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Extending previous linear stability analyses of the instabilities developing in permeable
Taylor–Couette–Poiseuille flows where axial and radial throughflows are superimposed
on the usual Taylor–Couette flow, we further examine the linear behaviour and expand
the analysis to consider the weakly nonlinear behaviour of convective-type instabilities
by means of the derivation of the fifth-order amplitude equation together with direct
numerical simulations. Special attention is paid to the influence of the radius ratio
η= rin/rout, and particularly to wide gaps (small η) and how they magnify the effects
of the radial flow. The instabilities take the form of pairs of counter-rotating toroidal
vortices superseded by helical ones as the axial flow is increased. Increasing the radial
inflow draws these vortices near the inner cylinder, where they shrink relative to the
annular gap, when this gap is wide. Strong axial and radial flows in a narrow annular
gap lead to a very large azimuthal wavenumber with steeply sloped helical vortices.
Strong radial outflow in a wide annular gap results in very large helical vortices. The
analytical and numerical saturated vortices match quite well. In addition, radial inflows
or outflows can turn the usually supercritical bifurcation from laminar to vortical flow
into a subcritical one. The radial flow above which this change occurs decreases as
the radius ratio η decreases. A practical motivation for this weakly nonlinear analysis
is found in modelling dynamic filtration devices, which rely on vortical instabilities
to reduce the processes of accumulation on their membranes.

Key words: instability, nonlinear instability, Taylor–Couette flow

1. Introduction
In the usual Taylor–Couette set-up (without radial and axial flows), the rotation of

an inner cylinder concentric with a fixed outer cylinder drives the transition from the
stable azimuthal (Couette) flow to the appearance of centrifugal instabilities in the
form of axisymmetric (Taylor) vortices (Taylor 1923). Because Taylor–Couette flow
has been an important problem in the development of stability analysis since its early
days, the amplitude, or Stuart–Landau, equation pertaining to these toroidal vortices,
inferred from a weakly nonlinear approach, has been known since Davey, DiPrima &
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Stuart (1968). The agreement of this theory with experimental results is due to the
supercritical nature of the transition to Taylor vortices: the first nonlinear term (third
order in amplitude) in the small parameter expansion stabilizes the marginal mode
of the instability by saturating its amplitude. This explains the agreement between
the thresholds obtained experimentally and by linear stability analysis. Since the first
nonlinear term saturates the amplitude of the vortices, the agreement also extends to
the velocity and pressure fields slightly above the critical conditions.

The addition of an axial annular Poiseuille flow to the Taylor–Couette set-up
modifies this first transition. First, the axial flow has been found to usually stabilize
the flow, delaying the onset of vortices, as reported in Kaye & Elgar (1958),
Chandrasekhar (1960), DiPrima (1960), Donnelly & Fultz (1960), Snyder (1962),
Schwarz, Springlett & Donnelly (1964), Chung & Astill (1977), Hasoon & Martin
(1977), Gravas & Martin (1978), Sorour & Coney (1979), Ng & Turner (1982),
Babcock, Ahlers & Cannell (1991), Recktenwald, Lücke & Müller (1993) and
Johnson & Lueptow (1997). Then, above a specific threshold of the axial flow,
depending on the ratio between the radii of the inner and outer cylinders η= rin/rout,
the linearly selected instability takes the form of helical vortex pairs, and the number
of starts, i.e. the number of threads, of the helical structure increases with the axial
flow, as reported in Donnelly & Fultz (1960), Snyder (1962), Schwarz et al. (1964),
Chung & Astill (1977), Takeuchi & Jankowski (1981), Ng & Turner (1982), Bühler
(1984, 1990), Lueptow, Docter & Min (1992), Min & Lueptow (1994a), Kolyshkin
& Vaillancourt (1997), Wereley & Lueptow (1999) and Martinand, Serre & Lueptow
(2009).

Since the Taylor–Couette–Poiseuille set-up is an open flow with a mean axial
flux, the instabilities appearing in the flow should be considered in the context
of convective/absolute instabilities as introduced in fluid mechanics by Huerre &
Monkewitz (1985). This leads to differences in the Green’s functions, i.e. the impulse
responses, of the linear stability problem that distinguish between convective and
absolute instabilities. The former grow and spread spatially, but are washed out
of the domain by the axial flow. On the other hand the spatial spreading of the
latter is sufficient to overcome the advection by the mean flow, so they eventually
propagate upstream and invade the entire domain. Differentiating between convective
and absolute instabilities enhances the analytical description of the instability, since
the absolute modes developing in this system are toroidal for all axial Reynolds
numbers and have a longer wavelength than their convective counterparts (Martinand
et al. 2009). In experiments, the presence of intentional or random noise at the
inlet of the annular domain propagates downstream once the critical rotation rate of
convective instabilities is exceeded. Increasing the rotation rate beyond the threshold
of absolute instabilities might eventually lead to a competition between convective
modes triggered by the noise at the inlet and intrinsic, spontaneous, absolute modes
rising from within the domain (see Babcock et al. 1991). Though the outcome of this
competition is complex, we will focus here only on the dynamics of the evolution of
the convective instabilities.

Another consequence of the open nature of Taylor–Couette–Poiseuille flow – axial
variations of the instabilities beyond their axial periodicity, such as variations related
to the inlet and outlet conditions – would be expected to impact their dynamics.
Therefore, the weakly nonlinear approach should ideally be expanded from amplitude
to envelope equations in order to capture slow axial variations of the instabilities seen
as wavepackets. However, as a first step, we focus here on the nonlinear evolution
of the toroidal and helical vortices. The approach for the nonlinear framework will
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be restricted to amplitude equations assuming an infinite axial extent of the flow and
homogeneity or periodicity along this direction.

The addition of a radial flow to the Taylor–Couette-Poiseuille set-up is related
to and motivated by the use of centrifugal instabilities to improve filtration in
devices utilizing the aforementioned Taylor–Couette–Poiseuille set-up, together with
a permeable inner cylinder (see Hallström & Lopez-Leiva 1978; Margaritis & Wilke
1978; Kroner & Nissinen 1988; Ohashi et al. 1988; Beaudoin & Jaffrin 1989;
Belfort et al. 1993a,b; Lueptow & Hajiloo 1995; Schwille, Mitra & Lueptow 2002;
Wereley, Akonur & Lueptow 2002, for the practical applications such as blood and
water filtration). The main problem in operating filtration devices is the buildup
of a concentration boundary layer (for solutions) or a cake layer (for suspensions)
of materials rejected by the permeable membrane. Owing to osmotic pressure or
clogging, this degrades the performance of the filtration device. By the mixing
they induce, the vortices driven by the centrifugal instabilities can alleviate these
processes of accumulation. Moreover, as the rotation rate of the inner cylinder
triggering the vortices is independent of the filtration process itself, this self-cleaning
can be obtained on demand, thus reducing the energy costs. A related application
of this rotating configuration is to mix reactive fluids, a set-up known as a vortex
flow reactor (see Syed & Fruh 2003; Aljishi et al. 2013, and references therein,
for instance), which often relies on empirical models for mixing (Giordano et al.
2000). Optimization and further developments of both applications require a thorough
understanding of the transport and mixing properties of the flows that occur.

The linear stability analysis used here provides a tool to address these practical
issues. First, this approach yields the critical conditions beyond which the vortices
will appear as functions of the geometry and operating conditions. Thus, this approach
leads to geometrical characteristics of the vortices such as their toroidal or helical
nature, their sectional aspect ratio (how circular is their cross-section?), their location
in the gap and how they fill the gap width. This approach also details the temporal
characteristics of the vortices, their phase speed and group velocity. Moreover, the
weakly nonlinear analysis provides further quantitative informations, because it leads
to the strength of the vortices as a function of the rotation rate. The complete velocity
and pressure fields upon which transport of a solution or suspension can be addressed
are thus obtained without requiring direct numerical simulations or experiments,
which are costly considering the large number of physical mechanisms and related
parameters involved in such a process. Although most practical applications so far
have a small gap (large η) and a radial inflow, the potential of wide gaps and/or
radial outflow have not been considered.

It should be emphasized here that filtration devices and related experimental set-ups
involve the presence of a radial flow only at a permeable inner cylinder, whereas the
present study focuses on the simpler situation of imposing non-zero radial throughflow
at both cylinders: Uin at the inner cylinder of radius rin, and Uout at the outer cylinder
of radius rout. Moreover, this radial flow is set to satisfy the conservation of the total
radial flux, i.e. Uinrin=Uoutrout. As a consequence, the mean, possibly zero, axial flux
is unchanging along the axial direction, substantially simplifying the stability analysis.

More specifically, this work extends existing results on the weakly nonlinear
analysis of Taylor–Couette–Poiseuille flow published by Recktenwald et al. (1993) to
situations where a radial flow is present, requiring a higher order weakly nonlinear
analysis. We also address the dynamics of these instabilities as the radius ratio η

is decreased, departing from the relatively narrow annular gap, η > 0.5, used in
previous linear stability analyses for convective modes (see Johnson & Lueptow
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FIGURE 1. Bifurcation diagram of a Taylor–Couette cell with superimposed radial flow,
in terms of the ratio of critical rotation rate to critical rotation rate without radial flow
as a function of the non-dimensional radial flow, observed from numerical simulations at
η= 0.85 (Serre et al. 2008). ‘Subcritical flow’ is used here in the sense of stable laminar
flow. Reproduced from Serre et al. (2008), with permission of AIP Publishing.

1997; Kolyshkin & Vaillancourt 1997; Martinand et al. 2009). The previous studies
have shown that the addition of either inward or outward radial flux stabilizes the
flow, except for moderate outward radial flows, which are slightly destabilizing. The
radial flow also modifies the consecutive (as the axial Reynolds number is increased)
transitions from toroidal vortices to helical vortices with increasing numbers of
starts (Martinand et al. 2009). Moreover, past numerical results pertaining to a
Taylor–Couette flow with a radial flux but without a mean axial flow exhibited a
departure from the analytical findings in terms of linear critical conditions: instabilities
were observed in Serre, Sprague & Lueptow (2008) below the expected critical value
for the first transition, as reproduced in figure 1, which shows the ratio of critical
rotation rate to critical rotation rate without radial flow, as a function of the radial
Reynolds number based on the radial flow: α = Uinrin/ν, where ν is the dynamic
viscosity of the fluid. This departure is evident for radial inflow at α = −22. This
result suggests the possibility that in the presence of radial flow the first transition in
a Taylor–Couette–Poiseuille flow could become subcritical.

The paper is organized as follows: § 2 is dedicated to the analytical approach of
the linear critical conditions and the fourth-order weakly nonlinear expansion together
with its related fifth-order amplitude equation, while § 3 briefly describes the method
used for direct numerical simulations. Section 4 provides physical context for the
problem by summarizing the dependence of the base flow on the radius ratio and
the radial and axial flows. Section 5 presents the features of the linear dynamics of
the instabilities, including some specific regimes associated with strong radial outflow.
Section 6 compares analytical and numerical results to ascertain the capacity of the
weakly nonlinear expansion to quantitatively capture the super- or subcritical nature
of the transition and the velocity fields of the instabilities. Section 7 focuses on the
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domain of validity of the weakly nonlinear analysis, in terms of physical parameters,
and concludes on the fundamental aspects and remaining open questions, together with
practical considerations with respect to the use of the present results to further model
filtration devices.

2. Linear and weakly nonlinear analyses of the convective instabilities
An annular cavity between two concentric cylinders of inner and outer radii rin

and rout is considered, with the inner cylinder rotating at angular velocity Ω and the
outer cylinder stationary. This cavity is filled with a Newtonian fluid having kinematic
viscosity ν and density ρ. Departing from the traditional Taylor–Couette set-up, an
imposed pressure gradient along the length of the annulus drives an axial flow, and
a uniform wall-normal radial velocity is prescribed at the inner and outer permeable
cylinders as Uin and Uout, respectively, such that Uinrin = Uoutrout. While it may be
relevant to include a non-zero tangential velocity at the permeable surface due to
momentum transfer from the fluid region to the fluid within the porous material in
some cases (see Beavers & Joseph 1967, for instance), zero tangential velocity is
assumed in this study. This no-slip assumption is reasonable when a permeable surface
is made of small discrete holes, such that the permeability is zero in the tangential
directions, and the percentage area of the pores on the permeable surface is small. In
this case, the fluid flow is mostly normal to the surface, and the tangential velocity
in the pores may be neglected.

Using cylindrical coordinates (r, θ, z), the radial, azimuthal and axial components of
the velocity field V = (U, V,W)t and the pressure-over-density field Q= P/ρ satisfy
the continuity and the three-dimensional incompressible Navier–Stokes equations.
Velocities are made non-dimensional by Ωrin, lengths by the gap between the
cylinders d= rout − rin, times by d2/ν and pressures over density by Ωrinν/d, leading
to a definition of the Taylor (or rotating Reynolds) number as Ta = Ωrind/ν. Apart
from the prescribed wall-normal velocity, surfaces are no-slip, imposing zero relative
tangential velocity on the cylinders. The non-dimensional master equations then read

∂V
∂t
+ Ta V · ∇V +∇Q−∇2V = 0

∇ ·V = 0

}
(2.1)

together with the boundary conditions on the non-dimensional inner and outer radii,
rin = η/(1− η) and rout = 1/(1− η) (with η= rin/rout):

U(rin/out, θ, z)=
α

Ta rin/out
V(rin, θ, z)= 1 and V(rout, θ, z)= 0

W(rin/out, θ, z)= 0,

 (2.2)

where the radial Reynolds number α is introduced. Moreover, the mean non-
dimensional axial velocity W is imposed and related to an axial Reynolds number β
by

W =
1

π(r2
out − r2

in)

∫ rout

r=rin

∫ 2π

θ=0
W(r, θ, z)r dθ dr= Ta−1β. (2.3)

When based on the dimensional quantities, the radial and axial Reynolds numbers
are then defined by α = Uinrin/ν (= Uoutrout/ν) and β = Wd/ν. To begin, the
stationary laminar flow and its linear stability analysis are introduced. Then, the
weakly nonlinear analysis is considered.
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2.1. Base state
A stationary azimuthally invariant solution of equations (2.1) together with boundary
conditions (2.2) and mean axial flow (2.3) is first sought as

X0 = (U0(r), V0(r),W0(r),Q0(r, z))t, (2.4)

where the velocity field is also invariant along the axial direction. Inserting ansatz (2.4)
into (2.1)–(2.2) recasts the latter into

Ta V0 · ∇V0 +∇Q0 −∇
2V0 = 0

∇ ·V0 = 0,

}
(2.5)

with boundary conditions

U0(rin/out, θ, z)=
α

Ta rin/out
V0(rin, θ, z)= 1 and V0(rout, θ, z)= 0

W0(rin/out, θ, z)= 0.

 (2.6)

These equations lead to previously obtained expressions for this laminar solution
(Johnson & Lueptow 1997; Kolyshkin & Vaillancourt 1997; Martinand et al.
2009) included in appendix A, in slightly different form due to the present
non-dimensionalization scheme. These laminar solutions are to be used as the base
flow in the linear stability analysis. It should be noted that the radial flow U0 is
solely dependent upon the radial flux across the outer and inner cylinders, while the
azimuthal and axial flows V0 and W0, which are driven by the rotation of the inner
cylinder and the axial pressure drop, respectively, are coupled to the radial flux.

2.2. Linear convective instabilities
Expanding the flow into the sum of the preceding base flow (2.4) and a small
perturbation X1 = (U1, V1, W1, Q1)

t, injecting it into (2.1)–(2.2) and keeping the
first-order terms in X1 leads to the following system of equations:

∂V1

∂t
+ Ta V0 · ∇V1 + Ta V1 · ∇V0 +∇Q1 −∇

2V1 = 0
∇ ·V1 = 0,

}
(2.7)

which, together with boundary conditions, can be written in a condensed form as

LX1 = 0
V1(rin/out)= 0.

}
(2.8)

Owing to the time-, z- and θ -invariances of problem (2.7), perturbations X1 are sought
as a Fourier mode in time, and in the axial and azimuthal directions:

X1 = A1x1(r) exp(iψ)+ c.c., (2.9)

where x1 = (u1(r), v1(r), w1(r), q1(r))t are the shape functions, ψ = kz + nθ − ωt
is the spatiotemporal phase, with ω complex, k real (unlike absolute instabilities)
and n an integer, and A1 is an amplitude that is arbitrary at this point of the
linear stability analysis. The imaginary part of ω is then the growth rate of the
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perturbation. Throughout the paper, upper-case V(r, θ, z; t) = (U, V, W)t and
X(r, θ, z; t) = (U, V, W, Q)t denote the velocity and velocity–pressure fields as
functions of r, θ , z and t, while lower-case v(r)= (u, v, w)t and x(r)= (u, v, w, q)t
refer to the radial shape functions of these different fields emerging after they have
been expanded as Fourier modes in z, θ and t. Inserting ansatzes (2.4), (2.9) into
(2.8) yields the eigensystem of differential equations

A1x1 −ωBx1 = 0
v1(rin/out)= 0,

}
(2.10)

together with its complex conjugate satisfied by x1. The eigenvector x1(r; Ta, η, α, β)
associated with the eigenvalue ω having the largest imaginary part is the most
unstable (or least stable) solution, which is the only one considered in the following
analysis. Operators A1 and B given in appendix B are similar to operators A
and B in Martinand et al. (2009), in slightly different form owing to the present
non-dimensionalization scheme.

The numerical solution of the stability problem is as explained in Martinand et al.
(2009). Eigensolutions (x1, ω) of (2.10) at arbitrary Ta are found using a spectral
method where the radial shape functions are expanded over Chebyshev polynomials,
N = 24 of which were found to be sufficient to ensure the convergence of the
results. The solvability conditions of the systems of differential equations obtained by
differentiating (2.10) with respect to k, n and Ta lead to the several partial derivatives
of the frequency (∂kω, ∂nω, ∂2

kω, ∂2
nω, ∂k∂nω, ∂Taω and ∂2

Taω) and of the eigenvector
(∂kx1, ∂nx1, ∂Tax1 and ∂2

Tax1) required by the linear and nonlinear analyses. The
critical conditions (kcrit, ncrit, Tacrit) of the most unstable mode (xcrit

1 , ωcrit) are then
found using a Newton–Raphson method so that Im(ω) is minimized as a function of
k real and n integer and vanishes as a function of Ta. The radial shape function is
arbitrarily normalized by

〈Bx1|x?1〉 = 1, (2.11)

where x?1 is the adjoint solution of eigenproblem (2.10) and 〈·|·〉 a semi-inner
product purpose-built for the numerical discretization used. For complete spatial
fields X(r, θ, z), expanded as Fourier modes in z and θ , this semi-inner product is
generalized to

〈X|X′?〉 = δk k′δn n′〈x|x′ ?〉, (2.12)

where δ is the Kronecker delta, while k and k′, and n and n′ are the axial and
azimuthal wavenumbers of X and X′, respectively.

2.3. Weakly nonlinear analysis
Building on the linear stability analysis, the weakly nonlinear behaviour of the
convective instabilities is now considered. First, this analysis leads to the amplitude
modulating the linear instability (2.9), as the solution of an amplitude equation. In
addition, this analysis also leads to a hierarchy of corrections to the linear instability.
The complex amplitude equation and the corrections are obtained in a classical fashion,
detailed in appendix C, the results of which are summarized below. Assuming the
existence of a critical Taylor number Tacrit above which the flow becomes linearly
unstable leads to the expansion of Ta about this critical condition as

1Ta= Ta− Tacrit
= ε2Ta2, (2.13)
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assuming ε is small, and the physical fields X= (V,Q)t = (U, V,W,Q)t as

X=X0 + εX1 + ε
2X2 + ε

3X3 + · · · . (2.14)

A hierarchy of slow temporal variables related to the physical ones, ti = ε
it, are

introduced, replacing the time derivative ∂/∂t by the expansion

∂

∂t
+ ε

∂

∂t1
+ ε2 ∂

∂t2
+ ε3 ∂

∂t3
+ · · · . (2.15)

Expansions (2.13)–(2.15) are then inserted in (2.1)–(2.2), leading to a hierarchy
of systems of partial differential equations, the resolutions of which are detailed
in appendix C. System (2.5)–(2.6) with Ta = Tacrit is recovered at the zeroth
order (ε0). The zeroth-order term in expansion (2.14) thus identifies with the
base flow at critical conditions Xcrit

0 . The stability problem (2.8) with Ta = Tacrit

is recovered at the first order (ε1), satisfied by the critical mode xcrit
1 exp(iψ crit),

with ψ crit
= kcritz + ncritθ − ωcritt, up to an arbitrary slowly varying small amplitude

A= εA1(t1, t2, t3, . . .):
εX1 = Axcrit

1 exp(iψ crit)+ c.c. (2.16)

A first level of approximation of the perturbation X is obtained by truncating
expansion (2.14) at the second order (ε2). In addition to (2.16), it leads to a
second-order correction to the instability:

ε2X2 =1Tax2,0,Ta2 + AAx2,0,A1A1
+ [A2x2,2,A2

1
exp(2iψ crit)+ c.c.], (2.17)

where the radial shape functions x2,0,Ta2 , x2,0,A1A1
and x2,2,A2

1
are obtained from the

solution of system (C 16). Moreover, the solvability conditions of the second- and
third-order problems yield a third-order amplitude equation satisfied by A of the form
∂tA= ε2∂t1A1 + ε

3∂t2A1, and by combining equations (C 14), (C 29):

∂A
∂t
=−i

∂ω

∂Ta

∣∣∣∣crit

1Ta A+µA2A, (2.18)

with the coefficient µ= i〈s3,1,A2
1A1
|x?1〉 computed from expression (C 23).

In the following, extension of the expansion (2.14) up to the fourth order and the
related amplitude equation up to the fifth order in ε is necessary to obtain an accurate
approximation of the instability and to address subcritical transitions. In addition to
(2.16), (2.17), it leads to the third- and fourth-order corrections in (2.14):

ε3X3 =1TaAx3,1,Ta2 A1 exp(iψ crit)+ A2Ax3,1,A2
1A1

exp(iψ crit)+ A3x3,3,A3
1

exp(3iψ crit)+ c.c.,
(2.19)

where the radial shape functions x3,1,Ta2 A1 , x3,1,A2
1A1

and x3,3,A3
1

are obtained from the
solution of system (C 33), and

ε4X4 = 1Ta2x4,0,Ta2
2
+1TaAAx4,0,Ta2 A1A1

+1Ta[A2x4,2,Ta2 A2
1

exp(2iψ crit)+ c.c.]

+A2A
2x4,0,A2

1A1
2 + [A3Ax4,2,A3

1A1
exp(2iψ crit)+ c.c.]

+ [A4x4,4,A4
1

exp(4iψ crit)+ c.c.], (2.20)

where the radial shape functions x4,0,Ta2
2
, x4,0,Ta2 A1A1

, x4,2,Ta2 A2
1
, x4,0,A2

1A1
2 , x4,2,A3

1A1
and

x4,4,A4
1

are obtained from the solution of system (C 54). The addition of the solvability
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conditions of the fourth- and fifth-order systems yields a fifth-order amplitude equation
satisfied by A of the form ∂tA= ε2∂t1A1+ ε

3∂t2A1+ ε
4∂t3A1+ ε

5∂t4A1, and by combining
(C 14), (C 29), (C 52) and (C 66),

∂A
∂t
=−i

(
∂ω

∂Ta

∣∣∣∣crit

1Ta+
1
2
∂2ω

∂Ta2

∣∣∣∣crit

1Ta2

)
A+ (µ+ ν1Ta)A2A+ χA3A

2
, (2.21)

with the coefficients µ = i〈s3,1,A2
1A1
|x?1〉, ν = i〈s5,1,Ta2 A2

1A1
|x?1〉 and χ = i〈s5,1,A3

1A1
2 |x?1〉

computed from expressions (C 23), (C 60) and (C 62), respectively. To limit the amount
of calculation, expansion (2.14) has not been continued to higher order, though using
the fifth-order amplitude equation together with the fourth-order truncation of (2.14)
is somewhat arbitrary.

The discussion on the weakly nonlinear analysis in § 6 below is based on replacing
the amplitude A by

A= |A| exp(σnonlint− iδωnonlint), (2.22)

where |A| is the modulus of the amplitude, δωnonlin is a correction to the real
frequency at marginal conditions ωcrit, and σnonlin is a temporal nonlinear growth rate.
Inserting ansatz (2.22) in the third- or fifth-order amplitude equations ((2.18) or (2.21),
respectively) yields the expressions for δωnonlin and σnonlin, combining the effect of the
departure from the critical conditions, 1Ta = Ta − Tacrit, with the nonlinearities due
to the finite amplitude |A| of the instability. More specifically, from the third-order
amplitude equation (2.18) one obtains the nonlinear growth rate

σnonlin,3 = Im

(
∂ω

∂Ta

∣∣∣∣crit
)
1Ta+Re(µ)|A|2, (2.23)

a linear form of (|A|2, 1Ta). From the fifth-order amplitude equation (2.21), one
obtains

σnonlin,5 = Im

(
∂ω

∂Ta

∣∣∣∣crit

1Ta+
1
2
∂2ω

∂Ta2

∣∣∣∣crit

1Ta2

)
+Re(µ+ ν1Ta)|A|2 +Re(χ)|A|4, (2.24)

a quadratic form of (|A|2, 1Ta). Finding the modulus of the amplitude |A|(1Ta)
cancelling the growth rates (2.23) or (2.24) yields the saturation level of the
instabilities and their domain of existence in terms of 1Ta.

3. Direct numerical simulations
Direct numerical simulations of (2.1), (2.2) are performed using a parallel

multidomain pseudospectral method based on Chebyshev polynomials in radial and
axial directions and Fourier modes in the azimuthal direction. Time integration is
accomplished with a second-order backward implicit Euler scheme for the linear
terms and a second-order explicit Adams–Bashforth scheme for the nonlinear terms.
An improved projection algorithm is employed for velocity–pressure coupling (see
Raspo et al. 2002, for details). The continuity between the subdomains of the
velocity and pressure fields is enforced using an influence matrix technique described
in Fontaine, Poncet & Serre (2014). Previous validation in Czarny et al. (2002, 2003)
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and Serre et al. (2008) has shown the mono-domain version of the code to be in close
agreement with theory (Recktenwald et al. 1993; Min & Lueptow 1994b; Johnson &
Lueptow 1997; Martinand et al. 2009) and measurements (Sobolik et al. 2000). The
multidomain version of the code has been verified with respect to a manufactured
solution (Fontaine et al. 2014).

The present numerical simulations are performed for large aspect ratios up to L/d=
100, where L is the axial length of the domain. The calculations use up to 10 axial
subdomains in order to address configurations with large aspect ratio. The meridional
mesh grid is defined by the Gauss–Lobatto collocation points, with nr = 21–31 points
in the radial direction and nz= 21–101 points in each subdomain in the axial direction.
For three-dimensional non-axisymmetric simulations, nθ = 12–48 equally spaced mesh
points are used in the azimuthal direction. Though not shown here, these resolutions
were checked to ensure numerical convergence of the solutions.

Boundary conditions (2.2) are used at the inner and outer cylinders. Without axial
flow (β = 0), free-slip boundary conditions together with impermeability are used at
the axial ends of the annulus. These boundary conditions are complicated by the axial
flow entering and exiting the flow domain (β 6= 0). The velocity profile expressed in
§ 2.1, encompassing the azimuthal, axial and radial laminar flows, is then imposed at
the inlet. A buffer region of length 0.1L, extending upstream from the exit of the
domain, is used to exponentially damp the perturbations and recover the analytic base
flow at the outlet.

4. Laminar base flow
While the effect of the axial and azimuthal driving of the fluid on the base flow

is straightforward, because β and Ta only appear through a multiplicative constant
in the axial velocity in expressions (A 1)–(A 4), the interplay between the radial flow
(α) and the radius ratio (η) is less clear because α appears in exponents of r in the
radial dependence of the azimuthal and axial velocity components. Figure 2 depicts
the combined effects of η and α on the base flow. Each column includes three radius
ratios η = 0.85, 0.55 and 0.25, from top to bottom. The left column shows radial
inflow (α < 0); the middle column shows no radial flow (α = 0); the right column
shows radial outflow (α > 0). Note that the horizontal vectors are a combination of
the radial and azimuthal flows, depicted for Ta= 30, which is significantly below the
typical critical thresholds for unstable flow that will be obtained in the next section.
The azimuthal flow is therefore weaker compared to the radial flow than what it would
be close to critical conditions. Figure 2 only addresses variations in η and α. As is
evident from the expression for W0 in (A 1)–(A 4), increasing (decreasing) the axial
Reynolds number β will only increase (decrease) the magnitude of the axial velocity
profile without modifying its radial shape.

Some points about the base flow are evident from figure 2. First, since the radial
Reynolds number α, based on the conserved radial flux, is a constant throughout
the entire domain, the radial velocities at the outer and inner cylinders are linked
by Uout = ηUin. At fixed α (each column in figure 2), the radial flow becomes
dramatically large as η decreases because the radial flux must be maintained at
the small circumference of the inner cylinder (figure 2g,i). The radial flow clearly
shifts, in the direction of this radial flow, the radial locations with the smallest radial
gradient of azimuthal momentum and the maximum in the axial velocity profile, and
this shift is amplified by decreasing η.

Expressions (A 1) also help to explain figure 2 with respect to the radial variation
of the azimuthal velocity V0(r). As η→ 1, both rin and rout tend to infinity. Thus,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

35
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.351


448 D. Martinand, E. Serre and R. M. Lueptow

(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

FIGURE 2. (Colour online) Combined effects of η and α on the non-dimensional base
flows for β = 20 and Ta = 30 with (a) η = 0.85 and α = −10, (b) η = 0.85 and α = 0,
(c) η= 0.85 and α= 10, (d) η= 0.55 and α=−10, (e) η= 0.55 and α= 0, ( f ) η= 0.55
and α = 10, (g) η= 0.25 and α =−10, (h) η= 0.25 and α = 0, (i) η= 0.25 and α = 10.
Vertical vectors (blue online) depict W0; horizontal vectors (red online) depict (U0, V0).

in the expression for V0(r) of (A 1), the last term proportional rα+1 dominates if
α > −2; otherwise the first term proportional to 1/r dominates. Consequently, the
azimuthal velocity profile V0(r) evolves quasilinearly between 1 and 0 at rin and rout,
respectively, for the case of a narrow gap in figure 2(a–c). On the other hand, as
η→ 0, rin→ 0. In the expression for V0 of (A 1), the last term proportional rα+1 then
dominates if α <−2. The combination of both a small η and a negative α leads to an
azimuthal velocity profile V0(r) exhibiting a very strong curvature, i.e. a large |∂2

r V0|,
which is particularly evident in figure 2(g), where V0(r) scales like r−9 as r→ rin.
Moreover, this azimuthal flow is always unstable by Rayleigh’s circulation criterion
in the inviscid limit, i.e. rV0(r) is always a decreasing function of r. Consequently,
pursuing a linear stability analysis of this base flow is legitimate.

5. Linear convective instabilities

The linear stability analysis yields the linear critical conditions (Tacrit, kcrit, ncrit), the
eigenvector xcrit

1 , and the related velocity and pressure fields of the linear marginal
mode, up to an arbitrary multiplicative constant. To further quantitatively describe
the vortices, the azimuthal and axial wavenumbers ncrit and kcrit are combined
in the form of the effective wavelength of the vortices at critical conditions,
λcrit
= 2π(kcrit 2

+ ncrit 2/r2
centre)

−1/2, where rcentre is the radius (rin and rout excepted)
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where the axial velocity wcrit
1 (r) vanishes, which corresponds to the radius of the

centre of the vortices. This effective wavelength reflects the size of a vortex pair
in the sense that it quantifies its spatial extent along the axial direction in the case
of toroidal vortices or along the direction perpendicular to its thread(s) in the case
of helical vortices. The size of the vortices is also characterized by their radial
extent, essentially the degree to which they fill the gap width, which is accessed
from the radial shape function of the instability, i.e. the eigenvectors xcrit

1 (r). Positive
and negative ncrit correspond to different structures of helical vortices. To further
characterize these helical vortices, we adopt the vocabulary used to describe the
thread of a screw, relating a pair of counter-rotating vortices to a crest and trough
of a screw. First, a thread is characterized by its handedness, which is here defined
with the convention that the axial base flow is upward and the azimuthal base flow
anticlockwise when seen from above. The streamlines of the base flow (A 1)–(A 4)
and flows in figure 2 are therefore right-handed. For ncrit > 0, the helical vortices
are left-handed, so that the thread crosses the streamlines of the base flow, and for
ncrit < 0, the helical vortices are right-handed. A thread is also characterized by the
number of starts, in this case the number of independent crests looping around the
axis, which corresponds here to |ncrit

|.
The spatial dependence of the radial velocity field of the critical instability

ucrit
1 exp(ikcritz + incritθ) (i.e. the radial velocity without the radial base flow U0)

is illustrated in figure 3 for the same values for η, α and β shown in figure 2. Those
modes are analytically obtained at the critical Taylor numbers Tacrit, indicated in
figure 3, and they should be observed for Taylor numbers just above these critical
values. The two different colours for isosurfaces of radial velocity correspond directly
to inflow and outflow regions between vortices if the radial base flow is ignored.
The axial base flow is upward and, seen from above, the inner cylinder is rotating
anticlockwise. For radial outflow (right column in figure 3), the instability is helical
under these conditions, with ncrit

= 1 in all cases. The vortices fill the entire gap width.
When there is no radial flow (middle column in figure 3), the instability is helical
only in the case of the narrowest gap (figure 3b), while the vortices in the wider
gaps (figure 3e,h) are toroidal. The helical and toroidal nature of the vortices does
not change in the presence of the radial inflow (left column in figure 3), but the size
of the vortices changes substantially for the cases of a wide gap, most evidently in
figure 3(g), but also to some extent in figure 3(d). While in most situations the radial
extent of the vortices, whether toroidal or helical, coincides with the radial width of
the annular gap, the vortices in these two cases are smaller in both the radial and
axial directions, and centred near the inner cylinder when a radial inflow is combined
with a wide gap. This effect is all the more important because, at fixed α, the radial
velocity of the base flow at the inner cylinder increases with the width of the gap,
as shown in figure 2. This crowding of the vortex stack may be accounted for by
two mechanisms, though these mechanisms are only speculative. The first mechanism
is based on the suction at the inner cylinder aspiring the fluid out of the annulus,
thereby advecting the vortices towards the inner cylinder and reducing their size. The
other mechanism results from the radial gradient of the azimuthal shear of the base
flow being strongly localized near the inner cylinder, as shown in figure 2(d,g). The
instability could then be strongly sustained in this inner region while the outer region
remains stable due to dominant viscous effects. This crowding of the vortex stack is
not observed in the presence of a radial outflow as in figure 3(i). Figure 3 also shows
that the critical conditions vary greatly with η and α. For example, Tacrit

= 79.4 for
η = 0.55 and α = 0, while Tacrit

= 726.5 for η = 0.25 and α = −10. This suggests
that the linear stability analysis is also an appropriate approach for performing a
parametric study of these dramatic variations.
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

FIGURE 3. (Colour online) Linear modes of instabilities for β = 20 and (a) η= 0.85 and
α = −10, (b) η = 0.85 and α = 0, (c) η = 0.85 and α = 10, (d) η = 0.55 and α = −10,
(e) η= 0.55 and α= 0, ( f ) η= 0.55 and α= 10, (g) η= 0.25 and α=−10, (h) η= 0.25
and α = 0, (i) η = 0.25 and α = 10. Isosurfaces of the radial velocity of the instability
U1 are shown at 0.2 (dark grey, red online) and −0.2 (light grey, green online) of the
maximum value. For all helical vortices, ncrit

= 1.

5.1. Parametric study
Results depicted in figure 4 expand upon previously published linear stability results,
which were limited to η = 0.85, −20 6 α 6 20 and 0 6 β 6 50 in Martinand et al.
(2009). In addition to extending the ranges of α and β, the main point is here to
consider the influence of the radius ratio η on the convective instabilities and to
stress how, along with the radial flow, it strongly modifies these instabilities. Figure 4
shows the results of the linear stability analysis over the range −30 6 α 6 30 and
06 β 6 100 for η= 0.85 (a,b), 0.55 (c,d) and 0.25 (e, f ). Figure 4(a,c,e) displays the
critical Taylor number Tacrit for the instability of the laminar base flow. The critical
azimuthal wavenumber ncrit is indicated by the colour scale. The radial and axial
Reynolds numbers α and β strongly impact the critical conditions inferred from the
linear stability analysis, depending on the radius ratio η. Previous results at η= 0.85
(Martinand et al. 2009), recovered and extended in figure 4(a), indicate that as the
axial flow increases, the appearance of the centrifugal instabilities is postponed and the
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FIGURE 4. (Colour online) Linear stability results for the most unstable convective mode
as a function of the radial and axial Reynolds numbers α and β, at radius ratio η =
0.85 (a,b), η = 0.55 (c,d) and η = 0.25 (e, f ). The colour scale corresponds to the
critical azimuthal wavenumber ncrit. (a,c,e) Critical Taylor number Tacrit. (b,d, f ) Effective
wavelength of the vortices λcrit

= 2π(kcrit 2
+ ncrit 2/r2

centre)
−1/2. The white circles correspond

to the cases shown in figure 3. The black squares in (a) and (b) correspond to the cases
shown in the insets below those panels. The white dotted lines show the intersections
between this parameter range and the ones in figure 5 (β = 10). Note the range of α is
limited to [−15, 30] in plots (e, f ) because the very large Tacrit obtained for large inflows
would dwarf the rest of the plot.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

35
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.351


452 D. Martinand, E. Serre and R. M. Lueptow

toroidal vortices (ncrit
= 0) are superseded by helical vortices (ncrit

6= 0). Moreover, the
azimuthal wavenumber ncrit, i.e. the number of starts of the helical vortices, increases
with the axial flow. These helical vortices are always left-handed, as indicated by
the positive values for ncrit, consistent with previous results (see Snyder 1965; Chung
& Astill 1977; Ng & Turner 1982; Lueptow et al. 1992). Figure 4 confirms these
findings for small gaps but demonstrates that the stabilizing effect of the axial flow is
not as strong as η decreases. Figure 4(c,e) actually shows a very limited influence of
β on Tacrit. Moreover, figure 4(a,c,e) shows that in the presence of a radial outflow,
an increasing axial flow eventually becomes destabilizing.

Figure 4(b,d, f ) depicts the evolution of the effective wavelength of the vortices at
critical conditions λcrit. As would be expected for standard Taylor–Couette flow, in the
absence of radial and axial flows, the axial wavenumber kcrit of the toroidal vortices
is close to π, so λcrit is close to 2, corresponding to the axial extent of a vortex
coinciding with the width of the annular gap, i.e. a stack of nearly circular counter-
rotating vortices. For narrow gaps, as shown in figure 4(b), the effective wavelength
of the vortices remains in a similar range, decreasing towards 1.5, as the axial flow
increases. The increase of ncrit, up to ncrit

= 21 in figure 4(b), is offset by a decrease
of kcrit. This last point reveals that it is mostly the inclination of the vortices with
respect the axial direction that changes as ncrit increases, as shown in the two insets
of figure 4. Besides the inclination of the helical vortices, these insets and figure 4(b)
show that for a small gap combined with a radial outflow, the azimuthal wavenumber
abruptly increases beyond β≈60. For example, at α=30, ncrit jumps from 2 at β=55
in the left inset to 16 at β= 65 in the right inset. These high-ncrit modes do not occur
for larger gaps within the range of radial Reynolds numbers that was considered in
figure 4(c–f ).

The sensitivity of the azimuthal wavenumber ncrit to the axial flow also strongly
depends on the radius ratio: as η decreases, so does ncrit. Noting the vortices are
helical at high axial Reynolds number β, a straightforward explanation would be that
there is a maximum number of vortices with a cross-sectional aspect ratio close to
one that could pack azimuthally within the annular gap, i.e. a maximum azimuthal
wavenumber nmax(η). The limiting case corresponds to vortices aligned with the axial
direction, based purely on a geometrical argument, without questioning the physical
relevance of vortices aligned in the axial direction. This geometrical criterion leads
to nmax = π(1 + η)/2(1 − η). For η = 0.85, 0.55 and 0.25, nmax(η) ≈ 20, 6 and 3,
respectively, consistent with the situation as η decreases in figure 4.

Focusing now on the effect of the radial flow, a radial in- or outflow has also
been found to be stabilizing in narrow gaps, except for moderate outflows, which are
slightly destabilizing (Min & Lueptow 1994b; Johnson & Lueptow 1997; Serre et al.
2008; Martinand et al. 2009), as is evident in figure 1. Moreover, a radial inflow is
generally more stabilizing than the equivalent outflow. It is clear from figure 4(c,e)
that the impact of a radial flow on the stability is increasingly important as η

decreases, with a spectacular stabilization associated with a strong radial inflow. For
example, without axial flow (β = 0), Tacrit

= 1137 at α=−30 for η= 0.55, compared
to Tacrit

= 69.5 without radial flow; similarly, Tacrit
= 4109 at α = −30 for η = 0.25

(not shown in figure 4e), compared to Tacrit
= 78.8 without radial flow. Moreover, a

radial inflow tends to very substantially increase kcrit and decrease λcrit accordingly,
this effect being further enhanced as η decreases, as shown in figure 4(d, f ). For
example, with no axial flow (β = 0), λcrit

= 0.46 at α =−30 for η= 0.55, compared
to λcrit

= 1.99 without radial flow; λcrit
= 0.12 at α=−30 for η= 0.25 (not shown in

figure 4h), compared to λcrit
= 1.94 without radial flow. A similar trend is observed
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to a lesser extent in the presence of a radial outflow for η= 0.55 but not at η= 0.25,
whose specific behaviour will be addressed later in § 5.2.

Though not shown here, the phase speed vcrit
φ = ωcrit/kcrit and the axial group

velocity vcrit
g = ∂kω

crit are comparable, when re-expressed dimensionally, to the mean
axial velocity W, as is already known to occur with no radial flow (Lueptow et al.
1992; Recktenwald et al. 1993; Wereley & Lueptow 1999).

5.2. Wide gaps and large helical vortices
It is clear from results in figure 4 that the interplay between the radial flow and the
width of the gap is key to the nature of the instability. Cases with wide gaps (small
η) are seldom addressed in the literature, the main reason being the difficulty in
building an experimental rig or performing a numerical simulation with both a large
gap and an aspect ratio large enough to avoid end wall effects. Moreover, previous
results (Martinand, Serre & Lueptow 2014) tend to show that the transition scenario
with wide gaps is not as clearly defined as with narrow gaps, even for situations with
no radial or axial flow. Thus, it seems appropriate to use extra care when varying
the radius ratio in combination with a radial and/or axial flow. With this limitation
in mind, figure 5 further details some of the features observed when a wide gap
(small η) is combined with a radial flow. First, a radial inflow (α < 0) strongly
stabilizes the flow, leading to higher critical Taylor number Tacrit, and reduces the
effective wavelength λcrit, related to the vortices shrinking and drawing near to the
inner cylinder (as shown in figure 3(g) for η = 0.25, α = −10 and β = 20). This
effect persists and is dramatically amplified as η is further decreased.

A different behaviour occurs in the presence of a radial outflow (α > 0) in a wide
gap. For a fixed α> 0, an initial stabilization of the flow and vortex shrinking are first
observed as η decreases, accounted for by a mechanism similar to the one occurring
for a radial inflow. But as the gap further widens (for η6 0.35 at α= 30 in figure 5),
Tacrit then decreases with η and λcrit surges to nearly 4, leading to ‘large helical
vortices’, as shown in figure 5(d,e). They are ‘large’ in the sense that their axial and
azimuthal extents are much larger than their radial extent, departing from the usual
‘round’ cross-section for vortices (figure 5c). The signature of these large helical
vortices is found in figure 4(e, f ), in the form of a protruding plateau for α > 0 and
β < 30, as well as near the right corners of figure 5(a,b). Their critical Taylor number
Tacrit is mostly independent of the radial and axial flows. These large helical vortices
can be right-handed (ncrit < 0, figure 5e) or left-handed (ncrit > 0, figure 5d), and can
occur even without axial flow (β = 0 in figure 4e, f ). The azimuthal wavenumber of
these helical modes is only weakly affected by the limited axial flow. As the radial
flow is further increased, ncrit

= 2 modes are selected, with a slightly lowered Tacrit

and an effective wavelength λcrit halved to become close to 2, denoting that each
large helical vortex in figure 5(d) actually splits into two smaller vortices with a
similar inclination with respect to the axial direction. Though not shown here, the
phase speed and group velocity are almost independent of the axial flow. Moreover,
the frequency Re(ωcrit) is always positive, so the left-handed helix in figure 5(d)
propagates counterclockwise while the right-handed helix in figure 5(e) propagates
clockwise. Though the mechanism driving these large helical vortices remains unclear
at this point, all these characteristics strongly suggest that their dynamics differs from
the helical vortices observed as the axial flow is increased. These modes of instability,
observed when a wide gap is combined with a strong radial outflow, have not been
previously reported to the best of our knowledge.
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FIGURE 5. (Colour online) Linear stability analysis for the most unstable convective mode
as a function of the radial Reynolds number α and radius ratio η, at axial Reynolds
number β = 10. (a) and (b) are as in figure 4. The white diamonds correspond to the
three cases shown in plots (c), (d) and (e). The white dashed lines show the intersections
between this parameter range and the ones in figure 4.

6. Weakly nonlinear analysis: saturated instabilities and subcritical transitions

We now address analytically and numerically the nonlinear behaviour of these
instabilities. Second- and fourth-order analytical approximations of the instabilities
are available by expansion (2.14) truncated to the second order (terms (2.16) and
(2.17)) associated with amplitude equation (2.18), or to the fourth order (terms (2.16),
(2.17), (2.19) and (2.20)) associated with amplitude equation (2.21). The respective
degrees of accuracy of those approximations to reproduce the velocity field beyond
critical conditions are assessed by comparison with corresponding direct numerical
simulations. To do so, it should nonetheless be noted that a subcritical transition
from the base flow to Taylor vortex flow is evident in figure 1 near α ≈ −20 with
no axial flow. The super- or subcritical nature of the transition is further examined
in the context of an axial flow in addition to the radial flow, and its dependence on
the radius ratio addressed. The fifth-order amplitude equation (2.21) is then used to
obtain analytically new critical conditions Tacrit

nonlin in the case of subcritical transitions
and hysteresis. The analytical conditions, linear and nonlinear, are also compared
with numerical results.

6.1. Super- and subcritical transitions
The systematic calculation of the coefficients of the amplitude equation (2.21) as
functions of (η, α, β) reveals that the sign of the real part of µ, the coefficient of
the second-order |A|2 term in (2.24), is actually prone to change. Its sign determines
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the stabilizing (Re(µ) < 0) or destabilizing (Re(µ) > 0) nature of the third-order |A|3
term in the amplitude equation (2.21). It is therefore expected that, associated with a
subcritical transition, the nonlinear behaviour of the instabilities could exhibit more
complex features than a straightforward saturation, such as hysteresis in the critical
Taylor number above which vortices are observed, as already observed numerically
in figure 1.

Figure 6 shows results for the weakly nonlinear analysis in which the colour scale
corresponds to the sign of Re(µ), which is negative (supercritical) for regions with a
lighter shade of grey (yellow online) and positive (subcritical) for regions with darker
shades of grey (orange and red online). In these last cases, moreover, the subcritical
values of the Taylor number Tacrit

nonlin above which a finite amplitude can cancel the
growth rate (2.24) have been computed and depicted as 1Tacrit

nonlin= Tacrit
nonlin− Tacrit < 0.

This quantifies the threshold for the subcritical transition occurring for such conditions
and the hysteresis of this transition. Figure 6(a) shows those results for η= 0.75, as
functions of α and β, and figure 6(b) shows those results for β = 10, as functions
of α and η. As a guideline related to the linear stability analysis, the solid curves
denoting the changes in the critical azimuthal wavenumber are also shown. Figure 6
shows how the radial inflow or outflow can change the nature of the transition from
supercritical to subcritical. This is most evident in figure 6(a), where a subcritical
transition occurs for large radial inflow, consistent with previous numerical simulations
in figure 1 (note that η = 0.85 in figure 1). The change to a subcritical transition
occurs for sufficiently large radial flows, and a radial inflow is more efficient in
inducing this subcritical transition than a radial outflow. It is also evident that the
hysteresis, 1Tacrit

nonlin = Tacrit
nonlin − Tacrit, becomes larger as the magnitude of the radial

flow increases past where the transition becomes subcritical. To a moderate extent,
increasing the axial flow β tends to postpone the subcritical transition for narrow
gaps (figure 6a). Decreasing the radius ratio η substantially reduces the radial in-
or outflow required to turn the first transition into a subcritical one, as shown in
figure 6(b), because the supercritical (yellow) band centred on α = 0 shrinks as η
decreases. Figure 6(b), however, shows that the transition returns to supercritical for
large radial outflows combined with a wide gap, a configuration where the large
helical vortices described in § 5.2 prevail. This case will be further addressed in § 7.1
below.

The effect of α and β on the nature of the transition is more difficult to assess for
larger gaps due to difficulties encountered in the computations of the weakly nonlinear
analysis. Regions depicted by dark grey (red online) surfaces denote parameter ranges
for which Re(µ) > 0 but 1Tacrit

nonlin could not be computed. This is a result of a
quadratic form for the nonlinear growth rate σnonlin,5(|A|2, 1Ta) (2.24) obtained from
the fifth-order weakly nonlinear analysis, which does not take the shape of the
required hyperbolic paraboloid (i.e. saddle) and makes finding a root with finite |A|2
and minimum 1Ta impossible. In those regions, qualitatively, a subcritical transition
occurs, but the fifth-order amplitude equation (2.21) fails to quantitatively predict the
hysteresis of the transition.

Figure 7 compares analytical and numerical results. The possible difference in
the transitional Taylor number, shown in the numerical data, when the transition is
approached by increasing or decreasing Ta, demonstrates the existence of hysteresis
in the transition, associated with the radial flow. More specifically, when the transition
is approached by increasing Ta, the numerical and linear analytical results match very
well, as shown in figure 7(a). When the transition is approached by decreasing Ta,
the numerical and nonlinear analytical results match well for α in the supercritical
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FIGURE 6. (Colour online) Nonlinear stability analysis as a function of the radial and
axial Reynolds numbers α and β for radius ratio η = 0.75 (a), as well as α and η
for β = 10 (b). Conditions for supercritical transitions are depicted with a superimposed
lighter shade of grey (yellow online), while conditions for subcritical transitions are
depicted with superimposed darker shades of grey (orange and red online). In the
case of subcritical transitions, the associated hysteresis is shown in terms of critical
Taylor numbers 1Tacrit

nonlin = Tacrit
nonlin − Tacrit. Dark regions (red online) denote values of

parameters where the transition is subcritical but 1Tacrit
nonlin could not be computed from

the weakly nonlinear analysis. Solid black curves correspond changes in the azimuthal
wavenumber ncrit.
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FIGURE 7. (Colour online) Comparisons between numerical (black symbols) and
analytical (solid curves, blue online) critical Taylor numbers Tacrit, approached by
increasing Ta in (a), and hysteresis 1Tacrit

nonlin = Tacrit
nonlin − Tacrit where Tacrit

nonlin is approached
by decreasing Ta in (b), as functions of the radial Reynolds number α, for axial Reynolds
number β = 0 and radius ratio η= 0.75.

region (α near 0), as shown in figure 7(b). In the subcritical region (large magnitudes
of α), the expected hysteresis is clearly observed in the numerical simulations. The
quantitative agreement on 1Tacrit

nonlin, however, deteriorates with the magnitude of α:
for subcritical conditions, the numerical 1Tacrit

nonlin is much more negative than the
analytic 1Tacrit

nonlin.
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6.2. Saturated instabilities
The weakly nonlinear analysis provides ‘analytical’ expressions for the vortical
instabilities, including their level at saturation and nonlinear corrections, as functions
of the Taylor number as it departs from the critical conditions Tacrit. Two levels of
approximation are available for the instabilities. The lowest level is obtained by the
second-order expansion (terms (2.16) and (2.17)), together with a modulus of the
amplitude at saturation |A|3 obtained by setting the nonlinear growth rate σnonlin 3 in
(2.23) equal to zero and taking the real positive root, and the associated frequency
correction δωnonlin. To get a finite modulus of the amplitude, Re(µ) < 0 has to
be assumed, and this level of approximation is limited to saturated states reached
after a supercritical transition. The next approximation is obtained by the fourth-order
expansion (terms (2.16), (2.17), (2.19) and (2.20)) and the modulus of the amplitude at
saturation |A|5 obtained by setting the nonlinear growth rate σnonlin 5 in (2.24) equal to
zero and taking the real positive root, and the associated frequency correction δωnonlin,
with the possibility to consider subcritical transitions. Velocity fields based on these
two levels of approximation can now be compared to direct numerical simulations to
ascertain their respective accuracy. Such a comparison is shown in figure 8 for the
radial and azimuthal velocities at midgap rmid with the parameters η = 0.75, α = 0
and β = 0 (and L/d = 50 for the numerical simulation), leading to Tacrit

= 85.78.
At Ta = 90 ≈ 1.05 Tacrit, both the second- and fourth-order approximations are
nearly identical to the numerical results. At Ta = 120 ≈ 1.40 Tacrit, the second-order
approximation fails to correctly capture the velocity field, particularly the azimuthal
velocity V , whereas the fourth-order approximation remains in very good agreement
with the numerical simulation. Moreover, the match is also quite good in terms of the
shape of the velocity profiles, which differ from sinusoidal as harmonics arise, as is
particularly evident in the radial velocity U. At Ta= 150≈ 1.75 Tacrit, the fourth-order
approximation also struggles to recover the numerical velocity fields, particularly for
the azimuthal velocity V .

The addition of the axial flow complicates the dynamics of the convective vortices
in that they depend on the way they are initiated. Focusing on perturbations at the
inlet, an initial pulse will evolve towards a propagating wavepacket that is eventually
advected out of the numerical domain by the mean axial flow. A random continuous
forcing can lead to a complex response consisting of patches of developed vortices
with noisy phases (as observed by Babcock et al. (1991)). In the following, the
impulse response of the flow was obtained in the numerical simulations by adding
an initial perturbation on the axial component of the velocity consisting of a sum
of sine functions with azimuthal wavenumbers ranging from n = 1 to 16 close to
the inlet. The amplitude of the disturbances was set to 1 % of the amplitude of
the laminar flow. Figure 9 compares the fourth-order approximation with the direct
numerical simulations in the presence of an axial flow for η = 0.75, α = 0 and an
axial flow β = 20, after the amplitude of the wavepacket has reached saturation. The
axial variation of the velocity fields resulting from the vortical structures is readily
apparent and shows good agreement between the numerical and analytical results
in terms of the axial wavenumber and maximum amplitude. Moreover, figure 9
also confirms that the values of azimuthal wavenumber, including its sign (i.e. the
handedness of the helical vortices), are in agreement. That is, in this case the base
flow is right-handed while the propagating helical vortices are left-handed, as is
evident in the isosurface of the instability in figure 9(b). Extending the amplitude
equation to the related envelope equation in the frame moving at the group speed
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FIGURE 8. (Colour online) Comparison between the second-order solution (terms (2.16)
and (2.17)) together with the amplitude |A|3 (dashed curves, red online), the fourth-order
solution (terms (2.16), (2.17), (2.19) and (2.20)) together with the amplitude |A|5 (dash-
dotted curves, blue online), and direct numerical simulations (solid black curves) for η=
0.75, α=0, β=0 and L/d=50 for simulations (only the upper half-domain is shown here,
the bottom half-domain being symmetric about z= 0). Both radial (leftmost sets of curves
in (a–c)) and azimuthal (rightmost sets of curves) velocities at midgap rmid are depicted.
(a) Ta= 90≈ 1.05Tacrit (all three curves overlie one another), (b) Ta= 120≈ 1.40Tacrit (the
fourth-order solution overlies the numerical simulation) and (c) Ta= 150≈ 1.75Tacrit (the
fourth-order solution nearly overlies the numerical simulation for U), with Tacrit

= 85.78.

of the instability could provide a way to analytically recover the axial extension of
the travelling wavepacket, but that is not considered here. Increasing further the axial
Reynolds number β, particularly in a narrow gap, is discussed in § 7.1.
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FIGURE 9. (Colour online) Comparison between the fourth-order approximation (terms
(2.16), (2.17), (2.19) and (2.20)) together with the amplitude |A|5 (dash-dotted curves, blue
online, in (a)) and direct numerical simulations (solid black curves in (a) and isosurface in
(b)), for η= 0.75, α= 0 and β = 20 at Ta= 110, to be compared with Tacrit

= 98.07. Both
radial (leftmost pair of curves in (a)) and azimuthal (rightmost pair of curves) velocities
at midgap are depicted. The helical structure with n = +1 is observed in the numerical
simulation in (b), in agreement with the analysis. The isosurface shows the radial velocity
U at a value of 0.2 times the maximum value.

The addition of the radial flow further complicates the dynamics of the vortices,
because, for sufficiently strong radial flows, the transition can be subcritical. Figure 10
compares the analytical results and the numerical simulations for the saturated radial
flow for η = 0.75 without axial flow (β = 0) for two cases: supercritical transition
(α = 10, in figure 10a,c,e) and subcritical transition (α = −15, in figure 10b,d, f ).
The saturated radial velocities at midgap rmid are again in good agreement for
the supercritical transition in figure 10(a,c,e), this agreement covering both the linear
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FIGURE 10. (Colour online) Comparisons between numerical simulations (black solid
curves and symbols) and analytical results (dash-dotted curves, blue online) for η= 0.75,
β = 0 and α= 10 (a,c,e) and α=−15 (b,d, f ). (a,b) Radial velocity at midgap U(rmid, z).
(c,d) Fourier transform Ũ(rmid, k) of U(rmid, z); the solid line (red online) locates the
theoretical value kcrit. (e, f ) Amplitudes of the instability as a function of the Taylor
number. In ( f ), circles denote the amplitude reached by increasing Ta, whereas squares
denote amplitudes reached by decreasing Ta.

characteristics (kcrit, Tacrit, xcrit
1 ) and the nonlinear ones (the magnitude of the amplitude

|A| as a function of 1Ta). The analytical and numerical results, however, tend to
differ for the subcritical transition. Whereas in figure 10(b, f ) the agreement for the
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linear characteristics (kcrit, Tacrit) is satisfying, the analytical results underestimate
the magnitude of the amplitude of the instability |A|. In figure 10( f ), the analysis
also underpredicts the hysteresis 1Tacrit

nonlin associated with the subcritical transition,
as shown in figure 9(b). This departure is likely a consequence of the nonlinear
dynamics of the subcritical instability. It is evident in the Fourier transforms shown
in figure 10(c,d) that the first harmonic of the critical wavenumber is substantially
more energetic in the subcritical case than in the supercritical one. The fourth-order
truncation of expansion (2.14) (the sum of terms (2.16), (2.17), (2.19) and (2.20))
is the minimum expression recovering those subcritical instabilities but it could be
an approximation too crude to accurately account for the departure from the critical
conditions.

7. Discussion
The results of linear and nonlinear analyses show the effects of a radial flow on a

Taylor–Couette–Poiseuille set-up, effects magnified by decreasing the radius ratio η
and modified by the presence of an axial flow. A radial inflow leads to the crowding
of the vortex stack near the inner cylinder. The cross-sections of the vortices become
dramatically small compared to the width of the gap and, as viscosity becomes
harder to overcome, the critical condition for the vortices to appear, Tacrit, increases.
Moreover, the radial inflow changes the nature of the first transition from super- to
subcritical. While this crowding of the vortex stack is still observed near the outer
cylinder in the presence of a radial outflow, a different mechanism eventually sets
in for wide gaps, leading to the appearance of large helical vortices, the dynamics
of which differ from the dynamics of the usual Taylor and helical vortices. The
superposition of an axial flow tends to select helical vortices, the number of threads
of which increases with the axial Reynolds number, particularly in narrow gaps. The
axial flow is clearly stabilizing in the presence of a radial inflow or without radial
flow, whereas the tendency is less clear in the presence of a radial outflow.

As seen in figure 8 (and other cases not shown here), a good quantitative agreement
is obtained with the fourth-order truncation of expansion (2.14) (the sum of terms
(2.16), (2.17), (2.19) and (2.20)) in narrow and wide gaps for Taylor numbers up to
1.3–1.4 times Tacrit. This extended range of validity compared to the second-order
truncation of expansion (2.14) justifies the extra effort needed to proceed to the
higher order. The quantitative agreement holds for moderate radial flows, as long as
the transition is supercritical, as in figure 10(a,c,e), where α = 10. Except for the
axial extension of the wavepacket resulting from impulse response, the quantitative
agreement also holds for moderate axial flow as in figure 9, where β = 20. While the
parameter ranges (η, α, β) where subcritical transition occurs are correctly predicted
by the analysis, the quantitative agreement between the analytical and numerical
results in terms of nonlinear critical conditions Tacrit

nonlin (figure 7b) and velocity
field (figure 10b,d, f ) eventually dwindles with the extent of the hysteresis. Further
comparison of the analytical and numerical results in the next section can be used
to delimit the domain of validity of the weakly nonlinear analysis to reproduce the
vortices.

7.1. Domain of validity of the weakly nonlinear analysis
Increasing further the axial flow from its value β = 20 in figure 9 tends to select
helical modes with increasingly high azimuthal wavenumber in the case of narrow
gaps (large η). This is even more dramatic in the presence of a strong radial outflow,
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where a jump in the selected ncrit occurs in figure 4(a,b). Under these conditions,
the selection of the azimuthal wavenumber is very sensitive to minute changes in the
flow configuration, or, equivalently, a large range of azimuthal wavenumbers can occur
under similar critical conditions. It is therefore likely that several wavenumbers could
coexist. Numerical results in figure 11 demonstrate this situation as a wavepacket of
vortices originating from an initial impulse at the inlet evolves and propagates for
η = 0.85, α = 0 and β = 65. The wavepacket propagating upward (with respect to
the orientation of the figure) with the axial flow is more complex than that described
by the linear stability analysis in that it clearly consists of the superposition of several
modes. While the lower portion of the wavepacket consists of a high-n helical vortex
(lower cross-section in figure 11), this structure evolves to an upper portion consisting
of a low-n helical vortex (upper cross-section in figure 11), with several dislocations
occurring in between (middle cross-section in figure 11). Though a careful count of
the azimuthal waves in the lower part leads to n = 16, in exact agreement with the
linear stability analysis, the convective stability analysis does not fully account for
the dynamics of the entire wavepacket. The nature and the origin of the upper low-n
helical vortices are unclear. They could be a transient or they could occur because
their specific critical conditions are close to the critical conditions of the high-n helical
vortices. It should be noted, though, that the present weakly nonlinear analysis only
applies to the part of the wavepacket propagating at the group velocity of the critical,
n= 16, mode. Unlike cases with limited axial flow and limited azimuthal wavenumber
ncrit, the high-ncrit cases are therefore only partially described by the weakly nonlinear
analysis presented here – critical conditions are correctly predicted but the complete
bifurcated state reveals a more complicated dynamics. To consider a system of coupled
envelope equations pertaining to a transition with a codimension larger than one could
possibly retrieve such composite wavepackets involving several modes, but it would be
quite difficult.

Beyond the limitations of the weakly nonlinear analysis to quantitatively address the
subcritical transitions and related saturated states, the presence of a radial outflow in a
wide gap leads to specific instabilities. As shown in figures 4(e, f ) and 5, large helical
vortices are expected when a strong radial outflow is combined with a wide gap.
Though these conditions fall into the regimes where the weakly nonlinear approach
fails to quantitatively capture the subcritical instabilities (corresponding to the red
areas), figure 6(b) suggests that these large helical vortices undergo supercritical
transitions, in contrast to toroidal modes that occur for slightly smaller gaps and
weaker outflows, which undergo subcritical transitions. This competition between two
different modes involving a supercritical transition for one and a subcritical transition
for the other could imply that in a range of parameters the subcritical toroidal mode
could be more unstable than the supercritical large helical mode selected at the same
(η, α, β), and that the two modes may interact in a complex fashion. Furthermore, in
these configurations, helical vortices are selected by the linear stability analysis, even
in the absence of axial flow. Without axial flow, left- and right-handed helical vortices
are equally unstable due to the z→−z symmetry of the configuration, whereas this
degeneracy is removed in the presence of axial flow. For small axial flows, both right-
and left-handedness could therefore be present close to critical conditions and appear
almost simultaneously. It is therefore not clear from the analysis which flow structure
should arise from this first transition. Direct numerical simulations, not shown here,
are not conclusive on the nature of the flow structure and its dynamics because they
exhibit intricate patterns where left- and right-handed helical vortices and toroidal
vortices nonlinearly interact. The weakly nonlinear analysis developed in this study
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FIGURE 11. (Colour online) Direct numerical simulation of the travelling wavepacket for
η=0.85, α=30 and β=65, at Ta=275 (compared with the analytical value Tacrit

=230.0,
the analytical azimuthal wavenumber being ncrit

= 16). The isosurface in the three leftmost
plots shows the locus where the total azimuthal velocity V is equal to one half of the
velocity at the rotating inner cylinder. The isosurface in the fourth plot from left shows,
in the upper half of the domain, the locus where the total radial velocity U is equal to 0.2
times its maximum value. The three cross-sections on the right show the radial velocity
contours in sections located at z/d= 70 (consistent with ncrit

= 16), z/d= 80 and z/d= 90.
The aspect ratio of the numerical domain is L/d= 100.

is unable to interpret the numerical results in the case of these large helical vortices,
where several modes with different azimuthal wavenumbers and different dynamics
coexist. The range of parameters (η, α, β) and the critical conditions Tacrit for the
occurrence of this regime, though, are predicted with a reasonable agreement.

7.2. Outlook and concluding remarks
This work has been introduced and justified by the possibility for the weakly nonlinear
analysis to conveniently and reliably provide the velocity and pressure fields of the
laminar and vortex flows, and this goal is achieved within the validity domain of
the fourth-order truncation of the expansion (2.14) (the sum of terms (2.16), (2.17),
(2.19), (2.20), together with the computation of the modulus of the amplitude |A|5
from (2.24)). These ‘analytical’ expressions for the velocity field are, for instance,
useful to compute the advection of fluid or inertial particles, as long as those particles
do not retroact on the fluid flow. Several characteristics of mixing efficiency, such as
residence times, radial, axial and azimuthal dispersion or the occurrence of chaotic
advection associated with the travelling toroidal or helical vortices, can be computed
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and optimized. The advection–diffusion–reaction equation for a passive scalar can also
be addressed.

Though still incomplete at this stage, the results obtained in the case of a wide gap
are also of practical interest. Typical dynamic filtration set-ups use a permeable inner
cylinder so that the filtration flow is then an inflow. A wide gap and strong inflow
are known, as shown in figures 3(g), 4(e, f ) and 5(a,b), to induce small vortices
localized near the inner cylinder. These vortices might not be optimal to prevent
the processes of accumulation on the membrane. On the contrary, the large helical
vortices, observed when the radial flow is outward, occupy the whole gap and might
provide a better overall mixing. Dynamic filtration devices with a permeable outer
cylinder would present a radial outflow, and though this set-up has never been used,
it could be worth comparing the efficiency of the two configurations.

In discussing the relevancy of this work to describe real set-ups and future
developments, two simplifying assumptions made in the introduction should be
further addressed. The first one was to focus on convective instabilities. As indicated
in the introduction, this assumption is based on the idea that when noise is present
at the inlet, the instabilities observed experimentally are usually convective in nature
(as in Babcock et al. 1991), at least so long as absolute instabilities do not compete.
It nonetheless implies that when observed, these vortical structures are the result of
the response of the flow to external forcing rather than its intrinsic behaviour. The
selection of the most unstable convective instabilities addressed here thus depends
on the nature of the forcing and, whereas a white noise will eventually lead to the
rise of this instability, a more specific forcing could alter the response. Moreover,
the intrinsic behaviour of the flow, of interest in systems with well controlled inlets,
is amenable to a convective/absolute stability analysis (Recktenwald et al. 1993;
Martinand et al. 2009), and we are currently working along these lines.

It is also worth noting the challenges related to the feasibility of the base flow
(A 1)–(A 4) addressed here and more particularly the validity of assuming an imposed
radial velocity across both cylinders. From a practical point of view, such a flow
can be obtained in a Taylor–Couette cell where both cylinders are made out of
a permeable material and the radial flow is obtained by imposing a pressure
difference between inside the inner cylinder and outside the outer cylinder. This
pressure difference then relates to the radial velocities across the cylinders via a
constitutive relation such as Darcy’s law. If one assumes that the pressures inside
the inner cylinder and outside the outer cylinder are constant, the velocities across
the cylinders then depend on the values of the wall pressures in the gap. Without
any axial component for the base flow (β = 0), these pressures in the gap at the
cylinders are constant, and the radial velocity is a function of the pressure difference
only, independent of the position along the length of the annulus. This configuration
could be practically achieved in a flow cell closed at both axial ends. In the presence
of an axial component in the base flow (β 6= 0), the pressure in the gap would
decrease downstream due to frictional losses, and variations in the radial velocity
would be associated with this decreasing pressure. Moreover, these variations of the
radial velocity across both cylinders could break the flux-preserving condition of
the radial velocity, i.e. U(rin)rin 6= U(rout)rout, thus altering the axial velocity. For
small permeabilities and axial Reynolds numbers, the base flow including variations
in the pressure and total axial flux in the axial direction can be obtained using
an asymptotic expansion (see Tilton et al. (2010), for the situation with only the
inner cylinder being permeable and the outer cylinder impermeable). In this case,
the instabilities developing on such base flows must be addressed in the framework
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of global mode analysis. These asymptotic expansions pave the way to addressing
instabilities in a configuration closer to real filtration systems where only the inner
cylinder is permeable. Nevertheless, even in the absence of axial flow, the base flow
obtained with imposed radial velocities at both cylinders like that considered in this
paper is relevant because the pressures at the cylinder walls in the gap are modified
by the instability itself, locally by the fluctuating instability and globally by the
modification of the base flow due to nonlinear dynamics of the instability. Besides
these analytical considerations, very few experimental set-ups include one permeable
cylinder (Min & Lueptow 1994a), let alone two, and we are aware of very few
experimental results in the literature.

It should be noted that the combination of Couette flow with a radial throughflow
has also been considered in a recent line of papers generally focusing on the
destabilizing effect of a radial inflow on a cell where only the outer cylinder is
rotating (Gallet, Doering & Spiegel 2010). While the case without radial flow is
known to be linearly stable, the addition of the radial inflow has been reported to
destabilize vortices aligned with the axial direction, i.e. with zero axial wavenumber.
This instability has recently been extended to helical vortices and explained by the
modification of the shear layer developing near the rotating cylinder by the radial
flow and dubbed ‘boundary inflow instability’ (Kerswell 2015). The critical angular
velocities of the outer cylinder and radial flow are also substantially larger than
the typical angular velocities of the inner cylinder and radial flow observed for
centrifugal instabilities in the present study. Whether this mechanism can account for
some results obtained in our case where the inner cylinder is rotating, such as the
high-ncrit cases, remains unclear at this point.
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Appendix A. Base flows
Solving system (2.5) with boundary conditions (2.6) leads to the following

expression for the non-vortical base flow (2.4):

U0 =
α

Ta
1
r

V0 =
rinrout

rα+2
out − rα+2

in

(
rα+1

out

r
−

rα+1

rout

)
W0 =

2β
Ta
(2+ α)

(r2
out(r

α
− rαin)+ r2

in(r
α
out − rα)− r2(rαout − rαin))

(2− α)(rα+2
out − rα+2

in )+ (2+ α)(r2
inrαout − r2

outr
α
in)


(A 1)

provided α 6= −2, 0, 2. For α =−2, the base flow is

U0 =−
2
Ta

1
r

V0 =
1

log(rout/rin)

rin log(rout/r)
r

W0 =
2β
Ta

r2
− r2

out

r2
in
+

r2
in − r2

r2
out

+
r2

out − r2
in

r2

(rin/rout)2 − (rout/rin)2 + 4 log(rout/rin)
.


(A 2)
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For α = 0, the base flow is

U0 = 0

V0 =
rinrout

r2
out − r2

in

(
rout

r
−

r
rout

)
W0 =

2β
Ta

r2
out log(r/rin)+ r2

in log(rout/r)− r2 log(rout/rin)

(r2
in + r2

out) log(rout/rin)− r2
out + r2

in
.

 (A 3)

And, finally, for α = 2, the base flow is

U0 =
2
Ta

1
r

V0 =
rinrout

r4
out − r4

in

(
r3

out

r
−

r3

rout

)
W0 =

8β
Ta

r2/r2
in log(rout/r)+ r2/r2

out log(r/rin)− log(rout/rin)

r2
out/r

2
in − r2

in/r2
out − 4 log(rout/rin)

.


(A 4)

The respective expressions for Q0, the pressure field of the base flow, are not included
here, since they are not required for the stability analysis. Besides the slightly different
non-dimensionalization scheme used here, these expressions are also provided here
to correct two typos in appendix A in Martinand et al. (2009). First, in the base
flows given in Martinand et al. (2009), all the (1− η)/η factors for u and w should
be removed because they remained from a previously used non-dimensionalization.
Second, a factor of 2 in the expressions for the axial velocity was omitted. Note that
these typos came about during the editing process and do not call into question the
validity of the results in Martinand et al. (2009), which have been double-checked and
reflect the correct physics.

Appendix B. Operators of the stability analyses
The linear stability analysis in the form of the generalized eigenvalue problem (2.10)

and the weakly nonlinear stability analysis presented in appendix C use operators in
the form

Aj =



Ta
(

u0dr + dru0

+ ijn
v0

r
+ ijkw0

)
−

(
∆−

1
r2

) −Ta
2v0

r
+ i

2jn
r2

0 dr

Ta
(

drv0 +
v0

r

)
− i

2jn
r2

Ta
(

u0dr +
u0

r
+ ijn

v0

r
+ ijkw0

)
−

(
∆−

1
r2

) 0 i
jn
r

Tadrw0 0

Ta
(

u0dr

+ ijn
v0

r
+ ijkw0

)
−∆

ijk

dr +
1
r

i
jn
r

ijk 0



, (B 1)
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where

∆= d2
r +

1
r

dr −
j2n2

r2
− j2k2 and dr =

d
dr
. (B 2)

Moreover,

B=

 i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 0

 . (B 3)

Although the linear stability operators presented above are similar to a previous
analysis in Martinand et al. (2009), they are repeated here in slightly different form,
due to the non-dimensionalization scheme, to introduce the Aj operators, where the
subscript j stands for the use of the jth harmonic of the fundamental wavenumbers in
the operator. Furthermore, it gives us the opportunity to fix two typos in the operator
A given in Martinand et al. (2009). First, the third term of the first column Ta drw0
was indicated as zero. Second, i factors were missing in the diffusive terms. Again,
those typos occurred during the editing process, and results in Martinand et al. (2009)
have been double-checked to ensure that they are correct.

Appendix C. Derivation of the fifth-order amplitude equation
Throughout this Appendix, the bilinear operators

Cj(x; x′)=



(
udr + ijn

v

r
+ ijkw

)
u′ −

vv′

r
vu′

r
+

(
udr + ijn

v

r
+ ijkw

)
v′(

udr + ijn
v

r
+ ijkw

)
w′

0


(C 1)

describe the radial dependences of the advection of the velocity field (u′, v′,w′) from
x′ by the velocity field (u, v,w) from x, the wavevector of x′ being ( jk, jn).

Inserting expansions (2.13)–(2.15) in equations (2.1)–(2.2) leads to a hierarchy
of systems of partial differential equations. System (2.5)–(2.6) with Ta = Tacrit is
recovered at the zeroth order (ε0), satisfied by the base flow at critical conditions
Xcrit

0 . The stability problem (2.10) with Ta= Tacrit is recovered at the first order (ε1),
satisfied by the critical mode xcrit

1 up to an arbitrary slowly varying small amplitude
A= εA1(t1, t2, . . .) so that the term of order one (ε) in expansion (2.14) reads

X1 = A1xcrit
1 exp(iψ crit)+ c.c., (C 2)

with ψ crit
= kcritz + ncritθ − ωcritt. Hereinafter, the composite notations xi,j,µ or si,j,µ

denote the radial shape function of vector X or S of order ε i, with a spatiotemporal
phase jψ crit

= j(kcritz + ncritθ − ωcritt), and a prefactor µ, leading to the introduction
of x0,0,1 = Xcrit

0 (without ambiguity over the z-dependence because the pressure-over-
density field Q0(r, z) does not appear in the analysis) and x1,1,A1 = xcrit

1 .
At order ε2, the following system of equations and boundary conditions is obtained:

LX2 = S2
V2(rin/out)= 0,

}
(C 3)
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with L as in (2.7)–(2.8) and

S2 =

−∂V1

∂t1
− TacritV1 · ∇V1 − Ta2V0 · ∇V0

0

 . (C 4)

Inserting Xcrit
0 and ansatz (C 2) in (C 4) and sorting the different terms in powers of

exp(iψ crit) recasts the expression of S2 into

S2 = S2,1,∂t1 A1 + S2,0,A1A1
+ S2,2,A2

1
+ S2,0,Ta2 + S2,1,∂t1 A1 + S2,2,A2

1
, (C 5)

the different terms of which are expanded hereinafter:

S2,1,∂t1 A1 =
∂A1

∂t1
s2,1,∂t1 A1 exp(iψ crit) with s2,1,∂t1 A1 = iBx1,1,A1, (C 6)

S2,0,A1A1
= A1A1s2,0,A1A1

, (C 7)

with
s2,0,A1A1

=−Tacrit
[C1(x1,1,A1; x1,1,A1)+C−1(x1,1,A1; x1,1,A1)], (C 8)

S2,2,A2
1
= A2

1s2,2,A2
1

exp(2iψ crit) with s2,2,A2
1
=−TacritC1(x1,1,A1; x1,1,A1), (C 9)

and

S2,0,Ta2 = Ta2s2,0,Ta2 with s2,0,Ta2 =−C0(x0,0,1; x0,0,1)=−
∂A0

∂Ta

∣∣∣∣crit

xcrit
0 (C 10)

by identifying A0 from (B 1). Moreover, differentiating system (2.5) with respect to
Ta, one can write, at critical conditions,

∂A0

∂Ta

∣∣∣∣crit

xcrit
0 +Acrit

0
∂x0

∂Ta

∣∣∣∣crit

= 0, (C 11)

leading to

s2,0,Ta2 =Acrit
0

∂x0

∂Ta

∣∣∣∣crit

. (C 12)

Using normalization (2.11), the solvability condition of (C 3)

〈S2|X?
1〉 = 0, (C 13)

reduces to
∂A1

∂t1
= 0, (C 14)

the other terms vanishing owing to their spatially oscillating nature. The solution X2

of (C 3) is then sought in the form

X2 = Ta2x2,0,Ta2 + A1A1x2,0,A1A1
+ [A2

1x2,2,A2
1

exp(2iψ crit)+ c.c.], (C 15)
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transforming (C 3) into the system

Acrit
0 x2,0,Ta2 = s2,0,Ta2

Acrit
0 x2,0,A1A1

= s2,0,A1A1

Acrit
2 x2,2,A2

1
− 2ωcritBx2,2,A2

1
= s2,2,A2

1
,

 (C 16)

with Acrit
0 and Acrit

2 given by (B 1), and the terms on the right-hand side of this are
expanded in (C 8), (C 9) and (C 12). Equations (C 16) are solved using singular value
decompositions, except for

x2,0,Ta2 =
∂x0

∂Ta

∣∣∣∣crit

. (C 17)

At order ε3, the following system of equations and boundary conditions is obtained:

LX3 = S3
V3(rin/out)= 0,

}
(C 18)

with

S3 =


−
∂V2

∂t1
−
∂V1

∂t2
−Tacrit [V1 · ∇V2 +V2 · ∇V1]
−Ta2 [V0 · ∇V1 +V1 · ∇V0]

0

 . (C 19)

Inserting Xcrit
0 and ansatzes (C 2), (C 15), the term on the right-hand side of (C 19) can

be decomposed into

S3 = S3,1,∂t2 A1 + S3,1,Ta2 A1 + S3,1,A2
1A1
+ S3,3,A3

1
+ c.c. (C 20)

The different terms of this are expanded as

S3,1,∂t2 A1 =
∂A1

∂t2
s3,1,∂t2 A1 exp

(
iψ crit

)
with s3,1,∂t2 A1 = iBx1,1,A1, (C 21)

S3,1,A2
1A1
= A2

1A1s3,1,A2
1A1

exp(iψ crit), (C 22)

with

s3,1,A2
1A1
= −Tacrit

[C−1(x2,2,A2
1
; x1,1,A1)+C2(x1,1,A1; x2,2,A2

1
)

+C1(x2,0,A1A1
; x1,1,A1)+C0(x1,1,A1; x2,0,A1A1

)], (C 23)

S3,3,A3
1
= A3

1s3,3,A3
1

exp(3iψ crit), (C 24)

with
s3,3,A3

1
=−Tacrit

[C1(x2,2,A2
1
; x1)+C2(x1; x2,2,A2

1
)] (C 25)

and
S3,1,Ta2 A1 = Ta2 A1s3,1,Ta2 A1 exp(iψ crit), (C 26)

with

s3,1,Ta2 A1 = −C1(x0,0,1; x1,1,A1)−C0(x1,1,A1; x0,0,1)

−Tacrit
[C1(x2,0,Ta2; x1,1,A1)+C0(x1,1,A1; x2,0,Ta2)]
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= −
∂A1

∂Ta

∣∣∣∣crit

xcrit
1

= Acrit
1

∂x1

∂Ta

∣∣∣∣crit

−ωcritB
∂x1

∂Ta

∣∣∣∣crit

−
∂ω

∂Ta

∣∣∣∣crit

Bxcrit
1 , (C 27)

by identifying A1 from (B 1) and differentiating the eigenproblem (2.10) with respect
to Ta. The solvability condition of (C 18) requires

〈S3|X?
1〉 = 0. (C 28)

The only non-trivial equation inferred from (C 28) stems from the terms proportional
to exp(iψ crit) in S3, and their complex conjugates. The solvability condition (C 28) is
then recast into

〈s3,1,∂t2 A1 |x
?
1〉
∂A1

∂t2
+ 〈s3,1,Ta2 A1 |x

?
1〉Ta2 A1 + 〈s3,1,A2

1A1
|x?1〉A

2
1A1 = 0, (C 29)

with s3,1,∂t2 A1 , s3,1,Ta2 A1 and s3,1,A2
1A1

developed in (C 21), (C 27) and (C 23). Normali-
zation (2.11) leads to

〈s3,1,∂t2 A1 |x
?
1〉 = i (C 30)

and

〈s3,1,Ta2 A1 | x
?
1〉 =−

〈
∂A1

∂Ta

∣∣∣∣crit

x1|x?1

〉
=−

〈
∂ω

∂Ta

∣∣∣∣crit

Bx1|x?1

〉
=−

∂ω

∂Ta

∣∣∣∣crit

, (C 31)

while the remaining coefficient must be computed numerically after solving the
marginal stability problem. The solution X3 of (C 18) is sought in the form

X3 = Ta2A1x3,1,Ta2 A1 exp(iψ crit)+ A2
1A1x3,1,A2

1A1
exp(iψ crit)+ A3

1x3,3,A3
1

exp(3iψ crit)+ c.c.,
(C 32)

with

Acrit
1 x3,1,Ta2 A1 −ω

critBx3,1,Ta2 A1 = s3,1,Ta2 A1 +
∂ω

∂Ta

∣∣∣∣crit

Bx1

Acrit
1 x3,1,A2

1A1
−ωcritBx3,1,A2

1A1
= s3,1,A2

1A1
− 〈s3,1,A2

1A1
|x?1〉Bx1

Acrit
3 x3,3,A3

1
− 3ωcritBx3,3,A3

1
= s3,3,A3

1
,

 (C 33)

with Acrit
1 and Acrit

3 given by (B 1) and the last term on the right-hand side given by
(C 24). Equations (C 33) are solved using singular value decomposition, except for

x3,1,Ta2 A1 =
∂x1

∂Ta

∣∣∣∣crit

. (C 34)

At order ε4, the following system of equations and boundary conditions is obtained:

LX4 = S4
V4(rin/out)= 0,

}
(C 35)

with

S4 =


−
∂V2

∂t2
−
∂V1

∂t3
−Tacrit [V1 · ∇V3 +V3 · ∇V1 +V2 · ∇V2]
−Ta2 [V0 · ∇V2 +V2 · ∇V0 +V1 · ∇V1]

0

 . (C 36)
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Inserting Xcrit
0 and ansatzes (C 2), (C 15), (C 32), the term on the right-hand side of

(C 36) can be decomposed into

S4 = S4,1,∂t3 A1 + S4,1,∂t3 A1 + S4,0,Ta2
2
+ S4,0,Ta2 A1A1

+ S4,0,A2
1A1

2

+S4,2,Ta2 A2
1
+ S4,2,Ta2 A2

1
+ S4,2,A4

1A1
2 + S4,2,A4

1A1
2 + S4,4,A4

1
+ S4,4,A4

1
, (C 37)

with the different terms expanded as

S4,1,∂t3 A1 =
∂A1

∂t3
s4,1,∂t3 A1 exp(iψ crit) with s4,1,∂t3 A1 = iBx1,1,A1, (C 38)

S4,0,Ta2 A1A1
= Ta2A1A1s4,0,Ta2 A1A1

, (C 39)

with

s4,0,Ta2 A1A1
= −

∂ω

∂Ta

∣∣∣∣crit

Bx2,0,A1A1
+
∂ω

∂Ta

∣∣∣∣crit

Bx2,0,A1A1

−Tacrit
[C0(x2,0,Ta2; x2,0,A1A1

)+C0(x2,0,A1A1
; x2,0,Ta2)

+C−1(x1,1,A1; x3,1,Ta2A1)+C1(x1,1,A1; x3,1,Ta2A1)

+C−1(x3,1,Ta2A1; x1,1,A1)+C1(x3,1,Ta2A1; x1,1,A1)]

−C0(x2,0,A1A1
; x0,0,1)−C0(x0,0,1; x2,0,A1A1

)

−C1(x1,1,A1; x1,1,A1)−C−1(x1,1,A1; x1,1,A1), (C 40)

S4,2,Ta2 A2
1
= Ta2A2

1s4,2,Ta2 A2
1

exp(2iψ crit), (C 41)

with

s4,2,Ta2 A2
1
= −2

∂ω

∂Ta

∣∣∣∣crit

Bx2,2,A2
1

−Tacrit
[C1(x1,1,A1; x3,1,Ta2A1)+C1(x3,1,Ta2A1; x1,1,A1)

+C2(x2,0,Ta2; x2,2,A2
1
)+C0(x2,2,A2

1
; x2,0,Ta2)]

−C2(x0,0,1; x2,2,A2
1
)−C0(x2,2,A2

1
; x0,0,1)

−C1(x1,1,A1, x1,1,A1), (C 42)

S4,0,A2
1A1

2 = A2
1A1

2s4,0,A2
1A1

2, (C 43)

with

s4,0,A2
1A1

2 = 〈s3,1,A2
1A1
|x?1〉Bx2,0,A1A1

− 〈s3,1,A2
1A1
| x?1〉Bx2,0,A1A1

−Tacrit
[C0(x2,0,A1A1

; x2,0,A1A1
)

+C2(x2,2,A2
1
; x2,2,A2

1
)+C−2(x2,2,A2

1
; x2,2,A2

1
)

+C1(x3,1,A2
1A1
; x1,1,A1)+C−1(x1,1,A1; x3,1,A2

1A1
)

+C−1(x3,1,A2
1A1
; x1,1,A1)+C1(x1,1,A1; x3,1,A2

1A1
)], (C 44)

S4,2,A3
1A1
= A3

1A1s4,2,A3
1A1

exp(2iψ crit), (C 45)
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with

s4,2,A3
1A1
= 2〈s3,1,A2

1A1
|x?1〉Bx2,2,A2

1

−Tacrit
[C0(x2,2,A2

1
; x2,0,A1A1

)+C2(x2,0,A1A1
, x2,2,A2

1
)

+C1(x1,1,A1; x3,1,A2
1A1
)+C1(x3,1,A2

1A1
; x1,1,A1)

+C3(x1,1,A1; x3,3,A3
1
)+C−1(x3,3,A3

1
; x1,1,A1)], (C 46)

S4,4,A4
1
= A4

1s4,4,A4
1

exp(4iψ crit), (C 47)

with

s4,4,A4
1
=−Tacrit

[C3(x1,1,A1; x3,3,A3
1
)+C1(x3,3,A3

1
; x1,1,A1)+C2(x2,2,A2

1
; x2,2,A2

1
)] (C 48)

and
S4,0,Ta2

2
= Ta2

2s4,0,Ta2
2
, (C 49)

with

s4,0,Ta2
2
= −TacritC0(x2,0,Ta2; x2,0,Ta2)−C0(x2,0,Ta2; x0,0)−C0(x0,0; x2,0,Ta2)

=
1
2
Acrit

0
∂2x0

∂Ta2

∣∣∣∣crit

, (C 50)

this last expression being obtained by taking the second derivative of system (2.5)
with respect to Ta. Gathering the terms proportional to exp(iψ crit) in S4, the solvability
condition of (C 35) amounts to

〈S3,1,∂t3 A1 |X
?
1〉 = 0, (C 51)

implying
∂A1

∂t3
= 0. (C 52)

The solution X4 of (C 35) is then sought in the form

X4 = Ta2
2x4,0,Ta2

2
+ Ta2A1A1x4,0,Ta2 A1A1

+ Ta2[A2
1x4,2,Ta2 A2

1
exp(2iψ crit)+ c.c.]

+A2
1A1

2x4,0,A2
1A1

2 + [A3
1A1x4,2,A3

1A1
exp(2iψ crit)+ c.c.]

+ [A4
1x4,4,A4

1
exp(4iψ crit)+ c.c.], (C 53)

with
Acrit

0 x4,0,Ta2
2
= s4,0,Ta2

2

Acrit
0 x4,0,Ta2 A1A1

= s4,0,Ta2 A1A1

Acrit
2 x4,2,Ta2 A2

1
− 2ωcritBx4,2,Ta2 A2

1
= s4,2,Ta2 A2

1

Acrit
0 x4,0,A2

1A1
2 = s4,0,A2

1A1
2

Acrit
2 x4,2,A3

1A1
− 2ωcritBx4,2,A3

1A1
= s4,2,A3

1A1

Acrit
4 x4,4,A4

1
− 4ωcritBx4,4,A4

1
= s4,4,A4

1
,


(C 54)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

35
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.351


Cylindrical Couette flow with axial and radial flows 473

with Acrit
0 , Acrit

2 and Acrit
4 given by (B 1), and the terms on the right-hand side

developed in (C 40)–(C 50). Equations (C 54) are solved using singular value
decomposition except for

x4,0,Ta2
2
=

1
2
∂2x0

∂Ta2

∣∣∣∣crit

. (C 55)

At order ε5, the following system of equations and boundary conditions is obtained:

LX5 = S5
V5(rin/out)= 0,

}
(C 56)

with

S5 =


−
∂V3

∂t2
−
∂V1

∂t4
−Tacrit [V1 · ∇V4 +V2 · ∇V3 +V3∇V2 +V4 · ∇V1]
−Ta2 [V0 · ∇V3 +V1 · ∇V2 +V2∇V1 +V3∇V0]

0

 . (C 57)

Inserting Xcrit
0 and ansatzes (C 2), (C 15), (C 32), (C 53) in (C 57) and gathering the

terms proportional to exp(iψ crit) leads to the collection of the following elements on
the right-hand side:

S5,1,∂t4 A1 =
∂A1

∂t4
s5,1,∂t4 A1 exp(iψ crit) with s5,1,∂t4 A1 = iBx1,1,A1, (C 58)

S5,1,Ta2 A2
1A1
= Ta2 A2

1A1s5,1,Ta2 A2
1A1

exp(iψ crit), (C 59)

with

s5,1,Ta2 A2
1A1
=

(
2
∂ω

∂Ta

∣∣∣∣crit

−
∂ω

∂Ta

∣∣∣∣crit
)
Bx3,1,A2

1A1
− 〈s3,1,A2

1A1
|x?1〉Bx3,1,Ta2 A1

−Tacrit
[C−1(x4,2,Ta2 A2

1
; x1,1,A1)+C2(x1,1,A1; x4,2,Ta2 A2

1
)

+C1(x4,0,Ta2 A1A1
; x1,1,A1)+C0(x1,1,A1; x4,0,Ta2 A1A1

)

+C0(∂Tax1,1,A1; x2,0,A1A1
)+C1(x2,0,A1A1

; x3,1,Ta2 A1)

+C2(x3,1,Ta2 A1; x2,2,A2
1
)+C−1(x2,2,A2

1
; x3,1,Ta2 A1)

+C1(x2,0,Ta2; x3,1,A2
1A1
)+C0(x3,1,A2

1A1
; x2,0,Ta2)]

−C0(x3,1,A2
1A1
; x0,0,1)−C1(x0,0,1; x3,1,A2

1A1
)

−C2(x1,1,A1; x2,2,A2
1
)−C−1(x2,2,A2

1
; x1,1,A1)

−C0(x1,1,A1; x2,0,A1A1
)−C1(x2,0,A1A1

; x1,1,A1), (C 60)

S5,1,A3
1A1

2 = A3
1A1

2s5,1,A3
1A1

2 exp(iψ crit), (C 61)

with

s5,1,A3
1A1

2 = (−2〈s3,1,A2
1A1
|x?1〉 + 〈s3,1,A2

1A1
|x?1〉)Bx3,1,A2

1A1

−Tacrit
[C1(x4,0,A2

1A1
2; x1,1,A1)+C0(x1,1,A1; x4,0,A2

1A1
2)

+C−1(x4,2,A3
1A1
; x1,1,A1)+C2(x1,1,A1; x4,2,A3

1A1
)
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+C−2(x3,3,A3
1
; x2,2,A2

1
)+C3(x2,2,A2

1
; x3,3,A3

1
)

+C−1(x2,2,A2
1
; x3,1,A2

1A1
)+C2(x3,1,A2

1A1
; x2,2,A2

1
)

+C1(x2,0,A1A1
; x3,1,A2

1A1
)+C0(x3,1,A2

1A1
; x2,0,A1A1

)] (C 62)

and
S5,1,Ta2

2
= Ta2

2s5,1,Ta2
2

exp(iψ crit), (C 63)

with

s5,1,Ta2
2
= 2

∂ω

∂Ta

∣∣∣∣crit

Bx3,1,Ta2

−Tacrit
[C0(x1,1,A1; x4,0,Ta2

2
)+C1(x4,0,Ta2

2
; x1,1,A1)

+ 2C1(x2,0,Ta; x3,1,Ta2 A1)+ 2C0(x3,1,Ta2 A1; x2,0,Ta)]

− 2C1(x0,0,1; x3,1,Ta2 A1)− 2C0(x3,1,Ta2 A1; x0,0,1)

− 2C0(x1,1,A1; x2,0,Ta)− 2C1(x2,0,Ta; x1,1,A1)

=
1
2

(
Acrit

1
∂2x1

∂Ta2

∣∣∣∣crit

−ωcritB
∂2x1

∂Ta2

∣∣∣∣crit
)
, (C 64)

this last expression being obtained by taking the second derivative of the eigenproblem
(2.10) with respect to Ta. The solvability condition of (C 56) requires

〈S5 |X?
1〉 = 0. (C 65)

Gathering terms proportional to exp(iψ crit) in S5 leads to the following amplitude
equation:

〈s5,1,∂t4 A1 | x
?
1〉
∂A1

∂t4
+ 〈s5,1,Ta2

2 A1
| x?1〉

1
2

Ta2
2A1

+〈s5,1,Ta2 A2
1A1
| x?1〉Ta2A2

1A1 + 〈s5,1,A3
1A1

2 | x?1〉A
3
1A1

2
= 0, (C 66)

with s5,1,∂t4 A1 , s5,1,Ta2 A2
1A1

, s5,1,A3
1A1

2 and s5,1,Ta2
2 A1

developed in (C 58), (C 60), (C 62) and
(C 64), respectively.
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