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Abstract. We consider partially hyperbolic diffeomorphisms on compact manifolds. We
define the notion of the unstable and stable foliations stably carrying some unique non-
trivial homologies. Under this topological assumption, we prove the following two results:
if the center foliation is one-dimensional, then the topological entropy is locally a constant;
and if the center foliation is two-dimensional, then the topological entropy is continuous on
the set of all C∞ diffeomorphisms. The proof uses a topological invariant we introduced,
Yomdin’s theorem on upper semi-continuity, Katok’s theorem on lower semi-continuity
for two-dimensional systems, and a refined Pesin–Ruelle inequality we proved for partially
hyperbolic diffeomorphisms.

1. Introduction and main results
One of the fundamental invariants in topological dynamics is topological entropy.
However, entropy is very hard to compute and its continuity properties are very delicate.
For uniformly hyperbolic diffeomorphisms on a compact manifold, the topological entropy
is locally a constant. That is, it remains the same under small perturbations. This is due to
the structural stability of uniformly hyperbolic systems. In other words, the entropy is
stable for hyperbolic systems. The first question we ask in this paper is the following:
besides the structurally stable systems, are there any other systems where the topological
entropy is stable under perturbations? We will show that the answer to this question is yes
and there are classes of partially hyperbolic systems with one-dimensional centers where
the topological entropy is locally constant.

Our next question is: when is the topological entropy continuous? This is a difficult
problem. In general, entropy is not continuous for C1 diffeomorphisms. Yomdin [8] proved
that it is upper semi-continuous for a class of C∞ diffeomorphisms for any compact
manifold M . For dim(M) = 2, Katok [3] showed that the entropy is lower semi-continuous

https://doi.org/10.1017/S0143385707000405 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385707000405


844 Y. Hua et al

for the C1+α , α > 0, diffeomorphisms on M . Combining these two, we have the continuity
of topological entropy for C∞ diffeomorphisms on compact surfaces.

In this paper we will show that for a large class of partially hyperbolic C∞

diffeomorphisms with two-dimensional center foliations the topological entropy is
continuous. Besides requiring that the center foliation has dimension two or less, we also
require that the stable and unstable foliations carry certain homological information of the
manifold. We will give a detailed definition later.

Let M be a compact Riemannian manifold and let f ∈ PH∞(M) be the set of C∞

partially hyperbolic diffeomorphisms on M . Then f is said to be partially hyperbolic if for
every x ∈ M the tangent space at x admits an invariant splitting

Tx M = E s(x) ⊕ Ec(x) ⊕ Eu(x),

into strongly stable E s(x) = E s
f (x), central Ec(x) = Ec

f (x), and strongly unstable
Eu(x) = Eu

f (x) subspaces and there exist numbers c1 > 1 and

0 < λs < λ′
c ≤ 1 ≤ λ′′

c < λu,

such that, for every x ∈ M and all i ∈ N,

v ∈ E s(x) ⇒ ‖dx f i (v)‖ ≤ c1λ
i
s‖v‖,

v ∈ Ec(x) ⇒ c−1
1 (λ′

c)
i
‖v‖ ≤ ‖dx f i (v)‖ ≤ c1(λ

′′
c )

i
‖v‖, (1)

v ∈ Eu(x) ⇒ c−1
1 λi

u‖v‖ ≤ ‖dx f i (v)‖.

We denote the set of all Cr partially hyperbolic diffeomorphisms by PHr (M).
We can state our main results of the paper.

THEOREM 1.1. Let M be a compact Riemannian manifold and let f ∈ PH∞(M) be the
set of C∞ partially hyperbolic diffeomorphisms on M. Assume that:
(1) the dimension of the center foliation is two or less; and
(2) the strong stable and strong unstable foliations stably carry some unique non-trivial

homologies.
Then the topological entropy htop : PH∞(M) → R is continuous at f . Furthermore, if

the center foliation has dimension one, then htop is a constant in a small neighborhood of
f ∈ PH1(M).

We will define the homologies carried by a foliation. If the stable manifold and unstable
manifold are one-dimensional, then the homological condition is a condition on the
homotopy class of the map. For the higher-dimensional case, we believe that the same
is true, but we are not able to prove that. We do have some open conditions that one can
verify. The theorem is not true in general without the assumptions on the homology. In the
last section of this paper, we will give some examples where the theorem fails without such
assumptions.

Even though our main results are about the topological entropy, the proof, however,
relies on smooth ergodic theory, Lyapunov exponents and measure theoretic entropy.
In particular, we proved a refined Pesin–Ruelle inequality for partially hyperbolic
diffeomorphisms. This is stated in Theorem 3.3, which is of interest in its own right.
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2. Currents, topological and geometric growth
In this section, we will define some topological invariants for diffeomorphisms with
uniformly expanding (or contracting) foliations. The topological invariant was introduced
in Saghin and Xia [5], where one can find more details and some other applications of
the invariant. We will relate the volume growth of an expanding invariant foliation with
this topological invariant. If an invariant foliation carries certain non-trivial homological
information of the manifold, which we will make precise later, then the volume growth,
which is harder to track, is exactly the same as the topological growth. The topological
growth can be easily calculated by actions induced by the map on the homology of the
manifold.

Let M be an n-dimensional compact Riemannian manifold. Let f ∈ Diff r (M) be a
diffeomorphism on M . Let W be a k-dimensional foliation of M , invariant under f , i.e. f
maps leaves of W to leaves. This invariant foliation will be, for the purpose of this paper,
the strongly stable and strongly unstable foliations. We first define volume growth of f
on leaves of W . For any x ∈ M , Let W (x) be the leaf through x and let Wr (x) be the
k-dimensional disk on W (x) centered at x , with radius r .

Let

χW (x, r) = lim sup
n→∞

1
n

ln(Vol( f n(Wr (x)))),

where χW (x, r) is the volume growth rate of the foliation at x . Let

χW ( f ) = sup
x∈M

χW (x, r).

Then, χW ( f ) is the maximum volume growth rate of W under f . Obviously, the quantity
χW ( f ) is independent of r .

We search for conditions such that χW (x, r) is independent of both x and r . This is
not true in general; there need to be certain topological conditions for this to hold. If W is
exponentially expanding under the iterates of f , we can formulate this condition in terms
of the action f induces on the homology of M . To put it simply, if f is partially hyperbolic
with W being part of unstable manifolds, then we require that f∗ : H∗(M, R) → H∗(M, R)

be partially hyperbolic in a compatible way.
More precisely, let W be an f -invariant k-dimensional foliation. We assume that W is

orientable and we will fix an orientation for W . Furthermore, we assume that the leaves
of W have exponential growth under f . That is, there are constants λ > 1 and c2 > 0 such
that

|d f n
x v| ≥ c2λ

n
|v|,

for all x ∈ M , all v ∈ Tx W (x) and all n ∈ N, where W (x) is the leaf of W through the
point x . Let Wr (x) be the ball of radius r centered at x on the leaf W (x). For any positive
integer n, we define the currents Cn by

Cn(ω) =
1

Vol( f n(Wr (x)))

∫
f n(Wr (x))

ω, (2)

for any k-form ω on M . These currents depend on x and r . The currents are uniformly
bounded so there must be subsequences with weak limits. Let C be such a limit, i.e. we
have a sequence ni → ∞ such that for any k-form ω we have limi→∞ Cni (ω) = C(ω).
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A current C is said to be closed if, for any exact k-form ω = dα, we have C(ω) =

C(dα) = 0. If C is closed, it has a homology class [C] = hC ∈ Hk(M, R). This homology
class is non-trivial if there exists a closed k-form ω such that C(ω) 6= 0.

We would like to investigate the conditions under which the subsequential limits of
the currents Cn are closed. In general, Cn itself is not closed. We believe that it can be
approximated by a closed one for large n. From Stokes’ theorem, we have

Cn(ω) =
1

Vol( f n(Wr (x)))

∫
f n(Wr (x))

dα

=
1

Vol( f n(Wr (x)))

∫
Wr (x)

( f ∗)n dα

=
1

Vol( f n(Wr (x)))

∫
∂Wr (x)

( f ∗)nα.

There are reasons to believe that the above sequence always approaches 0 as n → ∞,
i.e. every subsequential limit of the currents Cn is closed. Nevertheless, we are not able to
show this as of now. However, we can indeed show that this is true in many cases.

The first case is when the dimension of the foliation is one. In this case, α is a real-
valued function and hence

∫
∂Wr (x)

( f ∗)nα is the difference of that function evaluated at
the two end points of f n(Wr (x)) and therefore it is uniformly bounded. Thus Cn(ω) → 0
as n → ∞.

Another case is that when f is close to a linear map on the torus Tn and W is any of the
expanding foliations close to the linear one. We will consider this case in more detail later.

In general, we have the following simple proposition, whose proof is straightforward.

PROPOSITION 2.1. Let Jk(x) be the Jacobian of f restricted to the unstable subspace
of x and let Jk−1(x) be the maximal Jacobian on the (k − 1)-dimensional subspace at x.
If Jk(x) > Jk−1(x) for all x ∈ M, then all subsequential limits of {Cn} in equation (2) are
closed.

The Jacobian condition in the above proposition is an open condition.

Definition 2.2. We say that a k-dimensional invariant foliation W carries a non-trivial
homology hC ∈ Hk(M, R) if the currents Cn defined above have a closed subsequential
limit C and hC = [C] 6= 0.

We say that a k-dimensional invariant foliation W carries a unique non-trivial homology
(up to rescale) if all subsequential limits of the currents Ci are closed and the homologies it
carries are unique up to scalar multiplication and are uniformly bounded away from zero,
for all x ∈ M and all r > 0.

A current is non-trivial if there is a closed k-form ω such that C(ω) 6= 0. The homology
class of a non-trivial closed current is non-trivial. One way to show that the closed
current C is non-trivial is to show that there is a closed k-form ω such that ω is non-
degenerate on Tx W (x) for any x ∈ M . This condition implies that the integral of ω over
any oriented segment of W is non-zero, i.e.∫

D
ω 6= 0,
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for any piece D on a leaf of the foliation W , with its orientation inherited from the leaf.
We may assume that the integral is positive by choosing −ω if necessary. When we have a
non-degenerate k-form on the leaves of W , by compactness of the manifold, there exists a
constant c2 > 1 such that

c−1
2 Vol(D) ≤

∫
D

ω ≤ c2 Vol(D),

for any segment D on the leaves of W and therefore

c−1
2 Vol( f n(Wr (x))) ≤

∫
f n(Wr (x))

ω ≤ c2 Vol( f n(Wr (x))).

This implies that C(ω) > 0.
Assume that an invariant foliation W carries a non-trivial homology and let hC = [C] ∈

Hk(M, R), where C is the current as defined above. The next proposition shows that hC is
actually an eigenvector of the induced linear map by f on the homology of M .

PROPOSITION 2.3. Let W be a k-dimensional invariant foliation that carries a unique
non-trivial homology hC . Then hC is an eigenvector of the induced linear map:

f∗ : Hk(M, R) → Hk(M, R).

Proof. First we observe that the map f naturally induces an action on the currents, defined
by

f∗C(ω) = C( f ∗ω),

for any k current C and k-form ω. Obviously, if C is closed, then f∗C is closed too and

[ f∗C] = f∗hC ∈ Hk(M.R).

Let current C be a subsequential limit of Cn(x, r), then

C(ω) = lim
i→∞

1
Vol( f ni (Wr (x)))

∫
f ni (Wr (x))

ω,

for any k-form on M . Therefore

( f∗C)(ω) = lim
i→∞

1
Vol( f ni (Wr (x)))

∫
f ni (Wr (x))

f ∗ω

= lim
i→∞

1
Vol( f ni (Wr (x)))

∫
f (ni +1)(Wr (x))

ω

= lim
i→∞

Vol( f (ni +1)(Wr (x)))

Vol( f ni (Wr (x)))

1

Vol( f (ni +1)(Wr (x)))

∫
f (ni +1)(Wr (x))

ω.

Since the ratio Vol( f (ni +1)(Wr (x)))/Vol( f ni (Wr (x))) is uniformly bounded, both from
above and away from zero, there is a convergent subsequence. Without loss of generality,
we may assume that the sequence actually converges and there is a constant λ > 0 such
that

lim
i→∞

Vol( f (ni +1)(Wr (x)))

Vol( f ni (Wr (x)))
= λ.
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This implies that f∗C/λ is also a subsequential limit of the current Cn(x, r). Since W
carries a unique non-trivial homology, this limit must be a scalar multiple of C . Therefore,
there is a constant c3 such that we have f∗Cλ−1

= c3C . This implies that

f∗hC = cλhC ,

i.e. hC is an eigenvector of

f∗ : Hk(M, R) → Hk(M, R),

with corresponding eigenvalue c3λ.
This proves the proposition. 2

Let λW be the eigenvalue of f∗ corresponding to the eigenvector hC , as in the above
proposition. We call λW the topological growth of the foliation W . We will see below that
the topological growth and the volume growth are the same for a foliation that carries
a unique non-trivial homology, except that the volume growth we defined here is an
exponent, while the topological growth is a multiplier.

PROPOSITION 2.4. Let W be a hyperbolic invariant foliation that carries a unique non-
trivial homology hW . Let λW be the topological growth of the foliation. Then the volume
growth defined before is given by

χW ( f ) = ln λW ,

for any x ∈ M and any r > 0.

Proof. The volume of a piece of leaf in a foliation depends on the Riemannian metric
defined on M . So in general, the volume does not grow uniformly with each iteration.
We will need to rescale the volume at each step so that there will be uniform growth. Let
hW ∈ Hk(M, R) be a homology carried by W . For any x ∈ M and r > 0, we choose a
sequence of numbers di , i ∈ N, such that

lim
i→∞

di Ci = C and [C] = hW /‖hW ‖.

This is possible by the uniqueness of homologies carried by the foliation. Moreover, there
are numbers 0 < c4 ≤ c5 such that di can be chosen with c−1

5 ≤ di ≤ c−1
4 . Therefore,

( f∗C)(ω) = lim
i→∞

di

Vol( f i (Wr (x)))

∫
f i (Wr (x))

f ∗ω

= lim
i→∞

di

Vol( f i (Wr (x)))

∫
f (i+1)(Wr (x))

ω

= lim
i→∞

Vol( f (i+1)(Wr (x)))/di+1

Vol( f i (Wr (x)))/di

di+1

Vol( f (i+1)(Wr (x)))

∫
f (i+1)(Wr (x))

ω

= lim
i→∞

Vol( f (i+1)(Wr (x)))/di+1

Vol( f i (Wr (x)))/di
C(ω).

Therefore

lim
i→∞

Vol( f (i+1)(Wr (x)))/di+1

Vol( f i (Wr (x)))/di
= f∗C(ω)/C(ω) = λW .
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This implies that

χW (x, r) = lim sup
i→∞

1
i

ln(Vol( f i (Wr (x))))

= lim sup
i→∞

1
i

ln Vol( f i (Wr (x)))

= lim sup
i→∞

1
i

ln(d−1
i Vol( f i (Wr (x))))

= lim sup
i→∞

1
i

ln
(

d−1
0 Vol(Wr (x))

( i∏
j=1

d−1
i Vol( f i (Wr (x)))

d−1
i−1Vol( f (i−1)(Wr (x)))

))

= lim sup
i→∞

1
i

i∑
j=1

(
ln

d−1
i Vol( f i (Wr (x)))

d−1
i−1Vol( f (i−1)(Wr (x)))

)
= ln λW .

Here we have used the elementary fact that, if limi→∞ ai = a, then

lim
i→∞

1
i

i∑
j=1

ai = a.

This proves the proposition. 2

The next proposition discusses the situation where a foliation carries more than one
non-trivial homology.

PROPOSITION 2.5. Let W be a hyperbolic invariant foliation and let H ⊂ Hk(M, R) be
the set of non-trivial homologies carried by W . Then H spans a linear space, invariant
under

f∗ : Hk(M, R) → Hk(M, R).

Proof. We first observe that H ⊂ Hk(M, R) is a bounded and closed set. Let h ∈ H be a
homology carried by the foliation W . It follows from the proof of Proposition 2.3 that there
exists a constant c6 > 0 such that f∗h/c6 is also carried by W . The proposition follows. 2

Suppose that the foliation W is one-dimensional; then every subsequential limit of the
currents is closed, as we have shown. In this case every limit defines a homology class. If
we furthermore assume that there is a non-degenerate closed 1-form ω on the leaves of the
foliation, then W carries a non-trivial homology. Then this homology class is non-trivial.

Another class of maps that we would like to consider are the ones on the n-torus Tn

close to a linear map. Consider an n × n matrix A with integer entries and with determinant
one. The matrix A induces a linear toral automorphism: TA : Tn

= Rn/Zn
→ Tn defined

by TAx = Ax mod Zn . If all eigenvalues are away from the unit circle, then TA is a
hyperbolic toral automorphism. If the eigenvalues of A are mixed, with some on the unit
circle and some away from the unit circle, then TA is partially hyperbolic.

In both hyperbolic and partially hyperbolic cases, let Eu be the unstable distribution
of the TA on Tn . At each point x ∈ Tn , Eu(x) ⊂ TxTn is the unstable subspace for dTA :

TxTn
→ TxTn . Let W u be the unstable foliation generated by Eu ; W u is a hyperplane
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in Tn . It is easy to see that the currents Cn converge to a unique closed current C and C is
non-trivial. Moreover, the eigenvalue corresponding to hC for the map f∗ : H∗(Tn, R) →

H∗(Tn, R) is the product of all eigenvalues outside of the unit circle, i.e. λW =
∏

|λi |>1 λi .
Let f be a map close to TA. We claim that all the subsequential limits of the currents

Cn are closed. This is because the Jacobian for f on the k-dimensional volume is close to
the Jacobian for TA, which is equal to (

∏
|λi |>1 λi )

n . Therefore the k-dimensional volume
Vol( f n(Wr (x))) grows with a factor close to (

∏
|λi |>1 λi )

n . However, any (k − 1)-form
( f ∗)nα grows approximately at the rate of the product of k − 1 eigenvalues. Therefore,

Cn(ω) =
1

Vol( f n(Wr (x)))

∫
f n(Wr (x))

dα

=
1

Vol( f n(Wr (x)))

∫
∂Wr (x)

( f ∗)nα → 0,

as n → ∞.
It is also easy to see that every subsequential limit of the currents is non-trivial. For

the linear map, there is a coordinate plane (xn1, xn2 , . . . , xnk ) such that the orthogonal
projection of the unstable space Eu to the plane is non-degenerate. Then the k-form
ωk

= dxn1 ∧ · · · ∧ dxnk is non-degenerate on the unstable manifolds. Obviously, ωk is
also non-degenerate on the unstable manifolds for all maps close to TA.

It remains to show that W u carries a unique homology. We first observe that the map f
is homotopic to the linear map TA and hence the induced maps on the homology are
exactly the same. By Proposition 2.5, we have that the set of all homologies carried by W u

span an invariant subspace in Hk(Tn, R), since the unstable manifold is expanded by
approximately a factor of (

∏
|λi |>1 λi )

n . Every eigenvector of f∗ in this subspace has an
eigenvalue close to (

∏
|λi |>1 λi )

n . However, there is only one (up to a constant multiple)
eigenvector with the eigenvalue (

∏
|λi |>1 λi )

n . This implies that all the subsequential limit
of the currents is unique up to rescaling and the eigenvalue is exactly (

∏
|λi |>1 λi )

n .

3. Proof of the main results
In this section, we finish the proof of our main theorems.

First we define topological entropy using (n, ε)-separated sets. Let f : M → M be
a homeomorphism on a compact metric space M . For any given positive integer n
and positive real number ε > 0, a subset S ⊂ M is said to be (n, ε)-separated if,
for any two distinct points x, y ∈ S, there is an integer i with 0 ≤ i ≤ n such that
dM ( f i (x), f i (y)) ≥ ε. Let #S be the cardinality of the set S and let

s(n, ε) = max{#S | S ⊂ M is (n, ε)-separated}.

We define

h( f, ε) = lim sup
n→∞

1
n

ln s(n, ε)

and the topological entropy

htop( f ) = h( f ) = lim
ε→0+

h( f, ε).
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The topological entropy measures the growth of the trajectories. It is certainly related
to the geometric growth of the unstable foliations in a partially hyperbolic system. Let
f ∈ PHr (M) be a partially hyperbolic diffeomorphism and let W u be the unstable foliation
of f . Let χu( f ) = χW u ( f ) be the geometric growth of f on the unstable foliation W u . We
have the following lemma.

LEMMA 3.1. With the notation above, h( f ) ≥ χu( f ).

Proof. For any given δ > 0, choose a point x ∈ M and a small r > 0 such that ξu(x, r) >

ξu( f ) − δ/2. By the definition of χu(x, r), there exists N > 0 such that for all n ≥ N we
have the inequality

Vol( f n(W u
r (x))) > en(χu( f )−δ).

For any ε > 0, we consider (n, ε)-separated sets on the strongly unstable foliation W u(x).
Let du(y, z) be the distance between two points y, z ∈ W u(x) measured by the shortest
curve in the submanifold W u(x) between y and z. Clearly dM (y, z) ≤ du(y, z), where dM

is the distance between y and z on M . Without loss of generality, we may assume that
ε < r/(maxx∈M ‖D fx‖). Let

ε′
= inf{dM (y, z) | y, z ∈ W u(x); x ∈ M; ε ≤ du(y, z) ≤ r}.

We claim that ε′ > 0. For otherwise, by the continuity of the leaves, there exist a point
y ∈ M and a sequence of points zi ∈ W u(y) such that dM (y, zi ) → 0, as i → ∞, and

ε ≤ du(y, zi ) ≤ r for all i ∈ N.

This is impossible since the set A = {z ∈ W u(y) | ε ≤ du(y, z) ≤ r} is compact and
dM (y, z) > 0 for all z ∈ A.

Let S(n, ε) ⊂ f n(W u
r (x)) be a finite set such that, for any xi , x j ∈ S(n, ε), xi 6= x j , we

have du(y, z) ≥ ε. There is a constant c7 > 0, depending on the Riemannian metric and k,
the dimension of the foliation W u , such that Vol(W u

ε (xi )) ≤ c7ε
k . Let #(S(n, ε)) be the

cardinality of the set S. Then the total volume covered by the ε balls around the points in
S(n, ε) is less than #(S(n, ε))c7ε

k . Since one can add points to S(n, ε) if the total volume
of these ε balls is less than the total volume of W u

r (x), this implies that S(n, ε) can have at
least as many points as

Vol( f n(W u
r (x)))/(c7ε

k).

The pre-image f −n S(n, ε) ⊂ W u
r (x) is an (n, ε)-separated set on the unstable

foliation W u . In fact, it is also an (n, ε′)-separated set on M , where ε′ is as defined
before. For given any two distinct points y, z ∈ f −n(S), we have du( f n(y), f n(z)) ≥ ε

and du(x, y) < r . Since ε < r/(maxx∈M ‖D fx‖), there exists an integer i , 0 ≤ i ≤ n, such
that ε ≤ du( f i (y), f i (z)) ≤ r . Therefore, dM ( f i (y), f i (z)) ≥ ε′.

Finally,

h( f, ε′) ≥ lim sup
n→∞

1
n

ln #S(n, ε)

≥ lim
n→∞

1
n

ln(en(χu( f )−δ)/(cεk))

= χu( f ) − δ.
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Since δ > 0 is arbitrary,

h( f ) = lim
ε′→0+

h( f, ε′) ≥ χu( f ).

This completes the proof. 2

Related to the topological entropy is the measure theoretic entropy. Even though
our results are about topological entropy, our proof uses results from measure entropy,
Lyapunov exponents and smooth ergodic theory. Let ν be an invariant probability measure.
Similar to the definition of topological entropy, one can define an entropy, hν( f ) ≥ 0,
associated with the invariant measure ν, using the so-called (n, ε)-spanning set that covers
a ν positive measure set. We refer readers to Pollicott [3] and Robinson [4] for more details.
However, later in the paper, we will use the following equivalent definition.

One can define a measure entropy hν( f ) as follows. Call ξ = {A1, . . . , Ar } a (finite)
measurable partition of X if the Ai are disjoint measurable subsets of X covering X .
Now set

H(ξ) =

r∑
i=1

ν(Ai ) log ν(Ai ).

Then the limit

hν( f, ξ) = lim
n→∞

1
n

H(ξ ∨ f −1ξ ∨ · · · ∨ f −(n−1)ξ)

= lim
n→∞

H

(n−1∨
i=0

f −iξ

)
,

exists and one defines

hν( f ) = sup{hν( f, ξ) : ξ is a finite measurable partition of X}.

Let ξ(A) = {A1, . . . , Ak} and ζ(C) = {C1, . . . , C p} be two finite partitions. We define
the entropy of ξ given to ζ to be

H(ξ |ζ ) = −

p∑
j=1

ν(C j )

k∑
i=1

ν(Ai ∩ C j )

ν(C j )
log

ν(Ai ∩ C j )

ν(C j )

= −

∑
i, j

ν(Ai ∩ C j ) log
ν(Ai ∩ C j )

ν(C j )
,

omitting the j-terms when ν(C j ) = 0. Later in this paper we shall use the following fact
to compute hν( f, ξ):

hν( f, ξ) = lim
n→∞

H

(
ξ

∣∣∣∣( n∨
i=1

f −iξ

))
.

(See Walters [6, pp. 82–83].)
From the definitions, it is easy to show that hν( f ) ≤ h( f ). Moreover, we have the

following well-known theorem. We refer the readers to Walters [7] for excellent accounts.

THEOREM 3.2. (Variational principle) Let Merg be the set of all invariant ergodic
measures; then h( f ) = supν∈Merg

hν( f ). In other words, for all ε > 0, there exists ν ∈ Merg

such that hν( f ) > h( f ) − ε.
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Another concept we will need to use is the Lyapunov exponents. Let ν be an
invariant probability measure for f ∈ Diff r (M). For ν-a.e. x ∈ M , there exist real numbers
λ1(x) > · · · > λl(x) (l ≤ n), positive integers n1, . . . , nl such that n1 + · · · + nl = n, and
a measurable invariant splitting Tx M = E1

x ⊕ · · · ⊕ E l
x , with dimension dim(E i

x ) = ni ,
such that

lim
j→∞

1
j

log ‖Dx f j (vi )‖ = λi (x),

whenever vi ∈ E i
x , v 6= 0.

These numbers λ1(x), . . . , λl(x) are called the Lyapunov exponents for x ∈ M . If the
probability measure ν is ergodic, then these exponents are constants for ν-a.e. x ∈ M .
The existence of these Lyapunov exponents is the result of Oseledec’s multiplicative
ergodic theorem.

An invariant measure ν is called hyperbolic on a invariant set 3 if ν(3) > 0 and ν-a.e.
x ∈ 3 has the property that λi (x) 6= 0 for all i = 1, . . . , l.

For a partially hyperbolic diffeomorphism, f ∈ PH(M), the Lyapunov exponents can
be relabeled in three groups, according to where their corresponding vectors are. We will
write λs

i for Lyapunov exponents in E s , λc
i for exponents in Ec, and λu

i for exponents in Eu .
To study the continuity properties of the topological entropy, we now consider

diffeomorphisms close to a given f ∈ PH(M). Assume that W u
f , the unstable foliation

for f , carries a unique non-trivial homology. We say that f stably carries a unique
non-trivial homology if there is a neighborhood V of f in PH(M) such that, for any g ∈ V ,
the unstable foliation W u

g uniquely carries the same homology element (up to rescale). If
the unstable foliation is one-dimensional and f carries a unique non-trivial homology, it
is easy to show that f stably carries a unique homology. We believe that this is true in
general, but we are not able to show this. However, if all the subsequential limits of the
currents Cn are closed for f and nearby maps, then one can show that f carrying a unique
non-trivial homology implies that f stably carries a unique non-trivial homology. This is
certainly true for maps on Tn close to the linear one.

The homologies carried by the stable foliation are defined in the same way by
considering f −1.

Under the assumption that f stably carries a unique non-trivial homology, the geometric
expansion χu( f, x) is well defined for all x ∈ M and is constant. Furthermore χu( f ) is
locally constant on f .

We now proceed with the proof of our main results. We will divide the proof into several
cases. Since the upper semi-continuity of topological entropy is known from Yomdin’s
theorem for C∞ diffeomorphisms, it suffices to show lower semi-continuity for our results
on dimension two.

In the proof we also need to consider f −1. First we recall that h( f ) = h( f −1). We can
also define the volume growth of the stable foliation W s under f −1. The same as χu( f ),
we can define χs( f ) = χu( f −1) and in the same way, we have h( f ) ≥ χs( f ).

Case 1. Either h( f ) = χu( f ) or h( f ) = χs( f ). This is a simple case. Assume that
h( f ) = χu( f ). By Proposition 2.4, χu( f ) is locally constant, so there exists a
neighborhood of V of f in Diff r (M) such that, for any g ∈ V , we have χu(g) = χu( f ).
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Therefore h(g) ≥ χu(g) = χu( f ) = h( f ). That is, h( f ) is lower semi-continuous. The
case with h( f ) = χs( f ) is the same.

Case 2. Both h( f ) > χu( f ) and h( f ) > χs( f ) hold. This is our main case. Let ν be
an ergodic invariant probability measure for f ∈ Diff r (M) and let λ1, . . . , λl be the
Lyapunov exponents associated with ν. We have the following Pesin–Ruelle inequality:

hν( f ) ≤

∑
λi >0

λi .

For our purpose, we need a refined version of the Pesin–Ruelle inequality, where we
incorporate the geometric expansion χu( f ) into the above formula. We have the following
theorem.

THEOREM 3.3. Let f ∈ PH(M) be a partially hyperbolic diffeomorphism on a compact
manifold M. Let ν be an ergodic measure and let λc

i be the Lyapunov exponents
corresponding to the center distribution Ec. Then the following estimate holds:

hν( f ) ≤

∑
λc

i >0

λc
i + χu( f ).

The proof of this theorem is quite involved. We postpone the proof to the next section.
We return to the proof of the main theorem for the case with h( f ) > χu( f ) and

h( f ) > χs( f ). By the variational principle, for any δ > 0 there is an ergodic measure ν

such that
hν( f ) > h( f ) − δ.

Choosing δ such that

0 < δ ≤ min
{

h( f ) − χu( f )

3
,

h( f ) − χs( f )

3

}
,

we have
hν( f ) > h( f ) − δ > χu( f ) + δ.

By the above proposition, for such measure ν,

hν( f ) ≤ χu( f ) +

∑
λc

i >0

λc
i .

Therefore,
χu( f ) +

∑
λc

i >0

λc
i ≥ χu( f ) + δ,

and so ∑
λc

i >0

λc
i ≥ δ > 0.

We can easily see that at least one of the λc
i must be larger than zero.

If dim Ec
= 1, then there is only one center exponent and λc > 0. Now consider f −1

and recall that hν( f ) = hν( f −1) and χs( f ) = χu( f −1); therefore hν( f −1) > χu( f −1).
Apply the same argument to f −1 and we get −λc > 0. But that is a contradiction to λ > 0.
Therefore we cannot have both h( f ) > χu( f ) and h( f ) > χs( f ). This implies that we can
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only have Case 1 and h( f ) is actually the maximum of χu( f ) and χs( f ). But both these
numbers are locally constant, and therefore h( f ) must be locally constant. This proves our
theorem for the case where dim Ec

= 1.
Assume that dim Ec

= 2. For the measure ν, there are two center Lyapunov exponents,
λc

1 and λc
2. We may assume that λc

1 ≥ λc
2. The above arguments show that λc

1 > 0. By
considering f −1, we have −λc

2 > 0 or λc
2 < 0. Since all other Lyapunov exponents are

non-zero, this implies that the measure ν is a hyperbolic ergodic measure.
To complete our proof for dim Ec

= 2, we need one more result from
Katok and Mendoza [2].

PROPOSITION 3.4. (Katok and Mendoza) Assume that ν is an ergodic hyperbolic
measure for a C1+α diffeomorphism, α > 0. Then, for any ε > 0, there exists a uniformly
hyperbolic invariant set 3 ⊂ M such that: h( f |3) > hν( f ) − ε.

The proof of this proposition can be found in Pesin [1, pp. 122–124].
Hyperbolic invariant sets persist under small perturbations. There is a neighborhood V

of f in Diff r (M) such that, for any g ∈ V , there is a hyperbolic invariant set 3g , close
to 3, such that g|3g : 3g → 3g is topologically conjugate to f |3 : 3 → 3. Therefore

h(g) ≥ h(g|3g ) = h( f |3) > hν( f ) − ε > h( f ) − δ − ε.

In other words, the entropy of f is lower semi-continuous.
This completes the proof of the main theorem, assuming Theorem 3.3. 2

4. A refined Pesin–Ruelle formula
In this section, we give a proof of Theorem 3.3, a refined Pesin–Ruelle formula for partially
hyperbolic diffeomorphisms.

The usual approach to the proof relies on the fact that, if a partition of the manifold
is fine enough, then the diffeomorphism, up to a finite number of iterates, can be
approximated by its linearization and, therefore, the growth in the partition can be
estimated by Lyapunov exponents. However, the volume growth χ is the opposite of the
Lyapunov exponents; it gives estimates of volumes of large surfaces. The difficulty is to
incorporate these two, seemingly opposite, concepts into the partitions.

Choose a small δ > 0; for any given ε > 0, and any x ∈ M , there is an integer Kx ,
depending on x , such that

Vol( f i (Wr (x))) < δkei(χ( f )+ε) (3)

for all 0 < r ≤ 10δ and all i ≥ Kx . Here k is the dimension of the unstable foliation.
For any positive integer K , let SK be the set of points such that Kx ≤ K . Obviously, for

any measure ν on M , we have ν(M\SK ) → 0 as K → ∞. We also observe that there is a
constant c8 such that, for any x ∈ M , any positive integer i and any r ≤ δ,

Vol( f i (Wr (x))) < c8δ
k
(

sup
x∈M

‖d f ‖

)ki

. (4)

Fix a positive integer m = l K with a positive integer l and let B(y, t) be a ball centered
at y with radius t . Since M is compact, there exists tm > 0 such that, for every 0 < t < tm ,
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y ∈ M and x ∈ B(y, t), we have

1
2 dx f m(exp−1

x B(y, t)) ⊂ exp−1
f m x f m(B(y, t)) ⊂ 2dx f m(exp−1

x B(y, t)),

where expx is the exponential map at x ∈ M .
Now, for any chosen ε > 0, there is a positive number α > 0, α < tm/100, such that, for

any partition ξ with diam ξ ≤ 2α, we have

hµ( f m, ξ) ≥ hµ( f m) − ε.

Let du be the induced metric on W (x), x ∈ M , from the Riemannian structure on M . We
introduce a dynamically defined new metric on the manifold. Let J be a positive integer
such that the following is true: for any point x ∈ M and y ∈ W (x), with du(x, y) ≤ δ,
we have du( f −J K (x), f −J K (y)) ≤ α. Since M is compact and the unstable leaves are
uniformly expanding, such an integer J exists. We now define a new metric d J by

d J (x, y) = d( f J K (x), f J K (y))α/δ,

and this metric also induces a metric, d J
u , on the unstable leaves, so we have

d J
u (x, y) = du( f J K (x), f J K (y))α/δ.

An important property we have for this new metric is that

d J (x, y) ≤ α whenever d( f J K (x), f J K (y)) ≤ δ.

The metric d J depends on the choice of J , which is chosen to be a large integer. A ball
with metric d J is a thin tube-like object. The center direction and the stable direction
are very long and the unstable direction is very short. On the unstable manifold, by
equation (1), we have

d J
u (x, y) = du( f J K (x), f J K (y))α/δ ≥ c−1

1 λJ K
u du(x, y)α/δ.

While on the center or center-stable manifold of any point, if such manifolds do exist, we
have

d J (x, y) ≤ c1(λ
′′
c )

J K du(x, y)α/δ.

By the standard invariant manifold theory, for any point on the manifold M , there exist a
center manifold and a center-stable manifold in any sufficiently small neighborhood, even
though these manifolds may not be unique and may not form a foliation of M . For a d J

ball on M with a small radius, the ratio of the length in the center-stable direction to that
of the unstable direction is at most 2c2

1(λ
′′
c/λu)J K .

For any fixed δ > 0 and small α > 0, we will choose J such that

c−1
1 λJ K

u α/δ > 100 and c1(λ
′′
c )

J K α/δ < 1/100. (5)

We may increase J by decreasing α. Throughout this section, α can be made arbitrarily
small.

Finally we define a new metric ρ on M by

ρ(x, y) = d(x, y) + dJ (x, y),
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for all x, y ∈ M . Clearly ρ is a metric on M . Observe that, by our choice of J in
equation (5), on the unstable manifold, d J

u (x, y) ≥ 100du(x, y), and on a center or center-
stable manifold, d J (x, y) ≤ d(x, y)/100. Therefore, we have the following important
property of the metric ρ: it is dominated by the metric d J in the unstable direction and
dominated by d in the center and stable directions. By equation (5), the set, we called it a
ρ-ball, given by

Bρ(x, r) = {y ∈ M | ρ(x, y) ≤ r},

contains a d J
u -ball in the unstable direction with a radius r/2 and contains a regular, lower-

dimensional ball of radius r/2 in the center-stable direction.
We continue our proof of Theorem 3.3. The proof uses proper partitions to estimate the

entropy. There is a special partition of the manifold M which is described in the following
statement.

LEMMA 4.1. Given ε > 0, there is a partition ξ of M such that:
(1) diam ξ ≤ 2α ≤ tm/50 and therefore hµ( f m, ξ) ≥ hµ( f m) − ε;
(2) for every element C ∈ ξ there exist ρ-balls Bρ(x, r) and Bρ(x, r ′), such that α/4 <

r ′ < r < α and Bρ(x, r ′) ⊂ C ⊂ Bρ(x, r); and
(3) there exists 0 < r < tm/20 such that if C ∈ ξ then C ⊂ B(y, r) for some y ∈ M, and

if x ∈ C then

1
2 dx f m(exp−1

x B(y, r)) ⊂ exp−1
f m x f mC ⊂ 2dx f m(exp−1

x B(y, r)). (6)

Proof. To construct such a partition, given α > 0, consider a maximal 2α/3-separated
set 0, with respect to the metric ρ. That is, 0 is a finite set of points for which
ρ(x, y) > 2α/3 whenever x , y ∈ 0, and, for any point z ∈ M , there is a point x ∈ 0 such
that ρ(x, z) ≤ 2α/3. For x ∈ 0, set

D0(x) = {y ∈ M | ρ(y, x) ≤ ρ(y, z), z ∈ 0 \ {x}}.

Obviously, Bρ(x, α/3) ⊂ D0(x) ⊂ Bρ(x, 2α/3). Note that the sets D0(x) corresponding
to different points x ∈ 0 intersect only along their boundaries, i.e. at a finite number of
submanifolds of codimension greater than zero. Since µ is a Borel measure, if necessary,
we can move the boundaries slightly so that they have zero measure.

We may choose α arbitrarily small by increasing J . This guarantees the properties in
the lemma. 2

Continuing with the proof of the theorem, observe that

hν( f m, ξ) = lim
k→∞

Hν(ξ | f mξ ∨ · · · ∨ f kmξ)

≤ Hν(ξ | f mξ) =

∑
D∈ f mξ

ν(D)H(ξ |D)

≤

∑
D∈ f mξ

ν(D) log #{C ∈ ξ : C ∩ D 6= ∅}, (7)

where H(ξ |D) is the entropy of ξ with respect to conditional measure on D induced
by ν. To estimate the entropy, we need to know the number of elements C ∈ ξ that have
non-empty intersections with a given element D ∈ f mξ . By property (3) of the partition ξ
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(Lemma 4.1), we have a uniform control on the derivatives of f m for each element C ∈ ξ .
If we had used the regular metric in our partition, then the estimate on the growth of the
partition could be easily obtained; this would lead to the standard Pesin–Ruelle formula.
In our case, we need to estimate the number of intersecting partitions in two different
directions: on the unstable direction and on the center and stable directions.

We first estimate the growth of the partition in the unstable direction. Consider
the unstable disk Wr (x) with r ≤ δ. If Wr (x) ∩ SK 6= ∅, we have an estimate on the
k-dimensional volume of f K (Wr (x)),

Vol( f K (Wr (x))) < δkeK (χ( f )+ε).

Therefore, there is a constant c9 such that f K (Wr (x)) contains at most c9eK (χ( f )+ε) non-
intersecting disks on the unstable leaf with radius not less than δ/20. Similarly, for any
positive integer i ,

Vol( f i K (Wr (x))) < δkei K (χ( f )+ε).

The set f i K (Wr (x)) contains at most c1ei K (χ( f )+ε) non-intersecting disks on the unstable
leaf with radius not less than δ/20.

We now translate the above statements in terms of our new metric ρ. Let Dx ⊂ W (x) be
a piece of the unstable manifold contained in a d J

u -ball of radius α, centered at x . Suppose
that Dx ∩ SK 6= 0. By the definition of d J

u , we have f J K (Dx ) ⊂ Wδ( f J K (x)). If x ∈ SK ,
then

Vol( f (J+i)K (Dx )) < δkei K (χ( f )+ε).

This implies that the d J
u volume, which we denote by VolJ , for the set f K (Dx ) is

VolJ ( f K (Dx )) = Vol( f (J+1)K (Dx )) < δkeK (χ( f )+ε),

and for any positive integer i ,

VolJ ( f i K (Dx )) = Vol( f (J+i)K (Dx )) < δkei K (χ( f )+ε).

Consequently, f i K (Dx ) contains at most c9ei K (χ( f )+ε) non-intersecting disks on the
unstable leaf with d J

u radius not less than δ/20.
To summarize, if we partition the unstable leaves with sets which are bounded between

d J
u disks of radius α/20 and α, then the f i K image of any element of the partition covers at

most c1ei K (χ( f )+ε) number of elements in that partition, provided that the element contains
a point in S′

K , where S′

K = f J K (SK ).
Now we consider the partition ξ in Lemma 4.1. By property (2) of the partition ξ

therein, we have that, for every element C of ξ , there is x ∈ M such that Bρ(x, α/4) ⊂

C ⊂ Bρ(x, α). For any D ∈ f mξ , the k-dimensional growth in the unstable direction is
controlled by the geometric growth. In the center and stable directions, it is controlled by
the derivative of the map f , since each element of the partition is bounded, from both
below and above, by balls with the normal metric in the center-stable directions.

Before we proceed, we have the following simple lemma.

LEMMA 4.2. There exists a constant K1 > 0 such that, for D ∈ f mξ ,

#{C ∈ ξ | C ∩ D 6= ∅} ≤ K1 sup{‖dx f ‖
mn

| x ∈ M},

where n is the dimension of the manifold.
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This can be shown by estimating the ρ volume expansion of each element in C under f m

and using property (2) of Lemma 4.1. Each C is bounded by a product of regular disks in
the center-stable manifold and a ρ disk in the unstable direction. On the unstable direction,
the ρ volume expansion is bounded by, from inequality (4), c8δ

k(supx∈M ‖d f ‖)km . The
expansion of volume in the center and stable directions is bounded by the maximal
derivative of the map. The ρ volume in the center-stable direction is close to the real
volume. Since the unstable foliation is absolutely continuous, the lemma follows from
the Fubini theorem. 2

We have a better exponential bound for the number of those sets D such that D =

f (C ′) ∈ f mξ and C ′ contains regular points for the invariant measure ν. More precisely,
given ε > 0, let Rm,ε be the set of forward regular points x ∈ M which satisfy the following
condition: for k > m and v ∈ Ec

x ,

ek(λ(x,v)−ε)
‖v‖ ≤ ‖dx f kv‖ ≤ ek(λ(x,v)+ε)

‖v‖. (8)

Here λ(x, v) is the Lyapunov exponent at x corresponding to the vector v,

λ(x, v) = lim
i→∞

1
i

ln ‖dx f iv‖.

The limit exists for ν-a.e. x ∈ M .
Finally, we repartition every element of ξ into two sets. For any C ∈ ξ , let

C1
= {x ∈ C | Wα(x) ∩ S′

K 6= ∅},

and C2
= C\C1. Let ξ1 be the collection of the sets of type C1 and ξ2 be the collection of

type C2. Together ξ1 and ξ2 form a partition of the manifold; we denote this new partition
by ξ ′.

The following lemma gives an estimate of the number of intersections of f m(ξ1)

with ξ ′. The total measure for the sets in ξ2 is small and its contribution to the entropy
will be given in another estimate.

LEMMA 4.3. For any given ε > 0, there is an N > 0 such that, for any m > N, if C1
∈ ξ1

and D = f m(C1) ∈ f mξ ′ such that C1 has a non-empty intersection with Rm , then there
exists a constant K2 > 0 such that

#{C ∈ ξ ′
| C ∩ D 6= ∅} ≤ K2eεmem(χu( f )+ε)

∏
i :λc

i >0

em(λc
i +ε).

Proof. To establish the inequality note that

#{C ∈ ξ ′
| C ∩ D 6= ∅} ≤ 2 Volρ(B)(diamρ ξ)−n,

where Volρ(B) denotes the ρ volume of

B = {y ∈ M | ρ(y, exp f m (x)(dx f m(exp−1
x B ′))) < diamρ ξ},

where B ′
= Bρ(x, 2 diamρ C ′) ∩ S′

K , C ′
∈ ξ1, f m(C ′) = D and some x ∈ C ′

∩ Rm . The
set B can be thought of as a fattened set D. Let W cs(x) be the center-stable manifold of x .
In fact, an approximate one will suffice. Let E be the subset of W cs(x) such that

E = {y ∈ W cs(x) | ρ(y, x) ≤ 4α}.
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Obviously,

B ′
⊂ {y ∈ M | ρu(y, z) ≤ 3 diamρ C ′, for some z ∈ E ∩ S′

K },

i.e. B ′ is contained in the product of the set E and unstable disks. Since the unstable
foliation is absolutely continuous, by the Fubini theorem, up to a bounded factor, Volρ(B ′)

is bounded by the product of the volume expansion of unstable disks and the volume
expansion of E . By the invariance of the unstable and center foliations, the same is true
for Volρ(B). We have already obtained the ρ volume expansion in the unstable direction.
For the set E , it is bounded by a ball with the regular metric, whose tangent space is
on the center-unstable direction (or arbitrarily close to the center-stable direction). On
both E and f m(E), the metric ρ is dominated by the regular metric. Also f m(E) is
approximately an (n − k)-dimensional ellipsoid, whose total volume is bounded by the
product of the lengths of the axes. The length of the axis can be estimated by dx f m

|Ec⊕Es ,
using equations (6) and (8). Those of the axes that correspond to non-positive exponents
are at most sub-exponentially larger. The remaining axes are of size at most em(λc

i +ε), up
to a bounded factor, for all sufficiently large m. Therefore,

Volρ(B) ≤ K3emε(diamρ B)nem(χu( f )+ε)
∏

i :λc
i >0

em(λc
i +ε)

≤ K3emε(2 diamρ ξ)nem(χu( f )+ε)
∏

i :λc
i >0

em(λc
i +ε),

for some constant K3 > 0. The lemma follows. 2

By Lemmas 4.2 and 4.3, we obtain

mhν( f ) − ε = hν( f m) − ε ≤ hν( f m, ξ)

≤

∑
f −m (D)=C ′∈ξ1,(C ′∩Rm )6=∅

ν(D)

(
log K2 + εm + m

∑
i :λc

i >0

(λc
i + ε) + m(χu( f ) + ε)

)
+

∑
f −m (D)=C ′∈ξ1,(C ′∩Rm )=∅

ν(D)(log 2K1 + nm log sup {‖dx f ‖ : x ∈ M})

+

∑
f −m (D)=C ′∈ξ2

ν(D)(log 2K1 + nm log sup {‖dx f ‖ : x ∈ M})

≤ log K2 + εm + m
∑

i :λc
i >0

(λc
i + ε) + m(χu( f ) + ε)

+ (log 2K1 + nm log sup {‖dx f ‖ : x ∈ M})ν(M \ (Rm ∪ S′

K )).

By the multiplicative ergodic theorem, we have⋃
m≥0

Rm(ε) = M (mod 0)

for every sufficiently small ε > 0. Since every point is in SK for some K and ν(S′

K ) =

ν(SK ), we have ν(M\S′

K ) → 0 as K → ∞. It follows that

hν( f ) ≤ ε +

∑
i :λc

i >0

(λc
i + ε) + (χu( f ) + ε).

Let ε → 0, we obtain the desired upper bound.
This proves the theorem.
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5. Examples
In this section, we give several examples where the main theorem fails when we drop the
assumption on homology.

5.1. Example 1. Our first example is a partially hyperbolic diffeomorphism with a one-
dimensional center foliation.

Let Ml be a compact orientable surface of genus l ≥ 2, with constant negative curvature.
Let gt : SMl → SMl be the geodesic flow on the unit tangent bundle of Ml ; gt is an Anosov
flow. For any fixed t > 0, gt is a partially hyperbolic diffeomorphism on SMl . The stable,
unstable and center distributions are all one-dimensional. The topological entropy for g1

is non-zero and, for any t ∈ R, it is easy to see that htop(gt ) = |t |htop(g1), i.e. for different
values of t , the topological entropy of gt is different. Therefore in this case the topological
entropy is not locally constant. Obviously, the stable and unstable foliations do not carry
any non-trivial homology in this case. In fact, geodesic flows are isotopic to identity and
any diffeomorphism that is isotopic to identity cannot carry non-trivial homology, since its
induced action on homology is trivial.

The map gt with t > 0 satisfies all the conditions of the main theorem except the
homology condition. The topological entropy for the maps near gt fails to be a constant.

An interesting question arises: Without any topological assumptions, is the topological
entropy always continuous for partially hyperbolic diffeomorphisms with one-dimensional
center?

5.2. Example 2. In this example, the center distribution is two-dimensional and the
topological entropy fails to be continuous.

Now consider a map f : SMl × S1
→ SMl × S1 defined in the following way. Let

α : S1
= R1/Z1

→ S1 be a diffeomorphism which is close to identity and has three fixed
points yi = (i − 1)/4, i = 1, 2, 3, which satisfy the following:

α′(y1) > 1, α′(y3) < 1, α′(y2) = 1 and α′′(y2) 6= 0.

Define f (x, y) = (g1+sin(2πy), α(y)). Then

htop( f ) = max
i

htop( f |SMg × {yi })

= max
i

(1 + sin(2πyi ))htop(g1) = 2htop(g1).

Now consider a family of diffeomorphisms

αε = α(y, ε) = α + ε,

and
fε(x, y) = (g1+sin(2πy), αε(y)).

For any fixed ε ≥ 0, fε is a partially hyperbolic diffeomorphism on SMl × S1 with
dim Eu

= dim E s
= 1 and dim Ec

= 2.
Hyperbolic fixed points persist under small perturbations, and therefore, for every ε

sufficiently small, αε have unique fixed points yε
1 and yε

3 close to y1 and y3 respectively.
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For i = 2, since

α′(y2) = 1, α′′(y2) 6= 0 and
∂αε

∂ε
(y2, 0) = 1 6= 0,

saddle-node bifurcations occur at (y2, 0). Therefore, when ε is small enough, on one side
of α = α0 (without loss of generality we can assume that it is on the left side) αε has no
fixed points close to y2. Therefore, αε has no other fixed points other than yε

1 and yε
3 , which

implies that

lim
ε→0−

htop( fε) = lim
ε→0−

max
i=1,3

htop( f |SM × yε
i )

= htop(g1).

This means that the topological entropy of f is not continuous.
In this example, again, the stable and the unstable manifolds fail to carry non-trivial

homology. The topological conditions of the main theorem are not satisfied.
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