume these vector subspaces to be closed in the Hardy space.

Before presenting their description, we explain some notations essential to under-
standing their result and which will also be used throughout this section. Suppose,
g1 , . . . , gm be Cn-valued functions on D. Let G denote n × m matrix-valued function
that maps z ∈ D to n × m matrix with column vectors g1(z), . . . , gm(z). Now, sup-
pose f is a C

m-valued function on D. Clearly, we can write f = ( f1 , . . . , fm), where
f1 , . . . , fm are scalar-valued functions on D. Then for each z ∈ D, the matrix multipli-

cation G(z) f (z) = (g1(z)⋯gm(z))
⎛
⎜
⎝

f1(z)
⋮

fm(z)

⎞
⎟
⎠
= ∑m

i=1 f i(z)g i(z) is well-defined. We

shall use G f to denote the function z ↦ G(z) f (z) = ∑m
i=1 f i(z)g i(z). Clearly, if each

g i and f are analytic on D, then G f is also analytic on D.

Theorem 3.1 ([4, Theorem 4.4]). Let F be a nearly S∗-invariant subspace of
H2(D,Cn) and let {g1 , . . . , gr} be an orthonormal basis of M⊖ (M ∩ zH2(D,Cn)).
Let G be the n × r matrix-valued function with columns g1 , . . . , gr . Then, there exists
an isometric mapping

J ∶ F → F
′

given by G f ↦ f ,

where F
′ ∶= { f ∈ H2(D,Cr) ∶ ∃ h ∈ F, h = G f }. Moreover, F

′

is subspace of
H2(D,Cr) that is S∗-invariant.

We shall now present the main result (Theorem 3.3) of this section. It is an analog
of Theorem 3.1 for the de Branges setting. We start with the following preliminary
observation.

Proposition 3.2 Let M be a non-zero Hilbert space contractively contained in the
Hardy space H2(D,Cn). Suppose, M is nearly invariant under the backward shift on
H2(D,Cn). Then, M⊖ (M ∩ zH2(D,Cn)) is non-zero and its dimension can be at
most n.

Proof First note that since M is non-zero, therefore Lemma 2.4 implies that M
cannot be contained in zH2(D,Cn).
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Now as M is contractively contained in H2(D,Cn), for each w ∈ D, the point
evaluation map Ew ∶ M �→ C

n given by Ew( f ) = f (w) is bounded. Let {e1 , . . . , en}
be the canonical orthonormal basis of Cn . We claim that the set {g i ∶= E∗0 (e i) ∶ 1 ≤
i ≤ n} spans M⊖ (M ∩ zH2(D,Cn)). For any f in M ∩ zH2(D,Cn),

⟨g i , f ⟩M = ⟨e i , E0( f )⟩Cn = ⟨e i , f (0)⟩Cn = ⟨e i , 0⟩Cn = 0.

Thus, each g i belongs to M⊖ (M ∩ zH2(D,Cn)). Further, if f ∈M is orthogonal
to each g i . Then f (0) is orthogonal to e i for each 1 ≤ i ≤ n. This forces f (0) = 0
which means f ∈M ∩ zH2(D,Cn). Hence, the set {g i ∶ 1 ≤ i ≤ n} spans M⊖ (M ∩
zH2(D,Cn)). This completes the proof. ∎

Theorem 3.3 Let M be a non-zero Hilbert space contractively contained in
H2(D,Cn). Suppose M is nearly invariant under S∗ and ∥zh∥M ≥ ∥h∥M when-
ever zh ∈M. If {g1 , . . . , gr}, 1 ≤ r ≤ n, is an orthonormal basis for M⊖ (M ∩
zH2(D,Cn)), then there exists a vector subspace N of H2(D,Cr) that is S∗-invariant
such that M is in one-to-one correspondence with N via the linear map

G ∶ N →M given by f ↦ G f ,

where G is the matrix-valued function whose columns are g1 , . . . , gr . Moreover, for each
h ∈M, ∣∣h∣∣M ≥ ∣∣ f ∣∣2 , where h = G f with f ∈ N.

Proof Firstly, using Proposition 3.2, M ∩ zH2(D,Cn) is closed in M, M⊖ (M ∩
zH2(D,Cn)) is non-zero, and dimension ofM⊖ (M ∩ zH2(D,Cn)) is at most n. Let
P denote the orthogonal projection of M onto M ∩ zH2(D,Cn) and let Q = IM − P.

Now since M is nearly invariant under S∗ , therefore S∗P is a well-defined linear
mapping of M into itself. Let us define

R = S∗P.

Then the hypothesis ∣∣ f ∣∣M ≤ ∣∣z f ∣∣M whenever z f ∈M implies that R is a contraction
on M.

Fix any h ∈M. We decompose it as h = Qh + Ph. Note that Ph ∈ zH2(D,Cn). This
means Ph = SS∗Ph = SRh. Then, we have

h = Qh + SRh(3.1)

and

∣∣Qh∣∣2M + ∣∣Rh∣∣2M ≤ ∣∣Qh∣∣2M + ∣∣SRh∣∣2M = ∣∣h∣∣2M .(3.2)

As {g1 , . . . , gr} is an orthonormal basis for M⊖ (M ∩ zH2(D,Cn)), therefore we
can write

Qh = a01 g1 + a02 g2 + ... + a0r gr = GA0 ,
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where a01 , . . . , a0r are scalars, A0 =
⎛
⎜
⎝

a01
⋮

a0r

⎞
⎟
⎠
∈ Cr , and G is the n × r matrix-vaued

function on D with columns g1 , . . . , gr . Thus,

h = GA0 + SRh.(3.3)

Further, ∣∣Qh∣∣2M = ∑r
i=1 ∣a0i ∣2 = ∣∣A0∣∣2Cr . Thus, Inequality (3.2) yields

∣∣A0∣∣2Cr + ∣∣Rh∣∣2M ≤ ∣∣h∣∣2M .(3.4)

Now Rh ∈M. Then repeating the above arguments for Rh in place of h, we obtain
a vector A1 ∈ Cr such that

Rh = GA1 + SR2h

and ∣∣A1∣∣2Cr + ∣∣R2h∣∣2M ≤ ∣∣Rh∣∣2M . Then, Equations (3.3) and (3.4) yields

h = GA0 + G(zA1) + S2R2h(3.5)

and

∣∣A0∣∣2Cr + ∣∣A1∣∣2Cr + ∣∣R2h∣∣2M ≤ ∣∣h∣∣2M .(3.6)

Again, R2h ∈M. Continuing as above, we obtain a sequence {An} in C
r such that

for each postive integer m

h = G(A0 + A1z +⋯+ Amzm) + Sm+1Rm+1h(3.7)

and
m
∑
i=0

∣∣A i ∣∣2Cr + ∣∣Rm+1h∣∣2M ≤ ∣∣h∣∣2M .(3.8)

The Inequality (3.8) establishes that
∞
∑
n=0

∥An∥2
Cr < ∞.

Thus,

f (z) =
∞
∑
m=0

Amzm

belongs to H2(D,Cr).
Clearly, G f is analytic on D. Now comparing the coefficient of zm in h, G f , and

using Equation (3.7), we conclude, h = G f . Also, using Equation (3.8),

∣∣ f ∣∣2 ≤ ∣∣h∣∣M .

Hence, for each h ∈M there exists an f ∈ H2(D,Cr) such that h = G f and
∣∣ f ∣∣2 ≤ ∣∣h∣∣M .

Let N = { f ∈ H2(D,Cr) ∶ G f ∈M}. Then,N is a vector subspace of H2(D,Cr).
Clearly, the mapping G ∶ N →M given by G( f ) = G f is a well-defined surjective
linear map. To show it is one-to-one, let G f = 0. Suppose, f (z) = ∑∞m=0 Amzm .
Write f = A0 + z f1 , where f1(z) = ∑∞m=0 Am+1zm . Then G f = GA0 + G(z f1) and
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zG f1 ∈M ∩ zH2(D,Cn). This implies that GA0 = Q(G f ) = 0, which further implies
that A0 = 0; hence f = z f1 . Thus, G f1 = 0. Continuing in this way, we can show that
Ak = 0 for all k. Hence, f = 0. Thus G is one-to-one.

Finally, we shall show thatN is invariant under S∗ . Let f = ∑∞m=0 Amzm ∈ N. Then,
there exists an h ∈M such that h = G f . Now,

h = G f = Q(G f ) + SR(G f ).

But Q(G f ) = GA0 . Therefore,

h = GA0 + SR(G f )
which implies

SR(G f ) = G( f − A0) = G
⎛
⎝
∞
∑
k=1

Ak zk⎞
⎠

,

and hence

R(G f ) = G
⎛
⎝
∞
∑
k=1

Ak zk−1⎞
⎠
= G

⎛
⎝

S∗
⎛
⎝
∞
∑
k=0

Ak zk⎞
⎠
⎞
⎠
= G(S∗ f ).

Since R(G f ) ∈M, therefore by definition, S∗ f ∈ N. Hence N is invariant under S∗.
This completes the proof. ∎

Remark 3.4 Note that the Hitt’s description of a nearly S∗-invariant subspace of
H2(D) (Theorem 1.1) as well as it’s vectorial generalization (Theorem 3.1) both have
three parts to them, namely, the representation in terms of S∗-invariant subspace,
the norm preservation between nearly S∗-invariant subspace and the corresponding
S∗-invariant subspace, and the closedness of the S∗-invariant subspace. Now the
description (Theorem 3.3) we obtain for our setting does gives a representation that
is similar to the one given in Theorem 1.1 for the scalar case and Theorem 3.1 for the
vector case, but our description in the general case neither guarantees the preservation
of norm nor does it guarantees the closedness of the S∗-invariant vector subspace.
Interestingly, with the help of the following two examples we show that either of these
can’t be promised for our setting in general.

Example 3.5 (Failure of equality of norms). Let M = span{1 + z, z + z2} and U ∶
H2(D) �→ H2(D) be the linear operator given by

U(1) = 1, U(z) =
√

2z, U(z2) =
√

2z2 , U(zn) = zn for n ≥ 3.

Define a norm ∥.∥M on M by

∥ f ∥M ∶= ∥U f ∥2 for f ∈M
Then M equipped with norm ∥ ⋅ ∥M is a Hilbert space contractively contained in
H2(D) that is nearly S∗-invariant.

Clearly, M ∩ zH2(D) = span{z + z2}. Let f ∈M ∩ zH2(D). Then f = α(z + z2)
for some scalar α and ∣∣S∗ f ∣∣M = ∣α∣∣U(1 + z)∣∣2 = ∣α∣

√
3. On the other hand, ∣∣ f ∣∣M =

∣α∣∣∣U(z + z2)∣∣M = ∣α∣2. Therefore, ∣∣S∗( f )∣∣M ≤ ∣∣ f ∣∣M for each f ∈M ∩ zH2(D)
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which simply means that ∣∣zh∣∣M ≥ ∣∣h∣∣M whenever zh ∈M. Thus, M satisfies the
hypotheses of Theorem 3.3.

Now we can verify that

M⊖ (M ∩ zH2(D)) = span{g},

where g(z) = (z−2)(z+1)
2
√

2
and ∣∣g∣∣M = 1.

Then using Theorem 3.3, there exists a S∗-invariant vector subspace N of H2(D)
such that M = gN.

For 1 + z ∈M, we have 1 + z = g 2
√

2
z−2 . Therefore, f = 2

√
2

z−2 ∈ N. Notice that

∥z + 1∥2
M = ∥

√
2z + 1∥2

2

= 3

and

∥ f ∥2
2 = ∥ 2

√
2

z − 2
∥

2

2

= 8∥ 1
z − 2

∥
2

2

= 8
3

.

Hence, 1 + z = g f and ∥1 + z∣∥M > ∥ f ∥2 .

Example 3.6 (Failure of the closedness). Let D denote the classical Dirichlet
space consisting of analytic functions on the unit disc D with the norm ∣∣ f ∣∣2D =
∑∞i=0 ∣a i ∣2(i + 1) for f (z) = ∑∞i=0 a i z i ∈D. Recall that D is a Hilbert space
contractively contained in H2(D), and it is not closed in H2(D).

Let θ be a bounded analytic function on D with ∣∣θ∣∣∞ = 1 and θ(0) > 0. Set

M = θD

and define ∣∣θ f ∣∣M = ∣∣ f ∣∣D . Clearly, M is a vector subspace of H2(D), ∣∣ ⋅ ∣∣M a norm
on M with respect to which M becomes a Hilbert space contractively contained in
H2(D).

Let, f ∈M ∩ zH2(D). Then, f = θh for some h ∈D and f (0) = 0. Thus, h(0) = 0
because θ(0) > 0. This implies that h = zh1 for some h1 ∈ H2(D). But zh1 ∈D implies
h1 ∈D and ∣∣zh1∣∣D ≥ ∣∣h1∣∣D . Therefore, S∗( f ) = θh1 ∈M and ∣∣S∗ f ∣∣M = ∣∣h1∣∣D ≤
∣∣zh1∣∣D = ∣∣ f ∣∣M . This means M is nearly S∗-invariant and ∣∣zg∣∣M ≥ ∣∣g∣∣M whenever
zg ∈M. Hence, M satisfies the hypotheses of Theorem 3.3. Note that M⊖ (M ∩
zH2(D)) = span{θ}. Therefore, there exists an S∗-invariant vector subspace N of
H2(D) such that M = θN. But this simply means N equals D, which is not closed in
H2(D). Hence, this example shows that the S∗-invariant vector subspace we obtain
in the representation given by Theorem 3.3 may not be closed.
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4 Nearly invariant Brangesian subspaces related to multiplication
operators on reproducing kernel Hilbert spaces

In [9], Erard extended the study of nearly invariant subspaces on H2(D) to reproduc-
ing kernel Hilbert spaces.

Theorem 4.1 (Erard [9, Theorem 5.1]). Let H be an RKHS consisting of complex-
valued analytic functions on D on which multiplication with z is well-defined with
dimension of H ⊖ zH equals 1 and ∣∣h∣∣H ≤ ∣∣zh∣∣H for all h ∈H. Assume also that
there exists f ∈H with f (0) ≠ 0. Let M be a non-zero subspace of H, which is nearly
invariant under the backward shift. Let g be any unit vector of M⊖ (M ∩ zH). Then,
there exists a linear subspace N of H2(D) such that

M = gN and ∣∣h∣∣H ≥ ∣∣h
g
∣∣2 .

Besides, N is invariant under the backward shift and g(0) ≠ 0.

Our main result (Theorem 4.3) of this section generalizes Erard’s Theorem. We
describe Hilbert spaces that are contractively contained in an RKHS of analytic
functions on the unit disc which are nearly invariant under division by an inner
function. So, in our result, subspaces have been replaced with contractively contained
Hilbert spaces and multiplication with z has been replaced with an inner function.

Before proceeding further, we would like to compare Erard’s theorem with Hitt’s.
Erard’s theorem replaces H2(D) by a much general RKHS, and also, instead of
assuming Mz to be an isometry, it only assumes it to be bounded below. However,
the drawback of Erard’s theorem is that although the representation of a nearly S∗-
invariant subspace when H = H2(D) is very similar to what Hitt’s theorem gives, it
does not infer the correspondence between a nearly S∗-invariant subspace and the
corresponding S∗-invariant vector subspace to be an isometry, and in fact, it doesn’t
even guarantee the closedness of the S∗-invariant vector subspace.

Interestingly, we can deduce our Theorem 3.3 (the scalar case) as a corollary
from Erard’s Theorem without missing any detail because we have shown, with
Examples 3.5 and 3.6, that the two features of the description of a nearly S∗-invariant
subspaces that Erard’s theorem misses do not hold for our setting in general.

We first prove the following analog of Lemma 2.1 from [9] that played a pivotal role
in proving Erard’s Theorem. Indeed, we have proved this result (in disguise) within
the proof of Theorem 3.3, and we need it again for Theorem 4.3. We feel that it is a
crucial observation and is interesting in its own right; so, we are proving it here as a
separate result.

Lemma 4.2 Let T be a bounded operator on a Hilbert space H such that ∥Th∥H ≥
∥h∥H for all h in H. Let M be a Hilbert space contractively contained in H such that
h ∈Mwhenever Th ∈M and ∥Th∥M ≥ ∥h∥M. If P denotes the orthogonal projection of
M ontoM ∩ TH and Q = IM − P, then R ∶= (TT∗)−1T∗P is a well-defined contraction
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on M, and for every positive integer m, we can decompose each h ∈M as

h =
m
∑
k=0

T k QRk h + T m+1Rm+1h

and

∥h∥2
M ≥

m
∑
k=0

∥QRk h∥2
M .

Proof Let h ∈M. Then

TRh = T(TT∗)−1T∗P(h)
= T(TT∗)−1T∗Th0 (Ph = Th0for some h0 ∈H)
= Th0

= P(h)

This shows TRh ∈M, but then Rh ∈M and ∣∣TRh∣∣M ≥ ∣∣Rh∣∣M . Thus, ∣∣Rh∣∣M ≤
∣∣TRh∣∣M = ∣∣Ph∣∣M ≤ ∣∣h∣∣M. Therefore, R is a well-defined contraction on M.

Again, let h in M and decompose it as

h = Qh + Ph = Qh + TRh.(4.1)

Then

∥h∥2
M = ∥Qh∥2

M + ∥TRh∥2
M ≥ ∥Qh∥2

M + ∥Rh∥2
M .(4.2)

Now Rh ∈M. Thus,

Rh = QRh + TR2h(4.3)

and

∣∣Rh∣∣2M ≥ ∣∣QRh∣∣2M + ∣∣R2h∣∣2M .(4.4)

Then, using Inequalities (4.1)–(4.4), we have

h = Qh + TQRh + T2R2h

and

∥h∥2
M ≥ ∥Qh∥2

M + ∥QRh∥2
M + ∥R2h∥2

M

Continuing this process, we obtain that for non-negative integer m, we can write

h =
m
∑
k=0

T k QRk h + T m+1Rm+1h

and

∥h∥2
M ≥

m
∑
k=0

∥QRk h∥2
M .

This completes the proof. ∎
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Theorem 4.3 Let H be an RKHS consisting of analytic functions on D. Let ϕ be
an inner function such that ϕ(0) = 0, ϕH ⊆H, and ∣∣h∣∣ ≤ ∣∣ϕh∣∣ for every h ∈H.
Assume that, if ϕh ∈H for an analytic function h on D, then h ∈H. Let M be a
Hilbert space contractively contained in H which is nearly invariant under division by
ϕ and ∣∣ϕh∣∣M ≥ ∣∣h∣∣M whenever ϕh ∈M. Then, there exists a vector subspace N of
H2(D, �2(I)) invariant under T∗ϕ such that M is in one-to-one correspondence with N

via the linear map

G ∶ N →M given by (G f )(z) = ∑
i∈I

g i(z) f i(z) (pointwise),

where f = ( f i)i∈I and {g i ∶ i ∈ I} is an orthonormal basis of M⊖ (M ∩ ϕH). More-
over, ∥h∥M ≥ ∥ f ∥H2(D,�2(I)) if h(z) = ∑i∈I g i(z) f i(z) for f = ( f i)i∈I ∈ N.

Proof Let P denote the orthogonal projection of M onto it’s closed subspace M ∩
ϕH and Q = IM − P. Let h ∈M. Then using Lemma 4.2,

h =
m
∑
k=0

Mm
ϕ QRm h + Mm+1

ϕ Rm+1h for every m ≥ 0,(4.5)

and
∞
∑
m=0

∣∣QMRm h∣∣2M ≤ ∣∣h∣∣2M ,(4.6)

where R ∶= (Mϕ M∗ϕ)−1 Mϕ P is a contraction on M.
Since {g i ∶ i ∈ I} is an orthonormal basis of M⊖ (M ∩ ϕH), therefore for every

k ≥ 0, we have

QRk h = ∑
i∈I

cki g i

for some {cki}i∈I ∈ �2(I).
Then

h =
m
∑
k=0

∑
i∈I

cki Mk
ϕ g i + Mm+1

ϕ Rm+1h

and

∑
i∈I

∞
∑
k=0

∣cki ∣2 ≤ ∥h∥2
M .

Thus for every i ∈ I, q i(z) ∶= ∑∞k=0 cki zk is in H2(D). Further, since ϕ is an inner
function with ϕ(0) = 0, therefore the composition operator Cϕ induced by ϕ is an
isometry on H2(D). Thus, f i = Cϕ(q i) = ∑∞k=0 cki ϕk belongs to Cϕ(H2(D)) and
∣∣ f i ∣∣22 = ∑∞k=0 ∣cki ∣2 .
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Then, for any w ∈ D,

∑
i∈I

∣(g i f i)(w)∣

≤
⎛
⎝∑

i∈I
∣g i(w)∣2

⎞
⎠

1/2
⎛
⎝∑

i∈I
∣ f i(w)∣2

⎞
⎠

1/2

≤
⎛
⎝∑

i∈I
∣ < g i , kw >M ∣2

⎞
⎠

1/2
⎛
⎝∑

i∈I

⎛
⎝
∞
∑
k=0

∣cki ∣2
⎞
⎠
⎛
⎝
∞
∑
k=0

∣ϕ(w)∣2k⎞
⎠
⎞
⎠

1/2

≤ ∥Qkw∥M∥h∥M
1√

1 − ∣ϕ(w)∣2
,

where kw is the kernel function ofM at the point w . This shows that the series∑i∈I g i f i
converges at each point in D.

We shall now prove that∑i∈I g i f i is analytic onD. Suppose z0 ∈ D and choose r > 0
such that D(z0 , r) ⊂ D. Let w ∈ D(z0 , r). Since the kernel function K of M is analytic
in the first variable and coanalytic in the second variable, therefore K is bounded
on compact subsets of D2 . Thus, there exists a constant A > 0, depending on z0 and
r, such that ∥kw∥2

M = K(w , w) ≤ A. Also, sup∣w−z0 ∣≤r ∣ϕ(w)∣ ≤ B < 1, where B depends
on z0 and r. Therefore,

∑
i∈I

∣(g i f i)(w)∣ ≤ A√
1 − B

⎛
⎝∑

i∈I

∞
∑
k=0

∣cki ∣2
⎞
⎠

1/2

.

This also implies that {i ∈ I ∶ f i(z)g i(z) ≠ 0} must be countable which means we can
assume the above sum on the left must be a countable sum. Then, using the Weierstrass
M-test the series converges uniformly on D(z0 , r). Thus, the series∑i∈I g i f i converges
locally uniformly on D. Hence ∑i∈I(g i f i) is analytic on D.

Further, using Equation (4.5), h −∑i∈I g i f i is an analytic function on D having
zero of every order at 0. Hence

h(z) = ∑
i∈I

g i(z) f i(z) for every z ∈ D,(4.7)

f i ∈ Cϕ(H2(D)) for each f i ∈ I and

∑
i∈I

∣∣ f i ∣∣22 = ∑
i∈I

∞
∑
k=0

∣cki ∣2 ≤ ∣∣h∣∣2M .

Now, define

N = { f = ( f i)i∈I ∈ H2(D, �2(I)) ∶ f i ∈ Cϕ(H2(D)), ∃ h ∈M,
h(z) = ∑

i∈I
g i(z) f i(z) for z ∈ D}.

Clearly N is a vector subspace of H2(D, �2(I) and the map G( f )(z) =
∑i∈I g i(z) f i(z), z ∈ D, is a well-defined linear surjective map. To show it is
one-to-one, we shall show that every f ∈ N is uniquely determined by G f .
Let f = ( f i)i∈I ∈ N. Then, there exists h ∈M such that h = ∑i∈I g i f i .
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Let f i = ∑∞k=0 aki ϕk . Then h = ∑i∈I c0i g i + ϕ (∑i∈I g i f̃ i) , where f̃ i = ∑∞k=0 c(k+1)i ϕk .
Then, ϕ (∑i∈I g i f̃ i) ∈H which yields ∑i∈I g i f̃ i ∈H. Thus, h −∑i∈I c0i g i ∈M ∩ ϕH.
Therefore, Q(h) = ∑i∈I c0i g i . This means,

⟨ f i , 1⟩ = c0i = ⟨Qh, g i⟩

for each i . Now, Ph = ϕ (∑i∈I g i f̃ i) and P = Mϕ R. Therefore, Rh = ∑i∈I g i f̃ i . Again,
repeating the above arguments, QRh = ∑i∈I c1i g i which implies

⟨ f i , ϕ⟩ = c1i = ⟨QRh, g i⟩.

Continuing like this, we obtain

⟨ f i , ϕk⟩ = ⟨QRk h, g i⟩.

This establishes the claim.
Lastly, we shall show that N is invariant under T∗ϕ . Let f = ( f i)i∈I ∈ N. Then

by definition, for each i , f i ∈ Cϕ(H2(D)) and there exists an h ∈M such that
h(z) = ∑i∈I g i(z) f i(z) for every z ∈ D. We decompose h as

h = Qh + Ph = Q + Mϕ Rh,

since P = Mϕ R. Then

h = ∑
i∈I

g i f i = ∑
i∈I

c0i g i + Mϕ R(∑
i∈I

g i f i),

where for each i ∈ I, f i = ∑∞k=0 cki ϕk which implies

Mϕ R(h) = ∑
i∈I

g i( f i − c0i)

and therefore

R(h) = ∑
i∈I

g i T∗ϕ ( f i).

Hence, T∗ϕ ( f ) = (T∗ϕ f i)i∈I ∈ N which establishes that N is invariant under T∗ϕ . ∎

Remark 4.4 In [12], Liang and Partington used Erard’s methods from [9] to describe
subspaces of Dirichet-type spaces Dα(−1 ≤ α ≤ 1) that are nearly invariant under
division by a finite Blaschke factor. For α ≥ 0,Dα posses an equivalent norm with
respect to which Mϕ is bounded below on it with a lower bound 1. Hence, our Theorem
extends Theorem 3.4 from [12] to a vastly general situation.

5 Nearly invariant Brangesian subspaces with finite defect related
to multiplication operators on reproducing kernel Hilbert spaces

Chalendar, Gallardo–Gutiérrez, and Partington introduced and studied the notion
of nearly S∗-invariant subspaces of H2(D) with finite defect in [5]. In this Section,
we shall extend our work from Section 4 to the finite defect case. This extension is
motivated by work of Chattopadhyay and Das from [6]. They, following Erard’s ideas,
as discussed in Section 4, extended Liang and Partington’s description [12] of nearly
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S∗-invariant subspaces of Dirichlet-type spaces to the finite defect situation. First, we
introduce some definitions and terminologies that we shall need in this section.

Let H be a Hilbert space. Suppose M is a vector subspace of H which is a Hilbert
space (with maybe a different norm) and F is a closed subspace of H such that
M ∩ F = {0}. Then, the vector subspace M + F of H becomes a Hilbert space with
respect to the norm given by

∣∣h + f ∣∣2⊕ = ∣∣h∣∣2M + ∣∣ f ∣∣2H; h ∈M, f ∈ F.

Furthermore, M and F are closed orthogonal subspaces of (M +F, ∣∣ ⋅ ∣∣⊕). Hence-
forth, we shall use M⊕ F to denote (M + F, ∣∣ ⋅ ∣∣⊕).

The following result is an anlogue of Lemma 2.1 from [9] and our Lemma 4.2 for
the finite defect situation.

Lemma 5.1 Let H be a Hilbert space and T ∈ B(H) with ∣∣Th∣∣H ≥ ∣∣h∣∣H for all
h ∈H. Let M be a Hilbert space contractively contained in H for which there exists a
finite dimensional subspaceF ofH such thatM ∩ F = {0}, Th ∈M implies h ∈M⊕ F,
and ∣∣Th∣∣M ≥ ∣∣h∣∣⊕. If P and L, respectively, are the orthogonal projections of M⊕ F

onto M ∩ TH and F, and Q = IM⊕F − P, then R ∶= (T∗T)−1T∗P is a well-defined
contraction on M⊕ F. Further, for each m ≥ 0, every h ∈M can be written as

h =
m
∑
k=0

T k QRk h + T m+1Rm+1h + T
m
∑
k=1

T k−1LRk h

and

∥h∥2
M ≥

m
∑
k=0

∥QRk h∥2
M +

m
∑
k=1

∥LRk h∥2
H

Proof For g ∈M⊕ F,

TRg = T(T∗T)−1T∗P(g)
= T(T∗T)−1T∗Th0 , where Pg = Th0 for some h0 ∈H
= Th0

= Pg .

Thus TRg ∈M, which implies Rg ∈M⊕ F. Also, ∣∣Rg∣∣⊕ ≤ ∣∣TRg∣∣M = ∣∣Pg∣∣M ≤
∣∣Pg∣∣⊕ ≤ ∣∣g∣∣⊕. Therefore R is a well-defined contraction on M⊕ F.

Fix any h ∈M. Then

h = Ph + Qh = TRh + Qh(5.1)

and

∥h∥2
M = ∥TRh∥2

M + ∥Qh∥2
M ≥ ∥Rh∥2

⊕ + ∥Qh∥2
M .(5.2)

Since Rh ∈M⊕ F, therefore we can decompose it as

Rh = P(Rh) + Q(Rh) + L(Rh) = TR2h + QRh + LRh
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and
∣∣Rh∣∣2⊕ = ∣∣TR2h∣∣2M + ∣∣QRh∣∣2M + ∣∣LRh∣∣2H .

Using these in Equations (5.1) and (5.2), we obtain
h = Qh + TQRh + T2R2h + TLRh

and

∣∣h∣∣2M ≥
1
∑
k=0

∣∣QRk h∣∣2M + ∣∣R2h∣∣2⊕ + ∣∣LRh∣∣2H .

Continuing like this we can show that

h =
m
∑
k=0

T k QRk h + T m+1Rm+1h +
m
∑
k=1

T k LRk h

and

∣∣h∣∣2M ≥
m
∑
k=0

∣∣QRk h∣∣2M + ∣∣Rm+1h∣∣2⊕ +
m
∑
k=1

∣∣LRk h∣∣2H

for every m ≥ 0. This completes the proof. ∎

Definition 5.2 Let H be an RKHS on a set X, ϕ be a complex-valued function on X
such that ϕH ⊆H and Mϕ , the operator of multiplication with ϕ is bounded below
on H. Then a vector subspace M of H is said to be nearly invariant under division
by ϕ with defect p if there exists a p-dimensional subspace F (which can assumed to
have zero intersection with M) of H such that ϕ f ∈M implies f ∈M⊕ F (algebraic
direct sum). The subspace F (unique upto isomorphism) is said to be the defect space
of M.

The following is the main theorem of this section. It an extension of our Theo-
rem 4.3 for the finite defect case.

Theorem 5.3 Let H be an RKHS consisting of analytic functions on D. Let ϕ be an
inner function such that ϕ(0) = 0, ϕH ⊆H, and ∣∣h∣∣ ≤ ∣∣ϕh∣∣ for every h ∈H. Assume
that if ϕh ∈H for an analytic function h on D, then h ∈H. Let M be a Hilbert space
contractively contained in H which is nearly invariant under division by ϕ with defect
space F of dimension p such that ∥ϕh∥M ≥ ∥h∥⊕ whenever ϕh ∈M.
1. If M ⊈ ϕH, then there exists a vector subspace N of H2(D, �2(I) ⊕C

p) invariant
under T∗ϕ such that M is in one-to-one correspondence with N via the linear map
G ∶ N →M given by

(Gq)(z) = ∑
i∈I

g i(z) f i(z) + ϕ(z)
p

∑
i=1

e i(z)t i(z) (pointwise),

where q = ( f , t) ∈ N, and {g i ∶ i ∈ I} and {e i ∶ i = 1, . . . , p} are orthonormal basis
of M⊖M ∩ ϕH and F, respectively. Moreover,

∣∣h∣∣2M ≥ ∣∣( f , t)∣∣22 = ∣∣ f ∣∣22 + ∣∣t∣∣22
for h ∈ M, where h = G( f , t).

https://doi.org/10.4153/S0008439524000687 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000687


Nearly invariant Brangesian subspaces 17

2. If M ⊆ ϕH, then there exists a vector subspace N of H2(D,Cp) invariant under T∗ϕ
such that M is in one-to-one correspondence with N via the linear map G ∶ N →M

given by

G(t)(z) = ϕ(z)
p

∑
i=1

e i(z)t i(z) (pointwise),

where t ∈ N and {e i ∶ i = 1, . . . , p} is an orthonormal basis of F. Moreover,

∣∣h∣∣M ≥ ∣∣t∣∣2
for h ∈ M, where h = G(t).

Proof Let h ∈M. Then, using Lemma 5.1 for m ≥ 0,

h =
m
∑
k=0

Mm
ϕ QRm h + Mm+1

ϕ Rm+1 + Mϕ
m
∑
k=1

Mk−1
ϕ LRm h(5.3)

and

∣∣h∣∣2M ≥
∞
∑
k=0

∣∣QRk h∣∣2M +
∞
∑
k=1

∣∣LRk h∣∣H ,(5.4)

where Q and L are the projections of M⊕ F onto M⊖ (M ∩ ϕH) and F, respectively.
Recall that M⊕ F is the Hilbert space (M + F, ∣∣ ⋅ ∣∣⊕), where ∣∣a + b∣∣2⊕ = ∣∣a∣∣2M +
∣∣b∣∣2H for a ∈M and b ∈ F.

Let {g i ∶ i ∈ I} and {e i ∶ i = 1, . . . , p} be orthonormal basis of Ran(Q) and
Ran(L), respectively. Then

QRk h = ∑
i∈I

cki g i and LRk h =
p

∑
j=1

dk j e j

for {cki}i∈I ∈ �2(I) and {dk j}p
j=1 ∈ Cp . Using these representations in Equation (5.3),

we obtain

h =
m
∑
k=0

∑
i∈I

cki Mk
ϕ g i + Mm+1

ϕ Rm+1h + Mϕ
m
∑
k=1

p

∑
j=1

dk j Mk−1
ϕ e j

and

∑
i∈I

∞
∑
k=0

∣cki ∣2 +
p

∑
j=1

∞
∑
k=1

∣dk j ∣2 ≤ ∥h∥2
M .

Thus for every i ∈ I and j ∈ {1, 2, . . . , p}, f i = ∑∞k=0 cki ϕk and t j = ∑∞k=1 dk jϕk−1

are well-defined functions in Cϕ(H2(D)) and ∑i∈I ∣∣ f i ∣∣22 +∑p
j=1 ∣∣t j ∣∣22 ≤ ∣∣h∣∣2M . Then

using the arguments simiar to the ones used in the proof of Theorem 4.3, we first show
that for each w ∈ D,

∑
i∈I

∣(g i f i)(w)∣ ≤ ∥Qkw∥M∥h∥M
1√

1 − ∣ϕ(w)∣2
(5.5)
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and
p

∑
j=1

∣(e j t j)(w)∣ ≤ ∥Lkw∥H∥h∥M
1√

1 − ∣ϕ(w)∣2
,(5.6)

and then use them to establish that ∑i∈I g i f i and ϕ∑p
j=1 e j t j are both analytic on D.

Lastly, using Equation (5.3), we conclude that h −∑i∈I g i f i − ϕ∑p
j=1 e j t j is an analytic

function on D having zero of every order at 0. Hence,

h = ∑
i∈I

g i f i + ϕ
p

∑
j=1

e j t j on D.(5.7)

Note that each f i , t j ∈ Cϕ(H2(D)). Therefore, we have obtained f = ( f i)i∈I ∈
H2(D, �2(I)) and t = (t j)p

j=1 ∈ H2(D,Cp) with f i , t j ∈ Cϕ(H2(D)) such that Equa-
tion 5.7 holds and

∥ f ∥2
2 + ∥t∥2

2 = ∑
i∈I

∥ f i∥2
2 +

p

∑
j=1

∥t j∥2
2 ≤ ∥h∥2

M .(5.8)

Define

N = {( f , t) ∈ H2(D, �2(I) ⊕C
p) ∶ f = ( f i)i∈I , t = (t j)p

j=1 , f i , t j ∈ Cϕ(H2(D))

and ∃ h ∈M such that h = ∑
i∈I

g i f i + ϕ
p

∑
j=1

e j t j , and for each i ∈ I,

1 ≤ j ≤ p, k ≥ 0, ⟨ f i , ϕk⟩ = ⟨QRk h, g i⟩, ⟨t j , ϕk⟩ = ⟨LRk+1h, e j⟩} .

Clearly N is a vector subspace of H2(D, �2(I) ⊕C
p), and the map G ∶ N →M

given by

G( f , t) = ∑
i∈I

g i f i + ϕ
⎛
⎝

p

∑
j=1

e j t j
⎞
⎠

is well-defined one-one, onto, and linear.
Now we will show that N is invariant under T∗ϕ . Let ( f , t) ∈ N. Then, by definition,

there exists a h ∈M such that

h = ∑
i∈I

g i f i + ϕ
p

∑
j=1

e j t j ,

and for each k ≥ 0, ⟨QRk h, g i⟩ = ⟨ f i , ϕk⟩ and ⟨LRk+1h, e j⟩ = ⟨t j , ϕk⟩ for every i ∈
I, 1 ≤ j ≤ p. Decompose

h = Qh + Ph
= Qh + Mϕ Rh
= ∑

i∈I
c0i g i + ϕ(Rh).
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Then

ϕ(Rh) = h −∑
i∈I

c0i g i = ϕ(∑
i∈I

g i f̃ i) + ϕ
⎛
⎝

p

∑
j=1

e j t j
⎞
⎠

,

where f i − c0 j = ϕ f̃ i . Then

Rh = ∑
i∈I

g i f̃ i +
p

∑
j=1

e j t j .

Then

∑
i∈I

g i f̃ i +
p

∑
j=1

e j t j = Rh = L(Rh) + (P + Q)(Rh) =
p

∑
j=1

d0 j e j + (P + Q)(Rh),

since Rh ∈M⊕ F and L(Rh) = ∑p
j=1 d0 j e j . Therefore,

∑
i∈I

g i f̃ i + ϕ
⎛
⎝

p

∑
j=1

e j t̃ j
⎞
⎠
∈M,

where t j − d0 j = ϕt̃ j . Let f̃ = ( f̃ i)i∈I and t̃ = (t̃ j)p
j=1 Then, ( f̃ , t̃) ∈ N; hence T∗ϕ ( f , t) =

(T∗ϕ f , T∗ϕ t) = ( f̃ , t̃) ∈ N. This establishes that N is T∗ϕ invariant; hence completes the
proof for the case M ⊈ ϕH.

Lastly, note that Q = 0 whenM ⊆ ϕH. Then, the proof for the caseM ⊆ ϕH follows
simply by repeating the above arguments with Q = 0. ∎
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