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Abstract

Architectural spatial design is a wicked problem that can have a multitude of solutions for any given brief. The information
needed to resolve architectural design problems is often not readily available during the early conceptual stages, requiring
proposals to be evaluated only after an initial solution is reached. This “solution-driven” design approach focuses on the
generation of designs as a means to explore the solution space. Generative design can be achieved computationally through
parametric and algorithmic processes. However, utilizing a large repertoire of organiational patterns and design precedent
knowledge together with the precise criteria of spatial evaluation can present design challenges even to an experienced ar-
chitect. In the implementation of a parametric design process lies an opportunity to supplement the designer’s knowledge
with computational decision support that provides real-time spatial feedback during conceptual design. This paper presents
an approach based on a generative multiperformance framework, configured for generating and optimizing architectural
designs based on a precedent design. The system is constructed using a parametric modeling environment enabling the cap-
ture of precedent designs, extraction of spatial analytics, and demonstration of how populations can be used to drive the
generation and optimization of alternate spatial solutions. A pilot study implementing the complete workflow of the system
is used to illustrate the benefits of coupling parametric modeling with structured precedent analysis and design generation.
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1. INTRODUCTION

A building is more than a list of activities or rooms; it is a pat-
tern of space that abides by conventions that determine the
type and number of spaces required, how they are connected,
sequenced, and which activities should be grouped together
or segregated. Architectural spatial design is a wicked prob-
lem that has a multitude of solutions for any given brief.
The information needed to resolve architectural design prob-
lems is often not readily available during the early conceptual
stages, requiring proposals to be evaluated only after an initial
solution is reached. This “solution-driven” design approach
focuses on the generation of solutions as a means to explore
large solution spaces. Generative design can be achieved
computationally through parametric and algorithmic pro-
cesses. This requires the codification of design logic and
hence an understanding of the design process.

Kruger and Cross (2006) show that designers rely heavily on
preconceptions in solution-driven design. Janssen (2005) dif-

ferentiates between “limiting preconceptions,” which “restrict
the freedom of the designer,” and “enabling preconceptions,”
which “give the designer greater freedom.” Preconceptions
can be in the form of guiding principles, primary generators,
or design schemas. The repertoire of organizational patterns
and design precedent knowledge as well as the precise criteria
and computation of spatial evaluation required for generative
exploration is more than what can be expected from the accu-
mulated knowledge of an experienced architect (Schumacher,
2012). There is a need to supplement a designer’s knowledge
with a computational decision support system that can provide
real-time spatial feedback during conceptual design.

This paper presents an exploration of parametric modeling
techniques as a mechanism for constructing design logic
models, in particular to support spatial feedback during de-
sign. The explorations are based around the four mathemati-
cal models described in Alfaris and Merello’s (2008) genera-
tive multiperformance design system (GMPDS) as a
conceptual and theoretical starting point for developing a spa-
tial performance design system; the system is implemented
through a pilot study to demonstrate how individual paramet-
ric logic models can be integrated.
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2. PARAMETRIC DESIGN SYSTEMS

Conceptual design calls for the design of multiple options
with a multitude of interdisciplinary criteria at a point where
there is limited knowledge on the design problem. To achieve
novel solutions, design as exploration (Gero, 1994) is re-
quired, and generative systems have the potential to offer
computational support for the population and evaluation of
solutions. The GMPDS developed by Alfaris and Merello
(2008) describes a domain-independent computational
framework to generate intelligent variations of an initial de-
sign concept using multicriteria evaluation. The GMPDS de-
composes a design problem into four mathematical models:
synthesis, analysis, evaluation, and optimization. This modu-
larization allows a strategic approach, provides clarity to solv-
ing complex design problems, and is particularly suited to
parametric modeling. It allows a design problem to be decom-
posed into parametric submodels. The function of each model
is summarized below.

2.1. Synthesis models

Synthesis models abstract design intentions into a collection
of design parameters, rules, or algorithms. Synthesis models
can be constructed via parametric or algorithmic descriptions.
Algorithmic models describe design through rules and algo-
rithms, while parametric models describe a design as a series
of relationships driven by parameters.

Parametric models have been used to generate design var-
iation (Park et al., 2005; Hernandez, 2006; Almusharaf &
Mahjoub, 2010; Coorey, 2010). Because the design is com-
posed as a system of relationships, large populations of design
solutions can be generated by varying the parameters. When
generative parametric systems comprise analysis, evaluative,
and/or optimization models, a significant opportunity arises
with the capacity to improve design solutions (Littlefield,
2008; Sakamoto & Ferré, 2008; Gun, 2010; Hensel et al.,
2010; Peters, 2010).

2.2. Analysis models

Analysis models determine characteristics from a design so-
lution that are relevant to a specific discipline. Design is often
multidisciplinary and requires more than one analysis model.
Analysis models are deterministic and should always produce
the same result. Depending on the amount of information re-
quired, there are low-fidelity or high-fidelity models. Low-fi-
delity models typically implement observation data, approx-
imations, and heuristics, while high-fidelity models are
theoretical models that are either physics based or mathemat-
ically derived.

Spatial analytics are typically low-fidelity indicators that
can be readily integrated into a parametric model. Space syn-
tax analysis has been used to understand and predict the be-
havior of urban and interior spaces. Gamma analysis (Hillier
& Hanson, 1984) interprets urban space syntax measures for
permeability of interior spaces. Ostwald (2011) and Bafna

(1999) provide insight into techniques for comparing and
identifying spatial patterns within a collection of buildings
using gamma analysis. In addition to gamma analysis indica-
tors, which are topological by nature, the parametric model
allows the extraction of geometric spatial properties such as
area, perimeter, length, width, and spatial proportion. In
this way, the range of analytical metrics available from an
analytical model forms a multicriteria problem that needs
an evaluative model to determine performance. In related
work, Heitor et al. (2004) combine shape grammar and space
syntax to formulate, generate, and evaluate designs, and Eloy
and Duarte (2011) use space syntax to provide a means of de-
scribing and evaluating spatial properties to “increase the
likelihood of generating solutions that closely correspond to
the user’s requirements” (Heitor et al., 2004, p. 494).

2.3. Evaluative models

Evaluation models determine how the analytical model is
interpreted to allow decision making. This is typically ap-
proached by deriving an objective function, commonly re-
ferred to as a fitness function. The definition of this function
is critical in guiding the search for a solution and with ill-de-
fined multicriteria design problems, often result in conflicting
criteria. Evaluation can occur before or after the search for so-
lutions. Preevaluation requires the decision maker to aggre-
gate multiple objectives into a single fitness function. These
can be weighted independently to preference certain objec-
tives.

While evaluation models are data driven and not reliant on
geometric design software, the advantage for parametric inte-
gration lies in the feedback loop that can generate and opti-
mize alternatives in the synthesis model.

2.4. Optimization models

Optimization models enable the search for a solution. This in-
volves cycling through the design space established by the
synthesis model and comparing design instances to evalu-
ation criteria in order to identify more feasible solutions. Typ-
ically, optimization models can be classified as heuristic or
numerical. Heuristic algorithms are nongradient methods
such as evolutionary algorithms and simulated annealing,
while numerical techniques are gradient based such as New-
ton’s method and steepest descent.

Heuristic algorithms are suited to complex problems asso-
ciated with the wicked problems typical in design. Develop-
ments in parametric modeling software are allowing heuristic
optimization methods to be incorporated into the parametric
workflow. Heuristic methods are appealing because they
can often find a good solution; however, optimality is not
guaranteed and a different design solution may be found
each time the optimization is run. In saying this, no optimiza-
tion technique is guaranteed to find the global optimum of a
nonlinear, nonconvex problem. Heuristic optimization is akin
to a designer’s method of solution-driven design.

B.P. Coorey and J.R. Jupp278

https://doi.org/10.1017/S0890060414000225 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060414000225


3. GENERATIVE SPATIAL PERFORMANCE
DESIGN SYSTEM (GSPDS)

This section describes a series of spatial parametric logic
models that, when combined, enable a performance-based
design system, which we have named GSPDS. The following
sections will describe the overall conceptual framework and
components in more detail. The system consists of the follow-
ing four models and functions:

1. Synthesis model

† Construct an abstract parametric rig that represents a
spatial configuration.

† With a parametric rig, reconfigure and generate an al-
ternate solution.

2. Analysis model

† Calculate spatial analysis metrics through the para-
metric rig to determine the design spatial properties.

† Store parametric rig and spatial analytics into a spa-
tial database.

† Visualize analytical information in real time on de-
sign geometry.

3. Evaluation model

† Evaluate the configuration error of the generated so-
lution.

4. Optimization model

† Optimize the solution according to the evaluation.

We present the GSPDS (Fig. 1) as a solution to required ob-
jectives. The above system is demonstrated in a pilot study
that shows an implementation of the system through a fic-
tional case study.

4. PILOT STUDY

This pilot study demonstrates the capacity of the GSPDS to
capture spatial information from a precedent, analyze spatial
properties, generate design variations, evaluate a solution ac-
cording to certain criteria, and optimize for that criteria. The
study is demonstrated through the design exploration of a sin-
gle residential building design. The goal of this study is to
demonstrate the appropriateness of parametric modeling tech-

niques in the development of a performative design system.
The system is set up to limit designer input to producing a
sketch design only. The exploration was conducted using
the parametric modeling software Grasshopper, and the var-
ious models can be seen through the modularized parametric
definitions, visualized in Figure 2. Details of the four para-
metric models are described in the following sections.

4.1. Synthesis model

The role of the synthesis model is to abstract and capture the
core spatial configuration of a building as a parametric model
(Fig. 2) that has the capacity to generate alternatives. This is
implemented as two design procedures that are illustrated in
Figure 3.

The first part of the synthesis model interprets the design-
er’s initial sketch into a “spatial configuration rig” by taking a
series of room outlines (closed polylines), a set of relation-
ships between them (lines), and an entry (point) as a set of in-
puts to produce a network graph consisting of nodes and re-
lationships. Each node represents a space and stores the
spatial properties parametrically as an output.

The second part of the synthesis model remaps the spatial
configuration rig onto a randomized point cloud (which can
be repopulated to produce different starting positions for
the rig as a generative mechanism). This reconfigured net-
work can then be optimized to produce alternate solutions.
This part randomizes the locations of the spaces while main-
taining their topological connection. This allows essentially
an infinite amount of variations for space allocation. At this
point, they maintain their topological relationships but their
geometric spacing is distorted, which is later resolved in the
optimization model described in Section 4.4.

4.2. Analysis model

This pilot study is focused on the development of a spatial
performance design system and requires spatial analysis of
residential buildings. As discussed in Section 2, there are a
number of spatial indicators that can be derived from the syn-
thesis model. These include space syntax gamma measures to
drive the spatial analytics model, including integration, con-
trol, and topological depth as well as geometric measures in-
cluding area, length, width, and proportion (see Hillier &
Hanson, 1984).

Fig. 1. A model for generative parametric spatial design exploration.
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The analysis model calculates values directly from the syn-
thesis model in the parametric modeling environment. This
provides the benefit of visualizing real-time analysis of the
original design geometry.

Topological depth provides a measure to determine the
depth distribution of spaces within the building. The measure
of integration can be understood as how deep or shallow
each space is, compared to the limit of how deep or shallow
they theoretically could be. This is also known as relative
asymmetry and is calculated by averaging the mean depth of
the original space to every other space in the system. This pro-
vides a number between 0 and 1 for each space, with low val-
ues indicating shallow spaces that tend to integrate the network,
while high values indicate deep spaces that are segregated. The
measure of control is a local indicator determining how impor-
tant a space is in controlling the flow of movement around it.
Each space has a number “n” of immediate neighbors. Control
is calculated by assigning a proportion 1/n to each neighboring

space. The sum of each receiving space is calculated; spaces
that have values . 1 indicate a “strong control,” and spaces
, 1 indicate a “weak control” of their immediate neighbors.

The analytical data is then used as the input to the visualiza-
tion procedure, which maps the chosen analytic back onto the
individual rooms and colors them according to a black to white
gradient field, where a value of 0 is represented as white and a
value of 1 is represented as black. An illustration of the differ-
ent measures can be seen in Figure 4 showing the topological
depth, integration, control, and area overlaid onto one of the
precedent residential building designs. Once calculated, the
analysis can be stored in a spatial database for later retrieval
(see Coorey & Jupp, 2013).

4.3. Evaluation model

The evaluation model is required to set a goal for design op-
timization. While in reality this should be a multicriteria

Fig. 2. A parametric definition for the generative spatial performance design system.

Fig. 3. An interpreted designer’s sketch (left) remapped onto a generative point grid (right). Spatial analytical measures. From top left
clockwise: topological depth, integration, control, and area.
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evaluation problem, this case study demonstrates the logic by
considering one evaluation criteria: spatial proximity. This
model determines the validity of a generated solution by com-
paring the generated solution’s spatial proximity distances to
the original specification in the spatial configuration rig. The
evaluation model can then determine the configuration error
for each spatial relationship and, through a simple aggrega-
tion procedure, determine the average configuration error
for the generated design. Optimization of this criterion will
produce alternate design configurations that are reconfigured
with the exact same three-dimensional spatial proximity as
per the original design, which we will call “optimized” de-
signs.

To explore the ability to generate novel topologies, a hy-
bridization procedure was developed. Two existing designs
were hybridized by connecting similar spaces from one
design to another to form a novel configuration to evaluate
against. The hybrid network is then used to map a new sketch
design onto a target design through alignment of programma-
tic spaces. Each design can differ in the number and type of
spaces. The hybrid network takes this into account by bifur-
cating or collapsing programs into each other. For example,
if one building has one bedroom and the other has three, three
connections will be drawn from the single bedroom to the

three bedrooms. With the different programs mapped, the de-
signer can choose the configuration from existing buildings
“A” or “B” to be mapped onto the hybrid network. This
will maintain the base topology of the chosen building; how-
ever, it will add in additional links to any bifurcated spatial
programs using the same method of hybridization described
above. An equally weighted hybrid network between two
houses can be seen in Figure 5, which can then be used as
an evaluation source to provide novel typologies.

4.4. Optimization model

The pilot study concludes with an optimization module that at-
tempts to take the generated configuration, with a configura-
tion error determined by the evaluation model, and optimize
the solution to reduce that error, creating an optimized design.
The optimization model achieves this through the parametric
plugin Kangaroo (Piker, 2013), which is a physics-based
“springs system.” Each spatial relationship is represented by
a “spring.” Each spring has a rest length, which is the desired
spatial proximity to its neighbor. The evaluation model deter-
mines the configuration error, and the spring system iteratively
reduces this error by expanding or contracting until the whole
system resolves, that is, the configuration error is minimized.

Fig. 4. Spatial analytical measures. From top left clockwise: topological depth, integration, control, and area.

Fig. 5. The hybrid network.
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Physics-based systems have been used to generate spatial
configurations (Arvin & House, 2002) and were explored
for suitability in the parametric environment. The desired dis-
tances are inputs from the original design or hybrid design,
and the optimization model attempts to resolve those relation-
ships. Figure 6 shows an original network, with two alternate
generated network solutions and the mapping of the original
spaces onto the new network.

5. CONCLUSION

This paper presented the GSPDS, which integrates a series of
parametric logic models into a system for design exploration.
The main contribution of this paper is a demonstration of
workflow that allows the modularization of design logic
that can be modeled parametrically for integration into a de-
sign decision support system. The system presented here is
configured for the specific and significant architectural prob-
lem of residential spatial design. In the pilot study, the
demonstrated workflow highlights the computational power
and flexibility of coupling generative parametric design
with precedent analysis for optimizing design solutions.
While this study validates the conceptual framework, the re-
sultant optimization is a single criterion proximity optimiza-
tion and not necessarily an optimization of a spatial network
according to multiple spatial analysis principles as per the
initial goal.

However, the system demonstrates the advantages of using
parametric modeling for the development of a design system,
namely, the ability to modularize a design problem, achieve
real-time analytical feedback, and work in a visual program-
ming environment that provides instant feedback for design
logic development. The limitations of such a system are in
the capacity to compose a fitness value that integrates a series
of spatial criteria in a manner that allows the assessment of the
solution’s spatial performance. Ongoing research is address-
ing this limitation.

Future research requires further analysis of the generated
outcomes, especially in terms of the validity of the generated
spatial program. This may be enhanced by introducing addi-
tional goals for the evaluation model that provide better con-
trol over the variables of the optimization process. This will

enable the development of design solutions that have a
more integrated spatial rationale. While the system was con-
figured to limit the designer’s input, it would be beneficial
to allow designer input for influencing the optimization pro-
cess. Finally, the spatial analytical data was able to be cap-
tured into a spatial database; however, the evaluation and op-
timization models were not developed to utilize this precedent
knowledge. Future work will explore the determination of
evaluation rules as compared to the parameters captured
and controlled by a precedent database.
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