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Abstract. Gibbs measures µ on cookie-cutter sets are the archetype of multifractal
measures on Cantor sets. We compute the singularity spectrum of the inverse measure
of µ. Such a measure is discrete (it is constituted only by Dirac masses), it satisfies a
multifractal formalism and its Lq -spectrum possesses one point of non-differentiability.
The results rely on heterogeneous ubiquity theorems.

1. Introduction
Gibbs measures µ on cookie-cutter sets are the archetype of multifractal measures on
Cantor sets. The singularity spectrum of such a measure µ has been obtained in one
of the pioneer papers on multifractal analysis [24]. Then, many papers have extended
this study for Gibbs measures or Birkhoff averages on conformal repellers (see, for
instance, [7, 16, 21, 22]). As noted in [19], a very natural object associated with a Gibbs
measure on a cookie-cutter set is its inverse measure ν, which belongs to the class of
purely discrete measures. The multifractal nature of the measure ν cannot be described
only by the techniques developed for the study of measures generated by a multiplicative
procedure and enjoying self-similarity properties. The aim of this work is to perform the
multifractal analysis for the measure ν, and to prove that ν also obeys some multifractal
formalism. It appears that the Lq -spectrum τν(q) of ν is analytic except at the point q
equal to the Hausdorff dimension of the cookie-cutter set, where it is non-differentiable.
This non-differentiability is reminiscent of the phase transition phenomenon occurring in
the thermodynamic formalism setting. The multifractal analysis of the discrete measure ν
is explained by a subtle combination between the fine local structure of Gibbs measures
and the distribution of the jump points of ν. The results rely on the notion of heterogeneous
ubiquity introduced in [2, 4].
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Subsequently, taking the inverse of Gibbs measures on cookie-cutter sets provides us
with a very natural way of generating new objects obeying the multifractal formalism,
although they are of a very different nature than Gibbs measures. The relationship between
the spectra of µ and ν will be given.

We start by recalling the definition of a cookie-cutter set.
For every n ≥ 0, let 6n = {0, 1}n , where 60 contains only the empty word ∅. Also, let

6∗ =
⋃

n≥0 6n and let 6 = {0, 1}N
∗

be the set of infinite words on the alphabet {0, 1}.
The concatenation operation from 6∗ × (6∗ ∪6) to (6∗ ∪6) is denoted by ·.

The notation 0 and 1 is for the infinite words in 6 whose letters are respectively all
equal to 0 and 1.

For w = w1w2 . . . ∈6 and n ≥ 1, w|n := w1w2 . . . wn is the projection of w on
6n and w|∞ = w. For w ∈6n , the cylinder with root w is [w] = {x ∈6 : x |n = w}.
Given two words of infinite length (w1, w2) ∈6

2, one defines w1 ∧ w2 as w1|n0, where
n0 = sup{n ≥ 1 : w1|n = w2|n}. We adopt the convention that inf ∅ = 0 and w|0 is the
empty word ∅.

The length of any element w of 6n is equal to n and is denoted by |w|.
The set 6 is endowed with the shift operation denoted by σ : w = w1w2 . . . ∈6

7−→ σ(w)= w2w3 . . . ∈6.
A cookie-cutter set is defined as follows (see, for instance, [24]). Let U0 and U1 be two

compact disjoint subintervals of [0, 1]. For i ∈ {0, 1} consider Ti :Ui → [0, 1], a C1+γ

(γ > 0) diffeomorphism such that |T ′i |> 1, and denote by gi = (Ti )
−1 the inverse of Ti .

We denote by T the mapping from U0 ∪U1 to [0, 1] whose restrictions to U0 and U1

are respectively T0 and T1.
Then consider the subset X of [0, 1], called the cookie-cutter set associated with T ,

given by
X =

⋂
n≥1

⋃
w∈6n

gw1 ◦ · · · ◦ gwn ([0, 1]).

By construction T−1(X)= X , and X is the unique compact set satisfying this equation.
The cookie-cutter set we work with is naturally associated with a dyadic tree, but up
to technical modifications, the rest of the paper is easily adapted to cookie-cutter sets
constructed with more than two contractions. Figure 1 illustrates the first steps of the
construction of X .

For any finite word w ∈6∗, we introduce the sets

Xw = gw1 ◦ · · · ◦ gw|w|(X).

There is a natural identification between 6 and X via the homeomorphism

π : 6 → X

w 7→ lim
n→∞

gw|1 ◦ · · · ◦ gw|n(0).

The dynamical systems (6, σ ) and (X, T ) are thus topologically conjugate.
In order to define a Gibbs measure on the cookie-cutter set X , we eventually need a

Hölder continuous function ϕ : X→ R. As usual, for x ∈ X and n ≥ 1, Snϕ(x) stands for∑n−1
k=0 ϕ(T

k(x)), the nth Birkhoff sum of ϕ at x .
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FIGURE 1. Left: the mapping T :U0 ∪U1→ [0, 1]; right: first three steps of the construction of the
cookie-cutter set.

We recall the definition of the topological pressure and Gibbs measure associated
with ϕ.

Definition 1.1. The topological pressure P(ϕ) of ϕ is the unique real number such that for
some constant C ≥ 1 we have

for all n ∈ N, C−1 exp(n P(ϕ))≤
∑
w∈6n

sup
x∈Xw

exp(Snϕ(x))≤ C exp(n P(ϕ)). (1.1)

The Gibbs measure µϕ on (X, T ) associated with ϕ is the unique ergodic measure such
that for some constant C > 0

for all w ∈6∗, for all x ∈ Xw, C−1
≤

µϕ(Xw)

exp(S|w|ϕ(x)− |w|P(ϕ))
≤ C. (1.2)

This measure µϕ has a unique extension to a probability Borel measure on [0, 1] that we
also denote by µϕ .

The existence of the topological pressure as well as the existence and uniqueness of
µϕ are parts of the thermodynamic formalism theory. Proofs of these assertions can be
found in [9]. We can assume that P(ϕ)= 0. Clearly the latter can always be achieved by
replacing ϕ by ϕ − P(ϕ), if necessary.

The next proposition states some classical results for the topological pressure (see
[13, 24] for proofs and related references). Let us first introduce, for (q, t) ∈ R2, the
mappings

ψ =−log |T ′| : X→ R and ψq,t = qψ − tϕ : X→ R. (1.3)

PROPOSITION 1.2. We recall the following properties.
(1) The mapping (q, t) 7→ P(qψ − tϕ) is strictly decreasing in q and strictly increasing

in t.
(2) For every q ∈ R, there exists a unique θ(q) ∈ R such that P(ψq,θ(q))= P(qψ − θ

(q)ϕ)= 0.
(3) The mapping q 7→ θ(q) is analytic, montone and concave.
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Let us now introduce the inverse measure of µϕ , which is the focus of the rest of the
paper. Let Fm denote the distribution function of a probability measure m on [0, 1]: for
x ∈ [0, 1], Fm(x)= m([0, x]).

Definition 1.3. The inverse measure ν of µϕ is the unique Borel probability measure on
[0, 1] such that

for all x ∈ [0, 1], Fν(x)= sup{t ∈ [0, 1] | Fµϕ (t)≤ x}. (1.4)

Investigations of inverse measures in terms of multifractals were first carried out in [19],
where the authors point out the interest of such studies from the multifractal viewpoint.

Our aim is to study the local scaling properties of ν. Let us recall how the local regularity
of any positive Borel measure m on [0, 1] is described. For x ∈ [0, 1], the pointwise Hölder
exponent of m at x is given by

hm(x)= lim inf
r→0+

log m(B(x, r))

log(r)
.

Performing the multifractal analysis of m consists in computing the Hausdorff dimensions
of the level sets of hm , i.e. the sets

Em(h)= {x ∈ [0, 1] | hm(x)= h}, h ≥ 0.

We denote the singularity spectrum of m by dm(h)= dim Em(h), where dim stands for
the Hausdorff dimension (see, for instance, [13] for the definition of the dimension), and
dim ∅ = −∞ by convention. The knowledge of the singularity spectrum provides us with
information about the geometric distribution of the singularities of the measure m.

Recall that if g is a function from R to R ∪ {−∞}, then its Legendre transform g∗ is
defined for any α ∈ R by

g∗(α)= inf
q∈R

(αq − g(q)) ∈ R ∪ {−∞}. (1.5)

In [24], the multifractal analysis of µϕ is performed. Recall that for any positive Borel
measure µ on [0, 1], the Lq -spectrum τµ : R→ R ∪ {−∞} is given by

τµ(q)= lim inf
r→0

log sup{
∑

i µ(Bi )
q
}

log(r)
,

the supremum being taken over all families of disjoint closed intervals Bi of radius r
with centers in supp(µ) (see [8, 10, 20, 21, 23] for definitions and a study of multifractal
formalisms).

With our notation, the result of [24] is the following.

THEOREM 1.4. For every q ∈ R, τµϕ (q)=−θ
−1(−q), and the measure µϕ satisfies the

multifractal formalism, i.e. for every h ≥ 0, dµϕ (h)= τ
∗
µϕ
(h).

The singularity spectrum of µϕ can thus be written as

dµϕ (h)= inf{qh + θ−1(−q) | q ∈ R}. (1.6)

The main goal of this paper is to derive similar multifractal statements for the inverse
measure ν of µϕ . These main results are summarized in the following theorem.
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THEOREM 1.5. Let X be a cookie-cutter set, and let µϕ be a Gibbs measure on X
associated with a Hölder continuous potential ϕ.

Let ν be the inverse measure of µϕ .
(1) The measure ν is discrete (i.e. it can be written as an infinite sum of Dirac masses),

and its singularity spectrum dν satisfies:
• for all h ∈ [0, θ ′(dim X)], dν(h)= h · dim X;
• for all h > θ ′(dim X) such that θ∗(h) > 0, dν(h)= θ∗(h);
In addition, Eν(h)= ∅ for all h > θ ′(dim X) such that θ∗(h) < 0.

(2) The Lq -spectrum of ν is given by

for every q ∈ R, τν(q)=min(θ(q), 0).

(3) The measure ν obeys the multifractal formalism: for every h > 0, such that τ ∗ν (h)
> 0, one has dν(h)= τ ∗ν (h).

Let hmax := sup{h | τ ∗ν (h)≥ 0}. The attentive reader has noticed that Theorem 1.5 does
not include the case τ ∗ν (hmax)= 0, i.e. when the singularity spectrum touches zero at the
right end of its decreasing part. We discuss this point in §4.5.

Note that there is an interesting relationship between the singularity spectrum of µϕ and
the spectrum of ν. This can be expressed in terms of their Legendre transforms:

τν(q)=−(τµϕ )
−1(−q) when q ≤ dim X. (1.7)

The main difficulty here is that the measure ν is constituted only by Dirac masses.
Subsequently, the multifractal analysis of ν is not entirely based on the study of auxiliary
Gibbs measures as in the case of µϕ (see [24]). This measure ν is an example of discrete
measures whose multifractal analysis requires other mathematical tools, namely ubiquity
results (see §3.3).

The singularity spectrum of ν is composed of two parts: a linear part with slope dim X ,
and a strictly concave part. The linear part is essentially due to the presence of Dirac
masses, and the concave part follows from standard multifractal arguments involving
auxiliary (diffuse) Gibbs measures. As claimed above, the Lq -spectrum of ν possesses
a point of non-differentiability as soon as the graph of the function q 7→ θ(q) does not
have a horizontal tangent when it reaches zero (see Figure 2).

Other examples of infinite homogeneous [1, 14, 17] or heterogeneous [3, 5] sums of
Dirac masses have been studied. Note that the measure ν does not belong to the class of
discrete measures considered in these papers, except when µϕ is the measure of maximal
entropy associated with a system where the mappings g0 and g1 are affine maps with same
contraction ratio. Moreover, compared with the measures appearing in [1, 3, 5, 14, 17], an
additional important property is that ν is naturally associated with a dynamical system.

2. A reformulation of the problem: some remarks
2.1. Identifying the intensities of the Dirac masses of ν. We assume that sup U0

< inf U1. For w ∈6∗ (including w = ∅) we introduce the real numbers

m0
w =min Xw·0 = π(w · 0) and M0

w =max Xw·0 = π(w · 0 · 1),

m1
w =min Xw·1 = π(w · 1 · 0) and M1

w =max Xw·1 = π(w · 1).
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Obviously, for every integer n ≥ 1,

X ⊂
⋃
w∈6n

[m0
w, M0

w] ∪ [m
1
w, M1

w].

Let us also introduce the mapping

Fϕ : X → [0, 1]

t 7→ µϕ([0, t]).

For every w ∈6∗, let

xw = Fϕ(M
0
w) (this includes the case x∅ = Fϕ(max(X0·1))). (2.1)

We prove that ν is a discrete measure whose Dirac masses are located at the family
of points xw, where w ranges in 6∗. Figure 3 illustrates the construction of the inverse
measure ν.

PROPOSITION 2.1. With the notation above, we have

ν = m0
∅
· δ0 +

∑
w∈6∗

(m1
w − M0

w) · δxw + (1− M1
∅
) · δ1. (2.2)

Proof. Denote the right-hand side of (2.2) by ρ.
For every w ∈6∗\{∅}, m1

w − M0
w represents the length of the interval located between

Xw·0 and Xw·1. Recall that for every x ∈ [0, 1], ν([0, x])= inf{t | µϕ([0, t]) > x}. Hence,
if x < xw < y, then ν([0, y])− ν([0, x])≥ m1

w − M0
w. Since this holds for every (x, y)

for which x < xw < y, we deduce that ν has a Dirac mass with weight greater than
m1
w − M0

w at xw. The same arguments also work for the Dirac masses at zero, x∅ and
at one.

Subsequently, ν − ρ is still a positive Borel measure on [0, 1].
Moreover,ρ([0, 1])= m0

∅
+
∑
w∈6∗(m

1
w − M0

w)+ (1− M1
∅
)=max X + 1− M1

∅
= 1,

and by construction ν([0, 1]) is also equal to one. We conclude that ν = ρ. 2

2.2. A tractable reformulation of (2.2). If w ∈6∗, then we denote

Iw = Fϕ(Xw) \ Fϕ(max Xw). (2.3)

By construction, Iw is an interval, since the support of µϕ (the derivative of Fϕ) restricted
to the interval [min(Xw),max(Xw)] is Xw, and µϕ is atomless. The families of intervals
Fn = {Iw}w∈6n , n ≥ 1, form a nested grid of [0, 1), since supp(µϕ)⊂ X and

⋃
w∈6n

Xw = X .
Now we make full use of the structure of the construction in order to slightly transform ν

into a measure enjoying the same multifractal nature as ν. This will make the calculations
easier. For this, note that for w ∈6∗ we have

[M0
∅
, m1
∅
] = T |w|([M0

w, m1
w]). (2.4)

Here T |w| is the |w|th iterate of T . Owing to the definition (1.3), for w ∈6n and x ∈ Xw
we have Snψ(x)=−log |(T n)′(x)|.
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FIGURE 2. Top left: a typical Lq -spectrum for a Gibbs measure µϕ on a cookie-cutter set X ; top right: the
typical singularity spectrum of µϕ ; bottom left: a typical Lq -spectrum for the inverse measure ν; bottom right:
the typical singularity spectrum of ν. The two graphs on the left-hand side are related via the formula (1.7). The

graphs on the right-hand side are the Legendre transforms of the graphs on the left-hand side.

FIGURE 3. Top left: the integral of a Gibbs measure µϕ associated with a cookie-cutter set; top right: the inverse
of the integral of µϕ ; bottom: the discrete measure ν. The first two graphs are symmetric with respect to the first

diagonal.
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We often use the standard bounded distortion principle, for which we refer the interested
reader to [24] or to [13, Ch. 4, Propositions 4.1 and 4.2]. This principle yields a
control, uniform in n, of the variations of the Birkhoff sums Snψ(x) inside each Xw,
w ∈6n . Specifically, there exists a constant C > 1 such that, for every w ∈6∗, for every
(x, y) ∈ (Xw)2, C−1

≤ |Xw| · exp(−Snψ(x))≤ C and

C−1
|T |w|(x)− T |w|(y)| ≤

|x − y|

|Xw|
≤ C |T |w|(x)− T |w|(y)|. (2.5)

Let us introduce the mapping ψ̃ :6∗→ R

ψ̃(w)= sup
x∈Xw

S|w|ψ(x). (2.6)

This yields
C−1
≤ |Xw| · exp(ψ̃(w))≤ C. (2.7)

Applying (2.5) to x = M0
w and y = m1

w, and using (2.4), we obtain that there is a constant
C > 0 such that, for all w ∈6∗,

C−1(m1
∅
− M0

∅
)≤

m1
w − M0

w

exp (ψ̃(w))
≤ C(m1

∅
− M0

∅
). (2.8)

Since ψ is Hölder (T is supposed to belong to C1+γ ), we can consider µψ , the Gibbs
measure on X associated with ψ . Then, (1.2) holds for (ψ, µψ ) instead of (ϕ, µϕ). There
exists another constant C > 0 such that for all w ∈6∗, for every x ∈ Xw,

C−1
≤

µψ (Xw)

exp (S|w|ψ(x)− |w|P(ψ))
≤ C.

This implies that, for all w ∈6∗ (using our definition for ψ̃(w)),

C−1
≤

exp(|w|P(ψ))µψ (Xw)

exp(ψ̃(w))
≤ C.

Combining (2.8) and the last estimate, we see that there is a constant C > 0 such that, for
every w ∈6∗,

C−1
≤

m1
w − M0

w

exp(|w|P(ψ))µψ (Xw)
≤ C.

With µψ can be associated the unique Borel measure µψ,ϕ on [0, 1] such that
µψ,ϕ(Iw)= µψ (Xw), that is to say µψ,ϕ = µψ ◦ F−1

ϕ . The measure µψ,ϕ has its support
equal to [0, 1], while the support of µψ is equal to X . The last inequalities can thus
be rewritten

C−1
≤

m1
w − M0

w

exp(|w|P(ψ))µψ,ϕ(Iw)
≤ C. (2.9)

Remembering (2.2), we conclude that the discrete measure ν is equivalent to any of the
following discrete measures:

ν1 =
∑
w∈6∗

exp(ψ̃(w)) · δxw + m · δ0 + (1− M) · δ1, (2.10)

ν2 =
∑
w∈6∗

exp(|w|P(ψ))µψ,ϕ(Iw) · δxw + m · δ0 + (1− M) · δ1. (2.11)
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It appears that ν1 and ν2 are more convenient to work with than (2.2). We are going to
perform the multifractal analysis of these measures, that we again denote by ν for ease
of notation.

3. Some definitions and tools for the multifractal analysis
If m is a positive Borel measure on R, then the lower Hausdorff dimension of m is
defined as

dim(m)= inf{dim E | m(E) > 0}.

We refer the reader to [13] for more details and for the definition of Hausdorff measures
and dimension.

3.1. Definitions of exponents, singularity spectrum and approximation degree.

Definition 3.1. For w ∈6∗, we set

λw = 2|Iw|(= 2µϕ(Xw)),

χ(w)= log |Iw|,

α̃(w)=
ψ̃(w)

χ(w)
when |w| ≥ 1.

From (2.7), there exist 0< α0 ≤ α1 <∞ such that

for all w ∈6∗, α0 ≤ α̃(w)≤ α1. (3.1)

Definition 3.2. For x ∈ [0, 1) and n ≥ 1, wn(x) stands for the unique element w of 6n

such that x ∈ Iw. One then defines

αn(x)= α̃(wn(x))=
ψ̃(wn(x))

log |Iwn(x)|
and α(x)= lim inf

n→∞
αn(x).

Let us now focus on the family {(xw, λw)}w∈6 . By construction (recall formula (2.1)),
for every n ≥ 1, we have [0, 1] ⊂

⋃
w∈6n

B(xw, λw/2). Hence, any real number x ∈ [0, 1]
is covered by infinitely many intervals B(xw, λw/2). The family {(xw, λw)}w∈6 is referred
to as a ubiquitous system.

Given a ubiquitous system, two approximation degrees of any real number x ∈ [0, 1] by
the family {(xw, λw)}w∈6 can be defined as follows.

Definition 3.3. For x ∈ (0, 1) \ {xw | w ∈6∗}, the approximation degrees ξx and ξ̃x of x
by the ubiquitous system {(xw, λw)}w∈6∗ are defined as

ξx = lim sup
n→∞

(
sup
w∈6n

log |x − xw|

log λw

)
and ξ̃x = lim sup

n→∞

log |x − xwn(x)|

log λwn(x)
.

Owing to the covering property of the ubiquitous system {(xw, λw)}w∈6 , one obviously
has ξx ≥ ξ̃x ≥ 1, for every x ∈ [0, 1].
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3.2. Auxiliary Gibbs measures. Recall the definitions of ψ , ψq,t and θ given in
Proposition 1.2.

Definition 3.4. For every q ∈ R, we set µq = µψq,θ(q),ϕ := µψq,θ(q) ◦ F−1
ϕ .

PROPOSITION 3.5. For each q ∈ R, the following hold.
(1) The set {x ∈ (0, 1) | α(x)= θ ′(q)} is of full µq -measure.
(2) We have dim(µq)≥ θ

∗(θ ′(q)).

The second statement in the proposition implies that if a set E has a Hausdorff
dimension less than θ∗(θ ′(q)), then µq(E)= 0. This is useful in Proposition 4.9, where
we derive lower bounds for the Hausdorff dimensions of the level sets Eν(h).

Proof. By construction of θ(q), P(ψq,θ(q))= 0. Hence, there exists Cq > 0 such that for
all w ∈6∗, for every x ∈ Xw,

C−1
q ≤

µψq,θ(q)(Xw)

exp(S|w|ψq,θ(q)(x))
=

µψq,θ(q)(Xw)

exp(q S|w|ψ(x)− θ(q)S|w|ϕ(x))
≤ Cq .

Consequently, using (2.3), (2.6) and the fact that µψq,θ(q)(Xw)= µq(Iw), it follows for
Cq > 0 some further constant that

C−1
q ≤

µq(Iw)

exp(qψ̃(w))|Iw|−θ(q)
≤ Cq , for all w ∈6∗ (3.2)

Let n ≥ 1 and ε > 0. We prove that {x ∈ (0, 1) | α(x)= θ ′(q)} is of full µq -measure.
Let us set α = θ ′(q), and let δ > 0. Let Kn be defined by Kn = {x ∈ (0, 1) | ψ̃(wn(x))
≥ (α − ε) log |Iwn(x)|}. We have

µq(Kn) = µq({x ∈ (0, 1) : exp(δψ̃(wn(x)))|Iwn(x)|
−δ(α−ε)

≥ 1})

≤

∫ 1

0
exp(δψ̃(wn(x)))|Iwn(x)|

−δ(α−ε) dµq(x)

=

∑
w∈6n

exp(δψ̃(w))|Iw|−δ(α−ε)µq(Iw)

≤ Cq

∑
w∈6n

exp((δ + q)ψ̃(w))|Iw|
−(θ(q)+δ(α−ε))

≤ C ′q
∑
w∈6n

sup
x∈Xw

exp((δ + q)Snψ(x)− (θ(q)+ δ(α − ε))Snϕ(x))

≤ C ′′q exp(nγq),

where C ′q , C ′′q > 0 are constants, and γq = P((q + δ)ψ − (θ(q)+ δ(α − ε))ϕ). Now,
since the function θ is right-differentiable at q and α = θ ′(q), for δ small enough we
have θ(q)+ δ(α − ε) < θ(q + δ). Consequently, applying Proposition 1.2(1), since by
Proposition 1.2(2) P((δ + q)ψ − θ(q + δ)ϕ)= 0, we obtain γq < 0. Therefore, using the
Borel–Cantelli lemma, it follows that µq(lim supn→+∞ Kn)= 0. Hence, for µq -almost
all x ∈ [0, 1], we have that ψ̃(wn(x)) < (α − ε) log |Iwn(x)| for n large enough. This holds
for any ε > 0, and thus we have that µq -almost every x ∈ [0, 1] verifies α(x)≥ α.

The converse inequality is obtained using a similar argument, and this is left to the
reader. This shows that µq({x | α(x)= θ ′(q)})= 1, and the first part of the proposition
follows. 2
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Note that by the bounded distortion principle, the ratio |Iwn(x)|/|Iwn+1(x)| is bounded
from below and above by constants independent of n ≥ 1 and x ∈ [0, 1]. To obtain the
second part of the proposition, we only have to prove that

µq -almost everywhere, lim inf
n→+∞

log µq(Iwn(x))

log |Iwn(x)|
≥ θ∗(θ ′(q)).

Indeed, in this case the mass distribution principle [13] allows us to conclude that
dim µq ≥ θ

∗(θ(q)).
For this, note that (3.2) implies∣∣∣∣ log µq(Iwn(x))

log |Iwn(x)|
− q

ψ̃(wn(x))

log |Iwn(x)|
+ θ(q)

∣∣∣∣≤ log Cq

|log(|Iwn(x)|)|
.

For µq -almost every x , we proved before that

lim
n→+∞

ψ̃(wn(x))

log |Iwn(x)|
= α.

Since α = θ ′(q), we obtain that

lim
n→+∞

log µq(Iwn(x))

log |Iwn(x)|
= qα − θ(q)= qθ ′(q)− θ(q).

By definition of the Legendre transform, we have that qθ ′(q)− θ(q)= θ∗(θ ′(q)) and,
hence, the result follows.

3.3. An heterogeneous ubiquity theorem. Let q0 := dim X denote the unique solution
of θ(q0)= 0. Let ε̃ = (εn)n≥1 be a sequence of positive numbers which tend to 0 for n
tending to infinity. For ξ ≥ 1 we then introduce the limsup set

S(ξ, ε̃)=
⋂
N≥1

⋃
n≥N

⋃
w∈6n :

θ ′(q0)−εn≤α(w)≤θ
′(q0)+εn

B(xw, λ
ξ
w). (3.3)

Using the definition of α(w) and the measure µq0 (for which there exists a constant
Cq0 > 0 such that C−1

q0
|Xw|1/q0 ≤ µq0(Iw)≤ Cq0 |Xw|

1/q0 for every w ∈6∗), one can
rewrite S(ξ, ε̃) as

S(ξ, ε̃)=
⋂
N≥1

⋃
n≥N

⋃
w∈6n :

|Iw |q0(θ
′(q0)+εn )≤µq0 (B(xw,λw))≤|Iw |

q0(θ
′(q0)−εn )

B(xw, λ
ξ
w), (3.4)

where the sequence ε̃ has been slightly modified to take into account the constant Cq0 .
Limsup sets of the form (3.4) arise in ubiquity theory. We present here a short version

of ubiquity and heterogeneous ubiquity theorems, adapted to our context. Given (xn)n≥1

a sequence of real numbers in [0, 1], and (λn)n≥1 a sequence of positive real numbers
tending to zero when n tends to infinity, the classical ubiquity results are concerned with
the computations of limsup sets of the form

A(ξ)=
⋂
N≥1

⋃
n≥N

B(xn, λ
ξ
n),
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where ξ > 1 is a contraction exponent. The classical ubiquity theorems, proved in [11, 18],
state the following: as soon as the set A(1) is of full Lebesgue measure, we have
dim A(ξ)≥ 1/ξ for every ξ ≥ 1.

Now suppose that {(xn, λn)}n≥1 = {(xw, λw)}w∈6∗ . Although the sets S(ξ, ε̃) defined
in (3.3) are very similar to the sets A(ξ), the Hausdorff dimension of the sets S(ξ, ε̃) cannot
be reached by such theorems. This is due to the fact that the measure playing a key role is
not the Lebesgue measure any more, but the monodimensional measure µq0 .

The notion of heterogeneous ubiquity, introduced in [2–4], has been developed to
estimate the Hausdorff dimension of the limsup sets S(ξ, ε̃) (and other limsup sets of
similar form). This is a crucial point in the following, since such limsup sets arise naturally
when performing the multifractal analysis of the inverse measure ν of µϕ . Proposition 3.6
has been obtained in [4, Theorem 2.2] (case ρ = 1).

We now give the assumptions needed to obtain sharp lower bounds for the Hausdorff
dimension of S(ξ, ε̃). In order to apply [4, Theorem 2.2], three properties are required on
the measure µq0 and the system {(xw, λw)}w∈6∗ :
• The measure µq0 is quasi-Bernoulli [10] with respect to the grid constituted by

the intervals {Iw}w∈6∗ , i.e. there is a constant C > 1 such that for every word
w, w′ ∈6∗,{

C−1µq0(Iw)µq0(Iw′)≤ µq0(Iww′)≤ Cµq0(Iw)µq0(Iw′)

C−1
|Iw| · |Iw′ | ≤ |Iww′ | ≤ C |Iw| · |Iw′ |.

• The measure µq0 is monofractal, in the sense that

µq0 -almost everywhere, lim
n→+∞

log µq0(Iwn(x))

log |Iwn(x)|
= θ∗(θ ′(q0))= q0θ

′(q0). (3.5)

Note that since θ(q0)= 0, we have θ∗(θ ′(q0))= q0θ
′(q0).

• We have

µq0

(
lim sup
n→+∞

{B(xw, λw/2) | w ∈6n}

)
= 1,

since, by construction, the system {(xw, λw)}w∈6∗ enjoys the covering property:
lim supn→+∞{B(xw, λw/2) | w ∈6n} = [0, 1].

Then, according to the definitions of [2, 4], the system of points {(xw, λw)}w∈6∗ forms
an heterogenous ubiquitous system with respect to µq0 and its almost sure Hölder exponent
θ∗(θ ′(q0)).

In [4, Theorem 2.2] it is stated that, as soon as µq0(A(1))= ‖µq0‖, there exists ε̃ such
that dim S(ξ, ε̃)≥ dim(µq0)/ξ for every ξ ≥ 1. In our context, this yields the following
proposition.

PROPOSITION 3.6. There is a positive sequence ε̃ converging to zero at ∞ such that,
for every ξ ≥ 1, there exists a positive Borel measure mξ such that mξ (S(ξ, ε̃)) > 0 and
dim(mξ )≥ (q0θ

′(q0)/ξ).

More on heterogeneous ubiquity can be found in [4, 6, 12].
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4. Proof of Theorem 1.5
4.1. A first result on the local regularity analysis of ν. For the following proposition the
reader might like to recall Definition 3.3.

PROPOSITION 4.1. Let x ∈ [0, 1]. If x ∈ {xw | w ∈6∗}, then hν(x)= 0, otherwise

α(x)

ξx
≤
α(x)

ξ̃x
≤ hν(x)≤ α(x).

Here, if ξx =+∞ then α(x)/ξ(x) := 0. Likewise if ξ̃x =+∞, then α(x)/̃ξ(x) := 0.

Proof. Let x ∈ [0, 1] \ {xw | w ∈6∗} and r > 0.
• Obviously, ξx ≥ ξ̃x , so the left inequality is trivial.
• Let nx,r =min{n | ∃w ∈6n, xw ∈ B(x, r)}. Let w(x, r)= wnx,r (x) be the unique

word of 6nx,r such that xw(x,r) ∈ B(x, r). Indeed, if two such words w and w′ exist
(without lost of generality we can assume that xw < xw′ ), then by construction there
is another word w′′ such that |w′′|< nx,r and xw < xw′′ < xw′ . This contradicts the
minimality of nx,r . This implies that, using (2.10), ν(B(x, r))≥ exp(ψ̃(w(x, r))).

To find an upper bound for ν(B(x, r)), we use the form (2.11) of ν. Note that the
minimality of nx,r yields that we necessarily have

xw(x,r) ∈ B(x, r)⊂ Iw(x,r). (4.1)

Hence, for every n > nx,r , we obtain∑
v∈6n : xv∈B(x,r)

exp(|v|P(ψ))µψ,ϕ(Iv)≤ exp(n P(ψ))µψ,ϕ(Iw(x,r)).

Since P(ψ) < 0, we deduce combining (2.8) and (2.9) that

ν(B(x, r)) ≤ exp(ψ̃(w(x, r)))+

( ∑
n>nx,r

exp(n P(ψ))

)
µψ,ϕ(Iw(x,r))

≤ C exp(ψ̃(w(x, r))).

Summarizing the above, we now have that there exists a constant C ≥ 1 such that

C−1 exp(ψ̃(w(x, r)))≤ ν(B(x, r))≤ C exp(ψ̃(w(x, r))). (4.2)

Fix now ε > 0. By definition of ξ̃x , for r small enough we have r ≥ |x − xw(x,r)|

≥ (2|Iw(x,r)|)̃ξx+ε. Moreover, again for r small enough, exp(ψ̃(w(x, r)))
≤ |Iw(x,r)|α(x)−ε by definition of α(x).

These estimates yield

ν(B(x, r))≤ C exp(ψ̃(w(x, r)))≤ Cr (α(x)−ε)/(̃ξx+ε),

and, thus, by letting r tend to zero, it follows that hν(x)≥ (α(x)− ε)/(̃ξx + ε).
• Finally, for the right inequality, let (n j ) j≥1 be an increasing sequence of integers

such that exp(ψ̃(wn j (x)))≥ |Iwn j (x)
|
α(x)+ε for all j ≥ 1. Such a sequence exists by

definition of α(x). By construction, xw j ∈ B(x, 2|Iw j |) so that, using formula (2.10)
for ν, we obtain ν(B(x, 2|Iwn j (x)

|))≥ |Iwn j (x)
|
α(x)+ε and hν(x)≤ α(x)+ ε.

Since the previous estimates hold for all ε > 0, we obtain the desired result. 2
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4.2. The singularity sets of ν. In view of Proposition 4.1, it is natural to introduce the
following property for real numbers of [0, 1].

Definition 4.2. Let α > 0, ξ ≥ 1 and ε > 0.
A real number x ∈ [0, 1] is said to satisfy the property P(α, ξ, ε) if there exists an

increasing sequence of positive integers (n j ) j≥1 such that for every j ≥ 1, there exists

w ∈6n j such that x ∈ B(xw, λ
ξ−ε
w ) and α̃(w) ∈ [α − ε, α + ε].

We say that x is approximated at degree ξ − ε by the pair (xw, λw) when x ∈ B
(xw, λ

ξ−ε
w ). Hence, a real number x satisfies P(α, ξ, ε) when x is approximated at degree

ξ − ε by some couples among the family {(xw, λw)}w∈6∗ , those couples being selected
according to the value of α̃(w) (we impose that α̃(w) ∈ [α − ε, α + ε]).

Definition 4.3. For h > 0 one sets

F(h)=

{
x ∈ (0, 1)

∣∣∣∣ {∀ε > 0, ∃α > 0, ∃ξ ≥ 1 such that
α/ξ ≤ h + ε and P(α, ξ, ε)holds

}
.

We explore the relationship between the singularity sets Eν(h) and our sets F(h).

PROPOSITION 4.4. Let h > 0.
(1) One has F(h)⊂

⋃
h′≤h Eν(h′).

(2) One has Eν(h)⊂ F(h).

Proof. (1) Let x ∈ F(h). Then fix ε ∈ (0, 1/2), as well as α > 0 and ξ ≥ 1 such that x
satisfies P(α, ξ, ε). Let (n j ) j≥1 be an increasing sequence of integers such that, for every
j ≥ 1, there exists w j ∈6n j such that x ∈ B(xw j , (λw j )

ξ−ε) and α̃(w j ) ∈ [α − ε, α + ε].
Recall that α̃(w j )= ((ψ̃(w j ))/(log |Iw j |)).

Taking r j = (λw j )
ξ−ε for j ≥ 1, using (2.10) we obtain that

ν(B(x, r j ))≥ exp(ψ̃(w j ))≥ (λw j )
α̃(w j ) ≥ r (α+ε)/(ξ−ε)j .

This implies that

hν(x)≤
α + ε

ξ − ε
≤
α

ξ

ξ

ξ − ε
+ 2ε ≤ h + O(ε).

Consequently, letting ε tend to zero yields hν(x)≤ h.
(2) Fix x ∈ Eν(h) and ε > 0. By definition there is a sequence (r j ) j≥1 of positive real

numbers decreasing to zero such that for all j ≥ 1, ν(B(x, r j ))≥ (r j )
h+ε. Then (4.2)

yields
exp(ψ̃(w(x, r j )))≥ C−1(r j )

h+ε,

which is equivalent to
|Iw(x,r j ) |̃

α(w(x,r j )) ≥ C−1(r j )
h+ε.

Thus, writing |x − xw(x,r j )| = (2|Iw(x,r j )|)
ξ j = (λw(x,r j ))

ξ j , we obtain

|Iw(x,r j ) |̃
α(w(x,r j )) ≥ C−1(2|Iw(x,r j )|)

ξ j (h+ε) (4.3)

since |x − xw(x,r j )| ≤ r j .
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Recall that B(x, r j )⊂ Iw(x,r j ) by (4.1). This implies that ξ j ≥ 1. Moreover,
lim sup j→∞ ξ j <∞: if this limsup is+∞, then combining (3.1) and part (1) of the current
proposition, we would have hν(x)= 0.

Consequently, there exists (α, ξ) ∈ R∗+ × [1,∞) and an increasing sequence of
integers, ( jk)k≥1, such that simultaneously:

|α − α̃(w(x, r jk ))| ≤ ε,

|ξ − ξ jk | ≤ ε,

(̃α(w(x, r jk )), ξ jk )−→ (α, ξ) as k→+∞.

Note that (4.3) implies that α/ξ ≤ h + ε.
Since these properties hold for all ε > 0, x ∈ F(h). 2

COROLLARY 4.5. For every h > 0, Eν(h)= F(h) \
⋃

h′<h F(h′).

Proof. This follows directly when combining parts (1) and (2) of Proposition 4.4. 2

4.3. Upper bound for the dimensions of the singularity sets. It is known that, for
any positive Borel measure ν with a bounded support, we always have the upper bound
dim Eν(h)≤ τ ∗ν (h) (see, for instance, [10]). Using the definition of the Legendre
transform (1.5), in order to find an upper bound for dim Eν(h), we need a lower bound
for τν .

PROPOSITION 4.6. For every q ∈ R, we have τν(q)≥min(θ(q), 0)).

This immediately yields the desired upper bound for the spectrum. Indeed, using
the definition of the Legendre transform (1.5), we obtain that τ ∗ν (h)= h · dim X if h ∈
[0, θ ′(dim X)], and τ ∗ν (h)= θ

∗(h) if h > θ ′(dim X).
In the next section, we prove that dim Eν(h)≥ τ ∗ν (h), for every h ≥ 0. By applying

the inverse Legendre transform to the inequality claimed by Proposition 4.6, we obtain the
equality τν(q)=min(θ(q), 0)), as stated in Theorem 1.5.

Proof. Let r > 0 and consider B = {Bi }, a packing of [0, 1] by disjoint closed intervals Bi

of radius r .
• First fix q < 0. Owing to the bounded distortion principle (which rules the size of

the elements of the grid {Iw}w∈6∗ ), there exists a constant C > 0 depending on ϕ
only, such that each Bi contains an interval Iwi satisfying |Iwi | ≥ r/C .

Using the formula (2.11) for ν, we have that ν(Bi )≥ exp(|wi |P(ψ))µψ,ϕ(Iwi )

and since q < 0, we get ν(Bi )
q
≤ exp(q|wi |P(ψ))µψ,ϕ(Iwi )

q . Formula (3.2) yields

ν(Bi )
q
≤ Cqµq(Iwi )|Iwi |

θ(q).

Finally, since θ(q) < 0 and |Iwi | ≥ r/C , we obtain

ν(Bi )
q
≤ CqC−qr θ(q)µq(Iwi ).

Consequently, ∑
Bi∈B

ν(Bi )
q
≤ CqC−qr θ(q)

independently of the choice of the r -packing B = {Bi }. This yields τν(q)≥ θ(q).
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• Second fix q ∈ (0, dim X). Let M = supt∈I0∪I1
|T ′(t)|. Let Sr = {w ∈6

∗
| 2r

≤ |Iw| ≤ 2r(M + 1)}. We also set nr =max{|w| : w ∈ Sr } and n′r =min{|w| : w
∈ Sr }. Since the mapping T is C1 and |T ′|> 1, we have nr = O(| log(r)|) and
n′r = O(| log(r)|).

For w ∈ Sr , Iw meets at most M + 1 balls Bi of the packing B. Reciprocally,
each Bi is included in the union of at most two intervals belonging to Sr , say Iw and
Iw′ (and possibly by the singleton {1}).

The subadditivity of the application t ≥ 0 7→ tq yields ν(Bi )
q
≤ ν({1})+ ν(Iw)q

+ ν(Iw′)q if 1 ∈ Bi , and ν(Bi )
q
≤ ν(Iw)q + ν(Iw′)q otherwise. Thus,∑

Bi∈B
ν(Bi )

q
≤ ν({1})+ (M + 1)

nr∑
n=n′r

∑
w∈Sr∩6n

ν(Iw)
q

≤ ν({1})+ (M + 1)
nr∑

n=0

∑
w∈S̃r∩6n

ν(Iw)
q ,

where S̃r = {w ∈6
∗
: 2r ≤ |Iw|} ⊃ Sr . Since q ∈ (0, dim X) and dim X < 1, we

have

ν(Iw)
q
=

( ∑
n′<|w|

∑
v∈6n′ ,
xv∈Iw

ν({xv})+
∑

n′≥|w|

∑
v∈6n′ ,
xv∈Iw

ν({xv})

)q

≤

∑
n′<|w|

∑
v∈6n′ ,
xv∈Iw

ν({xv})
q
+

( ∑
n′≥|w|

∑
v∈6n′ ,
xv∈Iw

ν({xv})

)q

≤

∑
n′<|w|

∑
v∈6n′ ,
xv∈Iw

ν({xv})
q
+

( ∑
n′≥|w|

∑
v∈6n′ ,
xv∈Iw

µψ,ϕ(Iv) exp(n′P(ψ))
)q

≤

∑
n′<|w|

∑
v∈6n′ ,
xv∈Iw

ν({xv})
q
+ µψ,ϕ(Iw)

q
( ∑

n′≥|w|

exp(n′P(ψ))
)q

=

∑
n′<|w|

∑
v∈6n′ ,
xv∈Iw

ν({xv})
q
+ Kq exp(q|w|P(ψ))µψ,ϕ(Iw)q

where we used the formula (2.11) for ν and Kq = (1− exp(q P(ψ)))−q .
Consequently, ∑

Bi∈B
ν(Bi )

q
≤ ν({1})+ (M + 1)(A1 + A2),

where

A1 =

nr∑
n=0

∑
w∈S̃r∩6n

∑
n′<|w|

∑
v∈6n′ ,
xv∈Iw

ν({xv})
q

and A2 =

nr−1∑
n=0

∑
w∈S̃r∩6n

Kq exp(q|w|P(ψ))µψ,ϕ(Iw)q .
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Obviously,

A2 ≤ Kqnr

nr∑
n=0

∑
w∈S̃r∩6n

exp(q|w|P(ψ))µψ,ϕ(Iw)q .

Then, a simple reordering of the terms in A1 yields

A1 ≤

nr−1∑
n=0

∑
v∈6n

(
#
{
w ∈ S̃r ∩

nr⋃
p=n+1

6p | xv ∈ Iw

})
ν({xv})

q .

Each cardinality is, by construction, less than nr . Hence,

A1 ≤ nr

nr−1∑
n=0

∑
v∈S̃r∩6n

ν({xv})
q
≤ nr

nr−1∑
n=0

∑
v∈S̃r∩6n

exp(q|v|P(ψ))µψ,ϕ(Iv)q .

Finally, formula (3.2) yields

∑
Bi∈B

ν(Bi )
q
≤ ν({1})+ (M + 1)(Kq + 1)nr

nr∑
n=0

∑
w∈S̃r∩6n

|Iw|
θ(q)µq(Iw)

≤ ν({1})+ (M + 1)(Kq + 1)nr

nr∑
n=0

r θ(q)‖µq‖

≤ ν({1})+ (M + 1)(Kq + 1)(nr + 1)2r θ(q),

where we used that r ≤ |Iw| for w ∈ S̃r and θ(q) < 0. The estimate on nr finally
gives that ∑

Bi∈B
ν(Bi )

q
≤ O(r θ(q)|log(r)|2).

The above upper bound is independent of the packing B. This yields τν(q)≥ θ(q).
• Finally, let q ≥ dim X . Since ν is discrete, we necessarily have τν(q)= 0 for every

q ≥ 1. In addition, if q = dim X , then τν(q)≥ θ(q)= 0. The concavity of τν then
implies that τν(q)= 0 for every q ≥ dim X . 2

4.4. Lower bounds for the dimensions of the singularity sets. In view of Definition 4.2
and Corollary 4.5, in order to find lower bounds for the Hausdorff dimensions of the level
sets Eν(h), it is natural to introduce the following limsup sets: for every α, ε > 0 and
ξ ≥ 1, set

G(α, ξ, ε)=
⋂
N≥1

⋃
n≥N

⋃
w∈6n :α−ε≤α̃(w)≤α+ε

B(xw, λ
ξ
w).

It is obvious that, if x ∈ F(h), then for every ε > 0, there exists α and ξ ≥ 1 such that
α + ξ ≤ h + ε and x satisfies P(α, ξ, ε). In particular, x belongs to G(α, ξ, ε). Our aim
here is to control the Hausdorff dimension of the sets G(α, ξ, ε) for the following reason:
if the Hausdorff dimension of G(α, ξ, ε) is proved to be strictly less than τ ∗µq

(τ ′µ(q)), then
G(α, ξ, ε) is µq -negligible.
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PROPOSITION 4.7. There exists C > 0, depending on θ only, such that for ε > 0 small
enough, for all α > 0 and ξ ≥ 1,

dim G(α, ξ, ε)≤ Cε +
max(θ∗(α − ε), θ∗(α + ε))

ξ
.

When the right-hand side of the above inequality is negative, the set G(α, ξ, ε) is empty.

Proof. Fix α, ε > 0, ξ ≥ 1, and for N ≥ 1 let δN = supw∈6N
λ
ξ
w. For any s > 0 and

δ > 0, we denote by Hs
δ the s-Hausdorff pre-measure computed using coverings by sets

of diameter less than δ [13]. By construction,

Hs
δN
(G(α, ξ, ε))≤

∑
n≥N

∑
w∈6n :

α−ε≤α̃(w)≤α+ε

2s(λw)
sξ .

We proceed as follows.
• Suppose that α + ε ≤ θ ′(0). If q ≥ 0, using that α̃(w)= ψ̃(w)/χ(w), ψ̃(w) < 0 and

χ(w)= log |Iw|< 0, we have for some constant C > 0 that

Hs
δN
(G(α, ξ, ε)) ≤ C

∑
n≥N

∑
w∈6n :

qψ̃(w)≥q(α+ε)χ(w)

(λw)
sξ

≤ C
∑
n≥N

∑
w∈6n

exp(qψ̃(w)− q(α + ε)χ(w)) exp(sξχ(w)).

Now take s = (η + θ∗(α + ε))/ξ with η > 0. We deduce that

Hs
δN
(G(α, ξ, ε))≤ C

∑
n≥N

∑
w∈6n

exp(qψ̃(w)− (q(α + ε)− η − θ∗(α + ε))χ(w)).

(4.4)
We know that, n ≥ N being fixed, the second sum in the previous double sum is
comparable to

exp(n P(ψq,tq,α,ε )) where tq,α,ε = q(α + ε)− η − θ∗(α + ε).

Since α + ε ≤ θ ′(0), we can choose q ≥ 0 such that θ∗(α + ε)= (α + ε)q − θ(q)
− γq , with 0≤ γq ≤ η/2. This implies that

P(ψq,tq,α,ε )≤ P(ψq,(θ(q)−η/2)) < 0.

Using (4.4), this implies that limN→∞ Hs
δN
(G(α, ξ, ε))= 0. Consequently,

dim G(α, ξ, ε)≤ (η + θ∗(α + ε))/ξ . Since this holds for all η > 0, we have the
desired conclusion.

• When α − ε ≥ θ ′(0), the same approach with q < 0 yields the desired estimate.
• When α − ε ≤ θ ′(0)≤ α + ε, for η > 0 and s = (η + θ(0))/ξ we can write

Hs
δN
(G(α, ξ, ε))≤ C

∑
n≥N

∑
w∈6n

(λw)
sξ
≤ C

∑
n≥N

exp(n P(−(η + θ(0))ϕ)).

This last sum tends to as N tends to infinity. Thus, dim G(α, ξ, ε)≤ θ(0)/ξ .
Now, since θ∗ is differentiable near θ ′(0), there exists a constant C > 0, depending
only on θ , such that θ(0)/ξ ≤ Cε +max(θ∗(α − ε), θ∗(α + ε))/ξ when ε > 0 is
sufficiently small and α − ε ≤ θ ′(0)≤ α + ε. The result follows. 2
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COROLLARY 4.8. For all h > 0, dim F(h)≤ h · dim X.

Proof. Let x ∈ F(h), and ε > 0. There exists α and ξ ≥ 1 such that α + ξ ≤ h + ε and
x satisfies P(α, ξ, ε). It follows that x belongs to the set G(α, ξ, ε), whose Hausdorff
dimension is bounded from above by the last Proposition 4.7. This yields that for every
ε > 0

dim F(h)≤ sup
α,ξ : α/ξ≤h+ε

Cε +
max(θ∗(α − ε), θ∗(α + ε))

ξ
.

Letting ε tend to zero, yields

dim F(h)≤ sup
α,ξ : α/ξ≤h

θ∗(α)

ξ
≤ h · sup

α≥0

θ∗(α)

α
≤ h · dim X.

The last inequality follows from the fact that the measure µϕ and µψ have their support
included in X and from the definition of the Legendre transform (1.5). 2

PROPOSITION 4.9. We make the following propositions.
(1) If h ≥ θ ′(dim X) and θ∗(h)≥ 0, then dim Eν(h)≥ θ∗(h).
(2) If h ∈ [0, θ ′(dim X)], then dim Eν(h)≥ h · dim X.

Proof. (1) If h ≥ θ ′(dim X) and θ∗(h)≥ 0, then h ∈ {θ ′(q) | q ≥ dim X}
∪ {limq→−∞ θ

′(q)}. Proposition 4.1 shows that Eν(h) contains the set

Ẽ(h) =
{

x
∣∣∣ lim

n→∞
αn(x)= h and ξ̃ (x)= 1

}
=

{
x
∣∣∣ lim

n→∞
αn(x)= h

}∖ ⋃
m≥1

{
x
∣∣∣ lim

n→∞
αn(x)= h and ξ̃ (x) > 1+ 1/m

}
.

Consider first the case where h = θ ′(q) for some q ≥ dim X .
Part (1) of Proposition 3.5 gives that µq({x | limn→∞ αn(x)= h})= 1.
From Proposition 4.7, we easily deduce that for all m ≥ 1,

dim
{

x
∣∣∣ lim

n→∞
αn(x)= θ

′(q) and ξ̃ (x) > 1+ 1/m
}
< θ∗(θ ′(q))= θ∗(h).

Then, Proposition 3.5(2) gives that the countable union of sets⋃
m≥1

{
x
∣∣∣ lim

n→∞
αn(x)= h and ξ̃ (x) > 1+ 1/m

}
is µq -negligible. Hence, µq(Ẽ(h))= 1. Finally, dim Eν(h)≥ dim(µq)≥ θ

∗(θ ′(q))
= θ∗(h).

It remains us to treat the case of the right endpoint of the singularity spectrum hmax

:= sup{h ≥ 0 | τ ∗ν (h)≥ 0}. We have hmax = limq→−∞ θ
′(q) <+∞. In this case there is

no natural Gibbs measure supported by the set Ẽν(hmax)= {x | limn→+∞ αn(x)= hmax}.
When τ ∗ν (hmax) > 0, the approach used in [15] to achieve the multifractal analysis of

Birkhoff averages associated with a continuous, but not necessarily Hölderian, potential
on 6 allows us to construct a Cantor set included in {x | limn→+∞ αn(x)= hmax}

(usually called in this context a Moran set) and a measure µ−∞ supported by this Cantor
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set, for which dim(µ−∞)≥ θ∗(hmax). The conclusion is then obtained as in the previous
case.

We discuss the case τ ∗ν (hmax)= 0 briefly in §4.5.
(2) Let h ∈ (0, θ ′(dim X)] and write h = θ ′(dim X)/ξ , with ξ ≥ 1. Consider the set

S(ξ, ε̃) of formula (3.3) with a suitable sequence ε̃ such that Proposition 3.6 can be applied.
This provides us with a positive Borel measure mξ such that the following hold:
• mξ (S(ξ, ε̃)) > 0;
• mξ (E)= 0 as soon as dim E < dim(X)((θ ′(dim(X)))/(ξ))= h · dim X .
It follows from Proposition 4.4 that

S(ξ, ε̃)

∖ ⋃
0<h′<h

F(h′)⊂ Eν(h).

By Corollary 4.8 we have dim F(h′)≤ h′ · dim X < h · dim X , for all 0< h′ < h. Hence,
mξ (F(h′))= 0 for all h′ < h. Moreover, the set family (F(h′))0<h′<h is non-decreasing.

Summarizing the above, we now have that mξ (Eν(h)) > 0, and hence dim Eν(h)
≥ h · dim X . 2

4.5. The case τ ∗ν (hmax)= 0. When τ ∗ν (hmax)= 0, by the same computations as in [15],
it is possible to construct a Cantor set included in {x | limn→+∞ αn(x)= hmax} and a non-
trivial measure µ−∞ supported by this Cantor set. Obviously dim(µ−∞)= 0, but there is
a gauge function f : R+→ R+ naturally associated with µ−∞, such that for every ε > 0,
we have that f (x)= o(xε), for x tending to zero from above, and for every Borel set E ,

µ∞(E)≤ f (|E |).

The difficulty lies in the fact that the argument of previous section do not apply here.
Indeed, every set {x | limn→∞ αn(x)= hmax and ξ̃ (x) > 1+ 1/m} has also Hausdorff
dimension zero, and these sets are not negligible a priori from the µ−∞ viewpoint. Hence,
we cannot conclude directly that µ−∞({x | limn→+∞ αn(x)= hmax and ξ̃ (x)= 1})= 1.

This can certainly be circumvented by at least two methods:
• one could modify the construction of the Cantor set included in {x |

limn→+∞ αn(x)= hmax} to ensure that this Cantor set is indeed included in {x |
limn→+∞ αn(x)= hmax and ξ̃ (x)= 1};

• one could replace the dimension argument (to neglect the sets {x | limn→∞ αn(x)
= hmax and ξ̃ (x) > 1+ 1/m}) by an argument based on the study of generalized
Hausdorff measure using gauge functions.

Both approaches, which are very technical, will certainly work. However, this would
require some lengthy extra work, and therefore we do not go into further details here.

4.6. The Lq -spectrum. If q ≥ dim X , then τν(q)= 0≤ θ(q). This follows from the
observations that τν(dim X)= τν(1)= 0 and that τν is concave.

When q ≤ dim X , we proved that τ ∗ν (θ
′(q))= θ∗(θ ′(q)). Taking the inverse Legendre

transform yields that we have τν(q)= θ(q).
Summarizing the above, we have τν(q)=min(0, θ(q)) for every q ∈ R.
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