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In September 2000, the Brazilian system dispatch and spot prices were calculated
twice, using different inflow forecasts for that month, as in the last 5 days of August
the inflows to the reservoirs in the South and Southeast regions changed 200%+
The first run used a smaller forecasted energy inflow and the second used a higher
energy inflow+ Contrary to expectations, the spot price in the second run, with the
higher energy inflow, was higher than the one found in the first run+ This paper
describes the problem, presents the special features of the PAR~p!model that allow
the described behavior, and shows the solution taken to avoid the problem+

1. INTRODUCTION

A chain of optimization models with different planning horizons and degrees of
detail in system representation composes a computational system for the electric-
energetic operation planning and programming of the Brazilian generating system
@4# + The chain was proposed to the Brazilian Independent System Operator ~ONS!
and currently is being gradually implemented+ ONS is responsible for central sys-
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tem optimization and dispatch according to clearly defined rules agreed upon by all
industry members and approved by the regulatory body ~ANEEL!+ The optimiza-
tion models also compute the water values that form the basis for determining the
Wholesale Energy Market ~MAE! spot price+

On the top of the chain, the long-term operation planning model, called
NEWAVE @3# , applies a stochastic dual dynamic programming algorithm, which
uses Bender’s decomposition, to produce an operation strategy for each stage
~month! of the planning period @6# + The operation strategy, given the system state
at the beginning of the stage, produces generation targets for each of the four
aggregated reservoirs, corresponding to the four Brazilian regions ~South, South-
east, North, and Northeast, illustrated in Figure 1!, and for the thermal plants,
plus the energy interchanges among regions+ The state system includes the stored
energy in the beginning of each month for each of the four aggregated reservoirs
or subsystems and information about “hydrologic trend” ~i+e+, the last p observed
energy inflows in each of the four subsystems!+ This number, p, can vary from
month to month and from subsystem to subsystem+

In stochastic streamflow modeling, this corresponds to the use of the well-known
and widely used periodic autoregressive PAR~ p!model @9# ,which has been used as
a forecast model for monthly flows and has been demonstrated in the comprehen-
sive study of Noakes, McLeod, and Hippel @5# , which considered several models+

Noakes et al+ used 30 monthly unregulated river flow time series+ The last 36
observations were omitted in the model identification and estimation phases of the
study+ One-step-ahead forecast statistics of the obtained forecasts in the omitted
period were used to compare the models+ The PAR~ p! model obtained by identifi-
cation of the model’s order in each month using the partial autocorrelation function

Figure 1. Brazilian subsystems+
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~PACF! and estimating the parameters using the Yule–Walker equations @9# was
found to be the best model for the overall data in the study+ Noakes et al+ also com-
mented, “Although other models may be more parsimonious, the PAR0PACF model
gives the most adequate model due to the seasonal correlation effect” and “Besides
being used for forecasting, PAR~ p! models can also be employed for simulating
hydrologic sequences” ~i+e+, to generate a great number of energy inflow scenarios!
@2# + The good results obtained with the PAR0PACF modeling approach, both in
one-step-ahead forecasts and simulation of drought sequences reasonably similar to
the historical ones together with the easy mathematical tractability, recommended
the use of this approach in the NEWAVE algorithm to model the energy inflow
stochasticity+ It was considered sufficient to use a maximum order p equal to 6,
although the effective order varies for each month, according to the PAR0PACF
modeling approach+ This model is called PAR~6!+ The PAR~6! model generates
energy inflow scenarios that will be used in the simulation process of the NEWAVE
model and in the construction of the expected cost-to-go function of each month
produced by the stochastic dual dynamic programming algorithm+

At the end of each month, the dispatch model is run by ONS, based on the
inflow forecast for the next month+ In addition to being used to determine the hydro
and thermal generation, plus the energy interchanges among subsystems, the model
calculates the spot price for each subsystem+ The spot price is used for settling
transactions in the Wholesale Energy Market and is therefore of great commercial
importance+

In September 2000, the system dispatch and spot prices were calculated twice,
using different inflow forecasts for that month, as in the last 5 days of August the
inflows to the reservoirs in the South and Southeast regions changed 200%+ The
first run used a smaller forecasted energy inflow and the second used a higher energy
inflow+ Contrary to expectations, the spot price in the second run, with the higher
energy inflow, was higher than the one found in the first run+

The analysis of the case made by @7# suggested that the problem occurred
because of an error in the calculation of Bender’s cut that constitutes the expected
cost-to-go-function of each month+

The problem was further investigated and it was detected that the expected
energy inflows produced by the PAR~ p! model in February 2001 decrease sharply
when the energy inflow in September 2000 was increased and this was the reason
of the increase in the spot price+ The suggestion in @8# proved not be the case+

The objective of this work is to describe the problem that occurred in Septem-
ber 2000 in the operation planning of the Brazilian hydropower system, present the
special features of the PAR~ p! model that allow the described behavior, and show
the solution taken to avoid the problem+

2. MODELING APPROACH

The operation strategy minimizes the expected value of the operation cost during
the planning period, which is composed of fuel costs plus penalties for failure in
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load supply+ If the inflow volumes are known at the beginning of each stage, sto-
chastic dual dynamic programming @2,6,7# , represented by the following backward
recursive equation, can solve the operation dispatch problem:

at ~Xt ! � E
At 6Xt

�min (
thermal plants

Ct GTt �
1

b
at�1~Xt�1!� ∀t � T,T � 1, + + + ,1

(1)

subject to the following:

Storage balance equation in each subsystem aggregated reservoir

Vt�1 � Vt � FCgAt � Qt � St � EVt

Demand supply equation in each subsystem k

(
subsystems

Qt � (
thermal
plants

GTt � (
subsystems

interconnected
to k

~Ft, j, k � Ft, k, l ! � Dt � ~1 � g!At

Bounds in storage in each subsystem aggregated reservoir

Vt�1 � PV

Maximum hydro production in each subsystem aggregated reservoir

Qt � OQ

Lower bounds on total outflow in each subsystem aggregated reservoir

Qt � St � Qmin

Maximum generation in each thermal plant

GTt � GTmaxt

Flow limits among subsystems

Fmint
� Ft � Fmaxt

Set of multivariate linear constraints representing the cost-to-go function ~Bend-
er’s cut!

at�1 � (
subsystems

pv, t�1Vt�1 �pA1, t�1 At � {{{�pAp, t�1 At�p�1 � const

where

t indexes the stages

Xt state vector at the beginning of stage t ~Vt ,At�1, + + + ,At�p!

Vt subsystem energy storage level

At energy inflow to subsystems
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at~Xt ! expected value of the operation cost from stage t to the end of the
planning period under the optimal operation policy

At 6Xt probability distribution of energy inflows At conditioned by the state
Xt

E~{! expected value

GTt thermal generation of each thermal plant

b discount rate

Qt aggregated hydro production in each subsystem

Ct generation cost of each thermal plant

St aggregated energy spillage in each subsystem

EVt evaporated energy on aggregated reservoirs

g proportion of energy inflow due to controllable energy inflow, which
represents the inflow volumes that can be stored in the system reservoir

1 � g proportion of energy inflow due to uncontrollable energy inflow,which
represents lateral inflow volumes arriving at run-of-the-river plants,
which have no associated reservoir

FC controllable energy inflow correction curve, associated to the energy
storage level, to take into account the effect of head variation

Ft, k, l energy flow from subsystem k to subsystem l

Dt energy demand

PV maximum reservoir storage

OQ maximum aggregated hydro production

Qmin minimum aggregated hydro production

GTmax maximum thermal generation

Fmin maximum flow between subsystems

Fmax minimum flow between subsystems

pv Bender’s cut coefficient associated to subsystem energy storage level

pAk Bender’s cut coefficient associated to energy inflow in the k previous
stages

The periodic autoregressive model, denoted by PAR~ p!, can be written as

� Zt � µm

sm
� � f1

m� Zt�1 � µm�1

sm�1
�� {{{� fpm

m � Zt�pm
� µm�pm

sm�pm

�� at (2)

where Zt , t � 1,2, + + + , is the seasonal time series with period s ~in the case of the
monthly time series, s is equal to 12!+ The time index t may be regarded as a func-
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tion of the year T ~T �1, + + + ,N ! and the season m ~m �1, + + + , s!: t � ~T �1! s � m+ µm

is the mean of period of m, sm is the standard deviation of period m, and at is the
time uncorrelated series, which is independent of Zt , and it has also zero mean and
variance equal to sa

2~m!+
Take pt , pd, t , and lt as the Lagrange multipliers associated to the storage bal-

ance equation, demand supply equation, and cost-to-go multivariate linear con-
straints, respectively, of the dispatch problem of stage t+ After the solution of each
operation dispatch problem, the Bender’s cut coefficients pv, t ,pA1, t , + + + ,pAp, t that
will be added to the expected cost-to-go function of stage ~t � 1!, are calculated
deriving the operation cost in relation to the energy stored in the beginning of stage t
and the energy inflows in stages ~t � 1!, + + + , ~t � p!, obtaining

pv, t � �1 � � ]FC

]Vt
�gAt�pt , (3)

pA1, t � FCf1
mpt � ~1 � g!f1

mpd, t �pA1, t�1f1
mlt �pA2, t�1lt , (4)

pA2, t � FCf2
mpt � ~1 � g!f2

mpd, t �pA1, t�1f2
mlt �pA3, t�1lt , (5)

I

pAp, t � FCfp
mpt � ~1 � g!fp

mpd, t �pA1, t�1fp
mlt + (6)

3. PROBLEM IDENTIFICATION

When, in September 2000, the system dispatch and spot prices were calculated twice,
using different inflow forecasts for September and the consolidated and known
energy inflows for August, July, and so on, the spot price associated with a lower
forecasted energy inflow could be smaller than that associated with the higher fore-
casted energy inflow only if the pA1, t Bender’s cut coefficient is positive+

Next, the Bender’s cut coefficient calculation responsible for a pA1, t positive in
the dispatch operation problem of September 2000 will be detailed+ The adopted
horizon of the backward recursive simulation was 10 years, starting in December
2009 and ending in September 2000+ To illustrate the problem, it will be sufficient
to carry out the application of the recursive equation ~1! from February 2001 to
September 2000 considering only one energy inflow scenario+ Table 1 shows the
PAR~ p! coefficients of the Southeast subsystem from February to October+

Table 2 shows the simplex multipliers associated with storage balance, demand
supply equations, and the active linear constraint representing the cost-to-go func-
tion, in addition to the Bender’s cut coefficients of the Southeast subsystem from
February 2001 to October 2000+

With the values of Table 2a, it is possible to calculate the Bender’s cut coeffi-
cients that will be aggregated to the expected cost-to-go function of January 2001:
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pA1, t � ~0+9179 � 0+9142 � 0+641 � �726!� ~0+0858 � 0+641 � 684!

� ~�1663 � 0+641 � 0+992!� ~0 � 0+992!,

pA1, t � �391 � 37 � 1057 � 0 � �1488,

pA2, t � 205 � 19 � 554 � 0 � 780,

pA3, t � �380 � 36 � 1029 � 0 � �1449,

pA4, t � 256 � 24 � 695 � 0 � 978,

pA5, t � 662 � 63 � 1792 � 0 � 2522,

pA6, t � �1116 � 107 � 3019 � 0 � �4249+

With the values of Table 2b, it is possible to calculate the Bender’s cut coeffi-
cients that will be aggregated to the expected cost-to-go function of December 2000:

Table 1. PAR~ p! Coefficients of
the Southeast Subsystem

* ~sm0sm�i !

a+ February 2001
f1 0+564 0+641
f2 �0+223 �0+336
f3 0+304 0+624
f4 �0+188 �0+421
f5 �0+434 �1+090
f6 0+486 1+830

b+ January 2001
f1 0+706 0+934

c+ December 2000
f1 0+713 0+971

d+ November 2000
f1 0+751 0+816

e+ October 2000
f1 0+421 0+470
f2 �0+089 �0+151
f3 0+459 0+581
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pA1, t � �572 � 54 � 1379 � 775 � �1232,

pA2, t � 0 � 0 � 0 � 1437 � �1437,

pA3, t � 0 � 0 � 0 � 970 � 970,

pA4, t � 0 � 0 � 0 � 2503 � 2503,

Table 2. Operation Dispatch Parameters

a+ February 2001
pt �726 pA1, t�1 �1663
pd, t 684 pA2, t�1 0
lt 0+992 pA3, t�1 0
FC 0+9179 pA4, t�1 0
g 0+9142 pA5, t�1 0
pv, t�1 �732 pA6, t�1 —

b+ January 2001
pt �731 pA1, t�1 �1488
pd, t 684 pA2, t�1 780
lt 0+992 pA3, t�1 �1449
FC 0+9178 pA4, t�1 978
g 0+9142 pA5, t�1 2522
pv, t�1 �737 pA6, t�1 �4249

c+ December 2000
pt �771 pA1, t�1 �1232
pd, t 684 pA2, t�1 �1437
lt 0+992 pA3, t�1 970
FC 0+9156 pA4, t�1 2503
g 0+9105 pA5, t�1 �4212
pv, t�1 �777 pA6, t�1 0

d+ November 2000
pt �783 pA1, t�1 �3297
pd, t 684 pA2, t�1 962
lt 0+992 pA3, t�1 2482
FC 0+9215 pA4, t�1 �4178
g 0+9103 pA5, t�1 0
pv, t�1 �789 pA6, t�1 0

e+ October 2000
pt �781 pA1, t�1 �2305
pd, t 684 pA2, t�1 2463
lt 0+992 pA3, t�1 �4145
FC 0+9291 pA4, t�1 0
g 0+9103 pA5, t�1 0
pv, t�1 �788 pA6, t�1 0
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pA5, t � 0 � 0 � 0 � 4212 � �4212,

pA6, t � 0+

With the values of Table 2c, it is possible to calculate the Bender’s cut coeffi-
cients that will be aggregated to the expected cost-to-go function of November 2000:

pA1, t � �624 � 59 � 1187 � 1427 � �3297,

pA2, t � 0 � 0 � 0 � 962 � 962,

pA3, t � 0 � 0 � 0 � 2482 � 2482,

pA4, t � 0 � 0 � 0 � 4178 � �4178,

pA5, t � 0,

pA6, t � 0+

With the values of Table 2d, it is possible to calculate the Bender’s cut coeffi-
cients that will be aggregated to the expected cost-to-go function of October 2000:

pA1, t � �537 � 51 � 2669 � 952 � �2305,

pA2, t � 0 � 0 � 0 � 2463 � 2463,

pA3, t � 0 � 0 � 0 � 4145 � �4145,

pA4, t � 0,

pA5, t � 0,

pA6, t � 0+

With the values of Table 2e, it is possible to calculate the Bender’s cut coeffi-
cients that will be aggregated to the expected cost-to-go function of September 2000:

pA1, t � �311 � 28 � 1077 � 2442 � 1026,

pA2, t � 99 � 9 � 344 � 4115 � �3657,

pA3, t � �384 � 35 � 1329 � 0 � �1748,

pA4, t � 0,

pA5, t � 0,

pA6, t � 0+
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Now, the Bender’s cut that will be aggregated to expected cost-to-go function
of September 2000 can be written as

at�1 � �786Vt�1 � 1026At � 3657At�1 � 1748At�2

� (
other

subsystems

pv, t�1Vt�1 �pA1, t�1 At

� {{{�pAp, t�1 At�p�1 � const+

It can be observed that the Bender’s cut coefficient associated to the forecasted
energy inflow At is, in this case, positive+ The appearance of the positive coefficient
in the Bender’s cut is due to the expression of the expected energy inflow of Feb-
ruary 2001 for the Southeast subsystem as a function of the state at September 2000
and includes the inflow at September 2000 times a negative constant+ This can be
shown by back-substitution of the equations of the January inflow,December inflow,
November inflow, October inflow, and September inflow in the equation of the
February inflow, as is shown in the following+

Considering Xt as ~Zt � µm!, the regression of February in the PAR~ p! model
can be written as

XFeb � 0+641XJan � 0+336XDec � 0+624XNov

� 0+421XOct � 1+090XSept � 1+830XAug +

Substituting the known regression of January in the PAR~ p! model ~XJan �
0+934XDec! in the above expression, it can be written as

XFeb � ~0+641 � 0+934!XDec � 0+336XDec � 0+624XNov

� 0+421XOct � 1+090XSept � 1+830XAug +

Regrouping common terms, the regression of February can be written as

XFeb � 0+2627XDec � 0+624XNov � 0+421XOct � 1+090XSept � 1+830XAug +

In the same way, the December regression is given by XDec � 0+971 XNov+ Sub-
stituting the following expression in the previous one, we obtain

XFeb � ~0+2627 � 0+971! XNov � 0+624XNov � 0+421XOct

� 1+090XSept � 1+830XAug

or

XFeb � 0+8791XNov � 0+421XOct � 1+090XSept � 1+830XAug+
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Substituting the known PAR~p!model regression of November ~XNov � 0+816XOct!
in the above expression results in

XFeb � ~0+8791 � 0+816!XOct � 0+421XOct � 1+090XSept � 1+830XAug

or

XFeb � 0+2963XOct � 1+090XSept � 1+830XAug +

Once more, the October regression is given by XOct � 0+470XSept � 0+151XAug �
0+581XJuly+ Substituting this in the previous expression and regrouping the terms,
the regression of February 2001 inflow as a function of the September inflow fore-
cast and past inflows is obtained:

XFeb � �0+9507XSept � 1+7853XAug � 0+1722XJuly

This regression shows a negative coefficient multiplying the September energy
inflow forecast+ It can be noted that the negative September coefficient, which
showed up after these back-substitutions, has its roots in negative parameters in the
February model for the months 2-lagged ~December!, 4-lagged ~October!, and
5-lagged ~September!+

4. A PROPOSED SOLUTION

The identification procedure for the February model was reappraised+ The PACF of
this month ~Fig+ 2! shows a significant value at lag 1, nonsignificant values from
lag 2 to lag 5, and a significant value at lag 6+ Using the adopted classical identi-
fication rule, “choose p as the largest significant order i so that the partial correla-
tions for k � i are not significant,” this last significant value yielded a model of
order 6+ On the order hand, even a pure Box and Jenkins’s identification rule appli-
cation @1# would enhance the classical identification rule, by neglecting not very
strong significant partial correlations+ This would turn the model more parsimoni-
ous without increasing its residual sum of squares very much+After a general reap-

Figure 2. February PACF+
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praisal of the identifications for the Brazilian subsystems, it was discovered that the
same pattern occurred in two other months of the South subsystem and in one month
for the North and Northeast subsystems+

Taking out the occurrence of runs of nonsignificant partial correlations before
a significant one, as in these particular cases, in general one may state that, with the
exception in the cases with flows affected by snowmelt, there is no physical reason
for the inflow in any month to affect any following inflows by a negative coeffi-
cient+ This would pose a positive constraint in all of the coefficients of PAR~ p!
models+ On the other hand, with a pure statistical point of view, the obtained neg-
ative coefficients are the best representation of the correlation pattern revealed by
the data, and the literature on PAR~ p! modeling of streamflows is full of examples
of estimated negative coefficients; examples can be found in @5# and @10# + As a

Table 3. Comparison of Order Selected from Models PAR~6! to
PAR~6a!, Number of Autoregressive Coefficients

PAR~6! PAR~6a! PAR~6! PAR~61!

a+ Southeast subsystem c+ Northeast subsystem
Jan+ 1 1 Jan+ 1 1
Feb+ 6 1 Feb+ 4 1
March 1 1 March 1 1
April 2 2 April 1 1
May 3 3 May 1 1
June 1 1 June 2 2
July 3 3 July 1 1
Aug+ 1 1 Aug+ 1 1
Sept+ 1 1 Sept+ 2 2
Oct+ 3 3 Oct+ 3 3
Nov+ 1 1 Nov+ 4 4
Dec+ 1 1 Dec+ 5 5

b+ South subsystem d+ North subsystem
Jan+ 1 1 Jan+ 1 1
Feb+ 1 1 Feb+ 4 4
March 4 1 March 1 1
April 1 1 April 1 1
May 1 1 May 2 2
June 1 1 June 1 1
July 4 4 July 3 3
Aug+ 1 1 Aug+ 1 1
Sept+ 1 1 Sept+ 5 5
Oct+ 1 1 Oct+ 6 6
Nov+ 3 1 Nov+ 5 5
Dec+ 1 1 Dec+ 4 1
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compromise solution, it was proposed to maintain the classical rule of identifica-
tion but to reduce the order of the PAR~ p! model of each stage whenever the first
coefficient resulting from any of 12 back-substitutions of the equation’s model turns
out to be negative+ This model was called PAR~6a!+ The result was equivalent to the
above-cited approach of considering those, maybe spurious, significant partial cor-
relations, as insignificant and considering the more parsimonious modeling+ It was
shown that this PAR~6a!model can also reproduce the historical occurrence of severe
droughts+ Table 3 compares the order selected from models PAR~6! and PAR~6a!+

Figure 3 compares the historical ~70 years! and synthetic ~2000 years! average
energy inflow produced by the PAR~6! and PAR~6a! models for the Southeast sub-
system starting from different September energy inflows+ Two sets of 2000 syn-
thetic energy inflows are presented+ The solid curve was obtained using the near-
average energy inflow for September of the first run dispatch operation model in
September 2000+The long-dashed curve was obtained using the higher energy inflow
for September of the second run dispatch operation model in September 2000+ It
can be seen that the parsimonious model, PAR~6a!, presents a more reliable behavior+

5. CONCLUSION

The increased spot price with higher-energy inflow forecast that occurred in Sep-
tember 2000 in the Brazilian dispatch operation mode is not due to errors in for-

Figure 3. Historical � synthetic average energy inflows of the Southeast models:
~a! PAR~6! and ~b! PAR~6a!+
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mulation or implementation in the stochastic dual dynamic programming algorithm+
Otherwise, it has been shown that the use of the classical approach of the PAR ~ p!
model can potentially produce this problem+

The proposed solution maintains the classical rule of identification but reduces
the order of the model whenever the first coefficient resulting from 12 back-
substitutions of the regressions turns out to be negative+ These more parsimonious
models presented a more reliable behavior even when applied to the September
2000 Brazilian dispatch problem+
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