106.13 A triangle inequality

In the triangle $\triangle ABC$, $\angle A = 60^{\circ}$. It is clear that, if $\triangle ABC$ is equilateral, $a = \frac{1}{2}(b + c)$. If, however, $\triangle ABC$ is not equilateral, then $a > \frac{1}{2}(b + c)$.

Suppose $\angle A = 60^{\circ}$ and, without loss of generality, let $\angle B > \angle C$.

Extend *BA* to *D* with AD = AC = b.

Now $\angle ADC = \angle ACD = 30^{\circ}$.

Let E be the foot of the perpendicular from B to DC.

From $\triangle BED$, $BE = \frac{1}{2}(b + c)$ and, from $\triangle BCE$, a > BE.

Hence $a > \frac{1}{2}(b + c)$ as required.

10.1017/mag.2022.28 © The Authors, 2022 Published by Cambridge University Press on behalf of The Mathematical Association

JUHAINA A. SHAHBARI

ress Qasemi Academic College, Israel tion e-mail: juhaina@qsm.ac.il MOSHE STUPEL Shaanan Academic College and Gordon Academic College, Haifa, Israel e-mail: stupel@bezeqint.net

106.14 Exarc radii and the Finsler-Hadwiger inequality

An exarc circle is a circle tangent to two sides of a triangle ABC and externally to the circumcircle of the triangle. We will call the radii of the exarc circles exarc radii and denote them by R_A , R_B , R_C . We denote by I_A , I_B , I_C and r_A , r_B , r_C the excentres and the exradii of ABC respectively, see Figure 1.

In the standard notation let a, b, c, Δ, R, r, s , represent respectively the sides, area, circumradius, inradius and semiperimeter of a triangle ABC.

Let X and Y be the the touching points of the A-exarc circle and the sides AB and AC of the triangle respectively. It is known [1] that the midpoint of XY is the excentre I_A of the triangle. Hence, the centre of the A-exarc circle is the intersection of the bisector of $\angle CAB$ and the perpendicular through the point X on the side AB, which is obtained as the intersection of AB and the perpendicular to this bisector through I_A , see Figure 1. We have