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We consider numbers and sizes of independent sets in graphs with minimum degree at

least d. In particular, we investigate which of these graphs yield the maximum numbers of

independent sets of different sizes, and which yield the largest random independent sets.

We establish a strengthened form of a conjecture of Galvin concerning the first of these

topics.
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Given a finite graph G, let I(G) be the set of independent sets and let i(G) = |I(G)|; and

for k � 0 let Ik(G) be the set of independent sets of order k and let ik(G) = |Ik(G)|. Thus

i(G) =
∑

k�0 ik(G).

There are many extremal results on i(G) and ik(G), where G ranges over a certain

family of graphs, for example, trees or regular graphs (see [2]–[5], [7]–[10], [12]). Here we

investigate graphs with a given lower bound on the vertex degrees. For d � 0, let Gn(d)

be the set of graphs of order n with minimum degree at least d (n, k and d will always

be integers). We are interested in which of these graphs yield the maximum numbers of

independent sets of different sizes, and which yield the largest random independent sets.

Let us discuss numbers first.

Recall that the independence number α(G) is the maximum size of an independent set.

Clearly α(G) � n − d for each G ∈ Gn(d). Recently, Galvin [5] proved that, for n suitably

larger than d, we have i(G) < i(Kd,n−d) for any G ∈ Gn(d) that is not (isomorphic to)

Kd,n−d. Moreover, he conjectured essentially that for any d � 1, there exist integers N(d)

and C(d) such that for each n � N(d), Kd,n−d maximizes ik over all graphs in Gn(d) for

each k satisfying C(d) � k � n − d, and he proved such a result in the case when d = 1.

This conjecture has been proved for bipartite graphs with N(d) = 2d and C(d) = 3 by

Alexander, Cutler and Mink [1]. Further evidence is provided by Engbers and Galvin [4].
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We shall see that this conjecture holds with N(d) = O(d3) and C(d) = 3. Observe

that we need C(d) � 3 here, since each n-vertex graph has i0(G) = 1 and i1(G) = n.

Also i2(G) =
(
n
2

)
− e(G), where e(G) is the number of edges, and graphs G ∈ Gn(d) can

have i2(G) > i2(Kd,n−d). (For example, if d is fixed and n is large and even, Kd,n−d has

d(n − d) ∼ dn edges, whereas a d-regular graph has dn/2 edges.) We do not know if N(d)

can be significantly reduced.

Theorem 1. Let 1 � d � n1/3/2. For each graph G ∈ Gn(d) and each k � 3 we have ik(G) �
ik(Kd,n−d), and if G is not Kd,n−d then i2(G) + i4(G) < i2(Kd,n−d) + i4(Kd,n−d), and so i(G) <

i(Kd,n−d).

A graph G ∈ Gn(d) with α(G) = n − d has the form G = H + In−d for a graph H of order

d and the empty graph In−d on n − d vertices. (Recall that for graphs G,G′ with disjoint

vertex sets, the sum G + G′ denotes the graph obtained by adding all edges between them.)

Let K∗
a,b denote the graph Ka + Ib.

Denote by X(G) the size of an independent set chosen uniformly at random from I(G).

Recall that X is stochastically dominated by Y , denoted by X �s Y , if P(X � t) � P(Y � t)

for each t.

If G ∈ Gn(d) satisfies α(G) = n − d and G is not K∗
d,n−d, then G is (isomorphic to) a

proper subgraph of K∗
d,n−d, and so i(G) > i(K∗

d,n−d); and it follows that

P(X(G) � t) < P(X(K∗
d,n−d) � t)

for t = 0 and t = 1. Hence it is not the case that X(G) �s X(K∗
d,n−d). Nevertheless, our

second theorem shows that, if we ignore independent sets of size at most 1, then of

all graphs in Gn(d), the graph K∗
d,n−d is the unique graph yielding the largest random

independent sets.

Theorem 2. Let 1 � d � n1/3/2. Then, for each graph G ∈ Gn(d) other than K∗
d,n−d, we have

P(X(G) � t) < P(X(K∗
d,n−d) � t) for each t = 3, . . . , n − d,

and if α(G) < n − d then this inequality holds also for t = 1 and 2.

This yields directly the following corollary.

Corollary 1. For 1 � d � n1/3/2, each graph G ∈ Gn(d) satisfies

X(G) �s max{2, X(K∗
d,n−d)}, (1)

and

if α(G) < n − d then X(G) �s X(K∗
d,n−d). (2)

Also, since E(X) =
∑

t�1 P(X � t), we may obtain almost directly another corollary.
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Corollary 2. For 1 � d � n1/3/2, each graph G ∈ Gn(d) other than K∗
d,n−d satisfies

E(X(G)) < E(X(K∗
d,n−d)) < (n − d)/2.

In order to prove these results, it turns out that the ‘growth rates’ αk of the numbers of

independent sets are crucial quantities. For a graph G and positive integer k � α(G), let

αk(G) :=
ik(G)

ik−1(G)
.

Thus αk(G) is 1/k times the average number of extensions of an independent (k − 1)-set

to an independent k-set in G; or (roughly) the ‘average number of extensions per vertex’

at size k.

To prove Theorem 1 we use two lemmas, one on growth rates αk(G) and one on the

‘base case’ i3(G). To prove Theorem 2 we need one further lemma, a general result on

growth rates and stochastic domination.

We adopt the following notation. For a graph G and integer d let A = A(G, d) = {v ∈
V (G) : deg(v) > d} and B = V (G) \ A; and let a = |A|, b = |B|. Also recall the standard

notation that, if U is a set of vertices in G, then the neighbourhood Γ(U) is the set of

neighbours of vertices in U, and the closed neighbourhood Γ[U] is Γ(U) ∪ U.

Lemma 1.

(a) For each 1 � d < n and G ∈ Gn(d), we have αk(G) � αk(K
∗
d,n−d) for each 3 � k � α(G).

(b) Let 1 � d � n1/3/2. Then, for each G,K ∈ Gn(d) with α(G) < n − d = α(K), we have

αk(G) < αk(K) for each 4 � k � α(G).

Proof. (a) Let 3 � k � α(G). Since each vertex degree in G is at least d, each I ∈ Ik−1(G)

can be extended to at most n − d − k + 1 independent k-sets. Call I good if this upper

bound is attained, and otherwise call I bad. Note that I is good if and only if |Γ(I)| = d,

if and only if each vertex in I has the same set of d neighbours. Also, each I is good if G

is K∗
d,n−d.

Since each independent k-set contains exactly k independent (k − 1)-sets, we have

ik−1(G)(n − d − k + 1) � kik(G).

Hence, αk(G) � n−d−k+1
k

. But αk(K
∗
d,n−d) = n−d−k+1

k
for k = 3, . . . , n − d. This establishes part

(a).

(b) Let 4 � k � α(G). Suppose first that k � d + 2. Let J be an independent set in G of

size α(G) � n − d − 1. Let W be a set of d + 1 vertices outside J , and note that each vertex

in W has at least one neighbour in J . Since k − 1 � d + 1 we may pick a (k − 1)-subset

I of J with Γ(I) ⊇ W , and so I is bad. Now, since there is a bad independent (k − 1)-set,

αk(G) < n−d−k+1
k

. Further, αk(K) = n−d−k+1
k

for each k = d + 2, . . . , n − d, so this case is

done; and so to prove part (b) we may assume that 4 � k � d + 1.
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Let us then assume that 4 � k � d + 1, and note that k � n − d. We may write K =

H + In−d for some graph H of order d. Then

αk(K) =

(
n−d
k

)
+ ik(H)(

n−d
k−1

)
+ ik−1(H)

.

Since ik−1(H) �
(

d
k−1

)
we have

αk(K) �
(
n−d
k

)
(
n−d
k−1

)
+

(
d

k−1

) >
n − d − k + 1

k

(
1 −

(
d

k−1

)
(
n−d
k−1

)
)
. (3)

Let p and q denote the numbers of good and bad sets in Ik−1(G) respectively, so

p + q = ik−1(G). Then

kik(G) � p(n − d − k + 1) + q(n − d − k) = (p + q)(n − d − k + 1) − q,

so

αk(G) � n − d − k + 1

k
− q

k(p + q)
. (4)

Assume for a contradiction that αk(G) � αk(K). Then it follows using (3) and (4) that

q

p + q
� (n − d − k + 1)

(
d

k − 1

)
/

(
n − d

k − 1

)
<

dk−1

(n − d − k + 1)k−2
.

Now n − d − k + 1 � n − 2d � n/2. Hence by the last inequality

q

p + q
<

dk−1

(n/2)k−2
� d3

(n/2)2
� 1

n
. (5)

Thus certainly p > 0.

Claim. For each good independent (k − 1)-set I in G there is a vertex w 	∈ I ∪ Γ(I) such

that Γ(w) 	= Γ(I).

We will prove the claim later: suppose for now that it holds. Then, from each good

independent (k − 1)-set I we may construct a bad independent (k − 1)-set I ′ by deleting

a vertex u from I and adding a vertex w as in the claim. This gives at least p(k − 1) � 3p

constructions. Also, in each bad independent (k − 1)-set I ′ which has been constructed,

we can identify the vertex w added (since the other k − 2 � 2 vertices all have the

same neighbourhood). Thus each bad independent (k − 1)-set I ′ is constructed at most

n − k + 1 � n − 3 times. Hence

q � 3p/(n − 3) > p/(n − 1)

and so q/(p + q) > 1/n, which contradicts (5).

It remains to prove the claim. Recall that B = {v ∈ V (G) : deg(v) = d}. Let I be a good

independent (k − 1)-set. Note that I ⊆ B and |Γ(I)| = d. If |A| = a � d + 1 then for w we

may pick any vertex in A \ Γ(I). So we may assume that a � d.

Let B1 = {v ∈ B : Γ(v) ∩ B 	= ∅} and B2 = B \ B1. Since α(G) < n − d � |B| we have

E(B) 	= ∅ and so B1 	= ∅. Either I ⊆ B1 or I ⊆ B2, since each vertex in I has the same set
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of d neighbours. If I ⊆ B1 then I ⊆ Γ(v) for some v ∈ B1, and so for w we may pick any

vertex not in Γ(I) ∪ Γ(v) (at least n − 2d � 1 choices). If I ⊆ B2 then for w we may pick

any vertex in B1. This completes the proof of the claim, and we are done.

The previous lemma concerns ratios; the next considers the base case. Of graphs in

Gn(d), clearly a d-regular graph has the most independent 2-sets: we look at the number

i3 of independent 3-sets. We first give a formula for i3(G) for any graph G. Let ti be the

number of induced subgraphs of G on three vertices with i edges. Then(
n

3

)
= t0 + t1 + t2 + t3,

e(G)(n − 2) = t1 + 2t2 + 3t3,∑
vi∈V (G)

(
deg(vi)

2

)
= t2 + 3t3.

Hence

i3(G) =

(
n

3

)
− e(G)(n − 2) +

∑
vi∈V (G)

(
deg(vi)

2

)
− t(G), (6)

where t(G) = t3 is the number of triangles. For example, if G is a d-regular graph then

i3(G) =

(
n

3

)
− 1

2
dn(n − 2) + n

(
d

2

)
− t(G)

=

(
n − d

3

)
− 1

2
dn +

1

6
d(d + 1)(d + 2) − t(G). (7)

Lemma 2. Let 1 � d � n1/3/2. If G,K ∈ Gn(d) are such that α(G) < n − d = α(K), then

i3(G) � i3(K) − n/2 + 1.

Proof. Our proof relies on (6) and (7). Consider G ∈ Gn(d) with α(G) < n − d. We first

show that we may assume without loss of generality that the set A of vertices of degree

> d is a non-empty independent set, and then that it suffices to prove (8) below; then we

prove (8) by considering four cases for a = |A|.
Suppose first that G is d-regular. Then by (7) we have

i3(G) �
(
n − d

3

)
− 1

2
dn +

1

6
d(d + 1)(d + 2).

But i3(K) �
(
n−d
3

)
. Thus, if d = 1 then

i3(G) �
(
n − d

3

)
− n/2 + 1 � i3(K) − n/2 + 1;

and if d � 2, then as (d + 1)3 � (3/2)3d3 < n/2,

i3(G) �
(
n − d

3

)
− 1

2
dn +

1

6
(d + 1)3 � i3(K) − n/2.

Hence we may assume that G is not regular, and so A is non-empty.
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Now repeatedly delete edges between vertices of degree > d, as long as G keeps satisfying

α(G) < n − d. We end up with some graph G′ ∈ Gn(d) with α(G′) < n − d. Suppose that

there is an edge uv ∈ E ′(A′) after this step (we use E ′ and A′ to refer to G′). Then

there exists an (n − d)-set I such that E ′(I) = {uv}. Let J = V (G′) \ I , so |J| = d. Since

degG′ (u), degG′ (v) > d and degG′ (w) � d for each other vertex w ∈ I , every possible edge

between I and J is present in G′. Therefore, since there are (n − d − 2) 3-subsets of I

containing u and v,

i3(G) � i3(G
′) �

(
n − d

3

)
− (n − d − 2) +

(
d

3

)
<

(
n − d

3

)
− n

2

since d + 2 � 3d � 3
8
n and

(
d
3

)
< d3

6
� n

48
. Hence, we may assume that A is independent.

For each vi ∈ A, let ri = deg(vi). Observe that 2e(G) =
∑

i ri + (n − a)d. Thus, from (6),

2i3(G) − 2

(
n

3

)

= −
[ a∑

i=1

ri + (n − a)d

]
(n − 2) +

a∑
i=1

ri(ri − 1) + (n − a)d(d − 1) − 2t(G)

=

a∑
i=1

ri(ri − n + 1) − (n − a)d(n − d − 1) − 2t(G)

= −dn(n − d − 1) + hd(G),

where

hd(G) =

a∑
i=1

ri(ri − n + 1) + ad(n − 1 − d) − 2t(G).

Thus

i3(G) =

(
n

3

)
− 1

2
dn(n − d − 1) +

1

2
hd(G)

=

(
n − d

3

)
− 1

2
dn +

1

6
d(d + 1)(d + 2) +

1

2
hd(G).

Note that here only 1
2
hd(G) varies with G ∈ Gn(d). Since i3(K) �

(
n−d
3

)
, by the last equality

hd(K) � dn − 1

3
d(d + 1)(d + 2) �

(
d − 1

4

)
n.

To see the second inequality here, we may check directly for d = 1, and for d � 2 use

1

3
d(d + 1)(d + 2) � 1

3
(d + 1)3 � 32

23

n

8
<

n

4
.

Thus it suffices to show that

hd(G) �
(
d − 7

8

)
n (8)

and the remainder of the proof is devoted to establishing this result.
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Recall that we are assuming that in G the set A of vertices of degree > d is independent.

Thus d + 1 � ri � n − a for each i = 1, . . . , a. Consider the function

g(x) = x(x − n + 1) = −x(n − 1 − x)

for real x. This is decreasing for x < (n − 1)/2 and increasing for x > (n − 1)/2. We now

break the proof of (8) into four cases: a � d + 2, a = d + 1, a = d, and 1 � a � d − 1.

Suppose that a � d + 2. Then each d + 1 � ri � n − d − 2, so g(ri) � (d + 1)(d + 2 − n).

Hence,

hd(G) � a(d + 1)(d + 2 − n) + ad(n − 1 − d)

= a(−n + 2d + 2), (9)

and so (8) holds.

Suppose that a = d + 1. Then d + 1 � ri � n − d − 1 for each i, and

a∑
i=1

ri � d(n − a) = d(n − d − 1).

Thus at most d − 1 of the ri are equal to n − d − 1, and so

a∑
i=1

g(ri) � −(d − 1)d(n − d − 1) − 2(d + 1)(n − d − 2)

= −n(d2 + d + 2) + d3 + 2d2 + 5d + 4.

Hence

hd(G) �
a∑

i=1

g(ri) + (d + 1)d(n − 1 − d)

� −2n + d3 + d2 + 3d + 3 � −n,

and so (8) holds.

Suppose that a = d. Since α(G) < n − d, we have e(B) > 0. It follows that

a∑
i=1

ri � d(n − d) − 2 � d(n − d) − 1.

Hence not all d of the ri are equal to n − d, so

hd(G) � (d − 1)(n − d)(1 − d) + (n − d − 1)(−d) + d2(n − 1 − d)

= (d − 1)n − 2d2 + 2d � (d − 1)n,

and so (8) holds.

Finally, suppose that 1 � a � d − 1. Consider vi ∈ A. Suppose that ri � n − d − 1. Then

the edge-boundary of Γ(vi) has size at most ria + (n − a − ri)d � ria + d(d + 1 − a), and so

2e(Γ(vi)) � ri(d − a) − d(d + 1 − a). Hence, twice the number of triangles containing vi is at

least ri(d − a) − d(d + 1 − a). Also, using first that ri � n − a and then that ri � n − d − 1,

we have

g(ri) − ri(d − a) = ri(ri − n + 1 − d + a) � ri(1 − d) � (n − d − 1)(1 − d).
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On the other hand, if ri � n − d − 2, then g(ri) � (d + 1)(d − n + 2). Let

l = |{i : ri � n − d − 1}| � a.

Then hd(G) is at most∑
i:ri�n−d−1

[g(ri) − ri(d − a) + d(d + 1 − a)] +
∑

i:ri�n−d−2

g(ri) + ad(n − 1 − d)

� l[(n − d − 1)(1 − d) + d(d + 1 − a)] + (a − l)(d + 1)(d − n + 2) + ad(n − 1 − d)

= (2l − a)n + l(d2 − 2d − 3) + a(2d + 2)

� (d − 1)(n + d2 − 1) since l � a � d − 1

< (d − 1)n + d3 �
(
d − 7

8

)
n

as required.

With the last two lemmas, we may now prove Theorem 1, establishing a stronger version

of the conjecture of Galvin [5] mentioned earlier.

Proof of Theorem 1. If α(G) = n − d then G is (isomorphic to) a supergraph of Kd,n−d and

the result is trivial: so we may assume that α(G) < n − d. Let K ∈ Gn(d) with α(K) = n − d.

We want to show that

i2(G) + i4(G) < i2(K) + i4(K). (10)

Note that e(G) � dn/2, and so

i2(G) − i2(K) = e(K) − e(G) � d(n − d) +

(
d

2

)
− dn

2
=

dn

2
−

(
d + 1

2

)
. (11)

Also, i3(K) − i3(G) � n/2 − 1 by Lemma 2, and α4(K) > α4(G) by Lemma 1.

Suppose d = 1. Then α4(K) = n
4

− 1 � 1. Thus if i3(G) > 0 then

i4(K) − i4(G) > α4(K)(i3(K) − i3(G)) � n

2
− 1;

and if i3(G) = 0 then

i4(K) − i4(G) � i3(K) − i3(G) =

(
n − 1

3

)
>

n

2
− 1.

Hence i4(K) − i4(G) > n
2

− 1 in each case; and so using also (11) we obtain (10).

Suppose d � 2. Then n � 32d. Thus by (3), noting for example that 3 + d � 5
2
d < n

12
,

we find

α4(K) >
11n

48

(
1 − (d − 1)3

(n − d − 2)3

)
>

11n

48

(
1 −

( n
2
)3

( 15n
16

)3

)
>

n

6
,

and so

i4(K) − i4(G) >
n

6

(
n

2
− 1

)
>

5n2

64
.
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But by (11),

i2(G) − i2(K) � dn

2
� n2

64
,

and (10) follows.

To prove Theorem 2, as well as the two corollaries, we need one further lemma, which is a

general result on growth rates and stochastic domination, adapted from Lemma 2.4 of [9].

Given a finite sequence of positive real numbers x = (x0, x1, . . . , xs), let S(x) =
∑

k�0 xk .

Define a random variable X = X(x) by P(X = k) = xk/S(x).

Lemma 3. Let x0, y0 > 0, let 1 � a � b be integers, and let α1, . . . , αa > 0 and β1, . . . , βb >

0. For i = 1, . . . , a, let xi = x0

∏
0<j�i αj; and for i = 1, . . . , b, let yi = y0

∏
0<j�i βj . Let

x = (x0, x1, . . . , xa) and y = (y0, y1, . . . , yb), and denote X(x) by X and X(y) by Y . If αi �
βi for each i = 1, . . . , a, then X �s Y . Further, if these conditions hold, and (α1, . . . , αa) 	=
(β1, . . . , βb), then

P(X � t) < P(Y � t) for each t = 1, . . . , b.

Proof. By replacing ya by
∑

j>a yj , we may assume that b = a. It suffices to consider the

case when αi = βi for all i except j0, where αj0 < βj0 . Since P(X � a) = P(Y � a) = 1, it

suffices to prove P(X � t) > P(Y � t) for t = 0, . . . , a − 1. Note that we may rescale xi, yi
without changing the distribution.

Suppose t satisfies 0 � t � j0 − 1. Rescale to x0 = y0 = 1. Then xi = yi for all i � t and

S(x) < S(y). So

P(X � t) =

∑
i�t xi

S(x)
>

∑
i�t yi

S(y)
= P(Y � t).

For t such that j0 � t � a − 1, we rescale to xj0 = yj0 . Then xi = yi for all i = j0, j0 +

1, . . . , a and S(x) > S(y). Hence, P(X > t) < P(Y > t) and so P(X � t) > P(Y � t).

Proof of Theorem 2. There are two cases, depending on whether α(G) < n − d or

α(G) = n − d.

(a) Let G ∈ Gn(d) with α(G) < n − d. For k � 1, let α∗
k denote αk(K

∗
d,n−d). Then α1(G) =

α∗
1 = n. By Lemma 1(a), αk(G) � α∗

k for 3 � k � α(G).

If α2(G) � α∗
2 then directly from Lemma 3 we have P(X(G) � t) < P(X(K∗

d,n−d) � t)

for each t = 1, . . . , n − d, and we are done. So we may suppose that α2(G) > α∗
2; that is

i2(G) > i∗2, where i∗k denotes ik(K
∗
d,n−d).

Let x be the ik-vector for G (up to xn−d), let z be the ik-vector for K∗
d,n−d, and let y agree

with x in the first three places, and agree with z in the remaining places; that is,

x = (x0, x1, . . . , xn−d) = (1, n, i2(G), i3(G), i4(G), . . . , in−d(G)),

y = (y0, y1, . . . , yn−d) = (1, n, i2(G), i∗3, i
∗
4, . . . , i

∗
n−d)
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and

z = (z0, z1, . . . , zn−d) = (1, n, i∗2, i
∗
3, i

∗
4, . . . , i

∗
n−d).

Let 3 � t � n − d. By Lemma 1(b) with K = K∗
d,n−d, for each 4 � k � α(G) we have

xk

xk−1
� yk

yk−1
.

Moreover, by Lemma 2, i3(G) < i∗3 so that

x3

x2
<

y3

y2
.

Then by Lemma 3,

P(X(G) � t) = P(X(x) � t) < P(X(y) � t).

Also

P(X(y) � t) < P(X(z) � t) = P(X(K∗
d,n−d) � t)

since S(y) > S(z). Hence P(X(G) � t) < P(X(K∗
d,n−d) � t) as required.

To complete the proof for this case, note that by Theorem 1, i(G) < i(K∗
d,n−d), so that

P(X(G) � 0) = 1/i(G) > 1/i(K∗
d,n−d) = P(X(K∗

d,n−d) � 0),

and similarly

P(X(G) � 1) = (1 + n)/i(G) > (1 + n)/i(K∗
d,n−d) = P(X(K∗

d,n−d) � 1).

(b) It remains to consider the case when α(G) = n − d and G is not K∗
d,n−d. Then G may be

obtained from K∗
d,n−d by deleting at least one edge from the Kd part. Thus i(G) > i(K∗

d,n−d);

and the ik-vector x of G may be obtained from the ik-vector z for K∗
d,n−d by adding positive

integers to some entries amongst the first d + 1 including adding at least 1 to z2. It is

immediate that P(X(x) � t) < P(X(z) � t) for each t = d + 1, . . . , n − d. Let 2 � t � d − 1.

Then

P(X(z) � t) =

∑t
i=0 zi

S(z)
.

To obtain P(X(x) � t) from the last ratio we add at least 1 to the numerator and at most

2d to the denominator. Observe that S(z) = 2n−d + d � 2n−d. Since zi �
(
n
i

)
and t < d,

P(X(z) � t) <
dnd

2n−d
<

(2n)2d

2n2d
� (2n)n

1/3

2n2d
� 2−d

(where the last inequality holds as log2(2n) � n2/3), so overall the ratio increases, that is,

P(X(z) � t) < P(X(x) � t), as required.

We noted earlier that Corollary 1 follows directly from Theorem 2, so it remains only

to prove Corollary 2.
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Proof of Corollary 2. If α(G) < n − d, the result follows from Theorem 2, since

E[X(G)] =
∑
t�1

P(X(G) � t) <
∑
t�1

P(X(K) � t) = E[X(K∗
d,n−d)].

Suppose then that α(G) = n − d, so that G may be obtained from K∗
d,n−d by deleting at least

one edge from the Kd part. Then the average size of the sets which are independent in G but

not in K∗
d,n−d is at most d, which is less than E[X(K∗

d,n−d)], and so E[X(G)] < E[X(K∗
d,n−d)].

We remark that with an analogous method, a weighted version of the statements can

be proved. Let I(G, λ) =
∑

k�0 ik(G)λk be the independent set polynomial of G ([6], [11]).

Instead of a uniform sampling of independent sets of I(G), we fix λ > 0 and pick a given

independent k-set with probability λk/I(G, λ). Then under this sampling, the analogous

versions of Theorem 2 and its corollaries hold.
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