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Babai and Sós have asked whether there exists a constant c > 0 such that every finite group G has
a product-free subset of size at least c|G|: that is, a subset X that does not contain three elements
x , y and z with xy = z. In this paper we show that the answer is no. Moreover, we give a simple
sufficient condition for a group not to have any large product-free subset.

1. Introduction

The starting point for this paper is a well-known result of Erdős, which states that for every n-
element subset X of Z there is a subset Y ⊂ X of size at least n/3 that is sum-free, in the sense
that if y1 and y2 belong to Y then y1 + y2 does not belong to Y . The proof is so simple that it
can be given in full here. First, choose a prime p such that X lives in the interval [−p/3, p/3].
A subset Y ⊂ X is then sum-free if and only if it is sum-free mod p. But if r is any integer not
congruent to 0 mod p, then Y is sum-free mod p if and only if rY is sum-free mod p. Moreover,
a simple averaging argument shows that one can find r such that at least a third of the elements
of r X lie in the interval [p/3, 2p/3] mod p. Therefore, X has a subset Y of size at least n/3 such
that rY , and hence Y , is sum-free.

Using the classification of Abelian groups it is easy to see that the same result holds if X is
a subset of an Abelian group, but the situation for non-Abelian groups is less clear. In 1985,
Babai and Sós [2] noted that if H is a subgroup of G of index k, then any non-trivial coset of H
is product-free. From the classification of finite simple groups it can be shown that every finite
simple group of order n has a subgroup of index at most Cn3/7 and hence a product-free set of
size at least cn4/7. Combining that with the fact that a product-free subset of a quotient of G
lifts to a product-free subset of G, one can deduce the same result for all finite groups. In 1997,
Kedlaya [11] (see also [12]) improved this bound to cn11/14 by showing that if H has index k
then one can find a union of ck1/2 cosets of H , a large subset of which is product-free.
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In the other direction, nothing much was known. Indeed, Babai and Sós asked whether the
lower bound could be improved to cn for some positive constant c, and Kedlaya repeated the
question, while also asking the weaker question of whether, for every ε > 0, one can obtain
a bound of c(ε)n1−ε . This paper answers these questions in the negative, by showing that,
for sufficiently large q, the group PSL2(q) has no product-free subset of size Cn8/9, where
n is the order of PSL2(q). In fact, we prove the stronger result that if A, B and C are three
subsets of PSL2(q) of size at least Cn8/9, then there is a triple (a, b, c) ∈ A × B × C such that
ab = c.

The proof has three stages. First, we briefly review some facts about quasirandom bipartite
graphs and quasirandom subsets of groups – detailed proofs of most of these can be found
elsewhere, and we give simple proofs of those that cannot. Secondly, we prove that the ‘bi-
partite Cayley graph’ associated with PSL2(q) and one of the three sets under consideration is
quasirandom. Finally, we show that this quasirandomness immediately implies our result.

Having proved this theorem, we step back and look at what we have done from a more abstract
point of view. The property of PSL2(q) that makes it suitable for results of this kind is that it has
no non-trivial irreducible representations of low dimension. This property has been used in a
similar way before: it is due to Sarnak and Xue [16]. It was also used in [7] to prove that the
famous Ramanujan graphs of Lubotzky, Phillips and Sarnak [14] are expanders (this is a weaker
result than that of [14] but the proof is much easier), and it has recently been used by Bourgain
and Gamburd [4] to show the same for certain other Cayley graphs.

Our main result is rather easier than theirs. However, this very fact may make it useful to
readers who do not have a background in representation theory and who would like to see how
information about representations can be used. If a group has no non-trivial low-dimensional
representations, it seems appropriate to call it quasirandom since, as we show later in the paper,
this property is equivalent to several other properties, some of which state that certain associated
graphs are quasirandom. Once we have stated and proved various equivalences of this kind, we
prove some further results. The first of these is a partial converse to our main theorem: if a
finite group G contains no large product-free subset, then it is quasirandom. The reason this is
a ‘partial’ converse is that the bounds we obtain are not very good: for most of the results in
the paper there is a power-type dependence of one constant on another, but for this one it is
exponential/logarithmic.

Section 4 ends with another weak equivalence. It is easy to prove that a group is not quasi-
random if it has a non-trivial quotient that is either Abelian or of small order. We show that, in
the absence of these obvious obstructions, a group G is quasirandom. In particular, non-Abelian
finite simple groups are quasirandom. Again, we obtain exponential/logarithmic bounds, but for
this result it is unavoidable because the dimension of the smallest non-trivial representation is a
power of n for some finite simple groups and logarithmic in n for others.

In Section 5 we prove a generalization of the main theorem to more complicated sets of
equations. The theorem itself allows one to place a, b and ab into specified dense subsets of
a quasirandom group. It turns out that one can do the same with more variables: for example, the
next case says that a, b, c, ab, bc, ac and abc can be placed into specified sets.

The final section of this paper collects together some open problems that have arisen during
the paper, and adds a few more.
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2. Quasirandom graphs and set

As promised, let us briefly review some of the standard theory of quasirandomness, concentrating
in particular on the definitions of a quasirandom graph, a quasirandom bipartite graph and a
quasirandom subset of an Abelian group. The first few results of this section will not be used later,
so we shall not give their proofs. However, they put the later results into their proper context.

The notion of a quasirandom graph was introduced by Chung, Graham and Wilson [6], though
a similar notion (of so-called ‘jumbled’ graphs) had been defined by Thomason [17]. If x is a
vertex in a graph, we shall write Nx for its neighbourhood. The adjacency matrix A of a graph
G is defined by A(x, y) = 1 if xy is an edge of G, and A(x, y) = 0 otherwise.

Theorem 2.1. Let G be a graph with n vertices and density p. Then the following statements
are polynomially equivalent, in the sense that if one statement holds for a constant c, then all
others hold with constants that are bounded above by a positive power of c.

(i)
∑

x,y∈V (G) |Nx ∩ Ny |2 � (p4 + c1)n4.

(ii) The number of labelled 4-cycles in G is at most (p4 + c1)n4.
(iii) For any two subsets A, B ⊂ V (G) the number of pairs (x, y) ∈ A × B such that xy ∈ E(G)

differs from p|A||B| by at most c2n2.
(iv) The second-largest modulus of an eigenvalue of the adjacency matrix of G is at most c3n.

A graph that satisfies one, and hence all, of these properties for a small c is called quasirandom.
If one wishes to be more precise, then one can say that G is c-quasirandom if it satisfies property
(i) (or equivalently (ii)) with constant c1 = c. A random graph with edge probability p is almost
always quasirandom with small c, and quasirandom graphs have many properties that random
graphs have. In particular, if H is any fixed small graph, and φ is a random map from V (H)

to V (G), then the probability that φ(x)φ(y) is an edge of G whenever xy is an edge of H (in
which case φ is a homomorphism) is roughly what one would expect, namely p|E(H)|, and the
probability that in addition no non-edge of H maps to an edge of G (in which case φ is an

isomorphic embedding) is roughly p|E(H)|(1 − p)(
|V (H)|

2 )−|E(H)|.
A quasirandom bipartite graph is like a quasirandom graph but with some obvious modifica-

tions. As above, we state a theorem that serves as a definition as well.

Theorem 2.2. Let G be a bipartite graph with vertex sets X and Y and p|X ||Y | edges. Then
the following statements are polynomially equivalent.

(i)
∑

x,x ′∈X |Nx ∩ Nx ′ |2 � (p4 + c1)|X |2|Y |2.
(ii)

∑
y,y′∈Y |Ny ∩ Ny′ |2 � (p4 + c1)|X |2|Y |2.

(iii) The number of labelled 4-cycles that start in X is at most (p4 + c1)|X |2|Y |2.
(iv) For any two subsets A ⊂ X and B ⊂ Y the number of pairs (x, y) ∈ A × B such that xy ∈

E(G) differs from p|A||B| by at most c2|X ||Y |.

We call a bipartite graph c-quasirandom if it satisfies condition (i) (and therefore the exactly
equivalent conditions (ii) and (iii)) with constant c1 = c.

https://doi.org/10.1017/S0963548307008826 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548307008826


366 W. T. Gowers

Note that we have not given an eigenvalue condition. This is because the bipartite adjacency
matrix (that is, the obvious 01-function defined on X × Y as opposed to (X ∪ Y )2) is not sym-
metric. However, as we shall see later, there is a natural analogue of this condition.

To continue our quick survey of known results, let us define quasirandom subsets of Abelian
groups. This is a straightforward generalization of a definition of Chung and Graham [5] for
the case Z/pZ. Again, we present it as a theorem rather than a definition. Recall that if G is
an Abelian group, f is a function from G to C and γ : G → C is a character of G, then the
Fourier transform of f , evaluated at γ , is the number f̂ (γ ) = |G|−1 ∑

g∈G f (g)γ (g). If f1 and
f2 are two functions defined on G, then their convolution f1 ∗ f2 is defined by f1 ∗ f2(g) =∑

x+y=g f1(x) f2(y). If A is a subset of G we shall use the letter A also for the characteristic
function of A. That is, A(x) = 1 if x ∈ A and 0 otherwise.

Theorem 2.3. Let G be an Abelian group of order n and let A ⊂ G be a set of size pn. Then
the following are equivalent.

(i)
∑

g∈G |A ∩ (A + g)|2 � (p4 + c1)n3.

(ii) There are at most (p4 + c1)n3 solutions in A of the equation x + y = z + w.
(iii)

∑
g∈G |A ∗ A(g)|2 � (p4 + c1)n3.

(iv) For every subset B ⊂ G,
∑

g∈G |A ∗ B(g)|2 � n−1|A|2|B|2 + c2n3.
(v) The graph with vertex set G and with x joined to y if and only if x + y ∈ A is c1-quasirandom.

(vi) The bipartite graph with two copies of G as its vertex sets and with x joined to y if and only
if y − x ∈ A is c1-quasirandom.

(vii) | Â(γ )| � c3n for all non-trivial characters γ .

It is often convenient to replace Theorems 2.2 and 2.3 with ‘functional’ or ‘analytic’ versions,
as follows.

Theorem 2.4. Let X and Y be two finite sets and let f : X × Y → C be a function that takes
values of modulus at most 1. Then the following properties of f are polynomially equivalent.

(i)
∑

x,x ′∈X
∑

y,y′∈Y f (x, y) f (x, y′) f (x ′, y) f (x ′, y′) � c1|X |2|Y |2.
(ii) For any two functions u : X → C and v : Y → C taking values of modulus at most 1,∣∣∣∣

∑
x,y

f (x, y)u(x)v(y)

∣∣∣∣ � c2|X ||Y |.

(iii) For any two sets A ⊂ X and B ⊂ Y ,∣∣∣∣
∑
x∈A

∑
y∈B

f (x, y)

∣∣∣∣ � c3|X ||Y |.

A function f with one, and hence all three, of the above properties is called quasirandom.
More precisely, we call it c-quasirandom if property (i) holds with constant c.

Theorem 2.4 is closely related to Theorem 2.2. Indeed, if G is a bipartite graph with vertex sets
X and Y and density p, then G is quasirandom if and only if the function f (x, y) = G(x, y) − p
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is quasirandom, where we have written G for the characteristic function of the graph as well
(so f (x, y) is 1 − p if (x, y) is an edge and −p otherwise). This is particularly easy to show
if G is regular, in the sense that every vertex in X has degree p|Y | and every vertex in Y
has degree p|X |. Then a quick calculation shows that G is c-quasirandom if and only if f is
c-quasirandom.

Now let us give a functional version of Theorem 2.3. Instead of trying to give as many
equivalences as possible, we shall restrict our attention to ones that will be of interest later (in
Section 4, when we come to define quasirandom groups). These apply to subsets of an arbitrary
group. They are not deep equivalences, as one might suspect from the fact that they all hold with
the same constant.

Theorem 2.5. Let G be a group of order n and let f : G → C be a function taking values of
modulus at most 1. Then the following are exactly equivalent.

(i)
∑

x∈G

∣∣∑
y∈G f (x) f (yx)

∣∣2 � cn3.

(ii)
∑

ab−1=cd−1 f (a) f (b) f (c) f (d) � cn3.
(iii) The function F(x, y) = f (xy−1) is a c-quasirandom function on G × G.

Proof. To see that (i) and (ii) are equivalent, note that the sum on the left-hand side of (i) is
equal to ∑

x,y,z∈G

f (x) f (yx) f (z) f (yz).

The result now follows from the one-to-one correspondence between quadruples (a, b, c, d) such
that ab−1 = cd−1 and quadruples of the form (x, yx, z, yz).

To see that (ii) and (iii) are equivalent, note that∑
x,x ′

∑
y,y′

F(x, y)F(x, y′)F(x ′, y)F(x ′, y′) =
∑
x,x ′

∑
y,y′

f (xy−1) f (xy′−1) f (x ′y−1) f (x ′y′−1).

Now for each x, x ′, y and y′ we have (xy−1)(x ′y−1)−1 = (xy′−1)(x ′y′−1)−1. In the other direc-
tion, if ab−1 = cd−1 and g is any group element, then let y = g, x = ag, y′ = c−1ag and x ′ =
dc−1ag = bg. Then xy−1 = a, x ′y−1 = b, xy′−1 = c and x ′y′−1 = d. This gives us an n-to-one
correspondence between quadruples (xy−1, x ′y−1, xy′−1, x ′y′−1) and quadruples (a, b, c, d)

such that ab−1 = cd−1, which proves that (ii) holds if and only if∑
x,x ′

∑
y,y′

F(x, y)F(x, y′)F(x ′, y)F(x ′, y′) � cn4,

that is, if and only if (iii) holds.

If these properties hold (as well as the hypotheses of the theorem) then we shall say that f is
c-quasirandom. For more details about quasirandom graphs, sets and functions, including proofs
of most of the previous results, the reader is referred to the early sections of [9]. (This is by no
means the only reference, but is chosen because the presentation there harmonizes well with the
presentation in this paper.)
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Let us now return to the question of a ‘spectral theory’ for bipartite graphs. For an ordinary
graph G, one observes that the adjacency matrix is symmetric and can therefore be decomposed
as

∑n
i=1 λi ui ⊗ ui for some orthonormal basis (ui ) of eigenvectors, with λi the eigenvalue

corresponding to ui . (Here we write u ⊗ v for the matrix that takes the value u(x)v(y) at (x, y).
If v and w are elements of inner product spaces V and W , then we write w ⊗ v for the linear
map from V to W defined by x 
→ 〈x, v〉w. Notice that these two definitions are consistent.)
For a bipartite graph, the adjacency matrix is no longer symmetric, so this result is no longer
true. However, what we can do instead is decompose it as a sum

∑n
i=1 λi ui ⊗ vi , where (ui ) and

(vi ) are two orthonormal bases. This is called the singular value decomposition of the matrix,
which was discovered in the late 19th century and is important in numerical analysis. For the
convenience of the reader, we give a proof that it always exists (in the real case).

Theorem 2.6. Let α be any linear map from a real inner product space V to a real inner
product space W . Then α has a decomposition of the form

∑k
i=1 λiwi ⊗ vi , where the sequences

(wi ) and (vi ) are orthonormal in W and V , respectively, each λi is non-negative, and k is the
smaller of dim V and dim W .

Proof. To begin, let v be a non-zero vector such that ‖αv‖/‖v‖ is maximized. (For this
proof, ‖.‖ is the standard Euclidean norm and 〈, 〉 the standard inner product, either on R

m

or R
n .) Now suppose that w is any vector orthogonal to v and let δ be a small real number.

Then ‖α(v + δw)‖2 = ‖αv‖2 + 2δ〈αv, αw〉 + o(δ), and ‖v + δw‖2 = ‖v‖2 + o(δ). It follows
that 〈αv, αw〉 = 0, since otherwise we could pick a small δ with the same sign as 〈αv, αw〉 and
we would find that ‖α(v + δw)‖/‖v + δw‖ was bigger than ‖αv‖/‖v‖.

Let X and Y be the subspaces of R
n and R

m orthogonal to v and αv, respectively. They can
be given orthonormal bases, and α maps everything in X to Y . Let β be the restriction of α

to X . By induction, β has a decomposition of the required form. That is, we can write β =∑k
i=2 λiwi ⊗ vi with vi ∈ X and wi ∈ Y . Now set v1 = v/‖v‖, w1 = αv/‖αv‖ = αv1/‖αv1‖

and λ1 = ‖αv1‖. Then αv1 = λ1w1, from which it follows that α = ∑k
i=1 λiwi ⊗ vi , as re-

quired.

This theorem is of course equivalent to a very similar statement about matrices, and indeed
that is how we shall apply it.

The fact that singular values are the correct analogue of eigenvalues for bipartite graphs has
been realized before. See for example [3]. The next two results illustrate the connection very
clearly.

Lemma 2.7. Let G be a bipartite graph with vertex sets X and Y and identify G with its
bipartite adjacency matrix

∑k
i=1 λiwi ⊗ vi , where (vi ) and (wi ) are orthonormal sequences.

Then
∑

i λ2
i is the number of edges in G and

∑
i λ4

i is the number of labelled 4-cycles that start
in X.

Proof. The number of edges in G is tr(GT G). But GT is
∑

i λivi ⊗ wi . It is easy to verify
that (vi ⊗ wi )(w j ⊗ v j ) = δi jvi ⊗ v j . But tr(vi ⊗ vi ) = 1 for every i , so the first statement of
the lemma follows.
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The second part is similar. The number of labelled 4-cycles that start in X is tr(GT GGT G).
If we expand G and GT then once again the only terms that survive are those that use a single i .
But in this case we have four terms, so the answer is

∑
i λ4

i .

The next result gives a further condition that is equivalent to quasirandomness for regular
bipartite graphs.

Theorem 2.8. Let G be a regular bipartite graph with vertex sets X and Y and p|X ||Y |
edges, and identify G with its bipartite adjacency matrix. Then the following are polynomially
equivalent.

(i) G is c1-quasirandom.
(ii) The maximum of ‖G f ‖/‖ f ‖ over all non-zero functions f such that

∑
x∈X f (x) = 0 is at

most c2|X |1/2|Y |1/2.

Proof. By Theorem 2.6 we can write G = ∑k
i=1 λiwi ⊗ vi for orthonormal sequences (vi ) and

(wi ). By Lemma 2.7, the number of labelled 4-cycles in G that start in X is
∑k

i=1 λ4
i . Suppose

that the decomposition is chosen so that u1 and v1 are constant functions, which implies that
λ1 = p|X |1/2|Y |1/2. Then, if (ii) holds, we find that

k∑
i=1

λ4
i � p4|X |2|Y |2 + c2

2|X ||Y |
k∑

i=2

λ2
i .

By Lemma 2.7,
∑k

i=2 λ2
i � p|X ||Y |, so this is at most (p4 + pc2

2)|X |2|Y |2, which establishes
(i) with c1 = pc2

2.

Conversely, if (i) holds, then
∑k

i=1 λ4
i � (p4 + c1)|X |2|Y |2. Since λ1 = p|X |1/2|Y |1/2, it

follows that every other λi is at most c1/4
1 |X |1/2|Y |1/2. Since the maximum of these other λi

is precisely the maximum in (ii), we have established (ii) with c2 = c1/4
1 .

The next lemma is a simple fact, but for our purposes it will be very important. In the statement,
if G is a bipartite graph with vertex sets X and Y of not necessarily the same size, we call it
regular if every vertex in X has the same degree and every vertex in Y has the same degree.

Lemma 2.9. Let G be a regular bipartite graph with vertex sets X and Y . Let α be the linear
map from C

X to C
Y derived from the bipartite adjacency matrix of G. (That is, if f : X → C then

α f (y) = ∑
x∈X,xy∈E(G) f (x).) Then the set of all functions f : X → C such that

∑
x∈X f (x) =

0 and ‖α f ‖/‖ f ‖ is maximized forms a linear subspace of C
X .

Proof. Let us first check, using the regularity of G, that the maximum of ‖α f ‖/‖ f ‖ over all
functions is attained when f is a constant function. Let every vertex in X have degree p|Y |,
so that every vertex in Y has degree p|X |. Then, setting G(x, y) to be 1 if xy ∈ E(G) and 0
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otherwise,

‖α f ‖2 =
∑

y

∣∣∣∣
∑

x

f (x)G(x, y)

∣∣∣∣
2

=
∑
x,x ′

f (x) f (x ′)
∑

y

G(x, y)G(x ′, y)

� 1

2

∑
x,x ′

(| f (x)|2 + | f (x ′)|2) ∑
y

G(x, y)G(x ′, y)

=
∑

x

| f (x)|2
∑

x ′

∑
y

G(x, y)G(x ′, y)

=
∑

x

| f (x)|2 p2|X ||Y | = p2|X ||Y |‖ f ‖2.

It follows that ‖α f ‖/‖ f ‖ never exceeds p|X |1/2|Y |1/2. This bound is attained when f is the
constant function 1: then ‖ f ‖ = |X |1/2, and ‖α f ‖ = p|X ||Y |1/2 since α f takes the value p|X |
everywhere on Y .

The proof of Theorem 2.6 now tells us that the restriction of the linear map α to the space of
functions that sum to zero can be decomposed as

∑n
i=2 λiwi ⊗ vi . Without loss of generality,

λ2 � · · · � λn � 0. Choose k such that λ2 = · · · = λk > λk+1 and let X be the subspace of
GC generated by v2, . . . , vk . Then the restriction of α to X is λ2

∑k
i=2 wi ⊗ vi . This map is

orthogonal on to its image, so ‖α f ‖ = λ2‖ f ‖ for every f ∈ X . Since

α

( n∑
i=2

µivi

)
=

n∑
i=2

λiµiwi ,

it is clear that ‖α f ‖ < λ2‖ f ‖ whenever
∑

x∈G f (x) = 0 and f /∈ X .

3. A group with no large product-free subset

In this section we give a quick proof that the density of the largest product-free subset of the group
PSL2(q) tends to zero as q tends to infinity. Recall that PSL2(q) is the 2-dimensional projective
special linear group over Fq , that is, the group of all 2 × 2 matrices over Fq with determinant 1,
quotiented by the subgroup consisting of I and −I . It is natural to look at this family of groups,
since it is one of the simplest infinite families of finite simple groups; simple groups themselves
are natural to look at because if G ′ is a quotient of a group G, then any product-free subset of G ′
lifts to a product-free subset of G. As we have already mentioned, our proof will depend on one
basic fact about representations of PSL2(q), which we state without proof.

Theorem 3.1. Every non-trivial representation of PSL2(q) has dimension at least
(q − 1)/2.

The proof of Theorem 3.1, due to Frobenius, is not especially hard, though it is not trivial
either. A nice presentation of it can be found in [7]. To put this result in perspective, the order of
PSL2(q) is q(q2 − 1)/2, so the lowest dimension of a non-trivial representation is proportional
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to the cube root of the order of the group. This tells us that, in a certain sense, PSL2(q) is very
far from being Abelian.

As mentioned in the Introduction, we shall in fact prove a result that is more general in several
ways. First of all, we shall prove it for any group � that has no low-dimensional non-trivial
representation. Secondly, we shall prove an ‘off-diagonal’ result: given any three large subsets
A, B and C of �, there is a triple (a, b, c) ∈ A × B × C such that ab = c. In order to prove this,
it will be convenient (though not essential) to express the number of such triples in terms of the
following bipartite Cayley graph G. The two vertex sets of G are copies of � and xy is an edge
if and only if there exists a ∈ A such that ax = y. (Note that if xy is an edge, it does not follow
that yx is an edge – this is why we have to consider bipartite graphs.) Then the number of triples
we are trying to count is the number of edges from the copy of B on one side of this bipartite
graph to the copy of C on the other. If |�| = n and r = |A|/n, then we know from Theorem 2.2
that the number of edges between these copies of B and C will be approximately r |B||C | if G is
sufficiently quasirandom.

We shall make this argument precise later in the section. But first, let us prove that the graph
G actually is quasirandom.

Lemma 3.2. Let � be a finite group and suppose that � has no non-trivial representation
of dimension less than k. Let A be any subset of � and let G be the bipartite Cayley graph
defined above. Let α be the corresponding linear map defined in the statement of Lemma 2.9. Let
f : � → C be any function such that

∑
x∈� f (x) = 0. Then ‖α f ‖/‖ f ‖ � (|A|n/k)1/2.

Proof. Note first that, for any x and y in �, there exists a ∈ A such that ax = y if and only if
yx−1 ∈ A. Thus, this is another way of stating which pairs xy are edges of G. Writing A for the
characteristic function of the set A, we now have

α f (y) =
∑

x

G(x, y) f (x) =
∑

x

A(yx−1) f (x) =
∑

uv=y

A(u) f (v) = A ∗ f (y),

where the last equality is true by the definition of the convolution of two functions defined on an
arbitrary group. That is, α f = A ∗ f .

Let λ be the maximum of ‖α f ‖/‖ f ‖ over all functions f that sum to zero, and let X be the set
of all functions f that achieve this maximum. Then X is a linear subspace of C

� , by Lemma 2.9
(of course, we count 0 as belonging to X ). Now if we choose any f ∈ X and any group element
g ∈ �, then the function Tg f , defined by Tg f (x) = f (xg), also belongs to X , since

αTg f (u) =
∑
xy=u

A(x)Tg f (y) =
∑
xy=u

A(x) f (yg) =
∑

xy=ug

A(x) f (y) = α f (ug),

from which it follows that ‖αTg f ‖ = ‖α f ‖. Obviously, ‖Tg f ‖ = ‖ f ‖ as well.
Since any non-zero f in X is non-constant, there exists g ∈ � such that Tg f �= f , from

which it follows that the right-regular representation of � acts non-trivially on X . Therefore,
the dimension of X is at least k, by hypothesis.

It follows from Theorem 2.6 and Lemma 2.7 that kλ2 is at most the number of edges in G,
which is |A|n. That is, λ � (|A|n/k)1/2, as stated.
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We have shown that G satisfies condition (ii) of Theorem 2.8, with c2 = (|A|/kn)1/2, as stated.
This may make it look as though G becomes more quasirandom as the cardinality of A decreases,
but that is just an accident arising from the way the condition is formulated. The point is that
when A is smaller, the graph is less dense, which makes it harder for c2 to be small enough for
condition (iv) of Theorem 2.2 to say anything non-trivial.

Nevertheless, we have more or less proved the main result of this paper. All that remains is to
put together the results we have stated or proved already.

Theorem 3.3. Let � be a finite group with no non-trivial representation of dimension less than
k, let n = |�| and let A, B and C be three subsets of � such that |A||B||C | > n3/k. Then there
exist a ∈ A, b ∈ B and c ∈ C with ab = c. In particular, this is true if all of A, B and C have
size greater than n/k1/3. Furthermore, if η > 0 and |A||B||C | � n3/η2k, then the number of
triples (a, b, c) ∈ A × B × C such that ab = c is at least (1 − η)|A||B||C |/n.

Proof. Let |A| = rn, |B| = sn and |C | = tn. As in the previous lemma, let α be the linear
map f 
→ A ∗ f . Let B stand for the characteristic function of the set B, and for each x ∈ � let
f (x) = B(x) − s. Then

∑
x f (x) = 0, and ‖ f ‖2 = (1 − s)2|B| + s2(n − |B|) = s(1 − s)n �

sn.
It follows from Lemma 3.2 that ‖α f ‖2 � rn2sn/k. But A ∗ B(y) = A ∗ ( f + s)(y) =

α f (y) + rsn, so whenever A ∗ B(y) = 0 we have |α f (y)| = rsn. It follows that the number
m of y for which A ∗ B(y) = 0 satisfies the inequality m(rsn)2 � rsn3/k, or m � n/rsk. But if
rst > 1/k then this is less than tn, which implies that there exists c ∈ C such that A ∗ B(c) �= 0.
Equivalently, there exist a ∈ A and b ∈ B such that ab = c, as claimed.

As for the final claim, the number of triples in question is 〈A ∗ B, C〉 = 〈α f, C〉 + rsn|C |. But
|〈α f, C〉|2 � rn2sn|C |/k = |A||B||C |n/k, by the Cauchy–Schwarz inequality and the estimate
for ‖α f ‖ obtained earlier, while rsn|C | = |A||B||C |/n. The result is therefore true provided

|A||B||C |n/k � η2|A|2|B|2|C |2/n2,

and this inequality follows from our assumption.

Recently, Kedlaya [13] proved a sort of converse to Theorem 3.3: under the additional hypo-
thesis that G admits a transitive action on a reasonably large finite set, there exist sets A, B and
C such that |A||B||C | � c|�|3/k and such that there do not exist a ∈ A, b ∈ B and c ∈ C with
ab = c.

Theorems 3.1 and 3.3 immediately give the following corollary, which is the result promised
at the beginning of the section.

Corollary 3.4. Let � be the group PSL2(q) and let n = |�|. Then � has no product-free subset
of cardinality greater than 2n8/9.

Proof. This follows from the Theorems 3.1 and 3.3, since n = q(q2 − 1)/2 and k can be taken
to be (q − 1)/2, which is greater than n1/3/8.
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4. Quasirandom groups

The property we have just used for showing that a group � does not contain a large product-free
set was that � has no non-trivial low-dimensional representations. From this we deduced that
every large subset of � gives rise to a directed Cayley graph that is quasirandom. Now we shall
show that these two properties, as well as several others, are in fact equivalent. We shall use the
word ‘quasirandom’ for any group that has one, and hence all, of these properties, but there is a
limit to how seriously this word should be taken. In particular, we do not have a model of random
groups for which we can show that almost every group is quasirandom. (Gromov has, famously,
defined a notion of random group, by taking a set of n generators and a certain number of random
relations of prescribed length. However, his groups are infinite: to define a random finite group
one would need enough relations to make it finite, but not enough to make it trivial, or very small.
This could be a delicate matter.)

A second difference between this notion of quasirandomness and the usual ones for graphs and
subsets of groups is that we do not have a ‘local’ characterization, where we count small con-
figurations of a certain kind. (For graphs and subsets of groups these configurations are 4-cycles
and quadruples ab−1 = cd−1, respectively.) Indeed, it seems quite likely that no such character-
ization exists, and to see why, consider the case of the group Sn . This is not quasirandom, since
An is a subgroup of index 2, but if you choose a small number of permutations π1, . . . , πk at
random (here k should be thought of as an absolute constant), then they will not have any small
relations, so one will not have any ‘local’ evidence that they are not all even permutations. That
is, Sn appears to be ‘locally indistinguishable’ from An , which is quasirandom.

This may not be the end of the story, however, because there is a sense in which the non-
quasirandomness of Sn is at least ‘polynomially detectable’. Suppose that you are given the
multiplication table of Sn , but you are given it abstractly and not told the order in which the
permutations appear. Now suppose that you want an algorithm that will partition the elements
into even and odd permutations in polynomial time (in n!). You can do it with a randomized
algorithm as follows. Choose k elements at random from the group. Then the probability that
they all happen to be even permutations is 2−k , and it is known that if they are all even then they
almost surely generate An , while if they are not all even then they almost surely generate Sn . The
time it takes to find the subgroup they generate is easily seen to be polynomial, so after a few
attempts one will almost certainly generate An (and one will know that one has done so, since
An is the only subgroup of Sn of index 2). For a more general discussion of algorithms to find
the irreducible representations of a group G, see [1].

Now let us begin the process of proving the main result of the section, the statement that
various properties of groups are equivalent. Before we get to the statement itself, we shall need
some mostly standard lemmas.

Lemma 4.1. Let S be the unit sphere in C
n in the standard Euclidean norm, and let µ be the

standard rotation-invariant probability measure on S. Then
∫ ∫ |〈v,w〉|2dµ(v)dµ(w) = n−1.

Proof. The integral in question is the mean square of the inner product of two random unit
vectors. This average is clearly unaffected if we fix one of the vectors. But if (ei )

n
i=1 is an
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orthonormal basis of C
n , then

∫
S

∑n
i=1 |〈v, ei 〉|2dµ(v) = ∫

S 1dµ(v) = 1, so by symmetry∫
S |〈v, e1〉|2dµ(v) = n−1. This proves the lemma.

Lemma 4.2. Let α be a linear map from C
n to C

n. Then tr(α) = n
∫

S〈αv, v〉dµ.

Proof. Let (ei )
n
i=1 be an orthonormal basis. Then the trace of the matrix of α with respect to

this basis, and hence of α itself, is
∑n

i=1〈αei , ei 〉. Since this is true for any orthonormal basis,
we may average over all of them. The result follows immediately.

Lemma 4.3. Let v1 and v2 be two vectors in C
n. Then 〈v1, v2〉 = n

∫
S〈v1, w〉〈w, v2〉dµ(w).

Proof. The proof is basically the same as that of Lemma 4.2, since for any orthonormal basis
〈v1, v2〉 = ∑n

i=1〈v1, ei 〉〈ei , v2〉, and once again we can average over all of them.

Lemma 4.4. Let v1, . . . , vn be unit vectors in C
m. Then

∑
i, j |〈vi , v j 〉|2 � m−1n2.

Proof. The trick here is to notice that |〈vi , v j 〉|2 = 〈vi ⊗ vi , v j ⊗ v j 〉, where vi ⊗ vi is the
m × m matrix with entries vi (p)vi (q), and the inner product is the standard inner product on
C

m2
. It follows that

∑
i, j

|〈vi , v j 〉|2 =
∥∥∥∥

n∑
i=1

vi ⊗ vi

∥∥∥∥
2

.

Now tr(vi ⊗ vi ) = 1 for each i , so the trace of
∑n

i=1 vi ⊗ vi is n, from which it follows that the
right-hand side is at least m−1n2, which proves the lemma.

Note that Lemma 4.4 is sharp. Basically any sufficiently symmetric example shows this, but
one simple one is when m|n and the vectors vi consist of n/m copies of some orthonormal basis.
Lemma 4.1 proves that the result is sharp for a ‘continuous set’ of vectors. Given a set for which
the lemma is sharp, the proof above shows that

∑n
i=1 vi ⊗ vi is n/m times the identity matrix.

That is, the vectors vi give us a representation of the identity, which is a well-known way of
saying that they are nicely distributed round the unit sphere.

With these lemmas in place, we are ready for our main result of the section.

Theorem 4.5. Let G be a finite group. Then the following are polynomially equivalent.

(i) For every subset A ⊂ G, the directed Cayley graph with generators in A is c1-quasirandom.
(ii) For every subset A ⊂ G and every function f : G → C that sums to 0, ‖A ∗ f ‖ �

c2n1/2|A|1/2.
(iii) Every function f from G to the closed unit disc in C such that

∑
g f (g) = 0 is c3-

quasirandom.
(iv) For every function f from G to the closed unit disc in C such that

∑
g f (g) = 0, the function

F(x, y) = f (xy−1) is c3-quasirandom on G × G.
(v) Every non-trivial representation of G has dimension at least c−1

4 .
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Proof. The proof that (v) implies (i) and (ii) is essentially contained in the argument of the
previous section. Indeed, suppose that the smallest dimension of a non-trivial representation is k,
and let A ⊂ G. Let � be the directed Cayley graph of A and let X be the space of all functions
f such that

∑
f (x) = 0 and ‖A ∗ f ‖/‖ f ‖ is maximized (together with the zero function). Let

λ be the maximum value of this ratio. Then X is invariant under the right-regular representation
of G, so by hypothesis it has dimension at least k. Lemma 2.7 implies that kλ2 � |A|n, so λ �
(n|A|/k)1/2. This means that if (v) holds then (ii) holds with c2 = c1/2

4 .
From this and Lemma 2.7 it follows that the number of appropriately directed 4-cycles in G

is at most |A|4 + n2|A|2/k. In particular, whatever the cardinality of A, the graph is at least
k−1-quasirandom.

We proved that (iii) and (iv) were equivalent in Theorem 2.5.
Now let us prove that (iii) implies (v). That is, given a non-trivial representation of dimension

m, let us construct from it a function f that fails to be c-quasirandom for some c that depends
polynomially on m. This we do by an averaging argument, which will exploit the lemmas we
have just proved. To simplify the notation, we shall write the average of a function f defined on
the sphere S as Ev f (v) instead of

∫
S f (v)dµ(v).

A standard and easy lemma of representation theory tells us that if G has a representation ρ

then there is an inner product on the vector space V on which G acts such that the representation
is unitary. Therefore, we may assume that ρ already has this property. Also, it will be convenient
to assume, as we obviously can, that ρ is irreducible. To simplify the notation yet further, if
v ∈ V and g ∈ G we shall write gv instead of ρ(g)(v).

Given any two vectors v and w in the unit sphere S of V , let fv,w : G → C be defined by
fv,w(g) = 〈gv,w〉. Notice that | fv,w(g)| � 1 for every g. Furthermore, for any g′ we have

∑
g

gv =
∑

g

g′gv = g′
(∑

g

gv

)
.

Since ρ is irreducible, it follows that
∑

g gv = 0 (or it would generate a 1-dimensional invariant
subspace of V and ρ would not be irreducible). Therefore,

∑
g fv,w(g) = ∑

g〈gv,w〉 = 0. Our
averaging argument will show that at least one of these functions fv,w fails to have the property
in (iii), if c4 < m−3.

By Lemma 4.3 (for the second equality),

EwEg fv,w(g) fv,w(gh) = EgEw〈gv,w〉〈w, ghv〉 = m−1
Eg〈gv, ghv〉 = m−1〈v, hv〉.

Therefore, by Lemma 4.2,

EvEwEg fv,w(g) fv,w(gh) = m−2 tr h.

Therefore, by the Cauchy–Schwarz inequality,

EvEw

∣∣Eg fv,w(g) fv,w(gh)
∣∣2 � m−4| tr h|2.

From this it follows that

EvEwEh
∣∣Eg fv,w(g) fv,w(gh)

∣∣2 � m−4
Eh | tr h|2,

and hence that there exist v and w such that

Eh
∣∣Eg fv,w(g) fv,w(gh)

∣∣2 � m−4
Eh | tr h|2.
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We now have the task of bounding Eh | tr h|2 from below. But Eh | tr h|2 = EgEh | tr(gh−1)|2 =
EgEh |〈Ag, Ah〉|2, where Ag and Ah are the unitary matrices corresponding to g and h and the

inner product comes from considering Ag and Ah as vectors in C
m2

and taking the standard inner
product there. Since these vectors have norm

√
m, Lemma 4.4 implies that EgEh |〈Ag, Ah〉|2 �

m. Putting all this together, we find that

Eh
∣∣Eg fv,w(g) fv,w(gh)

∣∣2 � m−3,

completing the proof that (iii) implies (v).
All that remains to prove the theorem is to show that (i) implies (iii). That is, given a non-

quasirandom function defined on G, we would like to construct from it a 01-valued function that
gives rise to a Cayley graph that is also not quasirandom. Since this argument is standard, we
shall be slightly sketchy about it.

It can be shown that the formula

‖F‖ =
(∑

x,x ′

∣∣∣∣
∑

y

F(x, y)F(x ′, y)

∣∣∣∣
2)1/4

defines a norm ‖.‖ on the space of functions F : G × G → C. (This is a fairly easy lemma:
a proof can be found in [9].) It follows from the triangle inequality that if F fails to be c-
quasirandom, then either Re f or Im f fails to be (c/16)-quasirandom. Therefore, if f is a
function for which (ii) fails, then there must exist a function u with values in [−1, 1] and average
0 such that

∑
g

(∑
h

u(h)u(gh)

)2

� c3|G|3/16.

Now let v(g) = (1 + u(g))/2 for every g ∈ G. Then a standard argument shows that

∑
g

(∑
h

v(h)v(gh)

)2

� |G|3/16 + c3|G|3/256 = (1 + c3/16)|G|3/16.

(The argument is to expand the left-hand side into a sum of sixteen terms and observe that

∑
g,g′

(∑
h

v(h)v(gh)

)2

− |G|3
16

− 1

16

∑
g,g′

(∑
h

u(h)u(gh)

)2

is a sum of squares.)
Now choose a subset A ⊂ G randomly, putting g into A with probability v(g), making all

choices independently. Writing A also for the characteristic function of the set A, we wish to
estimate the sum

∑
g

(∑
h

A(h)A(gh)

)2

=
∑

g

∑
h,h′

A(h)A(gh)A(h′)A(gh′).

The number of choices of (g, h, h′) for which the elements h, gh, h′ and gh′ are not all dis-
tinct is O(|G|2), and for all other choices the expected value of A(h)A(gh)A(h′)A(gh′) is
v(h)v(gh)v(h′)v(gh′). Therefore, the expected value of the sum is at least (1 + c3/20)|G|3/16
when |G| is sufficiently large. Also, with very high probability A has cardinality at most
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(1 + c3/1000)|G|/2 (again, if |G| is sufficiently large). It follows that there exists a set A such
that the directed Cayley graph defined by A is not c3/32-quasirandom.

In the light of this theorem we make the following formal definition of a quasirandom group.
Recall that quasirandom functions were defined just after the proof of Theorem 2.5.

Definition. Let G be a finite group and let c > 0. Then G is c-quasirandom if every function
f : G → C that has average zero and takes values of modulus at most 1 is c-quasirandom.

We end this section with two further characterizations of quasirandom groups. The first one
states that the quasirandom groups are precisely those that do not contain a large product-free
set. In one direction this is the main assertion of Theorem 3.3, so we shall concentrate on the
other direction. As commented in the introduction, this final equivalence is not a polynomial
one: we shall show that if the largest product-free subset of G has size δ|G|, then G has no non-
trivial representation of dimension less than C log(1/δ) for some absolute constant C . In the final
section we shall discuss whether this result can be improved.

Theorem 4.6. Let G be a group of order n and suppose that G has a non-trivial representation
of dimension k. Then G has a product-free subset of size at least ckn, where c > 0 is an absolute
constant.

Proof. Let φ : G → C
k be a unitary representation of G. Without loss of generality φ is

irreducible, since otherwise we can find a representation with a smaller k. Also, without loss
of generality it is faithful, since otherwise we can replace G by G/ ker φ. Therefore, without loss
of generality the elements of G are themselves unitary transformations of C

k .
Now for any vector v ∈ C

k we have
∑

α∈G αv = 0, since it is invariant under left multiplic-
ation by any β ∈ G and the representation is irreducible. It follows from Lemma 4.2 that the
average trace of an element of G is 0. Since the trace of a unitary operator has modulus at most
k, it follows that the number of elements α ∈ G such that tr α has real part greater than k/2 is at
most 2n/3. That is, at least n/3 elements of G have trace with real part less than or equal to k/2.

Now the trace is the sum of the eigenvalues, so if tr α has real part at most k/2, there must be
an eigenvalue ω with real part at most 1/2.

Let X be the set of all α ∈ G such that tr α � k/2 and for each α ∈ X let v(α) be a unit
eigenvector with eigenvalue ω(α) that has real part less than 1/2.

Now let δ > 0 be an absolute constant to be chosen later. By a standard volume argument the
unit sphere of C

k has a δ-net of cardinality at most (3/δ)2k , so we can choose at least (δ/3)2k |X |
elements α of X such that all the vectors v(α) lie within δ of some point and hence within 2δ of
each other. Therefore, we can choose at least (δ/4)2kn elements α of X such that all the v(α) are
within 2δ of each other and all the ω(α) are within δ of each other as well. Let Y be a subset of
X with this property.

We would now like to show that, for any α and α′ in Y , the vectors αv(α) and α′v(α) are
close. This we deduce from the following equalities and inequalities, which all follow from the
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properties of Y and the fact that the elements of G preserve distance: αv(α) = ω(α)v(α);
‖ω(α)v(α) − ω(α′)v(α)‖ � δ; ‖ω(α′)v(α) − ω(α′)v(α′)‖ � 2δ; ω(α′)v(α′) = α′v(α′);
‖α′v(α′) − α′v(α)‖ � 2δ. Therefore, by the triangle inequality, ‖αv(α) − α′v(α)‖ � 5δ.

Now let α′′ be another element of Y . Then ‖αv(α) − α′′v(α)‖ � 5δ as well. Also, from the
previous inequality and the fact that α is unitary, we can deduce that ‖α2v(α) − αα′v(α)‖ �
5δ. Therefore, if αα′ = α′′ it follows that ‖α2v(α) − αv(α)‖ � 10δ, and hence that ‖αv(α) −
v(α)‖ � 10δ, and finally that |ω(α) − 1| � 10δ. But we know that ω(α) is a complex number
with modulus 1 and real part at most 1/2, from which it follows that |ω(α) − 1| � 1. Therefore,
Y is product-free as long as we choose δ to be less than 1/10. Therefore, we can find a product-
free subset Y of G of size at least ckn with c a positive absolute constant (in fact, 1/2000 will
do), which proves the theorem.

Our final characterization of quasirandom groups states that a group G is quasirandom if and
only if every quotient of G is large and non-Abelian. We start with a natural special case of this,
showing that all non-cyclic finite simple groups are quasirandom. One could presumably prove
this result with a better bound than we obtain by using the classification of finite simple groups
and simply looking up the dimensions of their irreducible representations. However, our proof
is elementary. (Even this elementary argument may well be known, but we have had trouble
finding it in the literature. Lászlo Pyber has pointed out to me that a slightly stronger bound can
be deduced from a theorem of Jordan, as later modified by Frobenius and Blichfeldt, which has
an elementary proof. See [10, Theorem 14.12]. However, the argument below is simpler.)

Theorem 4.7. Let G be a non-cyclic finite simple group of order n. Then every non-trivial
representation of G has dimension at least

√
log n/2.

Proof. Let φ : G → U (k) be an irreducible unitary representation of G. Since G is simple, φ

has trivial kernel, so without loss of generality G itself is a finite subgroup of U (k).
Let α be any element of G other than the identity. We claim first that α has a conjugate that

does not commute with α. To see this, suppose that all conjugates do commute with α. Then for
any β and γ in G we have

(βαβ−1)(γ αγ −1) = γ (γ −1βαβ−1γ )αγ −1 = γα(γ −1βαβ−1γ )γ −1 = (γ αγ −1)(βαβ−1).

That is, all conjugates of α commute with each other. But the subgroup of G generated by
conjugates of α is easily seen to be normal, and therefore all of G, which implies that G is
Abelian. But in that case the only irreducible representations of G are 1-dimensional, which
implies that k = 1 and G is cyclic, contradicting our hypothesis.

Suppose now that α is the closest element of G, in the operator norm on B(Ck), to the identity
(apart of course from the identity itself), and let ‖α − ι‖ = ε. Let β be a conjugate of α that does
not commute with α. Then ‖β − ι‖ = ε as well, since G consists of unitary transformations.
Write α = ι + γ and β = ι + η. Then αβ − βα = γ η − ηγ . Therefore, since α−1β−1 is unitary,
‖ι − αβα−1β−1‖ = ‖γ η − ηγ ‖. Since α and β do not commute, and are closest elements to
the identity, it follows that ‖γ η − ηγ ‖ � ε. But we also know that ‖γ η − ηγ ‖ � 2‖γ ‖‖η‖ =
2ε2. Therefore, ε � 1/2, which implies that no two elements of G are closer than 1/2 in the
operator norm.
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It remains to determine an upper bound for the size of a 1/2-separated subset of U (k). But
U (k) is contained in the unit ball of B(Ck). The volume argument mentioned in the previous
lemma shows that, for any d-dimensional real normed space and any ε > 0, the largest ε-
separated subset of the unit ball has size at most (1 + 2/ε)d . The normed space B(Ck) is a
k2-dimensional complex space, so, setting d = 2k2 and ε = 1/2, we deduce that a 1/2-separated
subset of U (k) has cardinality at most 25k2

. That is, n � 25k2
, from which the theorem follows.

Note that the alternating groups An have representations of dimension n − 1 (since they act on
the subspace of C

n consisting of vectors whose coordinates add up to 0). Therefore, the bound
in Theorem 4.7 cannot be improved to more than log n/ log log n.

Theorem 4.8. Let G be a group of order n and suppose that for every proper normal subgroup
H of G, the quotient G/H is non-Abelian and has order at least m. Then G has no non-trivial
representation of dimension less than

√
log m/2. Conversely, if G has an Abelian quotient,

then G has a 1-dimensional representation, and if G has a quotient of order m, then G has
a representation of dimension

√
m.

Proof. Let us quickly deal with the converse, since this is easy and not the main point of
interest. Any representation of a quotient of G can be composed with the quotient map so that
it becomes a representation of G of the same dimension. Therefore, the result follows from two
standard facts of representation theory: that the irreducible representations of Abelian groups are
1-dimensional (and exist!), and that every group of order m has a representation of dimension at
most

√
m. (This second fact follows from the result that the sum of the squares of the dimensions

of the irreducible representations is m.)
Now let us turn to the more interesting direction of the theorem. Let H be a maximal proper

normal subgroup of G. Then the quotient group G/H is simple and, by our hypothesis, non-
Abelian. Let φ : G → U (k) be a unitary representation of G. If we knew that the kernel of φ

was H , then we would have a representation of G/H to which we could apply Theorem 4.7.
However, this does not have to be the case, so instead we must imitate the proof of Theorem 4.7,
as follows.

We may clearly assume that φ is a faithful representation (or else we look at the quotient of G
by its kernel). Therefore, we shall think of the elements of G itself as unitary maps on C

k . Let us
now define a metric on G/H by taking d(αH, βH) to be the smallest distance (in the operator
norm again) between any element of αH and any element of βH . Let α be an element of G\H
such that the distance from αH to H , with respect to this metric, is minimized, and note that this
distance is just the smallest distance in the operator norm from any element of αH to the identity.
Without loss of generality, α itself is an element of αH for which this minimum is attained.

Now G/H is simple and non-Abelian. Hence, by the argument of the last section, we can find
a conjugate βH of αH in G/H that does not commute with αH . It is easy to see that we can
choose the representative β to be a conjugate of α in G, so let us do this. Then β is a conjugate
of α such that not only do α and β not commute, but they do not even belong to the same coset
of H . Moreover, the distance from β to the identity is the same as the distance from α to the
identity. As in the proof of Theorem 4.8, let ε be this distance, and let α = ι + γ and β = ι + η.
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Once again, the distance between αβ and βα is ‖γ η − ηγ ‖, and therefore so is the distance
between ι and αβα−1β−1. Since αβα−1β−1 does not belong to H , it follows from our minimality
assumption that ‖γ η − ηγ ‖ � ε, as before, and it is also at most 2ε2 for precisely the same
reason as before. Therefore, no two elements of different cosets of H can be within 1/2 of each
other in the operator norm, so, by the upper bound given in the proof of Theorem 4.7 for the
size of a 1/2-separated subset of U (k), there can be at most 25k2

cosets of H . This proves the
theorem.

A good example to bear in mind in connection with Theorem 4.8 and its proof is the following
family of groups. Let p and k be positive integers and let G(p, k) be the subgroup of U (k)

generated by all diagonal matrices with pth roots of unity as their diagonal entries, and all
permutation matrices corresponding to even permutations. Thus, a typical element of G(p, k)

is a permutation matrix of determinant 1 with its 1s replaced by arbitrary pth roots of unity.
The subgroup H(p, k) generated by just the diagonal matrices in G(p, k) is normal, and the
quotient is isomorphic to the alternating group Ak . Moreover, one can show that any proper
normal subgroup of G(p, k) is contained in H(p, k). Therefore, these groups are quasirandom
as k tends to infinity, despite being of arbitrarily high order for any fixed k. The reason this can
happen is that, as the proof of Theorem 4.8 shows is necessary, the cosets of H(p, k) are well
separated.

In practice, Theorems 4.6 and 4.8 are not particularly useful characterizations of quasirandom-
ness because the equivalences are not polynomial equivalences. In other words, they are fine if all
one wants is qualitative statements (such as that no subset of positive density is product-free) but
too crude if one is interested in bounds of the kind obtained in this paper. However, sometimes a
qualitative statement is interesting – for example, if one is wondering whether a particular family
of groups is quasirandom and wants to make a preliminary check. For instance, Theorem 4.8 tells
us that SL2(p) is quasirandom, since {ι,−ι} is a maximal normal subgroup of very high index.
However, this particular group is much more quasirandom than Theorem 4.8 guarantees. As for
Theorem 4.6, it can in fact be improved to a polynomial equivalence: this will be discussed in
the final section.

5. Solving equations in quasirandom groups

The purpose of this section is to prove a generalization of Theorem 3.3: instead of finding a and
b such that a, b and ab each lie in specified sets, we shall find a1, . . . , am such that for every
non-empty subset F ⊂ {1, 2, . . . , m} the product of those ai with i ∈ F lies in a specified set.
In other words, perhaps surprisingly, we can choose m elements of the group in such a way that
exponentially many conditions are satisfied simultaneously, using only the fact that a reasonable
number of elements satisfy each condition individually.

Underlying the argument is the following basic lemma, which is a reformulation of the last
part of Theorem 3.3 that will be slightly more convenient. The proof of the main theorem of this
section will use it to drive an inductive argument.

Lemma 5.1. Let G be a group of order n such that no non-trivial representation has dimension
less than k. Let A and B be two subsets of G with densities rn and sn, respectively and let δ and
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t be two positive constants. Then, provided that rst � (δ2k)−1, the number of group elements
x ∈ G for which |A ∩ x B| � (1 − δ)rsn is at most tn.

Proof. Let C be the set {x−1 : x ∈ B}. Then

|A ∩ x B| =
∑

y

A(y)(x B)(y) =
∑

y

A(y)B(x−1 y) =
∑

y

A(y)C(y−1x) = A ∗ C(x).

By Theorem 4.5, if f : G → R sums to zero, then ‖A ∗ f ‖ � (r/k)1/2n‖ f ‖. Applying this
result in the case f (x) = C(x) − s and noting that ‖ f ‖2 = s(1 − s)n � sn, we deduce that
‖A ∗ C − rsn‖2 � rsn3/k. It follows that the number of x such that A ∗ C(x) � (1 − δ)rsn
is at most n/δ2rsk. If rst � (δ2k)−1, then this is at most tn, as required.

Note the following easy consequence of Lemma 5.1, which shows that it is indeed effectively
the same as Theorem 3.3. Suppose that rst > 1/k and that C is a subset of G with density t .
Lemma 5.1 with δ = 1 tells us that the number of y such that A ∩ y−1 B = ∅ is less than tn, from
which it follows that there exists y ∈ C such that A ∩ y−1 B �= ∅. But then, if x ∈ A ∩ y−1 B, we
have x ∈ A, y ∈ C and yx ∈ B.

In order to make the proof of our general theorem more transparent, we begin with the special
case m = 3.

Theorem 5.2. Let G be a group of order n such that no non-trivial representation has dimen-
sion less than k. Let A1, A2, A3, A12, A13, A23 and A123 be subsets of G of densities p1, p2,
p3, p12, p13, p23 and p123, respectively. Then, provided that p1 p2 p12, p1 p3 p13, p1 p23 p123 and
p2 p3 p23 p12 p13 p123 are all at least 16/k, there exist elements x1 ∈ A1, x2 ∈ A2 and x3 ∈ A3

such that x1x2 ∈ A12, x1x3 ∈ A13, x2x3 ∈ A23 and x1x2x3 ∈ A123.

Proof. We start by choosing x1, noting that there are certain conditions it will have to satisfy if
there is to be any hope of continuing the proof. For example, later we shall need to choose x2 ∈
A2 such that x1x2 ∈ A12. Equivalently, we shall need x2 to belong to A2 ∩ x−1

1 A12. Similarly,
we shall need x3 ∈ A3 ∩ x−1

2 A13 and x2x3 ∈ A23 ∩ x−1
1 A123. Therefore, we want these sets to

be not just non-empty, but reasonably large.
By Lemma 5.1, the number of x1 such that |A2 ∩ x−1

1 A12| < p2 p12n/2 is at most p1n/4,
provided that p1 p2 p12 � 16/k. Similarly, if p1 p3 p13 � 16/k and p1 p23 p123 � 16/k, then the
number of x1 such that |A3 ∩ x−1

1 A13| < p3 p13n/2 is at most p1n/4 and the number of x1 such
that |A23 ∩ x−1

1 A123| < p23 p123n/2 is at most p1n/4. Therefore, provided these inequalities
hold, we can choose x1 ∈ A1 such that, setting B2 = A2 ∩ A12, B3 = A3 ∩ A13 and B23 =
A23 ∩ A123, q2 = p2 p12/2, q3 = p3 p13/2 and q23 = p23 p123/2, we have |B2| � q2n, |B3| �
q3n and |B23| � q23n.

At this point we could quote our results about product-free sets, but instead let us repeat the
argument (which is more or less an equivalent thing to do). We would like to choose x2 ∈
B2 such that B3 ∩ x−1

2 B23 is non-empty. Lemma 5.1 implies that the number of x2 such that
B3 ∩ x−1

2 B3 is empty is at most q2n/2, provided that q2q3q23 � 2/k. Therefore, provided we
have this inequality, which, when expanded, says that p2 p3 p23 p12 p13 p123 � 16/k, there exist
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x2 ∈ B2 and x3 ∈ B3 such that x2x3 ∈ B23. But then x1, x2 and x3 satisfy the conclusion of the
theorem.

It is clear that the above argument can be generalized. The only thing that is not quite obvious
is the density conditions that emerge from the resulting inductive argument. Here is what they
are. Suppose that for every subset F ⊂ {1, 2, . . . , m} we have a subset AF of a group G with
density pF and suppose that no non-trivial representation of G has dimension less than k. Now
let h be an integer less than m and let E be a subset of {h + 1, . . . , m}. Let Ah,E be the collection
of all sets of the form U ∪ V , where max U < h and V is either {h}, E or {h} ∪ E . We shall say
that the sets AF satisfy the (h, E)-density condition if

∏
F∈Ah,E

pF is at least 23m/k. We shall
say that they satisfy the density condition if they satisfy the E-density condition for every h < m
and every non-empty set E ⊂ {h + 1, . . . , m}.

To get an idea of what this means, notice that the inequalities we assumed in Theorem 5.2 are
the (1, {2})-condition, the (1, {3})-condition, the (1, {2, 3})-condition and the (2, {3})-condition,
respectively, except that there we had a slightly better dependence on m.

Theorem 5.3. Let G be a group of order n such that no non-trivial representation has di-
mension less than k. For each non-empty subset F ⊂ {1, 2, . . . , m} let AF be a subset of G of
density pF , and suppose that this collection of sets satisfies the density condition. Then there
exist elements x1, . . . , xm of G such that xF ∈ AF for every F, where xF stands for the product
of all xi such that i ∈ F, written with the indices in increasing order.

Proof. By the density condition, for every non-empty subset F ⊂ {2, . . . , m} we have the
inequality 2−m p1 pF p1F � 22m/k. (Here we use the shorthand 1F to stand for {1} ∪ F .) There-
fore, by Lemma 5.1, for each F the number of x1 such that |AF ∩ x−1 A1F | � pF p1F (1 − 2−m)

is at most p1n/2m . Therefore, the number of x1 such that |AF ∩ x−1
1 A1F | � pF p1F (1 − 2−m)

for at least one non-empty F ⊂ {2, . . . , m} is at most p1n/2. It follows that there exists x1 ∈ A1

such that, if for every non-empty F ⊂ {2, . . . , m} we set BF = AF ∩ A1F , then every BF has
density at least qF = pF p1F (1 − 2−m).

We claim now that the sets BF satisfy the density condition (after a relabelling of the index
set). Let h < m and let E be a non-empty subset of {h + 1, . . . , m}. Define Bh,E to be the set of
all F of the form U ∪ V with U ⊂ {2, . . . , h − 1} and V equal to {h}, E or {h} ∪ E . Then∏

F∈Bh,E

qF � (1 − 2−m)2m ∏
F∈Bh,E

pF p1F = (1 − 2−m)2m ∏
F∈Ah,E

pF .

But (1 − 2−m)2m � 1/4 and
∏

F∈Ah,E
pF � 23m/k, so this implies that

∏
F∈Bh,E

qF �
23(m−1)/k. Therefore, the sets BF satisfy the density condition.

This proves the inductive step of the theorem. To be on the safe side, we take as our base
case the case m = 2. (We do this so that we do not have to worry about the definition of the
density condition when E cannot be non-empty.) This follows easily from the remark following
Lemma 5.1 if one sets A1 = C , A2 = B and A12 = A. The density condition in this case is
stronger than the hypothesis we needed to guarantee the existence of x1 and x2 such that x1 ∈ A1,
x2 ∈ A2 and x12 ∈ A12. Therefore, the theorem is proved.
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We now give a couple of corollaries of Theorem 5.3. They are special cases of the theorem:
the only extra content is that we need to do a small amount of calculation to optimize certain
densities while preserving the density condition.

Corollary 5.4. Let G be a group of order n such that no non-trivial representation has dimen-
sion less than k. For each non-empty subset F ⊂ {1, 2, . . . , m} let AF be a subset of G of density
p. Then, provided that p3.2m−2

> 23m/k (which is true if p > 2k−1/22m
), there exist x1, . . . , xm

such that xF ∈ AF for every F.

Proof. Since all the densities are the same, all we have to do is look at which set Ah,E is
largest. Obviously they get larger as h gets larger, so the largest one is when h = m − 1. This
has size 3.2m−2 since there are 2m−2 possibilities for U and 3 possibilities for V . The result now
follows from Theorem 5.3.

Corollary 5.5. Let G be a group of order n such that no non-trivial representation has dimen-
sion less than k. For every pair 1 � i < j � m let Ai j be a set of density p. Then, provided that
p > 4k−1/(2m−3), there exist x1, . . . , xm such that xi x j ∈ Ai j for every i < j .

Proof. We shall apply Theorem 5.3 again, setting AF to be G whenever F has cardinality other
than 2. Then pF = p if F has cardinality 2, and pF = 1 otherwise. Now let us work out how
many sets of size 2 are contained in Ah,E . If E has cardinality greater than 1 then there are h − 1
such sets, since then V must equal {h} and U must be a singleton. If E has cardinality equal to
1 then there are 2h − 1 sets, since either U is a singleton and V is {h} or E , or U is empty and
V is {h} ∪ E . Since the largest-possible value of h is m − 1, this tells us that the sequence exists
provided that p2m−3 > 23m/k, which implies the corollary.

It is possible to generalize Theorem 5.3 slightly further by using two facts about Lemma 5.1.
Instead of giving full details, we shall merely state two results and briefly explain how they are
proved.

Theorem 5.6. Let G be a group of order n such that no non-trivial representation has dimen-
sion less than k. For every pair 1 � i < j � m let Ai j be a set of density p. Then, provided that
p > 4k−1/(2m−3), there exist x1, . . . , xm such that xi x−1

j ∈ Ai j for every i < j .

Theorem 5.7. Let G be a group of order n such that no non-trivial representation has dimen-
sion less than k. Let A1, A2, A3, A12, A13, A23 and A123 be subsets of G of densities p1, p2,
p3, p12, p13, p23 and p123, respectively. Then, provided that p1 p2 p12, p1 p3 p13, p1 p23 p123 and
p2 p3 p23 p12 p13 p123 are all at least 16/k, there exist elements x1 ∈ A1, x2 ∈ A2 and x3 ∈ A3

such that x1x2 ∈ A12, x3x1 ∈ A13, x2x−1
3 ∈ A23 and x2x−1

3 x−1
1 ∈ A123.

To prove statements like this, one exploits Lemma 5.1 and its method of proof to the full. Not
only can one show that A ∩ x B is nearly always about the same size (when A and B are large
enough), but also A ∩ x−1 B, A ∩ Bx and A ∩ Bx−1. The inductive proof of Theorem 5.3 works
as long as at each stage of the inductive process the variable one is trying to choose, or its inverse,
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appears either at the beginning or at the end of each product. So, for example, in Theorem 5.7
one starts by choosing x1 such that A2 ∩ x−1

1 A12, A3 ∩ A13x−1
1 and A23 ∩ A123x1 are all large.

One is then left needing to place x2, x3 and x2x−1
3 into these sets, which can clearly be done.

Remarks. Although it may at first seem surprising that one can cause so many equations to
be satisfied simultaneously, there is an intuitive explanation for this, at least for readers familiar
with the notion of higher-degree uniformity for subsets of Abelian groups. (See [8, Section 3]
for a definition of this.) In that terminology, Lemma 5.1 shows that all dense subsets of G have a
property very similar to uniformity. But if that is the case, then almost all intersections of a dense
set A with a translate of itself will still be dense, and will therefore be uniform as well, which
shows that A has a sort of non-Abelian version of quadratic uniformity. But if uniformity implies
quadratic uniformity, then it implies uniformity of all degrees. In the Abelian case, the higher the
degree of uniformity a set has, the more linear equations one can hope to solve simultaneously
in that set, so it is not too surprising after all that one can solve large numbers of equations
simultaneously in subsets of a group where every dense set is uniform.

Another interesting aspect of Theorem 5.3 is that under certain circumstances it can yield very
good bounds. For simplicity let us consider the case where all the sets AF have density either p or
1, and let F be the set of F such that the density is p. Suppose that no element of {1, 2, . . . , m} is
contained in more than r of the sets F ∈ F . Then no set Ah,E can contain more than 2r elements
of F , so we can satisfy all the conditions simultaneously if p2r � 23m/k. That is, for fixed r we
can contain a power that is independent of m. (With a bit of care, the exponential dependence of
the constant on m can be improved as well.) This situation would arise if, for example, we wanted
xi x j to belong to Ai j whenever i j was an edge of a certain graph H of maximal degree 10.

6. Open questions

The results of this paper leave several questions unanswered. One that has been mentioned
already is the following (which is not formulated in a precise manner).

Question 6.1. Is there a good model for large random finite groups with the property that a
group chosen according to this model has a high probability of being quasirandom?

Another question that has been touched on is whether Theorem 4.6 can be improved. More
precisely, in an earlier draft of this paper the following was asked.

Question 6.2. If G has a non-trivial representation of dimension k, does G have a product-free
subset of size cn for some c that depends polynomially on k−1?

I am grateful to Lázslo Pyber for informing me that the answer is yes, for the following reason.
It can be shown using the classification of finite simple groups that a finite group with a k-
dimensional representation must have a proper subgroup of index at most kc (for some absolute
constant c) or an Abelian quotient. But in both cases it is easy to construct product-free subsets.
A stronger result that also implies a positive answer to Question 6.2 can be found in a recent
paper of Nikolov and Pyber [15]. This leaves open the question of whether the classification
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of finite simple groups is needed for solving Question 6.2. The results used in the solution just
mentioned do seem to have that flavour, but it does not seem completely unreasonable to hope
for a classification-free answer to the question. We put this as our next question.

Question 6.3. Is there an elementary proof that if G has a non-trivial representation of di-
mension k then G has a product-free subset of size cn for some c that depends polynomially on
k−1?

A closely related question is to find good bounds for the largest Haar measure of a product-
free subset of SU (n). The methods of this paper, suitably adapted, ought to prove that this is
at most Cn−1/3, but the largest product-free subsets of SU (n) that we know of are in the spirit
of the construction of Theorem 4.6 and are therefore exponentially small. We therefore ask the
following question, with a tentative expectation that the answer is yes.

Question 6.4. Does there exist a constant c < 1 such that every subset A ⊂ SU (n) that is
measurable and product-free has measure at most cn?

It is easy to prove that no stronger bound can hold: just fix a unit vector x0 ∈ C
n and let A

be the set of unitary maps α such that 〈x0, αx0〉 < −1/2. If α, β and αβ all belong to A, then
〈x0, αx0〉, 〈x0, αβx0〉 〈αx0, αβx0〉 are all less than −1/2. But it is an easy exercise to show that
it is impossible to find three unit vectors with this property. (Just look at the square of the norm
of their sum.) It is also easy to see that A has size at least cn for some positive constant c.

Several problems arise when one starts to think about the following broad question: Which
equations have solutions in large subsets of PSL2(q), or of other quasirandom groups? The most
general answer we have been able to find is Theorem 5.3 (and the slight generalization mentioned
at the end of the last section), but it is not obvious that that is the end of the story. Here are two
questions that give some idea of what further results might or might not be true. The first has
an easy negative answer: If A, B and C are three large sets, can one find a ∈ A, b ∈ B and
c ∈ C such that ab = ca? The answer is no, since if ab = ca, then b = a−1ca. Thus, b and c
are conjugate, so to find a counter-example all one has to do is make B and C disjoint unions of
conjugacy classes.

However, for a very similar question it is much less clear what the answer is. If A is a
quasirandom subset of an Abelian group, then A contains approximately the same number of
arithmetic progressions of length 3 (defined to be sequences of the form (a, a + d, a + 2d) with
d �= 0) as a random set of the same cardinality, and it also contains about the same number of
solutions to the equation x + y = z. Moreover, the proofs of these two facts are very similar.
What happens if we investigate arithmetic progressions in subsets of PSL2(q)?

The most obvious question is not very interesting: Does every dense subset A of PSL2(q)

contain a progression of length 3, where this is now defined to be a sequence of the form
(x, gx, g2x)? (It might be better to call this a ‘left progression’, since it is not the same as a
sequence of the form (x, xg, xg2).) The answer is yes, since PSL2(q) can be decomposed into
right cosets of a cyclic subgroup of order q: we can therefore find a coset such that A intersects
it densely and apply Roth’s theorem. However, this leaves two questions unanswered. The first
is whether A must in fact contain roughly the ‘expected’ number of progressions of length 3.
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Question 6.5. Let A be a subset of PSL2(q) of density δ and let g and x be randomly chosen
elements of PSL2(q). Is the probability that x, gx and g2x are all in A necessarily approximately
equal to δ3?

The second question is closely related.

Question 6.6. Let A, B and C be three dense subsets of PSL2(q). Must there be an arithmetic
progression (a, b, c) ∈ A × B × C?

This would be interesting, since an ‘off-diagonal’ Roth theorem of this kind is completely false
in an Abelian group. Of course, the last two questions can be asked for other quasirandom groups.
Notice also that if (a, b, c) = (x, gx, g2x), then c = ba−1b, and if c = ba−1b then (a, b, c) =
(a, ga, g2a) for g = ba−1. Therefore, an equivalent question to the last one is the following:
If A, B and C are three dense subsets of PSL2(q), must there exist a ∈ A, b ∈ B and c ∈ C
such that bab = c? (To make the question cleaner we have replaced A by the set of inverses of
elements of A, which obviously makes no difference.)

There is a natural bipartite graph that one can define in response to these problems: join x to
y if there exists b ∈ B such that bxb = y. If this graph is automatically quasirandom, then the
answers to both problems are yes. But it is not clear whether it is quasirandom. The difficulty is
that we are mixing left and right actions, which makes representation theory less easy to apply.
(Notice that the natural bipartite graph associated with the equation ab = ca we considered
first joins x to all points of the form a−1xa. It is easy to see that this graph is very far from
quasirandom – indeed, it has multiple edges and a typical edge has very high multiplicity.)
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