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SOLUTIONS

03.3.1. Normal’s Deconvolution and the Independence
of Sample Mean and Variance—Solution1

Karim M+ Abadir
University of York, UK

Jan R+ Magnus
Tilburg University, The Netherlands

~the posers of the problem!

~a! The “if” part is easy to prove+ If xi ; N~m i ,si
2! for i 5 1,2, then their

independence simplifies the moment generating function~m+g+f+! of y to

my~t ! [ E~et~x11x2! ! 5 E~etx1 !E~etx2 ! 5 e~m11m2!t1~s1
21s2

2!t 202,

so thaty ; N~m1 1 m2,s1
2 1 s2

2!+
The “only if” part is less obvious+ We will assume thaty ; N~0,1!, without

loss of generality~the usual extension tom 1 sy applies!+ Then, the character-
istic function~c+f+! of y is

e2t 202 5 E~eity! 5 E~eit~x1 1 x2! ! 5 E~eitx1 !E~eitx2 ! [ m1~ it !m2~ it !,

by independence ofx1 from x2+ Note that, for t real-valued,

6E~eitx2 !6 # E~6eitx2 6! 5 E~1! 5 1,

so we have e2t 202 # 6m1~ it !6 or equivalently22 log6m1~ it !6 # t 2+ Because
the m+g+f+ of x1 exists, all the derivatives ofm1~ it ! are finite at t 5 0 and
log6m1~ it !6 has a Taylor-series representation as a polynomial int+ From the
previous inequality, the maximal power of this polynomial is 2+ As a result,
m1~t ! 5 exp~a1t 1 a2t 2! for suitably chosen constantsa1 anda2 ~recall that
m1~0! is set to 1, by definition!+ This establishes normality forx1 and, by sym-
metry of the argument, for x2 too+

Cramér’s~1936! deconvolution theorem is actually more general than is stated
in part ~a!, because it does not presume the existence of m+g+f+s for x1 andx2,
at the cost of a further complication of the proof+ In our proof, we have used
~without needing to resort to the language of complex analysis! the fact that
the existence of the m+g+f+ implies that it is analytic~satisfies the Cauchy–
Riemann equations! and is thus differentiable infinitely many times in an open
neighborhood oft 5 0 in the complex plane+ On the other hand, if one did not
assume the existence of m+g+f+s, then one would require some theorem from
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complex function theory+ One such requisite would be the “principle of iso-
lated zeros” or “uniqueness theorem for analytic functions+” Another alterna-
tive requisite would be “Hadamard’s factorization theorem,” used in Loève
~1977, p+ 284!+

~b! For n , `, Cramér’s deconvolution theorem~see part~a!! can be used
n 2 1 times to tell us thatSx ; N~m,s20n! decomposes into the sum ofn inde-
pendent normals, so that var~x! 5 S is a diagonal matrix satisfying tr~S! 5
ns2+ However, the theorem does not imply that the components of the decom-
position have identical variances and means, and we need to derive these two
results, respectively+

Define the idempotent matrixA 5 ~aij ! :5 I n 2 ıı '0n+ Then, because
x '~s22A!x ; x2~n 2 1!, we haveA 5 s22ASA+ The fact thatA is idempotent
implies thatADA 5 O, where

D 5 diag~d1, + + + ,dn! :5 I n 2 s22 S

with

tr~D! 5 n 2 s22 tr~S! 5 n 2 s22ns2 5 0+ (1)

The diagonal elements ofADA are given by

~ADA!jj 5 dj 2
2

n
dj 1

1

n2 tr~D! 5 S12
2

n
D dj + (2)

For n $ 3, the equationADA 5 O thus givesdj 5 0 for j 5 1, + + + , n, and hence
S 5 s2I n+

To obtain the mean, we note that the noncentrality parameter ofx '~s22A!x
is given bym'S2102~s22A!S2102m+ Because our quadratic form has a central
x2-distribution andS 5 s2I n, we obtainAm 5 0 and hence

m 5 ı
ı 'm

n
+

Then, E~x! 5 mı follows by

m 5 E~ Sx! 5 ES ı 'x

n
D5

ı 'm

n
+

~c! Whenn 5 2,

A 5
1

2S 1 21

21 1 D
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and

ADA 5
1

4S 1 21

21 1 DS d1 0

0 d2
DS 1 21

21 1 D5
d1 1 d2

4 S 1 21

21 1 D +
Equating the latter to zero, as in ~2!, provides no further information on the
variance of the two normal components ofx, beyond what was already known
from ~1!+ In this case, result~b! does not hold+

As a counterexample, let

Sx1

x2
D ; NSS0

0D,S 2
1
2 0

0 2
3
2
DD+

Then, it is still the case thatSx ; N~0, 12_! and

z 5
1

2
~x1, x2!S 1 21

21 1 DSx1

x2
D5

1

2
~x1 2 x2!2 ; x2~1!+

Notice, however, that cov~x1 1 x2, x1 2 x2! 5 var~x1! 2 var~x2! Þ 0, so that Sx
is not independent ofz+ We will now show that assuming independence ofSx
from z makes the statement in~b! hold for n 5 2 also+

Independence of the linear formı'x0n from the quadratic formx 'Ax0s2 occurs
if and only if ASı 5 0+ For n 5 2, setting

1

2S 1 21

21 1 DSs1
2 0

0 s2
2DS1

1D 5
1

2Ss1
2 2 s2

2

s2
2 2 s1

2D
equal to zero ensures thats1

2 5 s2
2+

A variation on part~c! is proved by a different approach in Zinger~1958,
Theorem 6!+ There, independence ofSx from z is assumed but not the normality
of x+ In fact, for 2 # n , `, normality ofx is obtained there as a result of one
of two alternative assumptions on the components ofx being pairwise identi-
cally distributed or being decomposable further as independent and identically
distributed~i+i+d+! variates+

NOTE

1+ An independent solution has been proposed by Luc Lauwers, KU Leuven, Belgium+
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03.3.2. The Asymptotic Distribution of the Dickey–Fuller Statistic under
Nonnegativity Constraint—Solution1

Giuseppe Cavaliere~the poser of the problem!
University of Bologna, Italy

It is convenient to express the Dickey–Fuller~DF! statistic as

ZT 5

~10T !SXT
2 2 (

t51

T

~DXt !
2D

~20T 2! (
t51

T

Xt21
2

~see Phillips, 1987!+ To prove that the asymptotic distribution ofZT under
the nonnegativity constraint is standard, we need to prove that~T21XT

2,
T22 (t51

T Xt21
2 !' w

&& s2~B~1!2,*0
1 B~s!2 ds!' and thatT21 (t51

T ~DXt !
2 p

&& s2+
The weak convergence result can be obtained by showing that the con-

strained random walk$Xt % can be expressed as a functional of the simple ran-
dom walk St :5 (i51

t «t , S0 5 0+ This key result is given in the following
lemma, which is adapted from Proposition 4 in Cavaliere~2002!+

LEMMA 1 + For each t$ 0, Xt 5 St 1 Lt, where St :5 (i50
t «i and Lt 5

2mini#t $Si %.

Proof. First, note that for eacht the process can be written asXt 5 Xt21 1
«t 1 l t , where

l t 5 2~Xt21 1 «t !I$Xt21 1 «t , 0%+ (3)

HenceXt 5 X0 1 (i51
t «i 1 (i51

t l i 5 X0 1 St 1 Lt , whereLt :5 (i51
t l i + We

need to show thatLt 5 2mini#t $Si % , which can be proved by induction+ For
t 5 0, S0 5 0, L0 5 0 and the relation is therefore satisfied+ Assume that the
relation is satisfied at timet, i+e+, Lt 5 2mini#t $Si % + At time t 1 1, if Xt 1
«t11 $ 0, then l t11 5 0, Lt11 5 Lt 5 2mini#t $Si % 5 2mini#t11$Si % , and the
relation is satisfied+ Conversely, if Xt 1 «t11 , 0, then l t11 5 2~Xt 1 «t11! 5
2~St 1 Lt 1 «t11!, which implies2Lt11 5 St11+ But becausel t11 . 0, 2Lt11 5
St11 , 2Lt 5 mini#t $Si % , which gives2mini#t11$Si % 5 St11 5 2Lt11, and the
relation is proved+ n

The mapping from$St % to $Xt % is explained graphically in Figure 1, where
$Xt % is plotted along with$St % and $2Lt % + It is interesting to notice that the
cumulated effect of the nonnegativity constraint, i+e+, the differential between
the unconstrained and the constrained random walks, St 2 Xt , is given by the
running minimum mini#t $Si % 5: 2 Lt +
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From Lemma 1, the invariance principle, and the continuous mapping theo-
rem, asT F `

T2102s21X@sT# 5 T2102s21St 2 min
i#t

$T2102s21Si %

w
&& B~s! 2 inf

r#s
B~r ! 5

d 6B~s!6 (4)

uniformly for all s [ @0,1# + The probability result given by the last distribu-
tional equality in~4! is well known in the probability literature~see, e+g+, Har-
rison, 1985!+ Note that it also impliesT21s22X@sT#

2 w
&& 6B~s!62 5 B~s!2 and

hence

1
T21XT

2

T22 (
t51

T

Xt21
2 2 w

&& s2 1
B~1!2

E
0

1

Bs
2 ds2 +

The proof is completed by showing that the nonnegativity constraint does
not affect the estimation of the variances2+ Because~10T !(t51

T «t
2 p

&& s2

~$«t % is Gaussian and independently and identically distributed@i+i+d+# !, we only
need to prove that6~10T !(~DXt !

2 2 ~10T !(«t
26 5 op~1!+ Let l t , 0 # l t #

6«t 6, be defined as in~3!+ As ~DXt !
2 5 ~«t 1 l t !

2 5 «t
2 1 l t~l t 1 2«t ! # «t

2 1
3l t 6«t 6,

Figure 1. Construction of the constrained random walk: Xt ~solid line!, St ~short dashed
line!, and2Lt ~dashed line!, T 5 50, s 5 1+
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* 1

T (
t51

T

~DXt !
2 2

1

T (
t51

T

«t
2* #

3

T (
t51

T

l t 6«t 6# 3

max
t51, + + + ,T

6«t 6

MT

1

MT
(
t51

T

l t + (5)

But T2102 (t51
T l t 5 2T2102mint51, + + + ,T$St %

w
&& 2s infs#1 B~s! and T2102

maxt51, + + + ,T 6«t 6 5 op~1! ~$«t % is i+i+d+ and Gaussian!; hence, the random vari-
able on the right-hand side of~5! is op~1!, and the desired result follows+

Final Remark. The asymptotics obtained show that the nonnegativity con-
straint does not affect the asymptotic distribution of the Dickey–Fuller unit root
test+ However, the same property does not automatically apply to other unit
root tests~e+g+, tests that employ deterministic corrections!+ See Cavaliere~2001!
for further insights+

NOTE

1+ An independent solution has been proposed by Paulo Rodrigues, University of Algrave, Por-
tugal, jointly with Antonio Rubia, University of Alicante, Spain+
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