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1. Introduction

These notes grew out as an attempt to answer certain questions regarding group cohom-
ology with coefficients in a crossed module which were posed to us by Borovoi in relation
to his work on abelian Galois cohomology of reductive groups [4].

We collect some known or not-so-well-known results in this area and put them in a
coherent (and hopefully user-friendly) form, as well as add our own new approach to
the subject via butterflies. We hope that the application-minded user finds these notes
beneficial. We especially expect these result to be useful in Galois cohomology (e.g. in
the study of relative Picard groups of Brauer groups).

Let us outline the content of the paper. Let Γ be a group acting strictly on a crossed
module G. We investigate the group cohomologies Hi(Γ, G). We compare three different
ways of constructing the cohomologies Hi(Γ, G), i = −1, 0, 1. One approach is entirely
new. We also work out some novel aspects of the other two approaches which, to our
knowledge, were not considered previously.

Let us briefly describe the three approaches that we are considering.
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The cocycle approach

The first approach uses an explicit cocycle description of the cohomology groups. Many
people have worked on this. The original idea goes back to Dedecker [16,17] (see also [19,
§ 8]). But he only considers the case of a trivial Γ -action (where things get oversimplified).
Borovoi [4] treats the general case in his study of abelianization of Galois cohomology of
reductive groups. A systematic approach is developed in [13] where the more general case
of a 2-group fibred over a category is treated. The cohomology groups with coefficients
in a symmetric braided crossed module have been studied in [10, 12, 22]. The paper
of Garzón and del Ŕıo [18] seems to be the first place where the group structure on
H1 appears in print. In a letter that Breen sent to Borovoi in 1991 he also discusses
the group structure on H1 in the crossed module language and gives explicit formulae.
Also relevant is the work [9], in which the authors study homotopy types of equivariant
crossed-complexes.

We also point out that there is a standard way of going from C̆ech cohomology to group
cohomology, as discussed in [7, § 5.7]. In this way, it is possible in principle to deduce
results about group cohomology from Breen’s general results on C̆ech cohomology.

In §§ 3–4 we rework the definitions of Hi, i = −1, 0, 1. The only originality we may
claim in these sections is merely in the form of presentation (e.g. explicitly working out
all the formulae in the language of crossed modules), as the concepts are well understood.

What seems to be original here is that in § 5 we introduce an explicit crossed module
in groupoids concentrated in degrees [−1, 1], denoted K�1(Γ, G), whose cohomologies are
precisely Hi(Γ, G). This crossed module in groupoids encodes everything that is known
about the Hi (and more).

In the case where G is endowed with a Γ -equivariant braiding, we show that K�1(Γ, G)
is a 2-crossed module. In particular, H1(Γ, G) is a group and the Hi(Γ, G), i = −1, 0, are
abelian. When the braiding is symmetric, we show that K�1(Γ, G) is a braided 2-crossed
module. This implies that H1(Γ, G) is also abelian.

We also prove that K�1(Γ, G) is functorial in (strict) Γ -equivariant morphisms of
crossed modules and takes an equivalence of crossed modules to an equivalence of crossed
modules in groupoids (or of 2-crossed modules, respectively, braided 2-crossed modules,
in the case where G is braided, respectively, symmetric). In particular, an equivalence of
crossed modules induces an isomorphism on all Hi.

The butterfly approach

In the second approach, we construct a 2-groupoid Z(Γ, G) such that Hi(Γ, G) ∼=
π1−iZ(Γ, G). The objects of this 2-groupoid are certain diagrams of groups involving Γ

and the Gi (see § 7.1). In § 7.2 we give a sketch of how to construct a biequivalence
between K�1(Γ, G) and the crossed module in groupoids associated to Z(Γ, G).

We show that Z(Γ, G) is functorial in weak Γ -equivariant morphisms H → G of crossed
modules (read strong Γ -equivariant butterflies). In particular, it takes an equivalence
of butterflies to an equivalence of 2-groupoids. In the case where G is endowed with
a Γ -equivariant braiding, we endow Z(Γ, G) with a natural monoidal structure which
makes it a group object in the category of 2-groupoids and weak functors. Under the
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equivalence between Z(Γ, G) and K�1(Γ, G), the group structure on the former corre-
sponds to the 2-crossed module structure on the latter. In the case where the braiding
on G is symmetric, Z(Γ, G) admits a symmetric braiding.

The gerbe approach

Finally, the third approach is that of Breen [5] adopted to our specific situation (it is
also closely related to [13]). We construct another 2-groupoid Z(Γ, G) which we show is
naturally biequivalent to Z(Γ, G). Here, G is the 2-group associated to G. The objects
of this 2-groupoid are principal G-bundles over the classifying stack BΓ of Γ . We show
that Z(Γ, G) is functorial in weak Γ -equivariant morphisms H → G of crossed modules
(read Γ -equivariant butterflies).

In the case where G is endowed with a Γ -equivariant braiding, Z(Γ, G) admits a natural
monoidal structure which makes it a group object in the category of 2-groupoids and weak
functors. In this case, the equivalence between Z(Γ, G) and Z(Γ, G) is monoidal. When
the braiding on G is symmetric, Z(Γ, G) admits a symmetric braiding and so does the
equivalence between Z(Γ, G) and Z(Γ, G).

We also consider the last two approaches in the case where everything is over a
Grothendieck site. This is useful for geometric applications in which Γ and G are topo-
logical, Lie, algebraic, and so on.

Finally, we show that a short exact sequence

1 → K → H → G → 1

of Γ -crossed modules and weakly Γ -equivariant weak morphisms (read Γ -butterflies)
over a Grothendieck site gives rise to a long exact cohomology sequence

1 �� H−1(Γ, K) �� H−1(Γ, H) �� H−1(Γ, G) �� H0(Γ, K) ����
����

H0(Γ, H) �� H0(Γ, G) �� H1(Γ, K) �� H1(Γ, H) �� H1(Γ, G)

See also [14] and [13, Theorem 31].

One last comment

We end this introduction by pointing out one serious omission in this paper: H2. In
the case where G has a Γ -equivariant braiding, one expects to be able to push the theory
one step further to include H2. In the first approach, the complex K�1(Γ, G) is expected
to be the � 1 truncation of a certain complex K�2(Γ, G) concentrated in degrees [−1, 2].
In the second and the third approaches, the 2-groupoids Z(Γ, G) and Z(Γ, G) get replaced
by certain pointed 3-groupoids whose automorphism 2-groupoids of the base object are
Z(Γ, G) and Z(Γ, G). The long exact cohomology sequence should also extend to include
the three additional H2 terms. The machinery for doing all this is being developed in a
forthcoming paper [2] and is not available yet in print. For that reason, we will not get
into the discussion of H2 in these notes.
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All of the above can also be done with the group Γ replaced by a crossed module (the
action on G remains strict). This is useful because in some applications (e.g. in Galois
cohomology) the action of Γ on G is not strict but it can be replaced with a strict action
of a 2-group equivalent to Γ . We will not pursue this topic here and leave it to a future
paper.

2. Notation and conventions

Let G = [∂ : G1 → G0] be a crossed module. We assume that G0 acts on G1 on the right.
We denote the action of g ∈ G0 on α ∈ G1 by αg. Let Γ be a group acting on a crossed
module G = [∂ : G1 → G0] on the left. We denote the action of σ ∈ Γ on an element g

by σg. We require the Γ action on G to be compatible with the action of G0 on G1 in
the following way:

σ(αg) = (σα)
σg.

We usually denote (σα)g by σαg. Note that this is not equal to σ(αg).
We refer to a crossed module G equipped with an action by a group Γ as above as a

Γ -equivariant crossed module or for short as a Γ -crossed module.
Our convention for braiding {· , ·} : G0 × G0 → G1 is that ∂{g, h} = g−1h−1gh. The

braidings are assumed to be Γ -equivariant in the sense that {σg, σh} = σ{g, h}, for every
g, h ∈ G0 and σ ∈ Γ .

Whenever there is fear of confusion, we use a dot · for products in complicated formulae;
the same products may appear without a dot in other places (even in the same formulae).

All groupoids, 2-groupoids and so on are assumed to be small.

3. H−1 and H0 of a Γ -equivariant crossed module

By definition, H−1(Γ, G) = (ker ∂)Γ . This is an abelian group. Let us now define
H0(Γ, G).

A 0-cochain is a pair (g, θ) where g ∈ G0 and θ : Γ → G1 is a pointed map. We denote
the set of 0-cochains by C0(Γ, G). There is a multiplication on C0(Γ, G) which makes it
into a group. By definition, the product of two 0-cochains (g1, θ1) and (g2, θ2) is

(g1, θ1)(g2, θ2) := (g1g2, θ
g2
1 θ2),

where θg2
1 θ2 : Γ → G1 is defined by σ �→ θ1(σ)g2θ2(σ).

Remark 3.1. In the case where G is braided, there is another way of making C0(Γ, G)
into a group. This will be discussed in § 3.1 and used later on in § 4.

A 0-cochain (g, θ) is a 0-cocycle if the following conditions are satisfied.

• For every σ ∈ Γ , ∂θ(σ) = g−1 · σg.

• For every σ, τ ∈ Γ , θ(στ) = θ(σ) · σθ(τ).

The 0-cocycles form a subgroup of C0(Γ, G) which we denote by Z0(Γ, G).
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An element in Z0(Γ, G) is a 0-coboundary if it is of the form (∂µ, θµ), where µ ∈ G1

and θµ : Γ → G1 is defined by θµ(σ) := µ−1 · σµ. It is easy to see that the set B0(Γ, G)
of 0-coboundaries is a normal subgroup of Z0(Γ, G); it is in fact normal in C0(Γ, G) too.
We define

H0(Γ, G) :=
Z0(Γ, G)
B0(Γ, G)

.

This group is not in general abelian.
A better way of phrasing the above discussion is to say that

[G1 → Z0(Γ, G)],

µ �→ (∂µ, θµ)

is a crossed module. The action of Z0(Γ, G) on G1 is defined by

µ(g,θ) := µg.

3.1. In the presence of a braiding on G

When G is braided, H0(Γ, G) is abelian. This is true thanks to the following.

Lemma 3.2. The commutator of the two 0-cocycles (g, θ) and (g′, θ′) in Z0(Γ, G) is
equal to the 0-coboundary (∂µ, θµ), where µ = {g, g′}.

In fact, it follows from the above lemma that the bracket

{(g, θ), (g′, θ′)} := {g, g′}

makes the crossed module [G1 → Z0(Γ, G)] defined at the end of the previous subsection
into a braided crossed module.

As we pointed out in Remark 3.1, in the presence of a braiding on G, there is a second
product on C0(Γ, G) which makes it into a group as well. This new product will be used
in an essential way in § 4. Here is how it is defined. Given two 0-cochains (g1, θ1) and
(g2, θ2), their product is the 0-cochain (g1g2, ϑ), where ϑ is defined by the formula

ϑ(σ) := θ1(σ)p2(σ) · θ2(σ) · {g−1
2 , g−1

1
σg1}

σg2 .

Here, p2(σ) = g−1
2 · σg2 · ∂θ2(σ)−1.

It is not hard to check that, when restricted to Z0(Γ, G), the above product coincides
with the one defined in the previous subsection.

4. H1 of a Γ -equivariant crossed module

A 1-cocycle on Γ with values in G is a pair (p, ε) where

p : Γ → G0 and ε : Γ × Γ → G1

are pointed set maps satisfying the following conditions.
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• For every σ, τ ∈ Γ , p(στ) · ∂ε(σ, τ) = p(σ) · σp(τ).

• For every σ, τ, υ ∈ Γ , ε(σ, τυ) · σε(τ, υ) = ε(στ, υ) · ε(σ, τ)
στp(υ).

We denote the set of 1-cocycles by Z1(Γ, G). This is a pointed set with the base point
being the pair of constant functions (1G0 , 1G1). In fact, Z1(Γ, G) is the set of objects a
groupoid Z1(Γ, G). An arrow

(p1, ε1) → (p2, ε2)

in Z1(Γ, G) is given by a pair (g, θ), with g ∈ G0 and θ : Γ → G1 a pointed map, such
that

• for every σ ∈ Γ ,

p2(σ) = g−1 · p1(σ) · σg · ∂θ(σ)−1;

• for every σ, τ ∈ Γ ,

ε2(σ, τ) = θ(στ) · ε1(σ, τ)
στg · σθ(τ)−1 · (θ(σ)−1)

σp2(τ).

The above formulae can be interpreted as a right action of the group C0(Γ, G) (with
the group structure introduced at the beginning of § 3) on the set Z1(Γ, G). We denote
this right action by

(p2, ε2) = (p1, ε1)(g,θ).

The groupoid Z1(Γ, G) is simply the transformation groupoid of this action.
We define H1(Γ, G) to be the pointed set of isomorphism classes of the groupoid

Z1(Γ, G).

4.1. In the presence of a braiding on G

In the previous subsection, we constructed the groupoid Z1(Γ, G) of 1-cocycles as the
transformation groupoid of a certain action of C0(Γ, G) on Z1(Γ, G). In the case where
G is endowed with a Γ -equivariant braiding, we will see below that the set Z1(Γ, G)
itself also has a group structure. In this situation, it is natural to ask is whether the
action of C0(Γ, G) on Z1(Γ, G) is a (right) multiplication action via a certain group
homomorphism C0(Γ, G) → Z1(Γ, G).

The answer to this question appears to be negative. However, if we use the alternative
group structure on C0(Γ, G) that we introduced in § 3.1, then there does exist such a
group homomorphism d : C0(Γ, G) → Z1(Γ, G). We point out that the right multiplica-
tion action of C0(Γ, G) on Z1(Γ, G) obtained via d is different from the action discussed
in the previous subsection. But, fortunately, the resulting transformation groupoids are
the same (Lemma 4.1). In particular, H1(Γ, G) is equal to the cokernel of d.
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The product in Z1(Γ, G)

We define a product in Z1(Γ, G) as follows. More generally, let C1(Γ, G) be the set of
all 1-cochains, where by a 1-cochain we mean a pair (p, ε),

p : Γ → G0, ε : Γ × Γ → G1,

of pointed set maps. Let (p1, ε1) and (p2, ε2) be in C1(Γ, G). We define the product
(p1, ε1) · (p2, ε2) to be the pair (p, ε) where

p(σ) := p1(σ)p2(σ),

ε(σ, τ) := ε1(σ, τ)p2(στ) · ε2(σ, τ) · {p2(σ), σp1(τ)}σp2(τ).

It can be checked that this makes C1(Γ, G) into a group. The inverse of the element (p, ε)
in C1(Γ, G) is the pair (q, λ), where

q(σ) := p(σ)−1,

λ(σ, τ) = (ε(σ, τ)−1)p(στ)−1 · {p(σ)−1, σp(τ)−1}.

The subset Z1(Γ, G) ⊂ C1(Γ, G) is indeed a subgroup.

The group homomorphism d : C0(Γ, G) → Z1(Γ, G)

Next we construct a group homomorphism

d : C0(Γ, G) → Z1(Γ, G).

(Note that C0(Γ, G) is endowed with the group structure defined in § 3.1.) Let (g, θ) be
in C0(Γ, G). We define d(g, θ) to be the pair (p, ε) where

p(σ) := g−1 · σg · ∂θ(σ)−1,

ε(σ, τ) := θ(στ) · (θ(σ)−1)(
σg−1· στg) · σθ(τ)−1.

It is not difficult to check that this is a group homomorphism.

The crossed module [d : C0/B0 → Z1]

The group homomorphism d vanishes on the subgroup B0(Γ, G) ⊆ C0(Γ, G) of 0-co-
boundaries. Therefore, d factors through a homomorphism

d : C0(Γ, G)/B0(Γ, G) → Z1(Γ, G),

which, by abuse of notation, we have denoted again by d. There is a right action of
Z1(Γ, G) on C0(Γ, G) which preserves B0(Γ, G) and makes

[d : C0(Γ, G)/B0(Γ, G) → Z1(Γ, G)]

into a crossed module. It is given by

(g, θ)(p,ε) = (g, ϑ),
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where ϑ : Γ → G1 is defined by

ϑ(σ) = θ(σ)p(σ) · {p(σ), σg} · {g, p(σ)}g−1· σg.

Observe that the kernel of d coincides with H0(Γ, G). We show that the cokernel of
d coincides with H1(Γ, G). We do so by comparing the action of C0(Γ, G) on Z1(Γ, G)
introduced in the previous subsection (the one that gave rise to the groupoid Z1(Γ, G) of
1-cocycles) with the multiplication action of C0(Γ, G) on Z1(Γ, G) via d. More precisely,
we have the following.

Lemma 4.1. Let (g, θ) be in C0(Γ, G) and (p, ε) in Z1(Γ, G). Let (p, ε)(g,θ) be the action
of C0(Γ, G) on Z1(Γ, G) introduced at the end of the previous subsection. Then

(p, ε)(g,θ) = (p, ε) · d(g, θ · δ(p, g)),

where δ(p, g) : Γ → G1 is defined by

σ �→ {g, p(σ)}g−1· σg.

Corollary 4.2. When G has a Γ -equivariant braiding, the first cohomology set H1(Γ, G)
inherits a natural group structure, H0(Γ, G) is abelian, and there is a natural action of
H1(Γ, G) on H0(Γ, G).

Remark 4.3. The crossed module [d : C0/B0 → Z1] is a model for the 2-group H1

defined by Garzón and del Ŕıo [18].

4.2. When braiding is symmetric

In the previous subsection, we saw that when G has a Γ -equivariant braiding, the first
cohomology set H1(Γ, G) carries a natural group structure. This was done by identifying
H1(Γ, G) with the cokernel of the crossed module [d : C0/B0 → Z1]. In the case where
the braiding is symmetric (i.e. {g, h}{h, g} = 1) we can do even better.

Lemma 4.4. Suppose that the braiding on G is symmetric (respectively, Picard).
Then, the crossed module [d : C0(Γ, G)/B0(Γ, G) → Z1(Γ, G)] is braided and symmet-
ric (respectively, Picard). The braiding is given by

{(p1, ε1), (p2, ε2)} := (1, {p2, p1}),

where {p2, p1} : Γ → G1 is the pointwise bracket of the maps p1, p2 : Γ → G0. (Note the
reverse order.)

The above braiding is obtained by unraveling the symmetry morphism b of § 7.5.

Corollary 4.5. When the braiding on G is symmetric, the group structure on H1(Γ, G)
is abelian.
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5. The nonabelian complex K(Γ, G)

For an abelian group G with an action of Γ one can find a chain complex K(Γ, G)
whose cohomologies are Hi(Γ, G). The corresponding statement is obviously not true for
a nonabelian G (or a crossed module G). However, it seems to be true ‘as much as it can
be’. More precisely, even though the complex K(Γ, G) does not exist, truncated versions
of it exist. And ‘the more abelian G is’ the longer and the more abelian these truncations
become.

For example, for an arbitrary G, there is a crossed module in groupoids K�1(Γ, G),
concentrated in degrees [−1, 1], whose cohomologies are precisely Hi(Γ, G), i = −1, 0, 1.
When G is braided, K�1(Γ, G) is actually a 2-crossed module; in fact, it can be extended
one step further to a 2-crossed module in groupoids K�2(Γ, G) which is concentrated in
degrees [−1, 2].∗ In the case where G is symmetric, K�2(Γ, G) is expected to come from a
3-crossed module. We are not able to prove this here, but we prove the weaker statement
that K�1(Γ, G) is a braided 2-crossed module.

5.1. The case of arbitrary G

The crossed module in groupoids K�1(Γ, G) that we will define below neatly packages
everything we have discussed so far in the preceding sections.

Let Z(Γ, G) = [Z1(Γ, G)×C0(Γ, G) ⇒ Z1(Γ, G)] be the groupoid of 1-cocycles defined
in § 4. Recall that it is the action groupoid of the right action of C0 on Z1 defined in § 4.
We define K�1(Γ, G) to be

K�1(Γ, G) :=
[ ∐

c∈Z1

G1(c)
d−→ Z(Γ, G)

]
.

Here Z1 = Z1(Γ, G) and G1(c) = G1.
For every 1-cocycle c ∈ Z1(Γ, G), the effect of the differential d on the corresponding

component G1(c) of the disjoint union
∐

c∈Z1 G1(c) is defined by

µ �→ (∂µ, θµ).

(See § 3 for notation.) Here, we are thinking of (∂µ, θµ) as an arrow in Z(Γ, G) going
from the object c to itself.

The right action of Z(Γ, G) on
∐

c∈Z1 G1(c) is defined as follows. Let c, c′ ∈ Z1 be
1-cocycles, and let (g, θ) ∈ C0 be an arrow between them. Then (g, θ) acts by

G1(c) → G1(c′),

µ �→ µ(g,θ) := µg.

The following proposition is easy to prove.

Proposition 5.1. For i = −1, 0, 1, we have

Hi(Γ, G) = HiK�1(Γ, G).
∗ We will not prove this here.
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5.2. The case of braided G

In the case where G is endowed with a Γ -equivariant braiding, it follows from
Lemma 4.1 that the crossed module in groupoids K�1(Γ, G) comes from (see Appendix B)
the 2-crossed module

[C−1(Γ, G) d−→ C0(Γ, G) d−→ Z1(Γ, G)],

where C−1(Γ, G) := G1. (Note that the group structure on C0(Γ, G) is the one defined
in § 3.1.) The boundary maps d are the ones defined in §§ 3 and 4. That is

C−1(Γ, G) d−→ C0(Γ, G),

µ �→ (∂µ, θµ),

and

C0(Γ, G) d−→ Z1(Γ, G),

(g, θ) �→ (p, ε),

where

p(σ) := g−1 · σg · ∂θ(σ)−1,

ε(σ, τ) := θ(στ) · (θ(σ)−1)(
σg−1· στg) · σθ(τ)−1.

The action of Z1(Γ, G) on C−1(Γ, G) is defined to be the trivial one. The action of
Z1(Γ, G) on C0(Γ, G) is defined to be the one of § 4.1. Namely,

(g, θ)(p,ε) := (g, ϑ),

where ϑ : Γ → G1 is defined by

ϑ(σ) = θ(σ)p(σ) · {p(σ), σg} · {g, p(σ)}g−1· σg.

The action of C0(Γ, G) on C−1(Γ, G) is defined by

µ(g,θ) := µg.

Finally, the bracket

{· , ·} : C0(Γ, G) × C0(Γ, G) → C−1(Γ, G)

is defined by
{(g1, θ1), (g2, θ2)} := {g1, g2}.

By abuse of notation, we denote the above 2-crossed module again by K�1(Γ, G). By
Proposition 5.1, the cohomologies of this 2-crossed module are naturally isomorphic to
Hi(Γ, G), i = −1, 0, 1.
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5.3. The case of symmetric G

In the case where the braiding on G is symmetric, the 2-crossed module K�1(Γ, G) is
braided in the sense of Appendix B. We prove this using the following lemma.

Lemma 5.2. Let C = [K ∂−→ L
∂−→ M ] be a 2-crossed module such that the action of M

on K is trivial and the bracket {· , ·} : L × L → K is symmetric (i.e. {g, h}{h, g} = 1, for
every g, h ∈ L). Assume that we are given a bracket {· , ·} : M × M → L which satisfies
the following conditions:

• for every x, y ∈ M , ∂{x, y} = x−1y−1xy;

• for every g ∈ L and x ∈ M , {∂g, x} = g−1gx and {x, ∂g} = (g−1)xg.

With the notation of Appendix B, let the brackets {· , ·}(1,0)(2), {· , ·}(2,0)(1), {· , ·}(0)(2,1),
{· , ·}(0)(2) be the trivial ones (i.e. their value is always 1). Let {· , ·}(2)(1) : L × L → K be
the given bracket of C, and define {· , ·}(1)(0) : L × L → K by {g, h}(1)(0) := {h, g}(2)(1).
Then, C is a braided 2-crossed module in the sense of Appendix B.

Proof. All axioms (3CM1)–(3CM18) of [3, Definition 8] follow trivially from our
assumptions, except for (3CM6). For this, we must prove that

{g, h}[g,h] = {g, h}

for every g, h ∈ L. Here, [g, h] := g−1h−1gh. We have, [g, h] = ∂{g, h}(h−1)∂gh. Note
that the assertion is true if we replace [g, h] by ∂{g, h}. So we have to show that
{g, h}(h−1)∂gh = {g, h}. This is true because the action of M on K is trivial and ∂ : K → L

is M -equivariant. �

Remark 5.3. Note that we are using modified versions of axioms of [3, Definition 8]
because our conventions for the actions (left or right) and the brackets, hence also our
2-crossed module axioms, are different from those of [3].

Now, in the above lemma take C to be K�1(Γ, G). Let

{· , ·} : Z1(Γ, G) × Z1(Γ, G) → C0(Γ, G)

be the braiding defined in Lemma 4.4. Namely,

{(p1, ε1), (p2, ε2)} := (1, {p2, p1}).

Here, {p1, p2} : Γ → G1 is the pointwise bracket of the maps p1, p2 : Γ → G0. It is not
difficult to check that this bracket satisfies the two conditions of the above lemma. This
endows K�1(Γ, G) with the structure of a braided 2-crossed module.
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5.4. Invariance under equivalence

The crossed module in groupoids K�1(Γ, G) is clearly functorial in (strict) Γ -equi-
variant morphisms f : H → G of crossed modules. (Also, in the braided case, the 2-crossed
module K�1(Γ, G) is functorial in strict Γ -equivariant braided morphisms of crossed
modules.) In this subsection, we prove that if f is an equivalence of crossed modules
(i.e. induces isomorphisms on cohomologies), then the induced morphism

f∗ : K�1(Γ, H) → K�1(Γ, G)

is also an equivalence (i.e. induces isomorphisms on cohomologies).
We begin with a definition. Let

G = [∂ : G1 → G0]

be a crossed module, and let p : G′
0 → G0 be a group homomorphism from a certain

group G′
0. Let G′

1 := G1 ×G0 G′
0 be the fibre product. There is a natural crossed module

structure on
G

′ := [pr2 : G′
1 → G′

0].

We call this the pullback crossed module via p and denote it by p∗
G. We have a natural

projection P : G
′ → G.

The next lemmas will be used in the proof of Proposition 5.6.

Lemma 5.4. Notation being as above, assume that the images of p and ∂ generate G0.
Then P : G

′ → G is an equivalence of crossed modules. Conversely, if P : G
′ → G is an

equivalence of crossed modules, then the images of P0 : G′
0 → G0 and ∂ generate G0, and

G
′ is naturally isomorphic to P ∗

0 G.

Proof. Easy. �

Lemma 5.5. Let F : H → G be an equivalence of Γ -crossed modules. Then, there is a
commutative diagram

H

F

��
H

′
F ′

��
P

�� G

of equivalences of Γ -crossed modules such that P0 and F ′
0 are surjective. In particular,

by Lemma 5.4, H
′ is naturally isomorphic to both P ∗

0 H and (F ′
0)

∗
G.

Proof. Consider the right action of H0 on G1 via F0 : H0 → G0, and form the semidirect
product H0 � G1. It acts on H1 × G1 on the right by the rule

(β, α)(h,γ) := (βh, γ−1αP0(h)γ).

With this action, we obtain a Γ -crossed module

H
′ := [∂ : H1 × G1 → H0 � G1],

∂(β, α) := (∂Hβ, F1(β−1)α).
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We define P : H
′ → H to be the first projection map (pr1, pr1), and F ′ : H

′ → G to be
(pr2, ρ), where ρ : H0 � G1 → G0 is defined by (h, α) �→ P0(h)∂Gα. It is easy to verify
that P and F ′ satisfy the desired properties. �

We now come to the proof of invariance of K�1(Γ, G) under equivalences.

Proposition 5.6. Let f : H → G be a Γ -equivariant morphism of crossed modules which
is an equivalence (i.e. induces isomorphisms on ker ∂ and coker ∂). Then,

f∗ : K�1(Γ, H) → K�1(Γ, G)

is an equivalence of crossed modules in groupoids (i.e. induces isomorphisms on coho-
mologies). In particular, the induced maps Hi(Γ, H) → Hi(Γ, G) are isomorphisms for
i = −1, 0, 1.

Proof. By Lemma 5.5, we may assume that f0 : H0 → G0 is surjective. Therefore,
by Lemma 5.4, we may assume that H is the pullback of G along f0. That is, H =
[pr1 : H0×G0 G1 → H0] and f is (pr2, f0) : [H0 ×G0 G1 → H0] → [G1 → G0]. We calculate
K�1(Γ, H) explicitly and show that f∗ induces isomorphisms on cohomologies.

By definition (§ 5.1), we have

K�1(Γ, H) =
∐

c∈Z1

H0 ×G0 G1(c)
d−→ Z(Γ, H),

where
Z(Γ, H) = [Z1(Γ, H) × C0(Γ, H) ⇒ Z1(Γ, H)].

We calculate Z1(Γ, H) and C0(Γ, H) as follows. An element in Z1(Γ, H) is a pair (p, ε)
where

p : Γ → H0 and ε : Γ × Γ → G1

are pointed set maps satisfying the following conditions:

• for every σ, τ ∈ Γ , f0p(στ) · ∂ε(σ, τ) = f0p(σ) · σf0p(τ),

• for every σ, τ, υ ∈ Γ , ε(σ, τυ) · σε(τ, υ) = ε(στ, υ) · ε(σ, τ)
στp(υ).

An element in C0(Γ, H) is a triple (h, (θ1, θ2)), with h ∈ H0, θ1 : Γ → H0, and θ2 : Γ → G1

pointed set maps such that f0θ1 = ∂θ2.
The map of groupoids Z(Γ, H) → Z(Γ, G) is the one induced by the following maps:

Z1(Γ, H) → Z1(Γ, G),

(p, ε) �→ (f0p, ε),

C0(Γ, H) → C0(Γ, G),

(h, (θ1, θ2)) �→ (f0(h), θ2).

Since f0 is surjective, we see immediately that Z(Γ, H) → Z(Γ, G) is surjective on objects
and that it is a fibration of groupoids (i.e. has the arrow lifting property). This almost
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proves that the induced map on the set of isomorphism classes of these groupoids is
a bijection (which is the same thing as saying that f∗ induces a bijection on the first
cohomology sets). All we need to check is that if (p, ε), (p′, ε′) ∈ Z1(Γ, H) map to the
same element in Z1(Γ, G), then they are joined by an arrow in Z(Γ, H). We have ε =
ε′ and f0p = f0p

′. Hence, the map θ : Γ → H0 defined by σ �→ p(σ)−1p′(σ) factors
through ker f0. It is easy to see that (1, (1, θ)) ∈ C0(Γ, H) provides the desired arrow in
Z(Γ, H) joining (p, ε) to (p′, ε′). This completes the proof that f∗ is a bijection on the
first cohomology sets.

To show that f∗ induces an isomorphism on H−1 and H0, we need to verify that the
induced map of crossed modules (see § 3)

[H0 ×G0 G1 → Z0(Γ, H)] → [G1 → Z0(Γ, G)]

is an equivalence. Observe that Z0(Γ, H) ⊂ C0(Γ, H) consists of triples (h, (θh, θ2)), where
h and θ2 are arbitrary and θh : Γ → H0 is defined by the rule σ �→ h−1 · σh. The map
Z0(Γ, H) → Z0(Γ, G) is given by (h, (θh, θ2)) �→ (p0(h), θ2). It is clear that this map is
surjective.

By Lemma 5.4, it is enough to show that the following diagram is Cartesian

H0 ×G0 G1
d′

��

pr2

��

Z0(Γ, H)

��
G1

d
�� Z0(Γ, G)

The fact that this diagram is Cartesian becomes obvious once we recall (§ 3) that d and
d′ are defined as follows:

d(µ) = (∂µ, θµ), d′(h, α) = (h, (θh, θα)).

The proof of the proposition is complete. �

Remark 5.7. The butterfly approach of § 6 provides another proof of Proposition 5.6.

6. Butterflies

This section is a prelude to § 7 in which we will present an alternative construction of
the cohomologies Hi(Γ, G) and also of the complex K�1(Γ, G). This new construction,
which is based on the idea of butterfly, has the following advantages:

(1) it is much easier to write down Hi(Γ, G) and describe their properties,

(2) it is easy to recover the cocycles from this description,

(3) it works for arbitrary topological groups, and in fact in any topos, and

(4) it can be generalized to the case where Γ itself is a crossed module.
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To motivate the relevance of butterflies, let us explain the idea in the case of H1.
Assume for the moment that G = G is a group. In this case, to give a 1-cocycle (e.g. a
crossed-homomorphism) p : Γ → G is the same thing as giving a group homomorphism
p̃ : Γ → G � Γ making the following diagram commutative:

G � Γ

pr

��
Γ

id
��

p̃
�����������
Γ

The (right) conjugation action of G ⊆ G � Γ on G � Γ induces an action on the set of
such p̃. The transformation groupoid of this action is what we called Z1(Γ, G) in § 4. The
set of isomorphism classes of Z1(Γ, G) is H1(Γ, G).

The aim is now to imitate this definition in the case where G replaced by a crossed
module G. A group homomorphisms p̃ : Γ → G � Γ should now be replaced by a weak
morphism of crossed modules Γ → G � Γ . This is where butterflies come in the picture.

6.1. Butterflies

We recall the definition of a butterfly from [20].
Let G = [G1 → G0] and H = [H1 → H0] be crossed modules. By a butterfly from H to

G we mean a commutative diagram of groups

H1
κ
�����

��

G1
ι
�����

��
E

π����� ρ 		���

H0 G0

such that the two diagonal maps are complexes and the NE–SW diagonal is short exact.
We require that for every x ∈ E, α ∈ G and β ∈ H,

ι(αρ(x)) = x−1ι(α)x and κ(βπ(x)) = x−1κ(β)x.

We denote the above butterfly by the 5-tuple (E, ρ, π, ι, κ), or if there is no fear of
confusion, simply by E.

A morphism between two butterflies (E, ρ, π, ι, κ) and (E′, ρ′, π′, ι′, κ′) is a pair (t, g)
where g ∈ G0 and t : E → E′ is an isomorphism of groups. We require that t commutes
with the κ and π maps and satisfies the relations

g−1ρ(x)g = ρ′(t(x)) and ι′(αg) = tι(α)

for every x ∈ E, α ∈ G1. The composition of two arrows (t, g) : E → E′ and (t′, g′) : E′ →
E′′ is defined to be (t′ ◦ t, gg′).

A 2-morphism between (g, t) and (g′, t′) is an element µ ∈ G1 such that

g∂(µ) = g′ and t′ = µ−1tµ.

The composition of two 2-arrows µ1 and µ2 is defined to be µ1µ2.

https://doi.org/10.1017/S1474748010000186 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748010000186


Group cohomology with coefficients in a crossed module 375

For fixed H and G, the butterflies between them are objects of a 2-groupoid whose
morphisms and 2-arrows are defined as above.

Example 6.1. Assume that H = Γ is a group. Then, a butterfly from Γ to G is a
diagram

G1
ι
�����

∂

��
E

π


���

ρ
		���

Γ G0

where the diagonal sequence is short exact and the map ρ intertwines the conjugation
action of E on G1 with the crossed module action of G0. Such a diagram corresponds to
a weak morphism Γ → G and also to a 1-cocycle on Γ with values in G (for the trivial
action of Γ ). A morphism between two such diagrams corresponds to a transformation
of weak functors and also to an equivalence of 1-cocycles.

Example 6.2. A braided crossed module G is the same things as a group object in
the category of crossed modules and weak morphisms. More precisely, the multiplication
morphism of this group object is given by the butterfly

G1 × G1
k

������

(∂,∂)

��

G1
i
�����

∂

��
B

p������
r 		���

G0 × G0 G0

where the group B is defined as follows. The underlying set of B is G0 × G0 × G1. The
product in B is defined by

(g, h, α) · (g′, h′, α′) := (gg′, hh′, {h, g′}h′
αg′h′

α′).

The structure maps of the butterfly are given by

k(α, β) := (∂α, ∂β, β−1α−1), i(α) := (1, 1, α)

p(g, h, α) := (g, h), r(g, h, α) := gh∂α.

7. Cohomology via butterflies

In this section we will use the idea discussed at the beginning of the previous section to
give a simple description of the cohomologies Hi(Γ, G).

Given a group Γ acting on a crossed module G on the left, the semi-direct product
G � Γ is the crossed module

G � Γ := [(∂, 1) : G1 → G0 � Γ ].
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The action of G0 � Γ on G1 is defined by

α(g,σ) := σ−1
(αg) = (σ−1

α)(
σ−1

g).

This crossed module comes with a natural projection map

pr: G � Γ → Γ.

Here, by abuse of notation, we have denoted the crossed module [1 → Γ ] by Γ .

7.1. Butterfly description of Hi(Γ, G)

We define the 2-groupoid Z(Γ, G) as follows. The set of objects of Z(Γ, G) are pairs
(E, ρ), where E is an extension

1 → G1
ι−→ E

π−→ Γ → 1

and ρ : E → G0 is a map which makes the diagram

G1
ι
�����

∂

��
E

π


���

ρ

		���

Γ G0

commute and satisfies the following conditions:

• for every x, y ∈ E, ρ(xy) = ρ(x) · π(x)ρ(y),

• for every x ∈ E and α ∈ G1, ι(π(x)−1
(αρ(x))) = x−1ι(α)x.

(The maps ι and π are also part of the data but we suppress them from the notation.
We usually identify G1 with ι(G1) ⊆ E and denote ι(µ) simply by µ.)

An arrow in Z(Γ, G) from (E, ρ) to (E′, ρ′) is a pair (t, g) where g ∈ G0 and t is an
isomorphism t : E → E′ such that

• π = π′ ◦ t,

• for every x ∈ E, g−1 · ρ(x) · π(x)g = ρ′t(x),

• for every α ∈ G1, ι′(αg) = tι(α).

The composition of two arrows (t, g) : (E, ρ) → (E′, ρ′) and (t′, g′) : (E′, ρ′) → (E′′, ρ′′)
is defined to be (t′ ◦ t, gg′).

A 2-arrow (t, g) ⇒ (t′, g′) is an element µ ∈ G1 such that g∂(µ) = g′ and t′ = µ−1tµ.
The composition of the two 2-arrows µ : (t, g) ⇒ (t′, g′) and µ′ : (t′, g′) ⇒ (t′′, g′′) is
defined to be µµ′.

The 2-groupoid is naturally pointed. The base object is (Etriv, ρtriv), where Etriv =
G1 � Γ and ρtriv : Etriv → G0 sends (α, σ) to ∂(α).
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Let us now explain how Hi(Γ, G), i = −1, 0, 1, can be recovered from the 2-groupoid
Z(Γ, G).

The group H−1(Γ, G) is naturally isomorphic to the group of 2-arrows from the arrow
(idEtriv , 1G0) to itself.

The group H0(Γ, G) is naturally isomorphic to the group of 2-isomorphism classes of
arrows from the base object (Etriv, ρtriv) to itself.

The pointed set H1(Γ, G) is naturally isomorphic to the pointed set of isomorphism
classes of objects in Z(Γ, G).

We can also describe the groupoid Z1(Γ, G) defined in § 4. This groupoid is naturally
equivalent to the groupoid obtained by identifying 2-isomorphic arrows in Z(Γ, G).

Remark 7.1. By associating the one-winged butterfly

G1
ι

�����
��

(∂,1)

��
E

π


���

(ρ,π)
�����

�

Γ G0 � Γ

to an object in Z(Γ, G), the 2-groupoid Z(Γ, G) defined above is seen to be isomorphic
to the 2-groupoid of butterflies from Γ to G � Γ whose composition with the projection
map G � Γ → Γ is equal to the identity map Γ → Γ . Note that, in contrast with [20],
here we are considering non-pointed transformation between butterflies. That is why we
obtain a 2-groupoid (rather than a groupoid) of butterflies.

7.2. Relation to the cocycle description of Hi

To see how to recover a cocycle in the sense of § 4 from the pair (E, ρ), choose a set
theoretic section s : Γ → E to the map π. Assume s(1) = 1. Define p : Γ → G0 to be the
composition ρ ◦ s and ε : Γ × Γ → G1 to be

ε : (σ, τ) �→ s(στ)−1s(σ)s(τ).

The pair (p, ε) is a 1-cocycle in the sense of § 4. Conversely, given a 1-cocycle (p, ε) in
the sense of § 4, we define E to be the group that has Γ × G1 as the underlying set and
whose product is defined by

(σ1, α1) · (σ2, α2) := (σ1σ2, ε(σ1, σ2) · σ−1
2 (αp(σ2)

1 )α2).

Define the group homomorphism ρ : E → G0 by

ρ(σ, a) = p(σ)∂(σg).

The homomorphisms ι : G1 → E and π : E → Γ are the inclusion and the projection
maps on the corresponding components.
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7.3. Group structure on Z(Γ, G): the preliminary version

In the case where G has a Γ -equivariant braiding, there is a group structure on the
2-groupoid Z(Γ, G) which lifts the one on H1(Γ, G) introduced in § 4.1. In this subsection,
we illustrate this product by making use of the butterfly of Example 6.2. In § 7.4, we give
an explicit formula for it.

We begin by observing that the butterfly of Example 6.2 can give rise to a butterfly

G1 × G1 (k,1)
					

(∂,∂,1)

��

G1(i,1)
��








∂

��

B � Γ
(p,id)

������
� (r,id)

�����

(G0 × G0) � Γ G0 � Γ

This butterfly gives rise to a product on Z(Γ, G) as follows. Given (E, ρ) and (E′, ρ′),
we can think of them as one-winged butterflies from Γ to G � Γ relative to Γ (see
Remark 7.1). Form the one-winged diagonal butterfly from Γ to the fibre product of
G � Γ with itself relative to Γ . That is, consider

G1 × G1
(ι,ι′)
��

(∂,∂,1)

��
E ×Γ E′

����
������

Γ (G0 × G0) � Γ

where E ×Γ E′ stands for the fibre product of E and E′ over Γ . Composing this butterfly
with the one of the beginning of this subsection, we find a one-winged butterfly

G1
j

��






(∂,1)

��

E � E′
(ρ�ρ′,π)

�����
�

������

Γ G0 � Γ

This is the sought after product (E, ρ) � (E′, ρ′). (In § 7.4 we will explicitly write down
what (E, ρ) � (E′, ρ′) is.)

The above product makes Z(Γ, G) into a (weak) group object in the category of
2-groupoids and weak functors. Therefore, Z(Γ, G) corresponds to a (weak) 3-group.
Homotopy theoretically, a 3-group is equivalent to a 2-crossed module. The 2-crossed
module K�1(Γ, G) that we encountered in § 5.2 is a model for the 3-group Z(Γ, G). More
precisely, the construction introduced at the end of § 7.1 gives an equivalence from the
3-group associated to K�1(Γ, G) to Z(Γ, G).

If we identify 2-isomorphic arrows in Z(Γ, G), we obtain a (weak) group object in the
category of groupoids, i.e. a (weak) 2-group. This 2-group is, in turn, equivalent to the
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2-group associated to the crossed module

[d : C0(Γ, G)/B0(Γ, G) → Z1(Γ, G)],

namely to Z(Γ, G) (§ 4). The set H1(Γ, G) of isomorphism classes of Z(Γ, G) also inherits
a group structure. This group structure coincides with the one defined in § 4.1.

7.4. Group structure on Z(Γ, G): the explicit version

In this subsection, we explicitly write down the multiplication in Z(Γ, G). The formulae
are obtained by unraveling the definition of the composition of butterflies [20, § 10.1]. It
is more or less straightforward how to derive the formulae, but if done naively one usually
ends up with very involved expressions. Some extra algebraic manipulation is needed to
bring the formulae to the form presented below.

Let us start with the product of two objects in Z(Γ, G). The product (E, ρ)� (E′, ρ′) is
the pair (E �E′, ρ�ρ′) which is defined as follows. Let F := E ×Γ E′ be the fibre product
of E and E′ over Γ . We endow F with the following group structure:

(x1, y1) · (x2, y2) := (x1x2 · ι{ρ′(y1)−1, π(x1)ρ(x2)}−1, y1y2).

There is a normal subgroup of F consisting of elements of the form (ι(α), ι′(α)−1),
α ∈ G1. We define E �E′ to be the quotient of F by this normal subgroup. Alternatively,
one can think of E � E′ as the group obtained from F by declaring (ι(α), 1) equal to
(1, ι′(α)), for every α ∈ G1. There is a natural group homomorphism j : G1 → E � E′

which sends α to the common value of (ι(α), 1) and (1, ι′(α)). The group homomorphism
ρ � ρ′ : E � E′ → G0 is defined by

ρ � ρ′ : (x, y) �→ ρ(x)ρ′(y).

This completes the definition of the product (E, ρ) � (E′, ρ′).
Calculating the product of two arrows turns out to be more complicated, and the

formula is rather unpleasant, as we will now see. Given two arrows (t, g) : (E1, ρ1) →
(E2, ρ2) and (t′, g′) : (E′

1, ρ
′
1) → (E′

2, ρ
′
2) in Z(Γ, G), we define their product to be the

arrow
(t � t′, gg′) : (E1, ρ1) � (E′

1, ρ
′
1) → (E2, ρ2) � (E′

2, ρ
′
2),

where t � t′ is the homomorphism

t � t′ : E1 � E′
1 → E2 � E′

2, (x, y) �→ ({g′, ρ1(x)−1g}{ρ′
1(y)g′, π(x)g−1}ρ1(x)−1g · t(x), t′(y)).

The formula takes the much simpler form of

(x, y) �→ (t(x), t′(y))

in the case where g = g′ = 1. But in general it seems our formula cannot be simplified
further.

Finally, if we have two 2-arrows (t1, g1) ⇒ (t2, g2) and (t′1, g
′
1) ⇒ (t′2, g

′
2) given by

µ, µ′ ∈ G1, their product is defined by µg′
1µ′.
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7.5. The case of a symmetric braiding

In the case where the braiding on G is symmetric, Z(Γ, G) inherits a symmetric braiding

b(E,ρ),(E′,ρ′) : (E, ρ) � (E′, ρ′) → (E′, ρ′) � (E, ρ),

which is defined by
(x, y) �→ (ι{ρ(x)−1, ρ′(y)−1}y, x).

This braiding is symmetric in the sense that

b(E,ρ),(E′,ρ′) ◦ b(E′,ρ′),(E,ρ′) = id(E,ρ),(E′,ρ′) .

Since Z(Γ, G) is a group object in 2-groupoids, there is one more piece of data that goes
into the definition of a braiding on it. Given two arrows (t, g) : (E1, ρ1) → (E2, ρ2) and
(t′, g′) : (E′

1, ρ
′
1) → (E′

2, ρ
′
2) in Z(Γ, G), we need a 2-arrow ψ making the following diagram

commute (to make the diagram less involved, we abbreviate (E, ρ) to E):

E1 � E′
1

(t,g)�(t′.g′)
��

bE1,E′
1 �� E′

1 � E1

(t′,g′)�(t,g)
��

ψ

�� ��
���

��

���
���

�

E2 � E′
2 bE2,E′

2

�� E′
2 � E2

We take ψ to be {g, g′}.
As we pointed out in § 7.3, the multiplication in Z(Γ, G) makes it into a group object in

the category of 2-groupoids and weak functors, and the corresponding 2-crossed module
is equivalent to K�1(Γ, G). The above discussion can be summarized by saying that,
when G is symmetric, the 2-crossed module K�1(Γ, G) is braided and ‘symmetric’. (We
use quotes because we are not aware of a precise definition of the notion of symmetric
braided 2-crossed module.)

The same discussion applies to the 2-group obtained by identifying 2-isomorphic arrows
in Z(Γ, G). Thus, the crossed module [d : C0(Γ, G)/B0(Γ, G) → Z1(Γ, G)] introduced
in § 4.1 inherits a symmetric braiding. We have already encountered this braiding in
Lemma 4.4.

8. Functoriality of Z(Γ, G)

In this section the reader is assumed to have some basic familiarity with the formalism
of butterflies [20]. One advantage of working with butterflies, as opposed to strict mor-
phisms of crossed modules, is that certain calculations become completely categorical
and simple. Another advantage is that questions regarding invariance under equivalence
of crossed modules get automatically taken care of.

The main result of this section can be summarized by saying that Z(Γ, G) is functorial
with respect to weak Γ -equivariant morphisms B : G → H of crossed modules (read
strong Γ -equivariant butterflies).
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8.1. Strong Γ -butterflies

We begin by recalling the definition of a strong butterfly [1, Definition 4.1.6].

Definition 8.1. A strong butterfly (B, s) : H → G consists of a butterfly

H1
k
�����

��

G1
i
�����

��
B

p����� r 		���

H0 G0

together with a set theoretic section s : H0 → B for p. When G and H carry a strict
Γ -action, a Γ -butterfly is a butterfly for which the group B is endowed with a Γ -action
such that the four maps i, k, p and r are Γ -equivariant. A strong Γ -butterfly is a
Γ -butterfly whose underlying butterfly is strong. A morphism of strong Γ -butterflies is
a morphism of the underlying butterflies (§ 6.1) in which the homomorphism t : E → E′

is Γ -equivariant. Finally, the definition of a 2-morphism is the one which ignores the
section s and the Γ -action.

Remark 8.2. Under the correspondence between butterflies and weak morphisms,
Γ -butterflies correspond to weakly Γ -equivariant weak morphisms.

With the composition defined as in [20, § 10.1], strong Γ -butterflies form a bicategory
which is biequivalent to the bicategory of Γ -butterflies (via the forgetful functor forgetting
the section).

A Γ -butterfly as in Definition 8.1 gives rise to a butterfly

H1
k

�����
��

��

G1
i
��








��
B � Γ

(p,id)
��




(r,id)
�����

H0 � Γ G0 � Γ

If B is strong, then this butterfly is also strong in a natural way. This construction
respects composition of (strong) Γ -butterflies. More precisely, it gives rise to a trifunctor
from the tricategory of Γ -crossed modules and Γ -butterflies to the tricategory of crossed
modules and butterflies.

8.2. Functoriality of Z(Γ, G)

The 2-group Z(Γ, G) is functorial in the second variable in the following sense: for
a fixed Γ , Z(Γ, ·) is a trifunctor from the tricategory of Γ -crossed modules and strong
Γ -butterflies to the tricategory of 2-groupoids. We will not give a detailed proof of this
statement. We will only describe the effect

(B, s)∗ : Z(Γ, H) → Z(Γ, G)
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of a strong Γ -butterfly (B, s) from H to G. The effects of morphisms and 2-arrows of
strong Γ -butterflies are easy to describe.

Let (B, s) : H → G be a strong Γ -butterfly. Let (E, ρ) be an object in Z(Γ, H), as in
the diagram

H1
ι
�����

∂

��
E

π


���

ρ

�����

Γ H0

We define the image under (B, s) of (E, ρ) in Z(Γ, G) to be the pair (F, λ) which is
defined as follows. Consider the fibre product K := E ×ρ,H0,p B. This can be made into
a group by defining the product to be

(x, b) · (y, c) := (xy, b · π(x)c).

There is a subgroup N of this group consisting of elements of the form (ι(α), k(α)),
α ∈ G1. We define F to be K/N . It fits in the following diagram:

G1(1,i)
�����

∂

��
F

π◦pr1


���

λ
		���

Γ G0

The crossed homomorphism λ : F → G0 is given by (x, b) �→ r(b). It is easy to verify that
(F, λ) is an object in Z(Γ, G).

The effect of (B, s) on an arrow (t, h) : (E, ρ) → (E′, ρ′) is the pair (u, rs(g)), where
u : F → F ′ is the homomorphism induced from the map

E ×ρ′,H0,p B → E′×ρ′,H0,p, B,

(x, b) �→ (t(x), s(h)−1 · b · π(x)s(h)).

Finally, the effect of (B, s) on a 2-arrow µ : (t, h) ⇒ (t′, h′), where µ ∈ H1, is defined
to be the unique element ν ∈ G1 such that i(ν) = s(g)−1s(g∂µ)κ(µ)−1.

Remark 8.3. The functoriality of Z(Γ, H) implies immediately that for every Γ -equi-
variant equivalence f : H → G of crossed modules, the induced bifunctor

f∗ : Z(Γ, H) → Z(Γ, G)

is a biequivalence. Therefore, the induced morphism of crossed modules in groupoids

f∗ : K�1(Γ, H) → K�1(Γ, G)

is an equivalence (compare Proposition 5.6). In particular, the induced maps on cohom-
ology Hi, i = −1, 0, 1, are isomorphisms.
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8.3. In the presence of a braiding

Definition 8.4. A Γ -butterfly

H1
k
�����

��

G1
i
�����

��
B

p����� r 		���

H0 G0

is braided if it satisfies the identity

k{p(b), p(c)}H · i{r(b), r(c)}G = b−1c−1bc

for every b, c ∈ B. A strong braided Γ -butterfly is a braided Γ -butterfly together with
a set theoretic section s : H0 → E for p. Morphisms and 2-morphisms of strong braided
Γ -butterflies are defined to be the ones of the underlying Γ -butterflies.

If G and H are endowed with a Γ -equivariant braiding and B is a braided Γ -butterfly
in the sense of Definition 8.4, then the bifunctor

(B, s)∗ : Z(Γ, H) → Z(Γ, G)

is monoidal. The monoidal structure on this functor is given by the natural isomorphisms

FE,E′ : B∗(E) � B∗(E′) → B∗(E � E′),

((x, b), (y, c)) �→ (x, y, bc).

Here we have abbreviated (B, s)∗ to B∗ and (E, ρ) to E. (The proof that this map is a
group homomorphism is quite non-trivial and involves some lengthy calculations.) Also,
given two arrows (t, h) : (E1, ρ1) → (E2, ρ2) and (t′, h′) : (E′

1, ρ
′
1) → (E′

2, ρ
′
2) in Z(Γ, H),

we have the following commutative 2-cell in Z(Γ, H):

B∗(E1) � B∗(E′
1)

B∗(t′,h′)�B∗(t,h)

��

FE1,E′
1 �� B∗(E′

1 � E1)

B∗((t,h)�(t′,h′))

��
ε(h,h′)

�
 ������������

������������

B∗(E2) � B∗(E′
2) FE2,E′

2

�� B∗(E′
2 � E2)

where ε(h, h′) ∈ G1 is the unique element in G1 satisfying the identity iε(h, h′) =
s(hh′)−1s(h)s(h′).

Remark 8.5. It can be shown that, for a fixed Γ , Z(Γ, ·) is a trifunctor from the tricat-
egory of braided Γ -crossed modules and braided strong Γ -butterflies to the tricategory
of monoidal 2-groupoids. We will not prove this here.
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It follows from the above discussion that if (B, s) : H → G is a braided strong Γ -butter-
fly, then the induced weak morphism

(B, s)∗ : Z(Γ, H) → Z(Γ, G)

of 2-groups is braided. This implies that the induced map

K�1(Γ, H) → K�1(Γ, G)

is a morphism of 2-crossed modules. In particular, the induced map

H1(Γ, H) → H1(Γ, G)

is a group homomorphism.

9. Everything over a Grothendieck site

The discussion of § 8 is valid over any Grothendieck site, but some changes need to be
made in the definition of Z(Γ, G). We discuss this in this section and prepare the ground
to compare our definition of Hi with the standard one in terms of gerbes.

Let X be a fixed Grothendieck site. By a group we mean a sheaf of groups over X. A
short exact sequence means a short exact sequence of sheaves of groups.

Let G = [G1 → G0] be a crossed module over X, and Γ a group over X acting strictly
on G. We would like to define the analog of the 2-groupoid Z(Γ, G). The definition is
more or less the same as in the discrete case, with one slight change in the definition of
arrows (hence, also of 2-arrows). For this reason, we will use a different notation Z′(Γ, G)
for it.

The crossed module G = [∂ : G1 → G0] gives rise to a quotient stack [G0/G1], where
G1 acts on G0 by right multiplication via ∂. That is, [G0/G1] is the quotient stack of
the transformation groupoid [G0 � G1 ⇒ G0]. The latter is a strict group object in the
category of groupoids. Therefore, the quotient stack [G0/G1] is in fact a group stack. We
denote this group stack by G.

9.1. A provisional definition in terms of group stacks

We include this subsection just to motivate the definition of Z′(Γ, G) that will be
given in § 9.2. Using the idea discussed in Remark 7.1, we introduce a closely related
(and naturally biequivalent) 2-groupoid which is defined in terms of group stacks. This
2-groupoid, though conceptually much simpler, is not very explicit. In § 9.2 we use the
results of [1] to translate this definition to the language of crossed modules.

Let G be a group stack (for example, the quotient stack of G) with an action of a group
Γ . The associated 2-groupoid is defined as follows.

An object in this 2-groupoid is a (weak) morphism of group stacks r : Γ → G � Γ such
that pr2 ◦r = idΓ .

A morphism (t, g) : r → r′ in this 2-groupoid consists of a global section g of G and a
monoidal transformation t : r → gr′g−1, where gr′g−1 is the morphism r′ composed with
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the conjugation by g automorphism of G. The composition of two morphisms (t, g) and
(t′, g′) is defined to be (t(gt′g−1), gg′).

A 2-arrow µ : (t, g) ⇒ (t′, g′) is a transformation µ : g → g′ which intertwines t and t′.

9.2. The 2-groupoid Z′(Γ, G)

Thanks to the equivalence of butterflies and weak morphisms of group stacks [1], we
can translate the definition given in § 9.1 and find a more convenient definition of Z′(Γ, G)
along the lines of § 7.

Some notation

We use the notation X
G× Y for the contracted product of two sets X and Y with an

action of a group G. Breen (and also [1]) uses the notation X
G∧ Y . If X and Y are over

a third set Z and the G-actions are fibrewise, we denote by X
G×
Z

Y the subset in X
G× Y

consisting of those pairs (x, y) such that x and y map to the same element in Z.

Objects of Z′(Γ, G)

The objects of Z′(Γ, G) turn out to be exactly the same as before. Namely, they are
diagrams

G1
ι
�����

∂

��
E

π


���

ρ

		���

Γ G0

of sheaves of groups over X such that the diagonal sequence is short exact and ρ is a
crossed-homomorphism intertwining the conjugation action of E on G1 with the crossed
module action of G0 on G1 (see § 7.1).

Arrows of Z′(Γ, G)

An arrow in Z′(Γ, G) from (E, ρ) to (E′, ρ′) is a pair (t, g) where g and t are as follows.
The g here is a pair (P, ϕ), where P is a right G1-torsor on X and ϕ : P → G0 is a
G1-equivariant morphism of sheaves. Here G1 acts on G0 by right multiplication via ∂.
The t is an isomorphism E → gE′ of sheaves of groups making the following diagram
commute

G1gι′

���������

ι
��

��
��

��

����
∂

��

gE′

gπ′

����
��

��
��

��
��

gρ′

���
��

��
��

��
��

�

E

t

��

π����������
ρ ��								

Γ G0
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Here, gE′ := P
G1× E′ is the contracted product of P and E′, where G1 acts on E′ by

right conjugation. The map
gπ′ : P

G1× E′ → Γ

is π′ ◦ pr2. The map gρ′ is defined by

gρ′ : P
G1× E′ → G0,

(u, x) �→ ϕ(u) · ρ′(x) · π′(x)ϕ(u)−1,

and gι′ is defined by

gι′ : G1 → P
G1× E′,

α �→ (u, ι′(αϕ(u))),

where u ∈ P is randomly chosen; it is easy to see that the pair (u, ι′(αϕ(u))), viewed as
an element in P

G1× E′, is independent of u.

Remark 9.1. The object (gE, gρ) should be regarded as the left conjugate of (E, ρ)
under the action of g. Note that, by definition of the quotient stack, g = (P, ϕ) is a
global section of G = [G0/G1].

The composition of two arrows (t, g) : (E, ρ) → (E′, ρ′) and (t′, g′) : (E′, ρ′) → (E′′, ρ′′)
is defined to be (t′′, g′′), where g′′ and t′′ are defined as follows. First we define g′′. Let
g = (P, ϕ) and g′ = (P ′, ϕ′). Make P ′ into a left G1-torsor (indeed, a bitorsor) by setting

αu := uαϕ(u)
, α ∈ G1, u ∈ P ′.

Form the contracted product P
G1× P ′, where now P ′ is viewed as a left G1-torsor. It

inherits a right G1-torsor structure from P ′. Define ϕ
G1× ϕ′ by the rule

ϕ
G1× ϕ′ : P

G1× P ′ → G0, (u, v) �→ ϕ(u)ϕ′(v).

We define g′′ to be the pair (P
G1× P ′, ϕ

G1× ϕ′). (Note that if we view g and g′ as global
sections of the group stack G = [G0/G1], then g′′ corresponds to the product gg′.)

The homomorphism t′′ is defined to be

t′′ : E → P
G1× P ′ G1× E′′,

t′′ := (P
G1× t′) ◦ t.

2-arrows of Z′(Γ, G)

A 2-arrow (t, g) ⇒ (t′, g′) in Z′(Γ, G) is an isomorphism µ : g → g′ such that the
diagram

gE
µ

G1
× E ��

t ���
��

�
g′
E

t′����
��

E
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commutes. Here, by an isomorphism µ : g → g′ we mean an isomorphism Pg → Pg′ of
G1-torsors, which we denote again by µ, making the diagram

Pg
µ ��

ϕ ���
��

�
Pg′

ϕ′�����
�

G0

commute.

Remark 9.2. In contrast with Z(Γ, G) which is a 2-groupoid, Z′(Γ, G) is a bigroupoid.

9.3. Functoriality of Z′(Γ, G)

The bigroupoid Z′(Γ, G) is in some sense more natural than Z(Γ, G), because it is
actually functorial with respect to Γ -butterflies. That is, we do not need strong butterflies
(Definition 8.1) in order to define pushforwards.

Let B : H → G be a Γ -butterfly

H1
k
�����

��

G1
i
�����

��
B

p����� r 		���

H0 G0

The bifunctor B∗ : Z′(Γ, H) → Z′(Γ, G) is defined as follows.

Effect of B∗ on objects

Let (E, ρ) be an object in Z′(Γ, H). The effect of B∗ is given by

H1
ι


���

∂

��

G1



���

∂

��

E
π
����

�
ρ

���
��

B∗�→ F

����
� λ

���
��

Γ H0 Γ G0

where B∗(E, ρ) is defined exactly as in § 8.2. Namely, it is equal to (F, λ) with

F := E
H1×
H0

B and λ : F → G0, (x, b) �→ r(b).

Here, G1 acts on each component by right multiplication.
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Effect of B∗ on arrows

Let (t, h) : (E, ρ) → (E′, ρ′) be an arrow in Z′(Γ, H). Here, h is equal to (P, ϕ), where
P is an H1-torsor and ϕ : P → H0 is an H1-equivariant map, and

t : E → P
H1× E′

is a homomorphism. We define B∗(t, h) to be (s, g), where g and s are defined as follows.
Consider

Q := P
H1×
H0

B,

where H1 acts on B by right multiplication via k. Since the images of k and i in B

commute, the right multiplication action of G1 on B via i gives rise to a right action of
G1 on Q. It is easy that this makes Q into a right G1-torsor. We have a G1-equivariant
map

χ : Q = P
H1×
H0

B → G0,

(x, b) �→ r(b).

We define g to be (Q, χ). The homomorphism s : F → gF ′ is defined to be the composition

F = E
H1×
H0

B
t
H1
×
H0

B

�� (P
H1× E′)

H1×
H0

B η−1
�� (P

H1×
H0

B)
G1× (E′ H1×

H0
B) = Q

G1× F ′ = gF ′.

For the convenience of the reader, let us clarify all the actions appearing in the above
expression, as well as define the isomorphism η.

In
(P

H1× E′)
H1×
H0

B,

the action of the first H1 on E′ is by right conjugation, and the action of the second
H1 on B is by right multiplication. The action of the second H1 on P

H1× E′ is by right
multiplication via gι′. That is, (u, x) acted on by α ∈ H1 is equal to (u, xαϕ(u)).

In
(P

H1×
H0

B)
G1× (E′ H1×

H0
B)

all actions are by right multiplication, except for the action of G1 on the last B component
which is by right conjugation.

Finally, the isomorphism η is defined by

η : (P
H1×
H0

B)
G1× (E′ H1×

H0
B) → (P

H1× E′)
H1×
H0

B,

(u, b, y, c) �→ (u, y, bcb−1).

We leave it to the reader to verify that this is indeed an isomorphism of groups.

Effect of B∗ on 2-arrows

This is defined in the obvious way.
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9.4. Comparing Z′(Γ, G) and Z(Γ, G)

Instead of defining Z′(Γ, G) as in § 9.2, we could have imitated the definition of Z(Γ, G)
given in § 7.1. We argue that this would not have been the correct definition. Let us
analyse what goes wrong with this naive definition. There is a natural bifunctor

Ψ : Z(Γ, G) → Z
′(Γ, G)

which is the identity on objects and is fully faithful on hom groupoids. This functor,
however, misses many arrows in Z′(Γ, G). This is essentially because not every global
section of the quotient stack [G0/G1] lifts to a global section of G0. Let us spell this out
in more detail.

The functor Ψ sends an arrow (t, g) in Z(Γ, G), where g ∈ G0 and t : E → E′ is a group
homomorphism (with certain properties), to a pair (ĝ, t̂) in which ĝ is the pair (G1, ϕ)
with G1 the trivial G1-torsor and ϕ : G1 → G0 given by α �→ g∂(α). It follows that if
an arrow in Z′(Γ, G) is in the image of Ψ , or is 2-isomorphic to such an arrow, then its
corresponding G1-torsor P is trivial. The converse is also easily seen to be true.

Proposition 9.3. There is a natural bifunctor

Ψ : Z(Γ, G) → Z
′(Γ, G)

which is the identity on objects and is fully faithful on hom groupoids. If H1(X, G1) is
trivial, then Ψ is a biequivalence. In particular, in the case where everything is discrete
(i.e. X is a point), Ψ is a biequivalence.

To end this subsection, let us also recall two other differences between Z(Γ, G) and
Z′(Γ, G). The former is a 2-groupoid and it is functorial only with respect to strong
Γ -butterflies. The latter is a bigroupoid and is functorial with respect to all Γ -butterflies.

9.5. Continuous, differentiable, algebraic, etc., settings

The cocycle approach to cohomology discussed in §§ 3–5 has the disadvantage that it
is only appropriate in the discrete setting. For instance, in the case where Γ and G are
Lie, both the differentiable and discrete cocycles give the wrong cohomologies in general.

The butterfly approach, however, always gives the correct answer. Let us elaborate
this a little bit. For example, suppose that M is a manifold, Γ is a Lie group bundle
over M , and G = [G1 → G0] a bundle of Lie crossed modules. In this case, an element
in H1(Γ, G) is a diagram

G1
ι
�����

��
E

π


���

ρ
		���

Γ G0

as in § 9.2 in which E is a Lie group bundle over M , the diagonal sequence is short exact
in the category of Lie group bundles, and the map ρ is differentiable. Two such diagrams
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(E, ρ) and (E′, ρ′) give rise to the same cohomology class in H1(Γ, G) if and only if there
exists a principal G1-bundle P over M , a G1-equivariant differentiable map of bundles
ϕ : E → G0, and an isomorphism of Lie group bundles

f : P
G1× E′ → E

such that:

• for every u ∈ P and y ∈ E′, ρf(u, y) · π′(y)ϕ(u) = ϕ(u) · ρ′(y),

• for every u ∈ P and y ∈ E′, πf(u, y) = π′(y),

• for every u ∈ P and α ∈ G1, f(u, ι′(αϕ(u))) = ι(α).

Notice, in particular, that in the case where M is a point, the Lie group E and the
extension

1 → G1 → E → Γ → 1

are uniquely determined (up to isomorphism) by the given element in H1(Γ, G) and can
be thought of as invariants of the given cohomology class.

The same discussion is valid in the algebraic setting (where G is a group scheme, or
an algebraic group, and G is a crossed module in group schemes, or algebraic groups),
or in the topological setting, etc.

10. Hi and gerbes

In this section, we give an interpretation of the 2-groupoid Z′(Γ, H) in terms of gerbes
over the classifying stack BΓ , and clarify the relation between our definition of Hi and
the standard one in terms of gerbes. The gerbe approach to higher cocycles has been
developed by Breen (see, for example, [5,6]).

Our set up is as follows. We fix a Grothendieck site X. When working over the site X,
by a group we mean a sheaf of groups on X, and by a crossed module we mean a crossed
module in sheaves of groups.

Given a sheaf of groups Γ over X, we denote the classifying stack of Γ by BΓ := [Γ\X].
We sometimes use the same notation for the Grothendieck site (X ↓ BΓ ) of objects in
X over BΓ .

Recall that to a crossed module G = [∂ : G1 → G0] over X we can associate a group
stack G which is, by definition, the quotient stack of the transformation groupoid [G0 �

G1 ⇒ G0]. Note that the latter is a strict group object in the category of groupoids.
Our notational convention is that whenever we use the notation [G0/G1], we simply

mean the quotient stack without the group structure. When we want to take into account
the group structure, we use G. For example, we will be considering [G0/G1] as a trivial
right G-torsor.
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10.1. Cohomology via gerbes

It is well known that, for every group stack G over a Grothendieck site X, the Hi(X, G),
i = −1, 0, 1, are defined as follows.

• H−1(X, G) is the group of self-equivalences of the identity section of G; this is an
abelian group.

• H0(X, G) is the group of global sections of G modulo transformation; this is a group,
not necessarily abelian.

• H1(X, G) is the set of isomorphism classes of (right) G-torsors over X; this is a
pointed set.

A Γ -crossed module G gives rise to a crossed module GΓ , and the corresponding group
stack GΓ , on the classifying stack BΓ . In the case where X is a point, it is straightforward
(but rather tedious) to see that we have natural isomorphisms

Hi(Γ, G) ∼= Hi(BΓ,GΓ ), i = −1, 0, 1.

In fact, our definitions of Hi(Γ, G) given in §§ 3 and 4 were obtained by translating the
definition of Hi(BΓ,GΓ ) to the cocycle language. (The idea is to write down the descent
data for a GΓ -torsor on BΓ and see that we obtain the cocycles of §§ 3 and 4.)

The right GΓ -torsors over BΓ form a strict 2-groupoid. The morphisms of this groupoid
are morphisms of GΓ -torsors, and the 2-arrows of it are transformations. Let Z(Γ, G) be
the full sub-2-groupoid of this 2-groupoid consisting of those GΓ -torsors which become
isomorphic to the trivial G-torsor when pulled back to X via the quotient map X → BΓ .
(We do not fix the trivialization.)

Proposition 10.1. Let Z(Γ, G) be as above and Z′(Γ, G) as in § 9.2. Then, there is a
biequivalence

Υ : Z
′(Γ, G) → Z(Γ, G)

which is natural up to higher coherences.

Proof. We give an outline of the construction of this biequivalence.

Effect of Υ on objects

Let (E, ρ) be an object in Z′(Γ, G), as in the diagram

G1
ι
�����

∂

��
E

π


���

ρ

		���

Γ G0

To this we want to associate a right GΓ -torsor over BΓ . Think of [ι : G1 → E] as a
crossed module (via the conjugation action of E on G1), and let Γ̃ := [E/G1] be the
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corresponding group stack. That is, the underlying stack of Γ̃ is the quotient stack of the
groupoid [E � G1 ⇒ E]. As we pointed out at the beginning of this section, the latter
is a strict group object in the category of groupoids. There is a natural equivalence of
group stacks φ : Γ̃ → Γ induced by π.

The map φ provides us a left action of Γ̃ on the group stack G via that of Γ . We will
show that there is also a natural action of Γ̃ on the stack [G0/G1] which makes the right
G-torsor structure of [G0/G1] Γ̃ -equivariant. After choosing an inverse for φ, this gives
rise to an action of Γ on the trivial G-torsor [G0/G1]. Passing to Γ -quotients, we obtain
a GΓ -torsor P on the classifying stack BΓ .

Let us now spell out the action of Γ̃ on the stack [G0/G1]. We do this on the groupoid
level. That is, we give a left action of [E � G1 ⇒ E], viewed as a group object in
groupoids, on the groupoid [G0 � G1 ⇒ G0]. To do so, we give an automorphism Fx

from [G0 � G1 ⇒ G0] to itself for every x ∈ E. Also, for every arrow (x, β) between the
objects x and y = xι(β) in [E � G1 ⇒ E], we give a transformation T(x,β) : Fx ⇒ Fy.

The effect of the automorphism Fx on an object g ∈ G0 of the groupoid [G0�G1 ⇒ G0]
is given by

g �→ ρ(x) · π(x)g.

Its effect on an arrow (g, α) ∈ G0 � G1 is given by

(g, α) �→ (ρ(x) · π(x)g, π(x)α).

The transformation T(x,β) : Fx ⇒ Fy is defined by

T(x,β)(g) := (ρ(x) · π(x)g, β(π(x)g)).

Here, g ∈ G0 is viewed as on object and (ρ(x) · π(x)g, β(π(x)g)) ∈ G0 � G1 as an arrow in
the groupoid [G0 � G1 ⇒ G0].

Effect of Υ on arrows and 2-arrows

Let (t, g) : (E, ρ) → (E′, ρ′) be an arrow in Z′(Γ, G). Let ḡ be the global section of
[G0/G1] over X corresponding to g = (P, ϕ). It can be checked that left multiplication
on [G0/G1] by ḡ is Γ -equivariant and it respects the right G-torsor structures. (This is
perhaps easiest to see by trivializing the G1-torsor P over some open cover of X and then
showing that the Γ -equivariance data are compatible along the intersections of the open
sets.) After passing to the Γ -quotients, we obtain an equivalence of GΓ -torsors P → P ′

over BΓ . This defines the effect of Υ on morphisms.
The definition of the effect of Υ on 2-arrows is straightforward.

The inverse of Υ

Denote BΓ by Y for simplicity. Let P be a GΓ -torsor over Y which becomes trivial
after pulling back along the quotient map q : X → Y. Choose a trivialization, that is, a
map f : X → P relative to Y. Let δ : P ×Y P → GΓ be ‘the’ difference map. That is, δ is
a morphism such that

P ×Y P (pr1,δ)−−−−→ P ×Y GΓ
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becomes an inverse to

P ×Y GΓ
(pr1,µ)−−−−→ P ×Y P,

where µ stands for the action. (Note that we have to make a choice of the inverse, and
δ depend on this choice.)

Consider the morphism

X ×Y X
f×Yf �� P ×Y P δ �� GΓ .

Observe that this morphism is over Y and that X ×Y X is naturally equivalent to Γ .
Thus, we obtain a morphism Γ → GΓ fitting in a 2-Cartesian diagram

Γ ��

��

GΓ

��
X q

�� Y

Since the pullback of GΓ along q is naturally equivalent to G, we obtain a morphism
ρ : Γ → G. This map can be checked to be a crossed-homomorphism.

Now, we follow the argument of [1, § 4.2.4] and set

E := Γ ×ρ̄,G,q G0,

where q : G0 → G is the quotient map. By [1, § 4.2.5] E fits in a diagram

G1
ι
�����

∂

��
E

pr1


���

pr2
		���

Γ G0

with the desired properties. This defines the effect of Υ−1 on objects.
From the above construction it is clear how to define the effect of Υ−1 on arrows and

2-arrows. �

10.2. In the presence of a braiding

In this subsection, we show that if G is endowed with a Γ -equivariant braiding, then
there is a product on Z(Γ, G) which makes it into a (weak) group object in the category of
2-groupoids. Our construction was conceived in a discussion with Aldrovandi and relies
on the tools developed in [1, § 7], to which we refer the reader for more details.

Suppose that G is equipped with a Γ -equivariant braiding. In this case, the butterfly
of Example 6.2 becomes Γ -equivariant. Therefore, we have a butterfly GΓ × GΓ → GΓ

over BΓ . This in turn gives rise to a morphism m : GΓ × GΓ → GΓ of group stacks over
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BΓ . It follows that with this multiplication GΓ is a group object in the category of group
stacks over BΓ .

We can use the morphism m to define a multiplication on Z(Γ, G) as follows. Let P1

and P2 be GΓ -torsors over BΓ . Then, P1 × P2 is a GΓ × GΓ -torsor. The ‘extension of
structure group’ functor for the map m : GΓ × GΓ → GΓ applied to the GΓ × GΓ -torsor
P1 × P2 gives a GΓ -torsors P1 · P2. This is the desired product of P1 and P2. More
precisely,

P1 · P2 := (P1 × P2)
GΓ × GΓ× GΓ ,

where the GΓ on the right is made into a left GΓ × GΓ -torsor via m.
The same construction can be used to define the product of morphisms and 2-arrows

of Z(Γ, G).
In the case where the braiding on G is symmetric, GΓ becomes a symmetric braided

crossed module over BΓ and the multiplication m : GΓ × GΓ → GΓ becomes braided [1,
§ 7.2]. That is, m and m ◦ τ , where τ : GΓ × GΓ → GΓ × GΓ is the switch map, become
isomorphic via a natural isomorphism satisfying the well-known coherence relations. This
implies that the product on Z(Γ, G) is braided. This braiding is compatible with the
braiding of Z(Γ, G) under the equivalence of Proposition 10.1.

11. Cohomology long exact sequence

In this section, we show that to any short exact sequence of Γ -crossed modules and
Γ -butterflies one can associate a long exact sequence in cohomology (Proposition 11.3).

11.1. Short exact sequences of butterflies

Let K
C−→ H and H

B−→ G be butterflies. We say that

1 → K
C−→ H

B−→ G → 1

is short exact if in the diagram

K1

��

�����
H1

����� �����

��

G1

�����

��
C

�����
δ ��

�����
B

����� 		���

K0 H0 G0

we can find an arrow δ : C → B such that the diagram is commutative and the sequence

1 → K1 → C
δ−→ B → G0 → 1

is exact. (Note that δ is not necessarily unique.)
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Example 11.1. Assume C and B are strict butterflies, that is, they come from strict
morphisms (c1, c0) : [K1 → K0] → [H1 → H0] and (b1, b0) : [H1 → H0] → [G1 → G0] of
crossed modules [20, § 9.5]. Then, the sequence

1

��

�� K1

∂K

��

c1 �� H1
b1 ��

∂H

��

G1

∂G

��

�� 1

��
1 �� K0 ��

c0
�� H0

b0

�� G0 �� 1

is exact if and only if there exists a map ψ : K0 → G1 such that:

• for every k, k′ ∈ K0, ψ(kk′) = ψ(k)b0c0(k′)ψ(k′),

• the images of ∂G and b0 generate G0,

• the intersection of the kernels of ∂K and c1 is trivial,

• for every k ∈ K0, b0c0(k) · ∂ψ(k) = 1,

• for every γ ∈ K1, b1c1(γ) · ψ(∂γ) = 1,

• if k ∈ K0 and β ∈ H1 are such that c0(k)∂β = 1 and ψ(k) = b1(β), then there
exists γ ∈ K1 such that k = ∂γ and β = c1(γ)−1,

• if h ∈ H0 and α ∈ G1 are such that b0(h)∂α = 1, then there exist k ∈ K0 and
β ∈ H1 such that h = c0(k)∂β and α = b1(β)−1ψ(k).

Observe that the above list of conditions is equivalent to the sequence

1 → K1 → K0 � H1 → H0 � G1 → G0 → 1

being exact. The maps in this sequence are as follows:

K1 → K0 � H1, γ �→ (∂γ, c1(γ−1));

K0 � H1 → H0 � G1, (k, β) �→ (c0(k)∂β, b1(β)−1ψ(k));

H0 � G1 → G0, (h, α) �→ b0(h)∂(α).

The proof of the following proposition will appear in [21].

Proposition 11.2. A sequence of crossed modules and butterflies

1 → K
C−→ H

B−→ G → 1

is exact if and only if the induced sequence

1 → K C−→ H B−→ G → 1

of group stacks is exact in the sense of [1, § 6.2].
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11.2. Cohomology long exact sequence

By applying [1, Proposition 6.4.1] to the site BΓ and making use of Proposition 10.1,
we immediately obtain the following (see also [13, Theorem 31]).

Proposition 11.3. Let
1 → K

C−→ H
B−→ G → 1

be a short exact sequence of Γ -crossed modules and Γ -butterflies. Then, we have a long
exact cohomology sequence

1 �� H−1(Γ, K) �� H−1(Γ, H) �� H−1(Γ, G) �� H0(Γ, K) ��	

����

H0(Γ, H) �� H0(Γ, G) �� H1(Γ, K) �� H1(Γ, H) �� H1(Γ, G)

(Note that the connecting homomorphisms in this long exact sequence depend on the
choice of the homomorphism δ appearing in the definition of a short exact sequence.)

The above proposition can be strengthened as follows (see [13, Proposition 30]).

Proposition 11.4. Let
1 → K

C−→ H
B−→ G → 1

be a short exact sequence of Γ -crossed modules and Γ -butterflies. Then, the sequence

Z
′(Γ, K) C∗−−→ Z

′(Γ, H) B∗−−→ Z
′(Γ, G)

is a fibration of 2-groupoids. The long exact sequence of Proposition 11.3 is the fibre
homotopy exact sequence associated to this fibration.

The proof of the above proposition is not hard (and one can say it is ‘standard’), but
it is not in the spirit of these notes, so we omit it.

The following is an immediate corollary of Proposition 11.3.

Proposition 11.5. Let G : [∂ : G1 → G0] be a Γ -crossed module. Then, we have the
exact sequences

1 �� H1(Γ, ker ∂) �� H0(Γ, G) �� (coker ∂)Γ ���
����

�� H2(Γ, ker ∂) �� H1(Γ, G) �� H1(Γ, coker ∂)

and

1 �� H−1(Γ, G) �� G1 �� G0 �� H0(Γ, G) ���
����

�� H1(Γ, G1) �� H1(Γ, G0) �� H1(Γ, G)
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Proof. For the first sequence, apply Proposition 11.3 to the short exact sequence of
crossed modules

1 → [ker ∂ → 1] → G → [1 → coker ∂] → 1.

For the second sequence, apply Proposition 11.3 to the short exact sequence

1 → G1 → G0 → G → 1.

(To see why these two sequences of crossed modules are exact use Example 11.1.) �

Remark 11.6. The first exact sequence in Proposition 11.5 can be extended by adding
an H3(Γ, ker ∂) to the right end of it. We do not have the tools to give a systematic proof
here but with some effort one can prove it by hand. Also, in the second exact sequence,
if G1 is abelian, the sequence can be extended by H2(Γ, G1). If G0 is also abelian, then
the sequence can be extended further by H2(Γ, G0).

Remark 11.7. The inclusion map ker ∂ → G1 and the projection map G0 → coker ∂

induce maps Hi(Γ, ker ∂) → Hi(Γ, G1) and Hi(Γ, G0) → Hi(Γ, coker ∂). These maps
intertwine the two exact sequences of Proposition 11.5 into a commutative diagram.

Appendix A. Homotopy theoretic interpretation

In the previous sections we discussed three approaches to group cohomology with
coefficients in a Γ -equivariant crossed module G. In each approach we constructed a
pointed homotopy 2-type (namely, the crossed module in groupoids K�1(Γ, G), and the
2-groupoids Z(Γ, G) and Z′(Γ, G)) whose homotopies give the desired group cohomologies.
We showed that when G is braided (i.e. deloopable), then the associated pointed homo-
topy 2-types are deloopable. If G is symmetric (i.e. double, hence infinitely, deloopable),
then the associated pointed homotopy 2-types are double (hence, infinitely) deloopable.

We exhibited natural equivalences between these three pointed homotopy 2-types that
respect deloopings, and constructed cohomology exact sequences that look like (and
indeed are, as we see below) the homotopy fibre exact sequence of a fibration.

There is a simple conceptual reasoning behind all this that we would like to discuss in
this appendix. In what follows, we will be working in an ‘(∞, 1)-category ∞GrpdS of
∞-groupoids over a base S’. There are several ways to make sense of the phrase in quotes,
each giving rise to a different approach to our group cohomology problem (we have seen
three so far). To mention a few more examples, we can take S to be a topological space
(say BΓ , the classifying space of Γ ), and ∞GrpdS the (∞, 1)-category of topological
spaces over S. Or we can take S to be a category (say, the one-object category BΓ with
morphisms Γ ) and ∞GrpdS the (∞, 1)-category of ∞-groupoids fibred over S. Or we
can take S to be a Grothendieck site (say, the site of the quotient stack BΓ = [∗/Γ ])
and ∞GrpdS the (∞, 1)-category of simplicial (pre)sheaves (or ∞-stacks) over S.
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A.1. Definition of cohomology

Let us drop S from the notation and denote ∞GrpdS by ∞Grpd. Let X and C be
objects in ∞Grpd.∗ Assume that C is pointed. We think of C as the ‘coefficients’ of
our cohomology theory. We define

H0(X, C) := π0∞Grpd(X, C),

where ∞Grpd(X, C) is the pointed ∞-groupoid of morphisms from X to C. If
Ω : ∞Grpd∗ → ∞Grpd∗ is a loop functor (so, Ω(Y ) is homotopy equivalent to the
homotopy fibre product over Y of the base point of Y with itself), we define

H−n(X, C) := π0∞Grpd(X, ΩnC) = H0(X, ΩnC), n � 0.

To define Hn for positive n we need to deloop C. If we choose an n-delooping of C and
denote it by Bn C, we can then define

Hn(X, C) := π0∞Grpd(X, Bn C) = H0(X, Bn C), n � 0.

(This explains why to define all Hn the coefficients C should be taken to be a spectrum,
i.e. we need to fix an infinite sequence of iterated deloopings for C.)

Example A.1. Two examples to keep in mind are the following.

(1) When A is a discrete abelian group (and the base S is a point), Bn A is the nth
Eilenberg–Mac Lane object K(n, A) which can be realized as the one-object ∞-
groupoid whose n-morphisms are A and whose k-morphisms, k = n, are only the
identities. In the relative case over S, this construction needs to be adjusted accord-
ing to the base S. For example, if S is a Grothendieck site, then we take a sheaf
AS of abelian groups over S and use a sheafified version of the above construction.
In the case where S = BΓ is the one-object category with morphisms Γ , and A

is a Γ -equivariant abelian group, we need to work with the action groupoid AΓ of
the action of Γ on A. (We view AΓ as a groupoid fibred over BΓ .) The delooping
Bn AΓ , n � 1, is the Eilenberg–Mac Lane object K(n, A) � Γ of AΓ which is, by
definition, generated from K(n, A) by adding 1-morphisms coming from Γ .

In this situation, the cohomologies defined above correspond to the usual coho-
mologies Hn(X, AS) (sheaf cohomology in the first case, and group cohomology in
the second).

(2) If G = [G1 → G0] is a crossed module and G its associated groupoid, then G can
always be delooped once. We denote its delooping by BG. It is the 2-group associ-
ated to G, that is, the one-object 2-groupoid with morphisms G0 and 2-morphisms
G1 � G0. If G is braided, then we can deloop once more to get B2 G. If G is sym-
metric, then G can be delooped infinitely many times.

∗ Since we can always enlarge the base S through a base change, there is no loss of generality in
assuming that X is equal to the base S, i.e. it is a ‘point’. But we will not do that here.
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The same thing is true in the relative case. For example, if S = BΓ is the one-
object category with morphisms Γ , and G is a Γ -equivariant crossed module, then
G should be replaced by the translation groupoid GΓ of the action of Γ on G. The
groupoid GΓ is fibred over BΓ and is always deloopable. Its delooping BGΓ is the
2-group associated to the crossed module G � Γ .

It follows that, in general, for a crossed module GS over a base S, we can define

Hn(X, GS) := Hn−1(X, B GS), n � 1.

(It turns out that Hn(X, GS) is trivial for n � −2 as Ω2GΓ is contractible.) If GS

is braided, then we can also define H2(X, GS). In the symmetric case, it is possible
to define all Hn(X, GS).

Since the internal hom functor ∞Grpd(X, ·) preserves homotopy limits, hence in
particular the homotopy fibre product of the base point with itself that defines loop
objects, it follows that the pointed ∞-groupoid ∞Grpd(X, C) packages the cohomology
groups in the following way:

Hi(X, C) ∼= π−i∞Grpd(X, C), i � 0.

If Bn C is an n-delooping of C, we have

Hi(X, C) ∼= πn−i∞Grpd(X, Bn C), i � n.

If we apply this to Example A.1 (2) above, we find that ∞GrpdBΓ (BΓ,B GΓ ) is a
pointed 2-type that calculates group cohomology with coefficients in G, that is,

Hi(Γ, G) = π1−i∞GrpdBΓ (BΓ,B GΓ ), i = −1, 0, 1.

The pointed crossed module in groupoids K�1(Γ, G), and the pointed 2-groupoids
Z(Γ, G) and Z′(Γ, G) are all models for the pointed 2-type ∞GrpdBΓ (BΓ,B GΓ ).

A.2. Cohomology long exact sequence

Let A, B and C be pointed objects in ∞GrpdS viewed as coefficients. Assume that
they fit in a (homotopy) fibration sequence

A → B → C.

This sequence can be extended to a sequence

· · · → Ω2C → ΩA → ΩB → ΩC → A → B → C

in which each term is the homotopy fibre of the morphism between the next two terms.
Applying the functor π0∞Grpd(X, ·), we get an exact sequence of pointed cohomology
sets

· · · �� H−2(X, A) �� H−2(X, B) �� H−2(X, C) �� H−1(X, A) ��	

����

H−1(X, B) �� H−1(X, C) �� H0(X, A) �� H0(X, B) �� H0(X, C)
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If we are in the situation of Example A.1 (2), and

1 → KS → HS → GS → 1

is a short exact sequence of crossed modules over S, then

B KS → B HS → B GS

is a fibration sequence in ∞GrpdS and the above cohomology exact sequence coincides
with the one of Proposition 11.3.

Appendix B. Review of 2-crossed modules and braided crossed modules

For the convenience of the reader, in this appendix we collect some elementary facts about
braided crossed modules and 2-crossed modules [8,15]. We begin with some definitions.

A crossed module in groupoids [8, p. 54] is a morphism of groupoids

M ∂−→ N

such that
M =

∐
x∈Ob(N )

M(x)

is a disjoint union of groups indexed by the set of objects of N . We also have a right
action of N on M such that an arrow g ∈ N (x, y) takes α ∈ M(x) to αg ∈ M(y). We
require that ∂ satisfies the two axioms of a crossed module. That is, ∂ is N -equivariant
for the right conjugation action of N on itself, and for every two arrows α, β in M, we
have α∂β = β−1αβ.

Any crossed module [M → N ] gives rise to a crossed module in groupoids

[M → [N ⇒ 1]].

Conversely, to any object x in crossed module in groupoids [∂ : M → N ] we can associate
a crossed module [∂x : M(x) → N (x)] which we call the automorphism crossed module
of x. Here, by N (x) we mean the automorphism group of the object x ∈ N .

A 2-crossed module (see [15, Definition 2.2] and also [8, p. 66]) is a sequence

[L ∂−→ M
∂−→ N ]

of groups endowed with a right action of N on M and L, a right action of M on L, and
a bracket {· , ·} : M × M → N satisfying the following axioms.

• Let N act on itself by right conjugation. Then both differentials ∂ are G1-equi-
variant, and ∂2 = 0.

• For every g, h ∈ M , ∂{g, h} = g−1h−1gh∂g.

• For every g ∈ M and α ∈ L, {∂α, g} = α−1αg and {g, ∂α} = (α−1)gα∂g.
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• For every g, h, k ∈ M , {g, hk} = {g, k}{g, h}k∂g

.

• For every g, h, k ∈ M , {gh, k} = {g, k}h{h, k∂g}.

• For every g, h ∈ M and x ∈ N , {g, h}x = {gx, hx}.

By setting N = {1} in the definition of a 2-crossed module, we obtain the definition
of a braided crossed module. More precisely, a crossed module

[L → M ]

is braided if it is endowed with a bracket {· , ·} : M ×M → L which satisfies the following
axioms.

• For every g, h ∈ M , ∂{g, h} = g−1h−1gh.

• For every g ∈ M and α ∈ L, {∂α, g} = α−1αg and {g, ∂α} = (α−1)gα.

• For every g, h, k ∈ M , {g, hk} = {g, k}{g, h}k.

• For every g, h, k ∈ M , {gh, k} = {g, k}h{h, k}.

Any 2-crossed module [L → M → N ] gives rise to a crossed module in groupoids
[ ∐

x∈N

L(x) → [N × M ⇒ N ]
]
,

where L(x) = L and [N × M ⇒ N ] is the action groupoid of the right multiplication
action of M on N via ∂. If we view 1 ∈ N as an object in the above crossed module in
groupoids, its automorphism crossed module is equal to [L → ker ∂]. This is a braided
crossed module. Conversely, any braided crossed module [L → M ] gives rise to a 2-crossed
module

[L ∂−→ M
∂−→ 1].

A braided crossed module [L → M ] is symmetric if for every g, h ∈ M we have

{g, h}{h, g} = 1.

If, in addition, we have
{g, g} = 1

for every g ∈ M , we say that [L → M ] is Picard.
The above observation about braided crossed modules can be used to define a braided

2-crossed module as follows.∗ We say that a 2-crossed module

[K ∂−→ L
∂−→ M ]

is braided if the sequence
K

∂−→ L
∂−→ M

∂−→ 1
∗ To our knowledge, braided 2-crossed modules were first defined in Carrasco’s thesis [11].
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is endowed with the structure of a 3-crossed module in the sense of [3, Definition 8]. That
is, we have seven brackets

{· , ·}(1)(0), {· , ·}(0)(2), {· , ·}(2)(1) : L × L → K,

{· , ·}(1,0)(2), {· , ·}(2,0)(1) : M × L → K,

{· , ·}(0)(2,1) : L × M → K,

{· , ·} : M × M → L

satisfying axioms (3CM1)–(3CM18) of [3].∗ In fact, it follows from the axioms that the
two brackets {· , ·}(1)(0) and {· , ·}(0)(2) are determined by {· , ·}(2)(1), and {· , ·}(2)(1) itself
is the bracket that already comes with the 2-crossed module. So, to put a braiding on
a given 2-crossed module we have to introduce four new brackets, namely, the last four
in the above list. (In our application in § 5.3, three of these four brackets are trivial and
only {· , ·} : M × M → L is non-trivial.)

Remark B.1. It is useful to keep in mind the homotopy theoretic interpretations of the
above notions. A crossed module corresponds to a pointed homotopy 2-type. A crossed
module in groupoids corresponds to an arbitrary homotopy 2-type. A 2-crossed module
corresponds to a pointed homotopy 3-type. Associating a crossed module in groupoids
to a 2-crossed module corresponds to taking the based loop space. The 2-crossed module
associated to a braided crossed module corresponds to delooping.

B.1. Cohomologies of a crossed module in groupoids

To be compatible with the rest of the paper, we make the (unusual) assumption that
our crossed module in groupoids [∂ : M → N ] is sitting in degrees [−1, 1]. That is, we
think of objects of N as sitting in degree 1, its arrows in degree 0, and arrows of M in
degree −1. We then define H1 to be the set of connected components of N ; this is just a
set. For a fixed a base point x ∈ Ob(N ), we define H0 and H−1 to be, respectively, the
cokernel and the kernel of ∂x in the automorphism crossed module [∂x : M(x) → N (x)]
of x. Note that H0 is a group and H−1 is an abelian group

In the case where our crossed module in groupoids comes from a 2-crossed module L →
M → N , concentrated in degrees [−1, 1], the cohomologies defined above are naturally
isomorphic to the cohomologies of the 2-crossed module. In this situation, H1 is also a
group and H0 is abelian.

B.2. The 2-groupoid associated to a crossed module in groupoids

To any crossed module in groupoids [∂ : M → N ] we can associate a strict 2-groupoid
[N/M] as follows. The objects and the arrows of [N/M] are the ones of N . Given two
arrows g, h ∈ N (x, y), a 2-arrow g ⇒ h is an element α ∈ M(y) such that g∂y(α) = h.
The composition of two 2-arrows α : g ⇒ h and β : h ⇒ k is αβ. If k ∈ N (y, z), then

∗ We need to modify the axioms of [3] to account for the fact that our conventions for the actions (left
or right) and the brackets, and as a consequence our 2-crossed module axioms, are different from those
of [3].
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αk : gk ⇒ hk is defined to be the 2-arrow corresponding to αk ∈ N (z). If k ∈ N (z, x),
then kα : kg ⇒ kh is defined to be the 2-arrow corresponding to α itself.

In the case where [∂ : M → N ] comes from a 2-crossed module, the 2-groupoid [N/M]
can be delooped to a 3-group. That is, there is a (weak) 3-groupoid with one object
such that the morphisms from the unique object to itself is equal to [N/M]. This is
true because [N/M] is a strict group object in the category of 2-groupoids. (Note that,
although this is a strict group object, the multiplication functor is lax. The laxness of
the multiplication functor is measured by the bracket of the 2-crossed module.)

B.3. Some useful identities

The following identities are frequently used in the (omitted) proofs of many of the
claims in these notes. The proofs are left to the reader. In what follows [M → N ] is a
braided crossed module.

• For every g, h ∈ N , {g, h−1}h = {g, h}−1 = {g−1, h}g.

• For every g, h ∈ N , {g−1, h−1}gh = {g, h}.

• For every g ∈ N , {g, g}g = {g, g}.

• For every g, h, k ∈ N , {gh, k} = {h, g−1kg}{g, k}.

• For every g, h, k ∈ N . {g, hk} = {g, h}{h−1gh, k}.

• For every g, h, k ∈ N , {g, h}k = {k−1gk, k−1hk}.
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