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On the number of linearly independent
admissible solutions to linear differential
and linear difference equations
Janne Heittokangas, Hui Yu, and Mohamed Amine Zemirni
Abstract. A classical theorem of Frei states that if Ap is the last transcendental function in the
sequence A0 , . . . , An−1 of entire functions, then each solution base of the differential equation f (n) +

An−1 f (n−1) +⋯ + A1 f ′ + A0 f = 0 contains at least n − p entire functions of infinite order. Here, the
transcendental coefficient Ap dominates the growth of the polynomial coefficients Ap+1 , . . . , An−1 .
By expressing the dominance of Ap in different ways and allowing the coefficients Ap+1 , . . . , An−1 to
be transcendental, we show that the conclusion of Frei’s theorem still holds along with an additional
estimation on the asymptotic lower bound for the growth of solutions. At times, these new refined
results give a larger number of linearly independent solutions of infinite order than the original
theorem of Frei. For such solutions, we show that 0 is the only possible finite deficient value.
Previously, this property has been known to hold for so-called admissible solutions and is commonly
cited as Wittich’s theorem. Analogous results are discussed for linear differential equations in the
unit disc, as well as for complex difference and complex q-difference equations.

1 Introduction

If the coefficients A0(/≡ 0), . . . , An−1 are complex analytic in a simply connected
domain D ⊂ C, then the differential equation

f (n) + An−1 f (n−1) +⋯+ A1 f ′ + A0 f = 0(1.1)

possesses n linearly independent complex analytic solutions in D. In particular, if
all the coefficients A0 , . . . , An−1 are polynomials, then it is known that all nontrivial
solutions f of (1.1) are entire functions of finite order. The order of growth and
related concepts in Nevanlinna theory are given in Appendix A. In the case that the
coefficients A0 , . . . , An−1 are entire and at least one of them is transcendental, it follows
that there exists at least one solution of (1.1) of infinite order. This is a consequence of
the following result due to M. Frei, which can be considered as one of the seminal
results regarding the growth of solutions of (1.1).

Frei’s theorem 1 [9, p. 207, 27, p. 60] Suppose that the coefficients in (1.1) are entire and
that at least one of them is transcendental. Suppose that Ap is the last transcendental
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coefficient while the coefficients Ap+1 , . . . , An−1, if applicable, are polynomials. Then
every solution base of (1.1) has at least n − p solutions of infinite order.

The following well-known result of H. Wittich is one of the cornerstones of complex
oscillation theory. The original statement is for rational coefficients, but an easy
modification of the proof generalizes the result to small meromorphic coefficients.

Wittich’s theorem [27, p. 62, 34, p. 54] Suppose that a meromorphic solution f of (1.1)
is admissible in the sense that

T(r, A j) = o(T(r, f )), r /∈ E , j = 0, . . . , n − 1,(1.2)

where E ⊂ [0,∞) is a set of finite linear measure. Then 0 is the only possible finite
Nevanlinna deficient value for f.

Recall that the Nevanlinna deficiency δ(a, f ) for the a-points of a meromorphic
function f is defined by

δ(a, f ) = lim inf
r→∞

m(r, a, f )
T(r, f ) , a ∈ Ĉ,

where

m(r, a, f ) = 1
2π ∫

2π

0
log+ ∣ 1

f (re iφ) − a
∣dφ, a ∈ C,

m(r,∞, f ) = m(r, f ) = 1
2π ∫

2π

0
log+ ∣ f (re iφ)∣dφ, a = ∞.

If δ(a, f ) > 0, then a is called a Nevanlinna deficient value of f. From the first main
theorem of Nevanlinna, any Picard value is a deficient value of f. From the second main
theorem of Nevanlinna, a given meromorphic function has at most countably many
deficient values, and the sum of the deficient values is at most two [14, 36]. Meanwhile,
the number of Picard values is at most two.

We recall the following two facts from [11]. First, the admissibility in Wittich’s
theorem is necessary since a nonadmissible solution can have any countable number
of deficient values. Second, the value 0 may or may not be a deficient value for an
admissible solution.

As observed in [16, p. 246], the functions f1(z) = exp(ez) and f2(z) = z exp(ez)
are linearly independent solutions of

f ′′ − (2ez + 1) f ′ + e2z f = 0.(1.3)

Therefore, all nontrivial solutions of (1.3) are of infinite order and admissible in the
sense of (1.2). In contrast, according to Frei’s theorem, the equation (1.3) has at least
one solution of infinite order. Meanwhile, Wittich’s theorem does not say anything
about the number of linearly independent admissible solutions. This motivates us to
find improvements of Frei’s theorem, which will also address the number of linearly
independent admissible solutions.

The key idea in Frei’s theorem is that the transcendental coefficient Ap dominates
the growth of the polynomial coefficients Ap+1 , . . . , An−1. In the main results of this
paper, we introduce different ways to express that the transcendental coefficient Ap
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dominates the growth of the coefficients Ap+1 , . . . , An−1, which are not necessarily
polynomials. As a part of the conclusions, we obtain that the equation (1.1) has at least
n − p linearly independent solutions f which are admissible and, moreover, superior
to the growth of the coefficient Ap in the sense that

T(r, Ap) ≲ log T(r, f ).(1.4)

Solutions f of (1.1) satisfying (1.4) are considered as rapid solutions. Since any tran-
scendental entire function g satisfies

lim inf
r→∞

T(r, g)
log r

= ∞,(1.5)

see [35, Theorem 1.5], we deduce that the linearly independent solutions f satisfying
(1.4) are of infinite order. Thus Frei’s theorem follows as a special case.

Regarding the differential equation (1.1) in the unit disc D, the Korenblum space
A−∞ = ∪q≥0A

−q introduced in [25] takes the role of the polynomials. Here, A−q for
q ∈ [0,∞) is the growth space consisting of functions g analytic in D and satisfying

sup
z∈D

(1 − ∣z∣2)q ∣g(z)∣ < ∞.

On one hand, if all the coefficients A0 , . . . , An−1 belong to A−∞, then all nontrivial
solutions f of (1.1) are of finite order [17, p. 36]. On the other hand, if at least one of
the coefficients A0 , . . . , An−1 does not belong to A−∞, then (1.1) possesses at least one
solution of infinite order. This is a consequence of the following unit disc counterpart
of Frei’s theorem.

First formulation of Frei’s theorem in D [17, Theorem 6.3] Suppose that the coeffi-
cients A0 , . . . , An−1 in (1.1) are analytic in D, and that at least one of them is not in
A−∞. Suppose that Ap is the last coefficient not being in A−∞ while the coefficients
Ap+1 , . . . , An−1, if applicable, are in A−∞. Then every solution base of (1.1) has at least
n − p solutions of infinite order.

Recall that a function g meromorphic in D is called admissible if

lim sup
r→1−

T(r, g)
− log(1 − r) = ∞,(1.6)

otherwise g is called nonadmissible. Note that the term “admissible” is used in two
different meanings in the unit disc. The second meaning arises from the unit disc
analogue of Wittich’s theorem, which will be discussed below. As observed in [24, p.
449], for an admissible g satisfying (1.6), there exists a set F ⊂ [0, 1) with ∫F

dt
1−t = ∞

such that

lim
r→1−
r∈F

T(r, g)
− log(1 − r) = ∞.

This is a unit disc analogue of (1.5). It is clear that the functions in A−∞ are nonad-
missible. Conversely, the function f (z) = exp ( 1+z

1−z ) has bounded characteristic and
hence it is nonadmissible, but clearly f /∈ A−∞. This gives rise to the following second
formulation of Frei’s theorem in D, which does not seem to appear in the literature,
but which follows easily from more general results in Section 3.
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Second formulation of Frei’s theorem in D Suppose that the coefficients A0 , . . . , An−1
in (1.1) are analytic in D and that at least one of them is admissible. Suppose that Ap
is the last admissible coefficient while the coefficients Ap+1 , . . . , An−1, if applicable, are
nonadmissible. Then every solution base of (1.1) has at least n − p solutions of infinite
order.

As observed in [21, Example 1.4], for β > 1, the functions f1(z) = exp(exp((1 −
z)−β)) and f2(z) = exp((1 − z)−β) exp(exp((1 − z)−β)) are linearly independent infi-
nite order solutions of

f ′′ + A1 f ′ + A0 f = 0,(1.7)

where

A1(z) = −2β exp((1 − z)−β)
(1 − z)β+1 − β

(1 − z)β+1 −
1 + β
1 − z

and

A0(z) = β2 exp(2(1 − z)−β)
(1 − z)2β+2 .

If h1(z) = exp((1 − z)−β) and h2(z) = (1 − z)−(β+1), then

T(r, h1) ≍ ∫
2π

0

dθ
∣1 − re iθ ∣β ≍ 1

(1 − r)β−1 and T(r, h2) = O(1).

Thus A0 , A1 ∉ A−∞ are admissible and satisfy T(r, A0) = 2T(r, A1) + O(1). Accord-
ing to either formulation of Frei’s theorem in D, the equation (1.7) has at least one
solution of infinite order. Since all solutions of (1.7) are of infinite order, this leads us
to consider possible improvements of Frei’s theorems in D.

The Nevanlinna deficiency for the a-points of a meromorphic function f in D is
defined analogously as in the plane case simply by replacing “ r →∞” with “ r → 1−.”
Differing from the plane case, we need to assume that T(r, f ) is unbounded. The unit
disc analogue of Wittich’s theorem follows trivially by assuming that the set E ⊂ [0, 1)
in (1.2) now satisfies ∫E

dr
1−r < ∞. The question on the number of linearly independent

admissible solutions in Wittich’s theorem is also valid in the unit disc.
Slightly differing from the analogous situation in C, the following two types of

solutions of (1.1) with coefficients analytic in D are considered as rapid solutions:
(I) Solutions f satisfying (1.4), where Ap is admissible.

(II) Solutions f satisfying

log T(r, f ) ≳ log∫
D(0,r)

∣Ap(z)∣
1

n−p dm(z),

where dm(z) is Lebesgue measure in the disc D(0, r) and

lim sup
r→1−

log∫
D(0,r)

∣Ap(z)∣
1

n−p dm(z)

− log(1 − r) = ∞.

Here, Ap dominates the coefficients Ap+1 , . . . , An−1 in a certain way.
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This paper is organized as follows. In Sections 2 and 3, the main results are stated
in the cases of complex plane and the unit disc, and their sharpness is discussed in
terms of examples. A refinement of the standard order reduction method, needed for
proving the main results, is given in Section 4. The actual proofs are given in Sections
5 and 6. The analogous situation for linear difference and q-difference equations is
discussed in Sections 7 and 8, respectively.

2 Results in the complex plane

A refinement of Frei’s theorem is given in [16, Theorem 5.6] but is stated in terms of
the number of linearly independent “slow” solutions f of (1.1) satisfying

log T(r, f ) = o(T(r, Ap)), r →∞, r ∉ E ,

where Ap dominates the growth of the coefficients Ap+1 , . . . , An−1 in a certain sense
and E ⊂ [0,∞) is a set of finite linear measure. However, the next example illustrates
that some solutions may grow significantly slower than any of the coefficients.

Example 2.1 Let {zn} be a sequence defined by z2n−1 = 2n and z2n = 2n + εn , where
the numbers εn > 0 are small, say

0 < εn < exp ( − exp(2n)), n ≥ 1.

Then [11, Example 6] shows that the canonical product

f (z) =
∞
∏
n=1

(1 − z
zn
)

is an entire solution of a differential equation

f ′′ + A1 f ′ + A0 f = 0,(2.1)

where the coefficients A1 and A0 are entire functions of infinite order of growth.
Further restrictions on the numbers εn > 0 will induce even faster growth for A1 and
A0. Meanwhile, it is easy to see that n(r, 0, f ) ≍ log r. Using

r∫
∞

1

log t
t(r + t) dt ≤ ∫

r

1

log t
t

dt + r∫
∞

r

log t
t2 dt = O( log2 r)

together with (2.6.9) in [3], it follows that T(r, f ) ≤ log M(r, f ) = O( log2 r), where

M(r, f ) = max
∣z∣=r

∣ f (z)∣.

The proof of Theorem 5.6 in [16, p. 244] does not seem to support the exact
formulation of [16, Theorem 5.6] because the set I appearing in (5.1.31) is not in general
the same as the set I appearing in (5.1.32). If these two sets are indeed different, then
the set in (5.1.32) may affect on the validity of the lim sup in (5.1.31).

For reasons discussed above, we reformulate [16, Theorem 5.6] such that it concerns
the number of linearly independent rapid solutions, see Theorem 2.2. Moreover, the
upper bound in (2.3) is new.

https://doi.org/10.4153/S0008414X20000607 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000607


On the number of linearly independent admissible solutions 1561

Theorem 2.2 Let the coefficients A0 , . . . , An−1 in (1.1) be entire functions such that at
least one of them is transcendental. Suppose that p ∈ {0, . . . , n − 1} is the smallest index
such that

lim sup
r→∞

n−1
∑

j=p+1

T(r, A j)
T(r, Ap)

< 1.(2.2)

Then Ap is transcendental, and every solution base of (1.1) has at least n − p rapid
solutions f for which

T(r, Ap) ≲ log T(r, f ) ≲ R + r
R − r

T(R, Ap), r /∈ E ,(2.3)

where E ⊂ [0,∞) has finite linear measure, and r < R < ∞. For these solutions, the value
0 is the only possible finite deficient value.

When p = n − 1, the sum in (2.2) will be considered as zero, and the same situation
applies in the next statements.

The upper bound of log T(r, f ) in (2.3) cannot be reduced to T(r, Ap), as is shown
in Example 2.4(i) below. Comparing (2.3) with the classical inequalities

T(r, Ap) ≤ log M(r, Ap) ≤
R + r
R − r

T(R, Ap), r < R < ∞,

the quantities log T(r, f ) and log M(r, Ap) seem to be comparable. Indeed, this is the
case in the following result but under a slightly different assumption.

Theorem 2.3 Let the coefficients A0 , . . . , An−1 in (1.1) be entire functions such that at
least one of them is transcendental. Suppose that p ∈ {0, . . . , n − 1} is the smallest index
such that

lim sup
r→∞

n−1
∑

j=p+1

log+M(r, A j)
log+M(r, Ap)

< 1.(2.4)

Then Ap is transcendental, and every solution base of (1.1) has at least n − p rapid
solutions f for which

log T(r, f ) ≍ log M(r, Ap), r /∈ E ,(2.5)

where E ⊂ [0,∞) has finite linear measure. For these solutions, the value 0 is the only
possible finite deficient value.

Conclusions (2.3) and (2.5) both imply (1.4), and therefore Frei’s theorem is a
particular case of Theorems 2.2 and 2.3. At times, Theorems 2.2 and 2.3 give a larger
number of linearly independent solutions of infinite order than Frei’s theorem. Indeed,
the transcendental coefficients A0(z) = e2z and A1(z) = −(2ez + 1) in (1.3) satisfy
(2.2) and (2.4) for p = 0, and the lim sup in (2.2) or in (2.4) is equal to 1/2.

The following examples show that neither of Theorems 2.2 and 2.3 implies the other
in the cases when the coefficients are of finite hyper-order or of finite order.

Example 2.4 (i) Let A1(z) = eez
, and let A0 be an entire function satisfying

T(r, A0) ∼ log M(r, A0) ∼ 2T(r, A1), r →∞.
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Such a function A0 exists by Clunie’s theorem [8]. Moreover,

T(r, A1) ≍
er
√

r
and log M(r, A1) = er ,

see [14, p. 7]. Therefore,

lim sup
r→∞

T(r, A1)
T(r, A0)

= 1
2
< 1.

By Theorem 2.2, every nontrivial solution f of (2.1) satisfies

er
√

r
≲ log T(r, f ).

However, the asymptotic inequality log T(r, f ) ≲ e r
√

r does not hold for all solutions f.
In fact, we have

lim sup
r→∞

log M(r, A1)
log M(r, A0)

= lim sup
r→∞

log M(r, A1)
2T(r, A1)

= ∞.

Thus, by Theorem 2.3, every solution base of (2.1) has at least one solution f0 satisfying
log T(r, f0) ≍ log M(r, A1) = er . In particular, Theorem 2.2 is stronger than Theorem
2.3 in the sense that the number of rapid solutions given by Theorem 2.2 is larger than
that given by Theorem 2.3.

(ii) Now, let A0(z) = eez
, and let A1(z) be an entire function satisfying

T(r, A1) ∼ log M(r, A1) ∼ T(r, A0) ≍
1√
r

log M(r, A0), r →∞.

Therefore,

lim sup
r→∞

T(r, A1)
T(r, A0)

= 1

and

lim sup
r→∞

log M(r, A1)
log M(r, A0)

= lim sup
r→∞

T(r, A0)
log M(r, A0)

= 0 < 1.

Thus, Theorem 2.3 is stronger than Theorem 2.2 in this case.

Example 2.5 (i) Let A0(z) = E1/ρ(z) be Mittag-Leffler’s function of order ρ > 1/2.
We have, by [14, p. 19],

T(r, A0) ∼
1

πρ
log M(r, A0) ∼

1
πρ

rρ , r →∞.

From [8], there exists an entire function A1(z) satisfying

T(r, A1) ∼ log M(r, A1) ∼ T(r, A0), r →∞.

Therefore,

lim sup
r→∞

T(r, A1)
T(r, A0)

= 1
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and

lim sup
r→∞

log M(r, A1)
log M(r, A0)

= lim sup
r→∞

T(r, A0)
log M(r, A0)

= 1
πρ

< 1.

Thus, Theorem 2.3 is stronger than Theorem 2.2 in this case.
(ii) Now, let A1(z) = E1/ρ(z), hence

T(r, A1) ∼
1

πρ
log M(r, A1), r →∞,

and let A0(z) be an entire function satisfying

T(r, A0) ∼ log M(r, A0) ∼ πρT(r, A1), r →∞.

Therefore,

lim sup
r→∞

T(r, A1)
T(r, A0)

= 1
πρ

< 1

and

lim sup
r→∞

log M(r, A1)
log M(r, A0)

= lim sup
r→∞

log M(r, A1)
πρT(r, A1)

= 1.

Thus, Theorem 2.2 is stronger than Theorem 2.3 in this case.

Sometimes, we can detect the number of rapid solutions when one coefficient
dominates the rest of the coefficients along a curve. To this end, let g be an entire
function, and let Mg ∶= {z ∈ C ∶ ∣g(z)∣ = M(∣z∣, g)}. For example, if g(z) = z then
Mg = C, while if g(z) = ez then Mg = R+. For any entire g, the set Mg contains at
least one curve tending to infinity, although isolated points in Mg are also possible.
Any curve in Mg tending to infinity is called a maximum curve for g. For more details,
see [32].

Theorem 2.6 Let the coefficients A0 , . . . , An−1 in (1.1) be entire functions. Suppose that
p ∈ {0, . . . , n − 1} is the smallest index such that Ap is transcendental and

lim sup
z→∞
z∈�

n−1
∑

j=p+1

1
η j

∣A j(z)∣η j

∣Ap(z)∣
< 1(2.6)

holds for some constants η j > 1, where � is a maximum curve for Ap . Then, every solution
base of (1.1) has at least n − p rapid solutions f for which

log T(r, f ) ≳ log M(r, Ap), r /∈ E ,

where E ⊂ [0,∞) has finite linear measure.

The condition (2.6) in Theorem 2.6 does not restrict the growth of the coefficients
globally, and therefore (2.6) does not imply the admissibility of the rapid solutions.

Differing from the analogous situation in Theorem 2.3, the next example shows that
the asymptotic comparability between log T(r, f ) and log M(r, Ap) does not always
occur in the conclusion of Theorem 2.6.
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Example 2.7 Consider the differential equation

f ′′ + e−z2
f ′ + ez f = 0.

Condition (2.6) clearly holds for p = 0 along the positive real axis, which is the
maximum curve for ez . Thus, all nontrivial solutions f satisfy

log T(r, f ) ≳ log M(r, ez) = r.

However, the asymptotic inequality log T(r, f ) ≲ log M(r, ez) does not hold for all
solutions. Indeed, according to Theorem 2.3, the equation above has at least one
solution f0 satisfying

log T(r, f0) ≍ log M(r, e−z2
) = r2 .

The following example shows that, in some cases, the number of linearly inde-
pendent rapid solutions, given by Theorem 2.6, is larger than the number given by
Theorem 2.2 or Theorem 2.3.

Example 2.8 Consider the differential equation

f ′′ + e−z f ′ + ez f = 0.

Theorems 2.2 and 2.3 both assert that each solution base contains at least one solution
f satisfying log T(r, f ) ≳ r. In contrast, the condition (2.6) holds for p = 0 along the
positive real axis. Thus, all nontrivial solutions f satisfy log T(r, f ) ≳ r.

Finally, we give an example to show that our main results are refinements of Frei’s
theorem in the sense that the asymptotic comparability can sometimes be used to find
more solutions of infinite order.

Example 2.9 The function f1(z) = eez
is an infinite order solution of the equation

f ′′ + (ez2
− ez) f ′ − (ez2+z + ez) f = 0.(2.7)

Let f2 be any solution of (2.7) linearly independent to f1. Frei’s theorem cannot be used
to conclude that f2 is of infinite order. However, according to any of Theorems 2.2, 2.3,
or 2.6, f2 must satisfy log T(r, f2) ≳ T(r, ez2) ≍ r2. Meanwhile, log T(r, f1) ≍ r.

3 Results in the unit disc

The next result is a unit disc counterpart of Theorem 2.2.

Theorem 3.1 Let the coefficients A0 , . . . , An−1 in (1.1) be analytic functions in D such
that at least one of them is admissible. Suppose that p ∈ {0, . . . , n − 1} is the smallest
index such that

lim sup
r→1−

n−1
∑

j=p+1

T(r, A j)
T(r, Ap)

< 1.(3.1)
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Then Ap is admissible, and every solution base of (1.1) has at least n − p rapid solutions
f for which

T(r, Ap) ≲ log T(r, f ) ≲ R + r
R − r

T(R, Ap), r /∈ E ,(3.2)

where E ⊂ [0, 1) is a set with ∫E
dr
1−r < ∞ and 0 < r < R < 1. For these solutions, the value

0 is the only possible finite deficient value.

Analogously to the case of the complex plane, the asymptotic comparability
between log T(r, f ) and log M(r, Ap) is considerable in the unit disc as well. Indeed,
the unit disc counterpart of Theorem 2.3 is given as follows.

Theorem 3.2 Let the coefficients A0 , . . . , An−1 in (1.1) be analytic in D. Suppose that
p ∈ {0, . . . , n − 1} is the smallest index such that Ap is admissible and

lim sup
r→1−

n−1
∑

j=p+1

log+M(r, A j)
log+M(r, Ap)

< 1.(3.3)

Then every solution base of (1.1) has at least n − p rapid solutions f for which

log T(r, f ) ≍ log M(r, Ap), r /∈ E ,(3.4)

where E ⊂ [0, 1) is a set with ∫E
dr
1−r < ∞. For these solutions, the value 0 is the only

possible finite deficient value.

From (3.2) or (3.4), using (1.6), we easily get that there are at least n − p linearly
independent solutions of infinite order. Thus the second formulation of Frei’s theorem
is a particular case of Theorems 3.1 and 3.2.

At times, Theorems 3.1 and 3.2 give a larger number of linearly independent
solutions of infinite order than the second formulation of Frei’s theorem. Indeed, the
admissible coefficients A1(z) and A0(z) in (1.7) satisfy (3.1) and (3.3) for p = 0 and
the lim sup in both (3.1) and (3.3) is equal to 1/2.

The following example illustrates the differences between Theorems 3.1 and 3.2,
without restricting to any pregiven growth scale for the coefficients.

Example 3.3 (i) Let μ(r) and λ(r) be two non-negative unbounded functions on the
interval [0, 1) satisfying μ(r) = o(λ(r)), r → 1−, and the hypotheses in [28, Theorem
I]. Then there exist analytic functions A0 and A1 in D satisfying

T(r, A0) ∼ μ(r) ∼ 2T(r, A1), log M(r, A0) ∼ λ(r) ∼ log M(r, A1), r → 1−.

Thus, by Theorem 3.1, all nontrivial solutions f of

f ′′ + A1 f ′ + A0 f = 0(3.5)

satisfy log T(r, f ) ≳ T(r, A0) ∼ μ(r), r → 1−. However, by Theorem 3.2, there exists
at least one solution f0 of (3.5) satisfying log T(r, f0) ≍ log M(r, A1) ∼ λ(r), r → 1−.
Since μ(r) = o(λ(r)), r → 1−, it follows that the upper bound of log T(r, f ) in (3.2)
cannot be reduced to T(r, A0).

(ii) If we choose the analytic coefficients A0 and A1 in the following way

T(r, A0) ∼ μ(r) ∼ T(r, A1), log M(r, A0) ∼ λ(r) ∼ 2 log M(r, A1), r → 1−,

https://doi.org/10.4153/S0008414X20000607 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000607


1566 J. Heittokangas, H. Yu, and M.A. Zemirni

then, by Theorem 3.1, each solution base of (3.5) has at least one solution f satisfying
log T(r, f ) ≳ T(r, A1) ∼ μ(r), r → 1−. In contrast, Theorem 3.2 asserts that all non-
trivial solutions f of (3.5) satisfy log T(r, f ) ≍ log M(r, A0) ∼ λ(r), r → 1−.

A maximum curve for a function g(z) analytic in D is a curve emanating from
the origin and tending to a point on ∂D and consists of points z ∈ D for which
∣g(z)∣ = M(∣z∣, g).

Theorem 3.4 Let the coefficients A0 , . . . , An−1 in (1.1) be analytic functions in D.
Suppose that p ∈ {0, . . . , n − 1} is the smallest index such that Ap is admissible and

lim sup
z→1−
z∈�

n−1
∑

j=p+1

1
η j

∣A j(z)∣η j

∣Ap(z)∣
< 1

holds for some constants η j > 1, where � is a maximum curve of Ap . Then every solution
base of (1.1) has at least n − p rapid solutions f for which

log T(r, f ) ≳ log M(r, Ap), r /∈ E ,

where E ⊂ [0, 1) is a set with ∫E
dr
1−r < ∞.

Similar to Example 2.7, the following example shows that the comparability
between log T(r, f ) and log M(r, Ap) in Theorem 3.4 does not always occur.

Example 3.5 Let A0 and A1 be admissible analytic functions in D defined by

A1(z) = exp{ −1
(1 − z)2β } and A0(z) = exp{ 1

(1 − z)β }, β > 1.

Along the maximum curve for A0, which is the line segment � = (0, 1), we easily find

lim sup
z→1−
z∈�

1
η
∣A1(z)∣η

∣A0(z)∣
= 0

for any η > 1. Thus, according to Theorem 3.4, all nontrivial solutions f of (3.5) satisfy

log T(r, f ) ≳ log M(r, A0) =
1

(1 − r)β .

However, the asymptotic inequality log T(r, f ) ≲ log M(r, A0) does not hold for all
solutions. Indeed, from Theorem 3.2, there exists at least one solution f0 satisfying

log T(r, f0) ≍ log M(r, A1) =
1

(1 − r)2β .

Recall that the upper linear density of a set E ⊂ [0, 1) is given by

d(E) ∶= lim sup
r→1−

1
1 − r∫E∩[r ,1)

dr.

It is clear that 0 ≤ d(E) ≤ 1 for any set E ⊂ [0, 1).
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Theorem 3.6 Let the coefficients A0 , . . . , An−1 in (1.1) be analytic functions in D.
Suppose that p ∈ {0, . . . , n − 1} is the smallest index such that Ap is admissible and

lim sup
r→1−

n−1
∑

j=p+1
( n − j

n − p
)
∫

2π

0
∣A j(re iθ)∣

1
n− j dθ

∫
2π

0
∣Ap(re iθ)∣

1
n−p dθ

< 1.(3.6)

Then every solution base of (1.1) has at least n − p solutions f for which

log T(r, f ) ≍ log∫
2π

0
∣Ap(re iθ)∣

1
n−p dθ , r ∉ E ,

where E ⊂ [0, 1) is a set with d(E) < 1. These solutions are rapid in the sense of (I), and
the value 0 is their only possible finite deficient value.

The quantities

∫
2π

0
∣A j(re iθ)∣

1
n− j dθ(3.7)

are used to measure the growth of the coefficients A0 , . . . , An−1 in results parallel
to Theorem 3.6 in [7]. Note that the assumption (3.6) is more delicate than the
corresponding assumptions on the orders of growth in [7].

To see that the second formulation of Frei’s theorem is a particular case of Theorem
3.6, we first make use of Lemma 2 in [18, p. 52], which allows us to avoid the exceptional
set E of density d(E) < 1. Second, we notice that if Ap is admissible, then

lim sup
r→1−

log∫
2π

0
∣Ap(re iθ)∣

1
n−p dθ

− log(1 − r) = ∞.(3.8)

Indeed, it follows from Jensen’s inequality that

log+∫
2π

0
∣Ap(re iθ)∣

1
n−p dθ ≳ m(r, Ap) = T(r, Ap).(3.9)

Therefore, (3.8) follows from (3.9) and (1.6).
The previous results require the existence of at least one coefficient of (1.1) being

admissible, which works with the second formulation of Frei’s theorem. In the next
result, we require that at least one of the coefficients is not in A−∞, which is more
suitable for the first formulation of Frei’s theorem.

Theorem 3.7 Let the coefficients A0 , . . . , An−1 in (1.1) be analytic functions in D such
that at least one of them does not belong to A−∞. Suppose that p ∈ {0, . . . , n − 1} is the
smallest index such that

lim sup
r→1−

n−1
∑

j=p+1
( n − j

n − p
)
∫

D(0,r)
∣A j(z)∣

1
n− j dm(z)

∫
D(0,r)

∣Ap(z)∣
1

n−p dm(z)
< 1.(3.10)
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Then Ap ∉ A−∞, and every solution base of (1.1) has at least n − p solutions f for which

log T(r, f ) ≍ log∫
D(0,r)

∣Ap(z)∣
1

n−p dm(z), r ∉ E ,(3.11)

where E ⊂ [0, 1) is a set with ∫E
dr
1−r < ∞. These solutions are rapid in the sense of (II),

and the value 0 is their only possible finite deficient value.

To see that the first formulation of Frei’s theorem is a particular case of Theorem
3.7, it suffices to prove the following claim: Suppose that g(z) is an analytic function
in D. Then g ∉ A−∞ if and only if, for any κ ∈ (0, 1),

lim sup
r→1−

log+∫
D(0,r)

∣g(z)∣κdm(z)

− log(1 − r) = ∞.(3.12)

To prove this claim, we modify [20, Example 5.4]. First, assume that g ∉ A−∞ and
that (3.12) does not hold, i.e., there exist r0 ∈ (0, 1), κ ∈ (0, 1), and C > 0 such that

∫
D(0,r)

∣g(z)∣κdm(z) ≤ 1
(1 − r)C , r ∈ (r0 , 1).(3.13)

Using subharmonicity, we obtain

∣g(z)∣κ ≤ 1
2π ∫

2π

0
∣g(z + te iθ)∣κdθ , 0 < t < 1 − ∣z∣.

Multiplying both sides by t and integrating from 0 to 1−∣z∣
2 , it follows

1
2
( 1 − ∣z∣

2
)

2

∣g(z)∣κ ≤ 1
2π ∫

D(0, 1+∣z∣
2 )

∣g(ξ)∣κdm(ξ).

Therefore, making use of (3.13) yields

∣g(z)∣ ≲ 1
(1 − ∣z∣)D , D = C + 2

κ
,

which implies that g ∈ A−∞ and this is a contradiction. Conversely, if g ∈ A−∞, then
the lim sup in (3.12) is clearly finite.

4 Lemmas on the order reduction method

Lemma 4.1 below appears in [16, p. 234] with a slight modification in (4.1). A difference
analogue of this lemma will be given as Lemma 7.3 below. The reader should have
no problem in verifying Lemma 4.1 by studying the proof of Lemma 7.3 and using
the lemma on the logarithmic derivative instead of the lemma on the logarithmic
difference.
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Lemma 4.1 Suppose that f0,1 , . . . , f0,n are linearly independent meromorphic func-
tions. Define inductively

fq ,s = (
fq−1,s+1

fq−1,1
)
′

, 1 ≤ q ≤ n − 1, 1 ≤ s ≤ n − q.(4.1)

Then

T(r, fq ,s) ≲
q+s

∑
l=1

T(r, f0, l) + log r, r /∈ E1 ,

where E1 ⊂ [0,∞) is a set of finite linear measure.

Using the standard estimate for the logarithmic derivatives in the unit disc [30, pp.
241–246], it is easy to obtain the following unit disc counterpart of Lemma 4.1.

Lemma 4.2 Suppose that f0,1 , . . . , f0,n are linearly independent meromorphic func-
tions in D. Define the functions fq ,s as in (4.1). Then

T(r, fq ,s) ≲
q+s

∑
l=1

T(r, f0, l) + log 1
1 − r

, r /∈ E2 ,

where E2 ⊂ [0, 1) is a set with ∫E2
dr
1−r < ∞.

A version of the following lemma is included in the proof of Theorem 5.6 in [16,
p. 244]. The precise form of the differential polynomials (4.3) does not appear in [16],
but it is needed for proving Theorems 3.6 and 3.7.

Lemma 4.3 Let the coefficients A0 , . . . , An−1 in (1.1) be meromorphic functions in a
simply connected domain D, and let f0,1 , . . . , f0,n be linearly independent solutions of
the equation (1.1). Define the functions fq ,s as in (4.1). Then, for p ∈ {0, 1, . . . , n − 1}, we
have

−Ap = Cn + An−1Cn−1 +⋯+ Ap+1Cp+1 ,(4.2)

where Cp+1 , . . . , Cn have the following form

Ck = ∑
l0+l1+⋯+lp=k−p

K l0 , l1 , . . . , lp

f (l0)
0,1

f0,1

f (l1)
1,1

f1,1
⋯

f (lp)
p,1

fp,1
, p + 1 ≤ k ≤ n.(4.3)

Here 0 ≤ l0 , l1 , . . . , lp ≤ k − p and K l0 , l1 , . . . , lp are absolute positive constants.

Proof We rename the coefficients A0 , . . . , An−1 by A0,0 , . . . , A0,n−1. Using the stan-
dard order reduction method as in [12, p. 1233] or in [27, p. 60], we obtain, for a fixed
q ∈ {1, . . . , n − 1}, that the functions fq ,s in (4.1) are linearly independent solutions of
the equation

f (n−q) + Aq ,n−q−1 f (n−q−1) +⋯+ Aq ,0 f = 0,(4.4)

where

Aq , j = Aq−1, j+1 +
n−q+1

∑
k= j+2

( k
j + 1

)Aq−1,k
f (k− j−1)
q−1,1

fq−1,1
, j = 0, . . . , n − q − 1.(4.5)
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In the case q = p, the function fp,1 is a solution of (4.4), and therefore

−Ap,0 =
f (n−p)

p,1

fp,1
+ Ap,n−p−1

f (n−p−1)
p,1

fp,1
+⋯+ Ap,1

f ′p,1

fp,1
.(4.6)

We need to write the coefficients Ap, i in (4.6) in terms of the coefficients
A0,0 , . . . , A0,n−1. For that we prove by induction on m = 1, . . . , p, that

Ap, i = Ap−m , i+m + Ap−m , i+m+1C i , p−m , i+m+1 +⋯+ Ap−m ,n−p+mC i , p−m ,n−p+m ,
(4.7)

where i = 0, . . . , n − p − 1,

C i , p−m ,s+m = ∑
lp−m+⋯+lp−1=s−i

K lp−m , . . . , lp−1

f (lp−m)
p−m ,1

fp−m ,1

f (lp−m+1)
p−m+1,1

fp−m+1,1
. . .

f (lp−1)
p−1,1

fp−1,1
,(4.8)

and s = i + 1, . . . , n − p.
When m = 1, we get (4.7) from (4.5) with

C i , p−1, i+2 = (
i + 2
i + 1

)
f (1)p−1,1

fp−1,1
,

C i , p−1, i+3 = (
i + 3
i + 1

)
f (2)p−1,1

fp−1,1
,

⋮

C i , p−1,n−p+1 = (
n − p + 1

i + 1
)

f (n−p−i)
p−1,1

fp−1,1
.

Now, we suppose that (4.7) and (4.8) hold for m, and we aim to prove that
they hold for m + 1. Hence, by applying (4.5) into the coefficients Ap−m , i+m ,
Ap−m , i+m+1 , . . . , Ap−m ,n−p+m in (4.7), and after rearranging the terms, we obtain

Ap, i = Ap−m−1, i+m+1 + Ap−m−1, i+m+2C i , p−m−1, i+m+2 +⋯
+ Ap−m−1,n−p+m+1C i , p−m−1,n−p+m+1 ,

where, for j = i + 1, . . . , n − p,

C i , p−m−1, j+m+1 =
j

∑
s=i
( j + m + 1

s + m + 1
)C i , p−m ,s+m

f ( j−s)
p−m−1,1

fp−m−1,1
,(4.9)

and C i , p−m , i+m ≡ 1. By substituting (4.8) into (4.9), we easily deduce

C i , p−m−1, j+m+1 = ∑
lp−m−1+⋯+lp−1= j−i

K lp−m−1 , . . . , lp−1

f (lp−m−1)
p−m−1,1

fp−m−1,1
⋯

f (lp−1)
p−1,1

fp−1,1
.

Hence, we complete the proof of (4.7) and (4.8) for every m = 1, . . . , p. In particular,
when m = p, we obtain from (4.7) that

Ap, i = A0, p+i + A0, p+i+1C i ,0, p+i+1 + A0, p+i+2C i ,0, p+i+2 +⋯+ A0,nC i ,0,n ,(4.10)
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where 0 ≤ i ≤ n − p − 1. Again, by substituting (4.10) into (4.6) for every 0 ≤ i ≤ n −
p − 1, and by rearranging the terms, we get

−A0, p = Cn + A0,n−1Cn−1 +⋯+ A0, p+1Cp+1 ,

where

C j = C0,0, j +
n−p−1

∑
k=n− j

Cn−p−k ,0, j
f (n−p−k)

p,1

fp,1
.(4.11)

Finally, from (4.11) and (4.8), we can easily get (4.3). ∎

5 Proofs of the results in the complex plane

To prove Theorems 2.3 and 2.6, we need the following version of the lemma on the
logarithmic derivative, which differs from the standard versions in [10] in the sense
that the upper estimate involves an arbitrary R ∈ (r,∞) as opposed to a specifically
chosen R = αr, where α > 1.

Lemma 5.1 Let 0 < R < ∞, α > 1, and let f be a meromorphic function in C. Suppose
that k, j are integers with k > j ≥ 0, and f ( j) /≡ 0. Then there exists a set E3 ⊂ [0,∞)
that has finite linear measure such that for all z satisfying ∣z∣ = r ∈ (0, R)/E3, we have

∣ f (k)(z)
f ( j)(z) ∣ ≲ {

R
R − r

(1 + log+ R + log+ 1
R − r

+ T(R, f ))}
(1+α)(k− j)

.(5.1)

Moreover, if k = 1 and j = 0, then the logarithmic terms in (5.1) can be omitted.

Proof Let {am} denote the sequence of zeros and poles of f ( j) listed according to
multiplicity and ordered by increasing modulus. Let n(r) denote the number of points
am in D(0, r), and let N(r) denote the corresponding integrated counting function.

Consider the case k = 1 and j = 0 first. By a standard reasoning based on the
Poisson–Jensen formula, we obtain

∣ f ′(z)
f (z) ∣ ≤

ρ
(ρ − r)2 ∫

2π

0
∣ log ∣ f (ρe iθ)∣∣ dθ + ∑

∣am ∣<ρ
( 1
∣z − am ∣

+ ∣am ∣
∣ρ2 − āmz∣ ),

where ∣z∣ = r < ρ < R. From the first fundamental theorem, it follows that

∫
2π

0
∣ log ∣ f (ρe iθ)∣∣ dθ ≤ 4π(T(ρ, f ) + O(1)).

Clearly

∑
∣am ∣<ρ

∣am ∣
∣ρ2 − āmz∣ ≤

n(ρ)
ρ − r

.

Let U be the collection of discs D(am , 1/mα) if am ≠ 0 and D(am , 1) if am = 0. Then
the projection E3 of U onto [0,∞) has a linear measure at most

1 +
∞
∑
m=1

2
mα < ∞.
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Let L be the number of points am at the origin. If z /∈ U , we have

∑
∣am ∣<ρ

1
∣z − am ∣

≤ L + ∑
∣am ∣<ρ

mα ≤ L + ∑
∣am ∣<ρ

n(ρ)α ≤ L + n(ρ)1+α .

Since

N(R) − N(ρ) = ∫
R

ρ

n(t)
t

dt ≥ n(ρ)R − ρ
R

,

it follows that

n(ρ) ≤ RN(R)
R − ρ

≤ 2RT(R, f ) + O(R)
R − ρ

.(5.2)

Choosing ρ = (R + r)/2 and putting everything together, we deduce

∣ f ′(z)
f (z) ∣ ≲ (

R
R − r

)
1+α

(T(R, f ) + 1)1+α , z /∈ U ,

which implies the assertion in the case when k = 1 and j = 0.
Consider next the general case. Standard estimates yield

T(s, f (m)) ≲ 1 + log+ R + log+ 1
R − r

+ T(R, f ), s = r + R
2

.(5.3)

Using

∣ f (k)(z)
f ( j)(z) ∣ = ∣

f (k)(z)
f (k−1)(z) ∣⋯∣

f ( j+1)(z)
f ( j)(z) ∣

together with (5.3) and the first part of the proof, the assertion follows. ∎
Remark 5.2 Taking R = r + 1/T(r, f ) in Lemma 5.1 and using Borel’s Lemma [14,
Lemma 2.4], we obtain that there exists a set E4 ⊂ [0,∞) of finite linear measure, such
that

log+ ∣ f (k)(z)
f ( j)(z) ∣ ≲ log T(r, f ) + log r, r ∉ E4 .(5.4)

Proof of Theorem 2.3 We prove the theorem in three steps.
(i) Let { f0,1 , . . . , f0,n} be a given solution base of (1.1). We prove that there exist at

least n − p solutions f in { f0,1 , . . . , f0,n} and a set E ⊂ [0,∞) of finite linear measure
such that

log M(r, Ap) ≲ log T(r, f ), r /∈ E .(5.5)

It suffices to prove that there are at most p solutions f in { f0,1 , . . . , f0,n} and a set
F ⊂ [0,∞) of infinite linear measure such that

log T(r, f ) = o(log M(r, Ap)), r →∞, r ∈ F .(5.6)

We assume on the contrary to this claim that there are p + 1 solutions f in
{ f0,1 , . . . , f0,n}, say f0,1 , . . . , f0, p+1, each satisfying (5.6), and aim for a contradiction.
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Note that Ap is transcendental, because if this is not the situation, that is, if Ap is
a polynomial, then by (2.4), we deduce that Ap+1 , . . . , An−1 are also polynomials. If
Ap−1 is transcendental, then

lim sup
r→∞

n−1
∑
j=p

log+M(r, A j)
log+M(r, Ap−1)

= 0,

which contradicts the assumption that p is the smallest index for which (2.4) holds.
Thus Ap−1 is also polynomial. Similarly, it follows that A0 , . . . , Ap−2 are polyno-
mials. But this contradicts the assumption that at least one of the coefficients is
transcendental.

From Lemma 4.3, we have

log+ ∣Ap(z)∣ ≤
n−1
∑

j=p+1
log M(r, A j) +

n
∑

k=p+1
log+ ∣Ck(z)∣ + O(1).(5.7)

It follows from (4.3) and (5.4) together with Lemma 4.1 that

log+ ∣Ck(z)∣ = O( ∑
l0+⋯+lp=k−p

p

∑
ν=0

log+ ∣
f (lν)
ν ,1

fν ,1
∣ + 1)

= O(
p

∑
ν=0

log T(r, fν ,1) + log r)

= O(
p

∑
ν=0

ν+1
∑
l=1

log T(r, f0, l) + log r)(5.8)

= O(
p+1

∑
l=1

log T(r, f0, l) + log r), r = ∣z∣ ∉ (E1 ∪ E4).

Therefore, we get from (5.7) and (5.8) that

log M(r, Ap) ≤
n−1
∑

j=p+1
log M(r, A j) + O(

p+1

∑
l=1

log T(r, f0, l) + log r), r ∉ (E1 ∪ E4).

Since F has infinite linear measure, it follows that F/(E1 ∪ E4) has also infinite linear
measure. Then, using (2.4), (5.6), and the fact that Ap is transcendental, we obtain

1 ≤ lim sup
r→∞

r∈F/(E1∪E4)

∑n−1
j=p+1 log M(r, A j)

log M(r, Ap)
+ lim sup

r→∞
r∈F/(E1∪E4)

O(∑
p+1
l=1 log T(r, f0, l)
log M(r, Ap)

+ log r
log M(r, Ap)

)

≤ lim sup
r→∞

∑n−1
j=p+1 log M(r, A j)

log M(r, Ap)
+ lim sup

r→∞
r∈F

O(∑
p+1
l=1 log T(r, f0, l)
log M(r, Ap)

+ log r
log M(r, Ap)

)<1,

which is absurd. Thus, the asymptotic inequality (5.5) is now proved.
(ii) We prove that any nontrivial solution f of (1.1) satisfies

log T(r, f ) ≲ log M(r, Ap).(5.9)
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From [20, Corollary 5.3], we infer

T(r, f ) = m(r, f ) ≲ r
n−1
∑
j=0

M(r, A j)
1

n− j + 1, r ≥ 0.(5.10)

From (2.4) and (5.10), we obtain

log+ T(r, f ) ≲ log+ r +
n−1
∑
j=0

log+M(r, A j)(5.11)

≲
p−1

∑
j=0

log+M(r, A j) + log+M(r, Ap),

where the sum on the right is empty if p = 0. Hence, we suppose that p ≥ 1.
We proceed to prove that

log+M(r, A j) ≲ log+M(r, Ap), 0 ≤ j ≤ p − 1.(5.12)

Suppose on the contrary to this claim that there exists an s ∈ {0, . . . , p − 1} such that

lim sup
r→∞

log+M(r, Ap)
log+M(r, As)

= 0.(5.13)

Choose s to be the largest index in {0, . . . , p − 1} for which (5.13) occurs. If s = p − 1,
we arrive at a contradiction with the definition of the index p. Thus s ∈ {0, . . . , p − 2},
where p ≥ 2. Then (5.12) holds for j = s + 1, . . . , p − 1. Hence, from (2.4) and (5.13), we
obtain

lim sup
r→∞

∑n
j=s+1 log+M(r, A j)

log+M(r, As)

= lim sup
r→∞

∑p−1
j=s+1 log+M(r, A j) +∑n

j=p+1 log+M(r, A j) + log+M(r, Ap)
log+M(r, As)

= 0,

which contradicts our assumption that p is the smallest index for which (2.4) occurs.
This proves (5.12). Thus (5.9) follows from (5.11) and (5.12).

(iii) It remains to prove that 0 is the only finite deficient value for the rapid
solutions. According to Wittich’s theorem, it suffices to prove that rapid solutions
are also admissible solutions of (1.1). From (2.4) and (5.12), we get log M(r, A j) ≲
log M(r, Ap), for every j = 0, . . . , n − 1. Thus, every rapid solution f of (1.1) satisfies

T(r, A j)
T(r, f ) ≤

log M(r, A j)
T(r, f ) ≲

log M(r, Ap)
T(r, f ) ≍ log T(r, f )

T(r, f ) → 0, r →∞, r ∉ E ,

for all j = 0, . . . , n − 1, i.e., every rapid solution is an admissible solution. ∎
Proof of Theorem 2.6 Similarly to the proof of Theorem 2.3, we assume the contrary
to the assertion that there exist p + 1 linearly independent solutions f0,1 , . . . , f0, p+1 and
a set F ⊂ [0,∞) of infinite linear measure such that

log T(r, f0, l) = o(log M(r, Ap)), r →∞, r ∈ F , l = 1, . . . , p + 1.(5.14)
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From Lemma 4.3 and from Young’s inequality for the product [29, p. 49], we obtain

∣Ap(z)∣ ≤
n−1
∑

j=p+1

1
η j
∣A j(z)∣η j + ∣Cn(z)∣ +

n−1
∑

j=p+1
∣C j(z)∣η

∗
j ,(5.15)

where the constants η j > 1 are given in the statement of the theorem, and the constants
η∗j > 1 are their conjugate indices satisfying 1/η j + 1/η∗j = 1 for every j = p + 1, . . . , n −
1. From (2.6), we can find a δ > 0 such that for some r0 > 0, we have

n−1
∑

j=p+1

1
η j
∣A j(z)∣η j < (1 − δ)M(r, Ap), z ∈ �, ∣z∣ = r > r0 .(5.16)

Hence, it follows from (5.8), (5.15), and (5.16) that

log M(r, Ap) ≲
p+1

∑
l=1

log T(r, f0, l) + log r, r ∈ (r0 ,∞)/(E1 ∪ E4).

Dividing both sides of the last asymptotic inequality by log M(r, Ap) and by letting
r →∞ in F/(E1 ∪ E4) and using (5.14) and the fact that Ap is transcendental, we get
a contradiction. Thus the proof is complete. ∎
Proof of Theorem 2.2 The proof is quite similar to the proof of Theorem 2.3. Hence,
we only state the differences and omit the rest of the details.

For the lower bound of log T(r, f ) in (2.3), we apply the proximity function on
(4.2) in Lemma 4.3 and use the standard logarithmic derivative estimate.

We deduce the upper bound of log T(r, f ) in (2.3) in the following way: similarly
to (5.12), we deduce

T(r, A j) ≲ T(r, Ap), 0 ≤ j ≤ p − 1.

Therefore, combining this with (5.10) and (2.2) and the fact that Ap is transcendental,
we obtain for any r < R < ∞,

log+ T(r, f ) ≲ log+ r +
n−1
∑
j=0

log+M(r, A j)

≤ log+ R + R + r
R − r

n−1
∑
j=0

T(R, A j)

≲ R + r
R − r

T(R, Ap).

Finally, every rapid solution f of (1.1) satisfies

T(r, A j)
T(r, f ) ≲

T(r, Ap)
T(r, f ) ≲ log T(r, f )

T(r, f ) → 0, r →∞, r ∉ E ,

for all j = 0, . . . , n − 1. ∎
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6 Proofs of the results in the unit disc

The proofs of Theorems 3.1, 3.2 and 3.4 follow their plane analogues. In fact, we use
Lemma 4.2 instead of Lemma 4.1. Furthermore, we use the unit disc counterpart of
the lemma on the logarithmic derivatives to prove Theorem 3.1. The following lemma
is the unit disc analogue of Lemma 5.1 and is needed to prove Theorems 3.2 and 3.4.

Lemma 6.1 Let 0 < R < 1, α > 1 and let f be a meromorphic function in D. Suppose
that k, j are integers with k > j ≥ 0 and f ( j) /≡ 0. Then there exists a set E ⊂ [0, 1) with
∫E

dr
1−r < ∞ such that for all z satisfying ∣z∣ = r ∈ (0, R)/E, we have

∣ f (k)(z)
f ( j)(z) ∣ ≲

1
(R − r)k− j {

R
R − r

(1 + log+ 1
R − r

+ T(R, f ))}
(1+α)(k− j)

.(6.1)

Moreover, if k = 1 and j = 0, then the logarithmic term in (6.1) can be omitted.

Proof Following the proof of Lemma 5.1, let U be the collection of discs D(am , Rm),
where Rm = (1 − ∣am ∣)/mα and {am} is the sequence of zeros and poles of f ( j) in D

listed according to multiplicity and ordered by increasing modulus. Clearly,
∞
∑
m=1

Rm

1 − ∣am ∣
< ∞.

Then the projection E of U on [0, 1) satisfies ∫E
dr
1−r < ∞, see [5, pp. 749–750]. Let L

denote the number of the points am at the origin. If z ∉ U , we have

∑
∣am ∣<ρ

1
∣z − am ∣

≤ L + ∑
0<∣am ∣<ρ

mα

1 − ∣am ∣
≤ L + 1

R − ρ ∑
0<∣am ∣<ρ

n(ρ)α ≤ L + n(ρ)1+α

R − ρ

for all r < ρ < R. Using this estimate with the other estimates in the proof of Lemma
5.1, the assertion follows. ∎

We will also use the following minor modification of Borel’s lemma [14, Lemma
2.4].

Lemma 6.2 Let T ∶ [r0 , 1) ↦ [1,∞) be continuous and nondecreasing function. For
any σ > 0, there exists a set E(σ) ⊂ [0, 1) with ∫E(σ)

dt
1−t < ∞ such that

T(r + 1 − r
eT(r)σ ) < 2T(r), r ∉ E(σ).

Remark 6.3 Taking R = r + (1 − r)/(eT(r, f )) in Lemma 6.1, and using Lemma 6.2,
we get

log ∣ f (k)(z)
f ( j)(z) ∣ ≲ log T(r, f ) + log 1

1 − r
, r ∉ E ,

where E is a set with ∫E
dt
1−t < ∞.

To prove Theorem 3.7, we will use an estimation for the logarithmic derivatives
from [6].
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Lemma 6.4 [6] Let 0 < R < ∞ and let f be meromorphic in a domain containing
D(0, R). Suppose that j, k are integers with k > j ≥ 0 and f ( j) /≡ 0. Then

∫
r′<∣z∣<r

∣ f (k)(z)
f ( j)(z) ∣

1
k− j

dm(z)

≲ R log
e(R − r′)

R − r
(1 + log+ 1

R − r
+ T(R, f )), 0 ≤ r′ < r < R.

Remark 6.5 In the case that f is meromorphic in D, we take R = r + (1 −
r)/(eT(r, f )) in Lemma 6.4 and use Lemma 6.2 to obtain

log+∫
D(0,r)

∣ f (k)(z)
f ( j)(z) ∣

1
k− j

dm(z) ≲ log T(r, f ) + log 1
1 − r

, r ∉ E5 ,(6.2)

where E5 is a set with ∫E5
dt
1−t < ∞.

Proof of Theorem 3.7 (i) Let { f0,1 , . . . , f0,n} be a given solution base of (1.1). We
prove that there exist at least n − p solutions f in { f0,1 , . . . , f0,n} and a set E ⊂ [0, 1)
with ∫E

dt
1−t < ∞, such that

log+∫
D(0,r)

∣Ap(z)∣
1

n−p

dm(z) ≲ log T(r, f ), r ∉ E .(6.3)

It suffices to prove that there are at most p solutions f in { f0,1 , . . . , f0,n} and a set
F ⊂ [0, 1) with ∫F

dt
1−t = ∞, such that

log T(r, f ) = o( log+∫
D(0,r)

∣Ap(z)∣
1

n−p dm(z)), r → 1− , r ∈ F .(6.4)

We assume on the contrary to this claim that there are p + 1 solutions f in
{ f0,1 , . . . , f0,n}, say f0,1 , . . . , f0, p+1, each satisfying (6.4), and aim for a contradiction.

Notice that Ap ∉ A−∞. In fact, if Ap ∈ A−∞, then clearly

log∫
D(0,r)

∣Ap(z)∣
1

n−p dm(z) ≲ log 1
1 − r

.

Hence, from (3.10), the discussion following Theorem 3.7 and the definition of
the index p, we deduce that all coefficients A0 , . . . , An−1 belong to A−∞ and this
contradicts the assumption that at least one coefficient is not in A−∞.

It follows from Lemma 4.3 that

∣Ap(z)∣
1

n−p ≤
n−1
∑

j=p+1
∣A j(z)∣

1
n−p ∣C j(z)∣

1
n−p + ∣Cn(z)∣

1
n−p .
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Using Young’s inequality for the product [29, p. 49] with conjugate indices n−p
n− j and

n−p
j−p , we get

∣Ap(z)∣
1

n−p ≤
n−1
∑

j=p+1

n − j
n − p

∣A j(z)∣
1

n− j +
n
∑

k=p+1
∣Ck(z)∣

1
k−p .(6.5)

From (3.10), we deduce that there are r0 > 0 and sufficiently small δ > 0 such that, for
r > r0,

n−1
∑

j=p+1

n − j
n − p ∫D(0,r)

∣A j(z)∣
1

n− j dm(z) < (1 − δ)∫
D(0,r)

∣Ap(z)∣
1

n−p dm(z).(6.6)

By combining (6.5) and (6.6), we obtain for r > r0,

log+∫
D(0,r)

∣Ap(z)∣
1

n−p dm(z) ≲
n
∑

k=p+1
log+∫

D(0,r)
∣Ck(z)∣

1
k−p dm(z) + 1.(6.7)

For k = p + 1, . . . , n, we have by using the weighted AM–GM inequality [31, p. 22],
(6.2) and Lemma 4.2,

log+∫
D(0,r)

∣Ck(z)∣
1

k−p dm(z)

≲ ∑
l0+l1+⋯+lp=k−p

log+∫
D(0,r)

(∣
f (l0)
0,1

f0,1
∣∣

f (l1)
1,1

f1,1
∣⋯∣

f (lp)
p,1

fp,1
∣)

1
k−p

dm(z) + 1

≲ ∑
l0+l1+⋯+lp=k−p

p

∑
ν=0

log+∫
D(0,r)

∣
f lν)
ν ,1

fν ,1
∣

1
lν

dm(z) + 1

≲
p

∑
ν=0

log T(r, fν ,1) + log 1
1 − r

≲
p+1

∑
l=1

T(r, f0, l) + log 1
1 − r

, r = ∣z∣ ∈ (r0 , 1)/(E2 ∪ E5).

Hence, from (6.7), we get

log+∫
D(0,r)

∣Ap(z)∣
1

n−p dm(z) ≲
p+1

∑
l=1

T(r, f0, l) + log 1
1 − r

, r ∈ (r0 , 1)/(E2 ∪ E5).

By letting r → 1− in F/(E2 ∪ E5), we get a contradiction by (6.4) and (3.12). Thus, (6.3)
is proved.

(ii) We prove that any nontrivial solution f of (1.1) satisfies

log T(r, f ) ≲ log∫
D(0,r)

∣Ap(z)∣
1

n−p dm(z).(6.8)

From [22, Corollary 5.3], see also [20, Lemma F], we obtain

T(r, f ) ≲
n−1
∑
j=0

∫
D(0,r)

∣A j(z)∣
1

n− j dm(z) + 1,
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and using (3.10) yields

T(r, f ) ≲
p−1

∑
j=0

∫
D(0,r)

∣A j(z)∣
1

n− j dm(z) + ∫
D(0,r)

∣Ap(z)∣
1

n−p dm(z).(6.9)

With the same reasoning used to prove (5.12), we can prove

∫
D(0,r)

∣A j(z)∣
1

n− j dm(z) ≲ ∫
D(0,r)

∣Ap(z)∣
1

n−p dm(z), j = 0, . . . , p − 1.(6.10)

Thus, (6.8) follows from (6.9) and (6.10).
(iii) The fact that the solutions satisfying (6.3) are rapid in the sense of (II) follows

immediately from (3.12) with Ap in place of g. Thus, it remains to prove that 0 is
the only possible finite deficient value of the solutions f satisfying (6.3). Let f be a
nontrivial solution of (1.1) satisfying (6.3). For any j = 0, . . . , n − 1, 0 < r < R < 1, and
R > 1/

√
π, we obtain by Jensen’s inequality

log+ ∫
D(0,R)

∣A j(z)∣
1

n− j dm(z) ≥ log+∫
D(0,R)

∣A j(z)∣
1

n− j
dm(z)

πR2

≥ 1
(n − j)πR2 ∫D(0,R)

log+ ∣A j(z)∣dm(z)

≥ 1
(n − j)πR2 ∫

R

r
T(t, A j)tdt

≥ r
(n − j)πR2 (R − r)T(r, A j).

(6.11)

From (3.10) and (6.10), we have

log+∫
D(0,R)

∣A j(z)∣
1

n− j dm(z) ≲ log+∫
D(0,R)

∣Ap(z)∣
1

n−p dm(z) + 1, j = 0, . . . , n − 1.

Therefore, combining this with (6.3) and (6.11), it follows

T(r, A j) ≲
log T(R, f ) + 1

R − r
, R ∉ E , j = 0, . . . , n − 1.(6.12)

Let R = r + 1−r
e
√

T(r , f )
, and let Ẽ = {r ∈ [0, 1) ∶ R ∈ E}. We will prove that ∫Ẽ

dr
1−r < ∞.

Suppose that ∫Ẽ
dr
1−r = ∞ and aim for a contradiction. We have

dR = φ(r)dr,(6.13)

where

φ(r) = 1 − 1
e
√

T(r, f )
−
(1 − r) dT(r , f )

dr
2eT(r, f )3/2 .

Using the first main theorem [27, Theorem 2.1.10] in (5.2), we obtain for any large
enough r < 1 and any r < R∗ < 1, that

n(r, e iθ , f ) ≤ 2 T(R∗ , f )
R∗ − r
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uniformly for any θ ∈ [0, 2π]. Therefore, by choosing R∗ = r + 1−r
eT(r , f )1/4 , it follows

from Lemma 6.2 and from Cartan’s identity [14, p. 9], that

r dT(r, f )
dr

= 1
2π ∫

2π

0
n(r, e iθ , f )dθ ≤ 4e T(r, f )5/4

1 − r
, r ∉ E( 1

4 ),

where ∫E( 1
4 )

dt
1−t < ∞. Thus, we obtain

1 > φ(r) ≥ 1 − 1
e
√

T(r, f )
− 2

r 4
√

T(r, f )
, r ∉ E( 1

4 ).

Hence, there exists an r0 ∈ (0, 1) such that for all r ∈ (r0 , 1)/E( 1
4 ), we have 1/2 < φ(r) <

1. Thus,

∞ > ∫
E

dR
1 − R

≥ ∫
Ẽ

φ(r)dr
1 − r

≥ 1
2 ∫Ẽ/E( 1

4 )

dr
1 − r

= ∞,

which is a contradiction. Hence, ∫Ẽ
dr
1−r < ∞.

From (6.12) and from Lemma 6.2 by choosing R = r + 1−r
e
√

T(r , f )
, we obtain for r ∉

(Ẽ ∪ E( 1
2 )),

T(r, A j)
T(r, f ) ≲ log T(R, f ) + 1

(R − r)T(r, f ) ≲
log T(r, f ) + 1
(1 − r)

√
T(r, f )

≲ 1
(1 − r) 4

√
T(r, f )

.

Since f is of infinite order, it follows that there exists a set F ⊂ [0, 1) with ∫F
dt
1−t = ∞

such that

T(r, f ) > 1
(1 − r)8 , r ∈ F .

Therefore,

T(r, A j)
T(r, f ) ≲ 1 − r, r ∈ F/(Ẽ ∪ E( 1

2 )),

which means, T(r, A j) = o(T(r, f )), r ∈ F/(Ẽ ∪ E( 1
2 )), for any j = 0, . . . , n − 1.

Clearly, the set F̃ = F/(Ẽ ∪ E( 1
2 )) satisfies ∫F̃

d t
1−t = ∞. Thus, following the proof of

Wittich’s theorem [27, Theorem 4.3], we deduce that for any a ∈ C/{0}

m(r, 1
f − a

) = o(T(r, f )), r → 1−, r ∈ F̃ .

Therefore,

δ(a, f ) = lim inf
r→1−

m(r, 1
f−a )

T(r, f ) ≤ lim inf
r→1−
r∈F̃

m(r, 1
f−a )

T(r, f ) = 0.

Hence, 0 is the only possible finite deficient value for f. ∎
The following lemma is needed to prove Theorem 3.6.

https://doi.org/10.4153/S0008414X20000607 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000607


On the number of linearly independent admissible solutions 1581

Lemma 6.6 [6] Let f be meromorphic in D, and let j, k be integers with k > j ≥ 0 such
that f ( j) /≡ 0. Let s ∶ [0, 1) → [0, 1) be an increasing continuous function such that s(r) ∈
(r, 1) and s(r) − r is decreasing. If δ ∈ (0, 1), then there exists a measurable set E ⊂ [0, 1)
with d(E) ≤ δ such that

∫
2π

0
∣ f (k)(re iθ)

f ( j)(re iθ) ∣
1

k− j

dθ ≲ T(s(r), f ) − log(s(r) − r)
s(r) − r

, r ∉ E .(6.14)

Moreover, if k = 1 and j = 0, then the logarithmic term in (6.14) can be omitted.

Remark 6.7 Since s(r) in Lemma 6.6 is arbitrary, we can choose it as s(r) = r + (1 −
r)/(eT(r, f )). Then, using Lemma 6.2, we obtain

log∫
2π

0
∣ f (k)(re iθ)

f ( j)(re iθ) ∣
1

k− j

dθ ≲ log T(r, f ) + log 1
1 − r

, r ∉ E ,

where d(E) < 1.

Proof of Theorem 3.6 Let { f0,1 , . . . , f0,n} be a given solution base of (1.1). We prove
that there exist at least n − p solutions f in { f0,1 , . . . , f0,n} and a set E ⊂ [0, 1) with
d(E) < 1, such that

log+∫
2π

0
∣Ap(re iθ)∣

1
n−p

dθ ≲ log T(r, f ), r ∉ E .(6.15)

It suffices to prove that there are at most p solutions f in { f0,1 , . . . , f0,n} and a set
F ⊂ [0, 1), with d(F) = 1, such that

log T(r, f ) = o( log+∫
2π

0
∣Ap(re iθ)∣

1
n−p

dθ), r → 1− , r ∈ F .

We assume on the contrary to this claim that there are p + 1 solutions f in
{ f0,1 , . . . , f0,n}, say f0,1 , . . . , f0, p+1, each satisfying (6.4) and aim for a contradiction.
The rest of the proof is similar to the proof of Theorem 3.7, and hence we omit the
details here.

The fact that the solutions satisfying (6.15) are rapid in the sense of (I) follows from
(3.9). Thus, it remains to prove that 0 is the only finite deficient value for the solutions
satisfying (6.15). From (3.6) and the definition of the index p, we get

log+∫
2π

0
∣A j(re iθ)∣

1
n− j

dθ ≲ log+∫
2π

0
∣Ap(re iθ)∣

1
n−p

dθ , j = 0, . . . , n − 1.
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Therefore, for any solution f satisfying (6.15) and for every j = 0, . . . , n − 1, we have by
Jensen’s inequality,

T(r, A j)
T(r, f ) ≲

log+∫
2π

0
∣A j(re iθ)∣

1
n− j

dθ

T(r, f )

≲
log+∫

2π

0
∣Ap(re iθ)∣

1
n−p

dθ

T(r, f ) ≲ log T(r, f )
T(r, f ) → 0, r → 1− , r ∉ E .

Following the proof of Wittich’s theorem [27, Theorem 4.3], we deduce that for any
a ∈ C/{0}

m(r, 1
f − a

) = o(T(r, f )), r → 1− , r ∉ E ,

where d(E) < 1. Thus,

δ(a, f ) = lim inf
r→1−

m(r, 1
f−a)

T(r, f ) ≤ lim inf
r→1−
r∉E

m(r, 1
f−a)

T(r, f ) = 0.

Hence, 0 is the only possible finite deficient value for f. ∎

7 Results on linear difference equations

Consider the difference equation

Δn f + An−1Δn−1 f +⋯+ A1Δ f + A0 f = 0,(7.1)

where A0(/≡ 0), . . . , An−1 are entire functions, and Δ is a difference operator defined
by Δ f (z) = f (z + 1) − f (z) and Δn f (z) = Δ(Δn−1 f (z)). Equation (7.1) can be written
in the form

f (z + n) + Bn−1 f (z + n − 1) +⋯ + B0 f (z) = 0(7.2)

and vice versa, see [26, Section 3.2]. Concerning the growth of meromorphic solutions
of (7.2), where the coefficients B0 , . . . , Bn−1 are entire, Korhonen and Ronkainen
proved [26, Theorem 4], which reads as follows: Suppose that there exists an integer
p such that

T(r, B j) = o(T(r, Bp))(7.3)

for all j ≠ p, where r →∞ outside an exceptional set of finite logarithmic measure. If f is
a meromorphic solution of (7.2) with hyper-order ρ2( f ) = ρ2 < 1, where

ρ2( f ) = lim sup
r→∞

log log T(r, f )
log r

,
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then for any ε > 0,

T(r, f ) ≥ r1−ρ2−εT(r, Bp)(7.4)

outside a set of finite logarithmic measure. This result is a generalization of [4, Theorem
9.2]. From the proof of [26, Theorem 4], if we replace the assumption (7.3) by

lim sup
r→∞

∑
j≠p

T(r, B j)
T(r, Bp)

< 1,

then the same conclusion (7.4) still holds. However, the reasoning in the proof of
[26, Theorem 4] does not seem to apply to (7.1). The reason for this is that the
estimate for m(r, Δ j f /Δk f ), j < k, is different from the corresponding estimate
for m(r, Δ j f /Δk f ), j > k. Meanwhile, the estimate for m(r, f (z + j)/ f (z + k)) is
essentially the same for any j /= k.

The discussion above gives rise to the following difference analogue
of Theorem 2.2.

Theorem 7.1 Let { f1 , . . . , fn} be a meromorphic solution base of (7.1) with entire
coefficients A0 , . . . , An−1 such that at least one of them is nonconstant. Suppose that
p ∈ {0, . . . , n − 1} is the smallest index such that (2.2) holds. Suppose further that
each solution has hyper-order < 1, and let ρ2 be the maximum of hyper-orders of
all the solutions. Then Ap is nonconstant, and there are at least n − p solutions f in
{ f1 , . . . , fn} with the following property: For any ε > 0, there exists a set I ⊂ [1,∞) of
finite logarithmic measure, such that

T(r, f ) ≥ r1−ρ2−εT(r, Ap), r /∈ (I ∪ [0, 1]).(7.5)

For these solutions, the value 0 is the only possible finite deficient value.

Remark 7.2 Suppose that f is a meromorphic solution of (7.1) with constant coeffi-
cients. We make a simple modification of the reasoning in [19, Section 1] as follows.
Define w(z) = f (e2πiz + z), and denote ζ = e2πiz + z. Then

Δw(z) = w(z + 1) −w(z) = f (ζ + 1) − f (ζ) = Δ f (ζ).

It follows that w(z) solves (7.1) and grows much faster than f (z). Further changes of
variable produce a sequence of functions {wn} each solving (7.1) such that wn+1 grows
faster than wn for every n. Thus no upper bound for the growth of solutions of (7.1)
can be given in the case of constant coefficients.

In order to prove Theorem 7.1, we need the following difference analogue of
Lemma 4.1.

Lemma 7.3 Suppose that f0,1 , . . . , f0,n are linearly independent meromorphic func-
tions of hyper-order < 1. Define inductively

fq ,s = Δ(
fq−1,s+1

fq−1,1
), 1 ≤ q ≤ n − 1, 1 ≤ s ≤ n − q.(7.6)
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Then there exists a set I1 ⊂ [1,∞) of finite logarithmic measure, such that

T(r, fq ,s) ≲
q+s

∑
l=1

T(r, f0, l) + 1, r /∈ (I1 ∪ [0, 1]).(7.7)

Proof First, suppose that q = 1. If 1 ≤ s ≤ n − 1, it follows from (7.6), [13, Theorem 5.1]
and [13, Lemma 8.3] that there exists a set I0 ⊂ [1,∞) of finite logarithmic measure,
such that

T(r, f1,s(z)) ≤ T(r, f0,s+1

f0,1
(z + 1)) + T(r, f0,s+1

f0,1
(z)) + O(1)

≲ T(r, f0,s+1

f0,1
(z)) + N(r + 1, f0,s+1

f0,1
(z)) + 1 ≲ T(r, f0,s+1

f0,1
(z)) + 1

≲
1+s
∑
l=1

T(r, f0, l) + 1, r →∞, r /∈ (I0 ∪ [0, 1]).

Thus, (7.7) holds for q = 1.
Second, we assume that (7.7) is true for q = m − 1, that is, there exists a set I∗0 ⊂

[1,∞) of finite logarithmic measure, such that

T(r, fm−1,s) ≲
m+s−1
∑
l=1

T(r, f0, l) + 1, r /∈ (I∗0 ∪ [0, 1]),

where 1 ≤ s ≤ n − m + 1. Therefore, applying the reasoning from the case q = 1 to the
functionss

fm ,s = Δ( fm−1,s+1

fm−1,1
), 1 ≤ s ≤ n − m,

the assertion (7.7) follows for q = m. This proves (7.7) for 1 ≤ q ≤ n − 1. ∎
Using the order reduction method for linear difference equations introduced in

[26], we easily obtain the following difference analogue of Lemma 4.3.

Lemma 7.4 Let the coefficients A0 , . . . , An−1 in (7.1) be meromorphic functions in C,
and let f0,1 , . . . , f0,n be linearly independent solutions of the equation (7.1). Define the
functions fq ,s as in (7.6). Then, for p ∈ {0, 1, . . . , n − 1}, we have

−Ap = Cn + An−1Cn−1 +⋯+ Ap+1Cp+1 ,

where Cp+1 , . . . , Cn have the following form

C j = ∑
l0+l1+⋯+lp= j−p

K l0 , l1 , . . . , lp

Δl0 f0,1(z + j − l0)
f0,1(z + n)

⋯
Δlp−1 fp−1,1(z + j − p + 1 − lp−1)

fp−1,1(z + n − p + 1)
Δlp fp,1(z)

fp,1(z) .

Here 0 ≤ l0 , l1 , . . . , lp ≤ j − p and K l0 , l1 , . . . , lp are absolute positive constants.

Finally, we need a difference analogue of Wittich’s theorem.
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Lemma 7.5 Suppose that a meromorphic solution f of (7.1) satisfies (1.2), where E ⊂
[1,∞) is a set of finite logarithmic measure. Then 0 is the only possible finite Nevanlinna
deficient value for f.

Proof Let a ∈ C/{0}. Using the same reasoning as in the proof of [27, Theorem 4.3]
and by using the lemma on the logarithmic differences [13, Theorem 5.1] instead of the
lemma on the logarithmic derivatives, we easily obtain

lim inf
r→∞

m(r, 1
f−a)

T(r, f ) = 0.

This completes the proof. ∎
Proof of Theorem 7.1 We rename the solutions f1 , . . . , fn by f0,1 , . . . , f0,n . We prove
that there are at most p solutions f in { f0,1 , . . . , f0,n} satisfying, for some ε0 > 0,

T(r, f )
r1−ρ2−ε0 T(r, Ap)

< 1, r ∈ F ,(7.8)

where F ⊂ [1,∞) has infinite logarithmic measure. We assume on the contrary to this
claim that there are p + 1 solutions f in { f0,1 , . . . , f0,n}, say f0,1 , . . . , f0, p+1, satisfying
(7.8) and aim for a contradiction.

Similarly as in the proof of Theorem 2.3, we deduce that Ap is nonconstant, and
therefore T(r, Ap) is unbounded.

From Lemma 7.4, we have the immediate estimate

m(r, Ap) ≤
n
∑

j=p+1
m(r, A j) +

n
∑

j=p+1
m(r, C j) + O(1).(7.9)

From [13, Theorem 5.1], for any ε ∈ (0, ε0), there exists a set I2 ⊂ [1,∞) of finite
logarithmic measure, such that

n
∑

j=p+1
m(r, C j) ≲

p

∑
q=0

T(r, fq ,1)
r1−ρ2−ε + 1, r ∉ (I2 ∪ [0, 1]).

Therefore, from Lemma 7.3, it follows that
n
∑

j=p+1
m(r, C j) ≲

p+1

∑
l=1

T(r, f0, l)
r1−ρ2−ε + 1, r ∉ (I1 ∪ I2 ∪ [0, 1]).(7.10)

Analogously as in the proof of Theorem 2.3, we use (2.2), (7.8), (7.9), and (7.10) to
obtain a contradiction. Thus, we obtain the conclusion that at least n − p solutions
f in { f1 , . . . , fn} satisfy (7.5).

From (2.2) and from the definition of the index p, we easily get

T(r, A j) = O(T(r, Ap)), j /= p.

Therefore, combining this with (7.5), we obtain T(r, A j) = o(T(r, f )), r →∞, r ∉
(I ∪ [0, 1]). Hence, according to Lemma 7.5, the value 0 is the only possible finite
deficient value for the solutions satisfying (7.5). Thus, the theorem is proved. ∎
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8 Results on linear q-difference equations

Since we have discussed the difference equations in the previous Section 7, it is natural
to consider next the q-difference equations of the form

Δn
q f + An−1Δn−1

q f +⋯+ A1Δq f + A0 f = 0,(8.1)

where A0(/≡ 0), . . . , An−1 are entire functions, and Δq , for q ∈ C/{0}, is a q-difference
operator defined by Δq f (z) = f (qz) − f (z), Δn

q f (z) = Δq(Δn−1
q f (z)).

A key tool in the theory of q-difference equations is a lemma on the logarithmic
q-difference [1, Theorem 1.1], which reads as follows: Let f be a nonconstant zero-order
meromorphic function, and let q ∈ C/{0}. Then

m(r, f (qz)
f (z) ) = o(T(r, f ))(8.2)

on a set H ⊂ [1,∞) of lower logarithmic density 1, that is,

logdens(H) = lim inf
r→∞

1
log r ∫H∩[0,r]

dr
r
= 1.

Other than the obvious differences between the lemma on the logarithmic difference
[13, Theorem 5.1] and the estimate (8.2), the q-difference equations (8.1) are operated
very similarly as the difference equations (7.1). Therefore, we confine ourselves to
stating the results for (8.1) without proofs. The reader can easily verify the results by
following the reasoning in Section 7.

We begin with a q-difference analogue of Theorem 2.2.

Theorem 8.1 Let { f1 , . . . , fn} be a meromorphic solution base of (8.1) with entire
coefficients A0 , . . . , An−1 such that at least one of them is nonconstant. Suppose that
p ∈ {0, . . . , n − 1} is the smallest index such that (2.2) holds. If each solution is of zero
order, then Ap is nonconstant, and there are at least n − p solutions f in { f1 , . . . , fn}
satisfying

T(r, Ap) = o(T(r, f )), r ∉ J ,(8.3)

where J ⊂ [1,∞) is a set of zero upper logarithmic density, that is,

logdens(J) = lim sup
r→∞

1
log r ∫J∩[0,r]

dr
r
= 0.

Recall that logdens(Hc) = 1 − logdens(H), where Hc = [1,∞)/H. Then (8.2) holds
outside the set Hc , where logdens(Hc) = 0, and this matches the set J in Theorem 8.1.

It is known that a meromorphic function of lower order ≤ 1/2 cannot have more
than one deficient value [36, Theorem 3.5]. Then, differing from difference equation
(7.1), the deficient values of the solutions of (8.1) are not considered in Theorem 8.1.

By the definition of the index p, the conclusion (8.3) holds for any A j in place of
Ap . Therefore, the solutions f satisfying (8.3) are admissible with respect to the set J.
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For q-difference equations, the concept of logarithmic order is used instead of the
usual order in [33]. The logarithmic order of a meromorphic function g is given by

ρlog(g) = lim sup
r→∞

log T(r, g)
log log r

.

From (8.3), we deduce that ρlog( f ) ≥ ρlog(Ap). Indeed, (8.3) implies

T(r, Ap) ≤ T(r, f ), r ∉ J .

Then from [23, Lemma 4.2] we obtain ρlog( f ) ≥ ρlog(Ap). Thus, Theorem 8.1 can be
seen as another point of view to the results on q-difference equations in [33].

We state the two lemmas on the order reduction method for the equation (8.1).
Using T(r, f (qz)) = T(∣q∣r, f ) + O(1) in [2, p. 249] as well as [15, Lemma 4], we can
obtain a q-difference analogue of Lemma 4.1.

Lemma 8.2 Suppose that f0,1 , . . . , f0,n are linearly independent meromorphic func-
tions of zero order. Define inductively

fq ,s = Δq(
fq−1,s+1

fq−1,1
), 1 ≤ q ≤ n − 1, 1 ≤ s ≤ n − q.(8.4)

Then

T(r, fq ,s) ≲
q+s

∑
l=1

T(r, f0, l) + 1, r ∉ J ,

where J ⊂ [1,∞) is a set of zero upper logarithmic density.

By a simple modification of the reasoning in [26], we obtain, for a fixed q ∈
{1, . . . , n − 1}, that the functions fq ,s in (8.4) are linearly independent solutions of the
equation

Δn−q
q f + Aq ,n−q−1Δn−q−1

q f +⋯+ Aq ,1Δq f + Aq ,0 f = 0,

where

Aq , j(z) =
n−q+1

∑
k= j+1

( k
j + 1

)Aq−1,k(z)
Δk− j−1

q fq−1,1(q j+1z)
fq−1,1(qn−q+1z)

holds for q = 1, . . . , n − 1 and j = 0, . . . , n − q − 1. Then we follow the proof of Lemma
4.3 to obtain a representation for Ap in terms of the coefficients Ap+1 , . . . , An−1 and
the solution base of (8.1). This discussion leads to the following q-difference analogue
of Lemma 4.3.

Lemma 8.3 Let the coefficients A0 , . . . , An−1 in (8.1) be meromorphic functions in C,
and let f0,1 , . . . , f0,n be linearly independent solutions of the equation (8.1). Define the
functions fq ,s as in (8.4). Then, for p ∈ {0, 1, . . . , n − 1}, we have

−Ap = Cn + An−1Cn−1 +⋯+ Ap+1Cp+1 ,
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where C j , j = p + 1, . . . , n, have the following form

C j = ∑
l0+l1+⋯+lp= j−p

K l0 , l1 , . . . , lp

Δl0
q f0,1(q j−l0 z)

f0,1(qnz)

⋯
Δlp−1 fp−1,1(q j−p+1−lp−1 z)

fp−1,1(qn−p+1z)
Δlp fp,1(z)

fp,1(z) .

Here 0 ≤ l0 , l1 , . . . , lp ≤ j − p and K l0 , l1 , . . . , lp are absolute positive constants.

Appendix A Functions of finite order

The purpose of this appendix is to define the Nevanlinna functions and to elaborate
on meromorphic functions of finite order. For a nonconstant function f meromorphic
in the disc ∣z∣ < R ≤ ∞, the Nevanlinna characteristic function is defined by

T(r, f ) = m(r, f ) + N(r, f ),

where m(r, f ) is the proximity function and N(r, f ) is the integrated counting function,
given, respectively, by

m(r, f ) = 1
2π ∫

2π

0
log+ ∣ f (re iφ)∣dφ,

N(r, f ) = ∫
r

0

n(t, f ) − n(0, f )
t

dt + n(0, f ) log r.

Here, log+ x = max{0, log x} for x ≥ 0 and n(r, f ) denotes the number of poles of
f in ∣z∣ ≤ r < R, counting multiplicities. The functions T , m, and N are fundamental
elements of Nevanlinna theory [14, 27, 30, 35]. If f has no poles, its characteristic
function is simply T(r, f ) = m(r, f ), and it is related to the maximum modulus
M(r, f ) = max

∣z∣=r
∣ f (z)∣ by means of the standard inequalities

T(r, f ) ≤ log+M(r, f ) ≤ σ + r
σ − r

T(σ , f ), r < σ < R.(A.1)

The cases R = ∞ and R < ∞ are somewhat different. By appealing to a simple
rescaling, it suffices to discuss the cases R = ∞ and R = 1, that is, we discuss functions
that are meromorphic either in the complex plane C or in the unit disc D.

If f is rational in C, then T(r, f ) = O(log r) as r →∞, while if f is transcendental
in C, then

lim
r→∞

T(r, f )
log r

= ∞

by [35, Theorem 1.5]. For example, if f (z) = exp (zn), where n ≥ 1 is an integer, then

T(r, f ) = rn

2π ∫
2π

0
max{0, cos(nφ)} dφ = rn

π
.
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In general, T(r, f ) is an unbounded function of r for any nonconstant meromorphic
function f inC. Meanwhile, in the unit disc case, T(r, f ) can be bounded even though
M(r, f ) has exponential growth. A typical example is

f (z) = exp( 1 + z
1 − z

), z = re iφ ∈ D.

Indeed, by integrating the Poisson kernel,

T(r, f ) = 1
2π ∫

2π

0

1 − r2

∣1 − re iφ ∣2 dφ = 1.

On the other hand, if α > 1, then the function

f (z) = exp( 1
(1 − z)α ), z = re iφ ∈ D,(A.2)

satisfies

T(r, f ) ≤ 1
2π ∫

2π

0

dφ
∣1 − re iφ ∣α = O( 1

(1 − r)α−1 ),

and a more technical reasoning as in [7, Section 3] reveals that in fact T(r, f ) ≍
1

(1−r)α−1 .
The growth of a meromorphic function f is typically expressed in terms of the order,

which is given by

ρ( f ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

lim sup
r→∞

log T(r, f )
log r

, R = ∞,

lim sup
r→1−

log+ T(r, f )
− log(1 − r) , R = 1.

If f and g are meromorphic functions satisfying ρ( f ) < ρ(g) in either of the two cases,
then it is known that ρ( f g) = ρ( f + g) = ρ(g). If f is analytic, then the maximum
modulus order of f is

ρM( f ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

lim sup
r→∞

log log M(r, f )
log r

, R = ∞,

lim sup
r→1−

log+ log+M(r, f )
− log(1 − r) , R = 1.

In the analytic case, by choosing σ = 2r if R = ∞ and σ = (1 + r)/2 if R = 1, we obtain
from (A.1) that

ρ( f ) = ρM( f ), R = ∞,
ρ( f ) ≤ ρM( f ) ≤ ρ( f ) + 1, R = 1.

For example, the function f in (A.2) satisfies ρM( f ) = ρ( f ) + 1 = α.
Clearly, if f is a rational function in C, then ρ( f ) = 0. Moreover, for f1(z) =

exp (zn) and f2(z) = exp (ez), we have ρ( f1) = n and ρ( f2) = ∞. In general, if ϕ(r)
is any increasing function and is convex in log r with ϕ(r) ≠ O(log r) as r →∞, then
there is an entire function f satisfying T(r, f ) ∼ log M(r, f ) ∼ ϕ(r) as r →∞ [8].
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Hence any positive number can be an order of an entire function. An analogue of
prescribed asymptotic growth for analytic functions in D is developed in [28]. This
allows us to construct nontrivial examples of analytic functions f in D for which
ρ( f ) = ρM( f ).
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