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PROBLEMS AND SOLUTIONS

SOLUTIONS

03.3.1. Normal’'s Deconvolution and the Independence
of Sample Mean and Variance— Solution

Karim M. Abadir
University of York, UK

Jan R Magnus
Tilburg University, The Netherlands

(the posers of the problem

(a) The “if” part is easy to provelf x; ~ N(u,;,0?) for i = 1,2, then their
independence simplifies the moment generating fundtiog.f.) of y to

m,(t) = E(e'0a2)) = E(e™)E(e™?) = gluitua)tt(of o)t/

so thaty ~ N(uy + w,,02 + a2).

The “only if” part is less obviousWe will assume thay ~ N(0,1), without
loss of generalitythe usual extension ta + oy applies. Then the character-
istic function(c.f.) of y is

e—t2/2 — E(eity) — E(eit(x1+x2)) — E(eitxl)E(eitXZ) = ml(it)mz(it),
by independence of; from x,. Note that for t real-valued
[E(e™)| = E(le™]) =E(1) =1,

so we have €72 < |my(it)| or equivalently—2 log/my(it)| = t2. Because
the mg.f. of x, exists all the derivatives ofm,(it) are finite att = 0 and
loglm,(it)| has a Taylor-series representation as a polynomial From the
previous inequalitythe maximal power of this polynomial is. As a resulf
my(t) = exp(ayt + a,t?) for suitably chosen constants and«, (recall that
m, (0) is set to 1 by definition). This establishes normality fo; and by sym-
metry of the argumenfor x, too.

Cramér’s(1936 deconvolution theorem is actually more general than is stated
in part(a), because it does not presume the existence.gffra for x; andxs,
at the cost of a further complication of the proaf our proof we have used
(without needing to resort to the language of complex anglyhis fact that
the existence of the m.f. implies that it is analytic(satisfies the Cauchy—
Riemann equationsand is thus differentiable infinitely many times in an open
neighborhood of = 0 in the complex planeOn the other handf one did not
assume the existence of.gif.s, then one would require some theorem from
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complex function theoryOne such requisite would be the “principle of iso-
lated zeros” or “uniqueness theorem for analytic functibAsiother alterna-
tive requisite would be “Hadamard’s factorization theoremsed in Loéve
(1977, p. 284).

(b) For n < oo, Cramér’s deconvolution theorefsee parta)) can be used
n — 1 times to tell us thag ~ N(u, o ?/n) decomposes into the sum ofinde-
pendent normajsso that vafx) = 3, is a diagonal matrix satisfying (&) =
no 2. However the theorem does not imply that the components of the decom-
position have identical variances and meaarsd we need to derive these two
results respectively

Define the idempotent matribA = (a;) := |, — n’/n. Then because
x'(072A)X ~ x?(n — 1), we haveA = ¢ 2A3A. The fact thatA is idempotent
implies thatADA = O, where

D = diag(dy,...,d,) :==1,— o 23
with
tr(D)=n—o ?trC)=n—0 ?nc?=0. (1)

The diagonal elements &DA are given by

(ADA); = d, — gdj + iz tr(D) = (1— 2) d. )
n n n

Forn f 3, the equatioPADA = O thus givesd; = 0 forj = 1,...,n, and hence

> :oaotlmgr;\in the mearnwe note that the noncentrality parametexofo ~2A)x

is given byu'S Y?(072A)3 " Y?u. Because our quadratic form has a central
x?-distribution and®, = ¢ 2l ,, we obtainAg = 0 and hence

—_— I,’L
=1 .
Then E(x) = ul follows by

e[ X) A
M—E(X)_E<n>_ .

(c) Whenn = 2,
1/1 -1
Aol
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and

ADA11—1 d 0\/1 -1\ d+d,/1 -1
ca4\-1 1)\o0o dJ\-1 1) 4 \-1 1)

Equating the latter to zeras in(2), provides no further information on the
variance of the two normal componentsxgfbeyond what was already known
from (1). In this caseresult(b) does not hold

As a counterexampjdet

()G 2)

Then it is still the case thag ~ N(0,3) and

_lX X 1 _1 Xl _1 2 2
Z—E( v Xo) 11 )\ % —E(Xl_xz) ~x“(D).

Notice howeverthat cou x; + X,, X1 — Xo) = var(x;) — var(x,) # 0, so thatx
is not independent of. We will now show that assuming independencexof
from z makes the statement (i) hold forn = 2 alsa

Independence of the linear fomix/n from the quadratic fornx’Ax /o2 occurs
if and only if A3 = 0. Forn = 2, setting

1/ 1 -1\/of 0)\/1 1/02—0o?
2\-1 1\ o o2/)\1) 2\02-¢?

equal to zero ensures thaf = 2.

A variation on part(c) is proved by a different approach in Zingeir958
Theorem 6. There independence of from zis assumed but not the normality
of x. In fact, for 2 = n < oo, normality ofx is obtained there as a result of one
of two alternative assumptions on the componentg béing pairwise identi-
cally distributed or being decomposable further as independent and identically
distributed(i.i.d.) variates

NOTE

1. An independent solution has been proposed by Luc Laywésd euven Belgium
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03.3.2. The Asymptotic Distribution of the Dickey—Fuller Statistic under
Nonnegativity Constraint— Solution?

Giuseppe Cavaliergéhe poser of the problem
University of Bologna, Italy

It is convenient to express the Dickey—Full&F) statistic as

.
(1/T)<X¥— E(Axt)2>

ZT = T
(2/T2) > X&,
t=1

(see Phillips 1987). To prove that the asymptotic distribution @& under
the nonnegativity constraint is standande need to prove thatT ~1X2,
T 23 X2 % 02(B(1)2 [4B(s)?ds) and thatT 13 (AX)2 5 o2

The weak convergence result can be obtained by showing that the con-
strained random walkX;} can be expressed as a functional of the simple ran-
dom walk S = Xi_,&, S = 0. This key result is given in the following
lemma which is adapted from Proposition 4 in Cavalié&02).

LEMMA 1. For each t= 0, X, = § + L, where $:= 3! _,& and L, =
_minist{s}-

Proof. First, note that for each the process can be written Zs= X;_, +
g + |, where

Iy = —(Xi—q + ) I{ X1 + & < O} (3

HenceX, = Xo + Si_1& + 24l = Xo + S + L, whereL, :== 3/, 1,. We
need to show that, = —min;-{S}, which can be proved by inductiofror
t=0 S =0, Lo = 0 and the relation is therefore satisfigdssume that the
relation is satisfied at time i.e., L, = —min{S}. At time t + 1, if X, +
err1 = 0, thenly; = 0, Ly = Ly = —min{S} = —mini..,{S}, and the
relation is satisfiedConverselyif X; + g1 < 0, thenli, 1 = —(X; + &41) =
—(§ + L; + &1), which implies—L;,; = S1. But becausé,,; > 0, —L; ;=
Si1 < —L; = min{S}, which gives—min;—.1{S} = S:1 = —L+1, and the
relation is proved u

The mapping from{S} to {X;} is explained graphically in Figure, ivhere
{X;} is plotted along with{S} and{—L}. It is interesting to notice that the
cumulated effect of the nonnegativity constraing., the differential between
the unconstrained and the constrained random w&ks X, is given by the
running minimum min {S} =: — L,.
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Ficure 1. Construction of the constrained random watk (solid line), S (short dashed
line), and —L, (dashed ling T =50, o = 1.

From Lemma 1the invariance principleand the continuous mapping theo-
rem asT T oo

T Y20 Xy = T Y2015 — min{T Y2515}
i=t
s B(s) — inf B(r) 2 |B(9)| (4)
r=s

uniformly for all s € [0,1]. The probability result given by the last distribu-
tional equality in(4) is well known in the probability literaturésee e.g., Har-
rison 1985. Note that it also implies ~to~2XZr) = |B(s)|? = B(s)? and
hence

T-1x2 B(1)2

T o? 1 .
T 2> X2, f B2ds
t=1 0

The proof is completed by showing that the nonnegativity constraint does
not affect the estimation of the variane€?. Because(1/T)S [ &2 > o2
({&} is Gaussian and independently and identically distrib{ited.]), we only
need to prove that(1/T)XZ(AX)? — (1/T)Xef| = 0,(1). Letl, 0 = |, =
||, be defined as if3). As (AX)? = (g + )% = &2 + I;(l; + 2&,) = &2 +
3liletl,

w
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30 t=1,..., 1 T
(AX)Z—— 22| = > S el =3 =3, 5)
T tE:L t 2 t T g t '\/T \/T zl t
But T Y231 1, = T Y2min_;,  {S} % —cinfe,B(s) and T2

44444

max—1 . tlel = 0,(1) ({&} is i.i.d. and Gaussiarn hence the random vari-
able on the right-hand side ¢%) is 0,(1), and the desired result follows

Final Remark. The asymptotics obtained show that the nonnegativity con-
straint does not affect the asymptotic distribution of the Dickey—Fuller unit root
test However the same property does not automatically apply to other unit
root testge.g., tests that employ deterministic correctiariSee Cavalier€2001)
for further insights

NOTE

1. Anindependent solution has been proposed by Paulo Rodrigimégersity of Algrave Por-
tugal jointly with Antonio Rubig University of Alicante Spain
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