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We consider the maximal operator de¯ned on the real line by

M ¬ f (x) = sup
R>0

1

(2R)1+ ¬
R<jx yj<2R

jf (y)j(jx yj R)¬ dy; 1 < ¬ 0;

which is related to the Cesµaro convergence of the singular integrals. We characterize
the weights w for which M ¬ is of weak type, strong type and restricted weak type
(p; p) with respect to the measure w(x) dx.

1. Introduction

In this paper we are interested in the study of the boundedness in weighted Lp-
spaces of the maximal operator M ¬ acting on measurable functions on R and de ned
by

M ¬ f(x) = sup
R>0

1

(2R)1+ ¬

Z

R<jx yj<2R

jf (y)j(jx yj R) ¬ dy; 1 < ¬ 6 0:

This operator is interesting by itself and it is useful in the study of the Ces³aro-¬
convergence of singular integrals associated to Calder´on{Zygmund kernels (see [1]).
Furthermore, M ¬ is, up to constants, a particular case of the maximal function of
positive convolution operators associated with approximations of the identity given
by

M’f (x) = sup
R>0

1

R

Z

R
’

³
x y

R

´
f (y) dy:

The operator M’ was studied in [4], providing access to the study of the Ces³aro
continuity of order less than one.

On one hand, it follows from [4, theorem 1] that if ¬ > 1, then M ¬ is of
restricted weak type (1=(1 + ¬ ); 1=(1 + ¬ )) and, consequently, it is of strong type
(p; p) for p > 1=(1 + ¬ ). On the other hand, it was proved in [1] that if w is
in the Muckenhoupt Ap(1+ ¬ ) class and p > 1=(1 + ¬ ) then M ¬ is of strong type
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(p; p) with respect to w(x) dx, while if w 2 A1, then M ¬ is of restricted weak
type (1=(1 + ¬ ); 1=(1 + ¬ )) with respect to w(x) dx. The aim of this paper is to
characterize the weighted inequalities of restricted weak type, weak type and strong
type for M ¬ . Our results refer only to the case of equal weights.

The study of the boundedness of M ¬ in weighted Lp-spaces has two main dif-
 culties. The  rst one is the kernel (jx yj R) ¬ . The second one is to  nd a
non-centred maximal operator pointwise equivalent to M ¬ , as in the case of the
Hardy{Littlewood maximal operator, i.e. as in the case ¬ = 0.

The paper is organized as follows. We introduce in x 2 a non-centred version of
M ¬ and we prove that it is pointwise equivalent to M ¬ . Sections 3 and 4 are devoted
to characterizing the weighted weak- and strong-type (p; p) inequalities, while the
restricted weak-type inequalities with weights are studied in x 5. The main results
in the paper are theorems 3.1 and 4.3, where we prove the equivalence for p > 1 of
the weighted weak-type (p; p) inequality, the weighted strong-type (p; p) inequality
for M ¬ and the fact that w satis es the following condition: there exists C > 0 such
that, for any interval I,

³Z

I

w(s) ds
1́=p³Z

I

w1 p0
(s)js xj¬ p0

ds
1́=p0

6 C jI j1+ ¬ ;

where x is the centre of I, jI j is the length of I and 1=p+1=p0 = 1. In the  nal section
we observe some relations between the good weights for M ¬ and the Muckenhoupt
Ap-weights.

Throughout the paper, we shall use the following notations. If x and R are real
numbers with R > 0, the interval (x R; x+R) is denoted by I(x; R). If I = I(x; R)
and ¶ is a positive number, then ¶ I = I(x; ¶ R), while @I is the border of I , i.e. the
set fx R; x + Rg. If s; t 2 R and A » R, d(s; t) and d(s; A) are the Euclidean
distances from s to t and to A, respectively. By jAj and w(A) we denote the measure
of A and the integral

R
A

w(s) ds, respectively. If 1 < p < 1, then p0 denotes its
conjugate exponent. Finally, the letter C means a positive constant not necessarily
the same at each occurrence.

2. The non-centred maximal function

Observe  rst that, with the notations introduced in x 1, we have that

M ¬ f (x) = sup
R>0

1

jI(x; R)j1+ ¬

Z

2I(x;R)nI(x;R)

jf (s)jd(s; I(x; R)) ¬ ds:

Notice also that M0f 6 M ¬ f (since ¬ 6 0) and that M0f is pointwise equivalent
to the Hardy{Littlewood maximal function

Mf (x) = sup
R>0

1

jI(x; R)j

Z

I(x;R)

jf (s)j ds:

We de ne the non-centred maximal operator N ¬ associated with M ¬ as

N ¬ f (x) = sup
I:x2 1

2 I

1

jI j1+ ¬

Z

2InI

jf (s)jd(s; I) ¬ ds;
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where the supremum is taken over all the bounded intervals such that x 2 1
2
I . The

next proposition shows that M ¬ and N ¬ are pointwise equivalent.

Proposition 2.1. Let 1 < ¬ 6 0. There exists a constant C depending only on
¬ such that M ¬ f 6 N ¬ f 6 CM ¬ f , for all measurable functions f .

Proof. The  rst inequality is obvious. Let I = I(z; R) be an interval such that
x 2 1

2I . Without loss of generality, we may assume that x 2 (z 1
2R; z]. Then

Z

2InI

jf (s)jd(s; I) ¬ ds =

Z z R

z 2R

jf (s)j(z R s) ¬ ds +

Z z + 2R

z + R

jf(s)j(s z R) ¬ ds

= I + II:

On the one hand, if L = x z + R, we have 1
2
R < L 6 R and x 2L > z 2R.

Thus

I 6
Z x 2L

z 2R

jf (s)j(z R s) ¬ ds +

Z x L

x 2L

jf (s)j(x L s) ¬ ds

6 ( 1
2
R) ¬

Z x + L + R

x L R

jf (s)j ds +

Z

2I(x;L)nI(x;L)

jf (s)jd(s; I(x; L)) ¬ ds:

On the other hand, if T = z + R x, then R 6 T < 3
2 R and x + 2T > z + 2R.

Therefore,

II 6
Z x + 2T

x + T

jf (s)j(s x T ) ¬ ds 6
Z

2I(x;T )nI(x;T )

jf (s)jd(s; I(x; T )) ¬ ds:

Putting together the inequalities, we get

1

jIj1+ ¬

Z

2InI

jf (s)jd(s; I) ¬ ds 6 C
1

jI j

Z

I(x;L + R)

jf (s)j ds

+
1

jI j1+ ¬

Z

2I(x;L)nI(x;L)

jf(s)jd(s; I(x; L)) ¬ ds

+
1

jI j1+ ¬

Z

2I(x;T )nI(x;T )

jf (s)jd(s; I(x; T )) ¬ ds:

Since the lengths of the intervals I , I(x; L + R), I(x; L) and I(x; T ) are essentially
the same, the right-hand side is dominated by C[Mf(x) + M ¬ f(x)] 6 CM ¬ f (x)
and we are done.

3. Weighted weak-type inequalities

The  rst main result of the paper characterizes the weighted weak-type inequalities
for the maximal operator M ¬ by means of a Muckenhoupt-type condition.

Theorem 3.1. Let w be a non-negative measurable function on R and let 1 <
¬ 6 0. If 1 < p < 1, then the following are equivalent.
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(i) M ¬ is of weak type (p; p) with respect to w(x) dx, i.e. there exists C such that

w(fM ¬ f > ¶ g) 6 C¶ p

Z
jf jpw;

for all ¶ > 0 and all f 2 Lp(w).

(ii) w satis¯es Ap;¬ , i.e. there exists C such that, for any interval I,

³Z

1
2 I

w
1́=p³Z

2InI

w1 p 0
(s)d(s; I) ¬ p 0

ds
1́=p0

6 CjIj1+ ¬ :

Remark 3.2. Observe that for ¬ < 0 the weighted weak-type (p; p) inequality
is not possible for 1 < p 6 1=(1 + ¬ ) unless w = 0 almost everywhere, since
if 1 < p 6 1=(1 + ¬ ), then (ii) does not hold. As a consequence, we have that the
weighted weak-type (1; 1) inequality for M ¬ with ¬ < 0 never holds. In other words,
the weak-type (1; 1) inequality makes sense only for ¬ = 0. In this case (M0 is point-
wise equivalent to the Hardy{Littlewood maximal operator), the weighted weak-
type inequalities are characterized by the well-known Muckenhoupt Ap-conditions.
This is the reason why we do not include the case p = 1 in the statement of the
theorem.

Proof of theorem 3.1. By 2.1, statement (i) is equivalent to the weighted weak-
type (p; p) inequality for N ¬ . Then (ii) follows from (i) by standard arguments,
i.e. roughly speaking, applying (i) (with N ¬ ) to the functions

w1 p0
(s)d(s; I) ¬ (p0 1) À 2InI(s):

In order to prove (ii) ) (i), we need to know that w is a doubling weight, i.e. that
w(2I) 6 Cw(I) for all intervals I.

Lemma 3.3. If 1 < p < 1, 1 < ¬ 6 0 and w satis¯es Ap;¬ , then w is a doubling
weight.

We postpone the proof of lemma 3.3 and continue with the proof of the theorem.
Assume that (ii) holds. Let x 2 R and let I be any interval with centre x. By the
H�older inequality and the Ap;¬ -condition, we obtain

Z

2InI

jf(s)jd(s; I) ¬ ds 6
³Z

2InI

jf jpw
1́=p³Z

2InI

w1 p0
(s)d(s; I) ¬ p0

ds
1́=p0

6 C

³Z

2InI

jf jpw
1́=p³Z

1
2 I

w

´ 1=p

jIj1+ ¬ :

Since w is a doubling weight (lemma 3.3), we get

1

jI j1+ ¬

Z

2InI

jf (s)jd(s; I) ¬ ds 6 C

³Z

2I

jf jpw

¿Z

2I

w
1́=p

:

Therefore,
M ¬ f (x) 6 C[Mw(jf jp)]1=p(x);
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where

Mwg(x) = sup
R>0

µ
1

w(I(x; R))

Z

I(x;R)

jgjw
¶
:

Now (i) follows from the above inequality and the well-known fact that Mw is of
weak type (1; 1) with respect to w(x) dx.

Proof of lemma 3.3. If I = I(x; R), we obtain, by Ap;¬ and the H�older inequality,
that
³Z

1
2 I

w
1́=p³Z

2InI

w1 p0
(s)d(s; I) ¬ p0

ds
1́=p0

6 C

Z x + 2R

x + R

d(s; I) ¬ ds

6 C

³Z x + 2R

x+ R

w
1́=p³Z x + 2R

x + R

w1 p0
(s)d(s; I) ¬ p0

ds
1́=p0

:

Since (x + R; x + 2R) is contained in 2I n I , we have

w((x 1
2R; x + 1

2 R)) 6 Cw((x + R; x + 2R));

for every x 2 R and all positive R. Applying this property to the intervals
(x 2R; x R) and (x R; x 1

2 R) instead of (x 1
2R; x + 1

2R), we obtain that

w((x 2R; x 1
2 R)) 6 C [w( 1

2 I) + w( 1
4 I)] 6 Cw( 1

2 I):

Analogously, we have

w((x + 1
2R; x + 2R)) 6 Cw( 1

2 I):

Summing the inequalities, we get that w(2I n 1
2I) 6 Cw( 1

2I). Thus

w(2I) 6 Cw( 1
2I) 6 Cw(I):

4. Weighted strong-type inequalities

We start by establishing di¬erent characterizations of the Ap;¬ -condition, which are
a key step for the study of the strong-type inequalities. In order to state the result,
we recall that if · is a Borel measure, then it is said that a non-negative measurable
function w satis es Ap( · ), 1 < p < 1, if there exists a positive constant C such
that ³Z

I

w d ·
1́=p³Z

I

w1 p0
d ·

1́=p0

6 C· (I);

for all bounded intervals I (see, for instance, [5]). (If · is the Lebesgue measure,
then Ap( · ) is the Muckenhoupt Ap-condition.)

Proposition 4.1. Let 1 < ¬ 6 0 and p > 1. Let w be a non-negative measurable
function. The following statements are equivalent.
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(a) w satis¯es Ap;¬ .

(b) There exists C such that, for any interval I,

³Z

I

w
1́=p³Z

I

w1 p0
(s)d(s; x) ¬ p0

ds
1́=p0

6 CjIj1+ ¬ ;

where x is the centre of I.

(c) The functions s ! w(s)d(s; z) ¬ satisfy Ap( · z) with a constant independent
of z 2 R, where d · z = d(s; z) ¬ ds, i.e. there exists C such that, for any
interval I and all z 2 R,

³Z

I

w
1́=p³Z

I

w1 p 0
(s)d(s; z) ¬ p0

ds
1́=p0

6 C

Z

I

d(s; z) ¬ ds:

Proof. It is clear that (c) ) (b). Therefore, we only have to prove (a) ) (b) ) (c)
and (b) ) (a).

(a) ) (b). Let I = (a; b), I = (a; x) and I + = (x; b), where x is the centre of I . It
su¯ ces to establish that

³Z

I

w
1́=p³Z

I¤
w1 p0

(s)d(s; x) ¬ p0
ds

1́=p0

6 C jI j1+ ¬

for I ¤ = I and I ¤ = I + . We shall only prove the inequality for I , since the other
one is proved in a similar way. Let J be the interval with left end point equal to x
and the same length as I . It is clear that I » 2J n J and d(s; x) = d(s; J) for all
s 2 I . These properties, together with the fact that w satis es Ap;¬ (and therefore
is a doubling weight), give

³Z

I

w
1́=p³Z

I

w1 p0
(s)d(s; x) ¬ p0

ds
1́=p0

6 C

³Z

1
2 J

w
1́=p³Z

2JnJ

w1 p0
(s)d(s; J) ¬ p 0

ds
1́=p0

6 CjIj1+ ¬ :

(b) ) (c). Let I = (a; b). We shall consider the following two cases: (1) z 2 [a; b]
and (2) z =2 [a; b].

Case 1. Let J ¼ I be an interval centred at z such that jI j 6 jJ j 6 2jI j. Enlarging
the interval I to J and applying (b), we obtain

³Z

I

w
1́=p³Z

I

w1 p0
(s)d(s; z) ¬ p0

ds
1́=p0

6 C jJ j1+ ¬ = C jI j1+ ¬ :
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If z = a or z = b, we are done. If z 2 (a; b), we have

jI j1+ ¬ 6 C [(b z)1+ ¬ + (z a)1+ ¬ ]

= C

µ
(b z) ¬

Z b

z

ds + (z a) ¬

Z z

a

ds

¶

6 C

µZ b

z

(s z) ¬ ds +

Z z

a

(z s) ¬ ds

¶

= C

Z b

a

d(s; z) ¬ ds:

Putting together the last inequalities, we obtain (c) for z 2 (a; b).

Case 2. We shall prove it only for z > b. First observe that the function

g(s) =

³
d(s; z)

d(s; b)

¬́ p0

is decreasing in the interval (a; b). Therefore,

³Z

I

w1 p0
(s)d(s; z) ¬ p0

ds
1́=p0

6
³

z a

b a

¬́ ³Z

I

w1 p0
(s)d(s; b) ¬ p0

ds
1́=p0

:

Using case 1 (z = b) and the fact that ¬ 6 0, we obtain

³Z

I

w
1́=p³Z

I

w1 p 0
(s)d(s; z) ¬ p0

ds
1́=p0

6 C(z a) ¬ jI j 6 C

Z

I

d(z; s) ¬ ds:

(b) ) (a). First we observe that (b) implies that w is doubling. Now, let I = I(x; R)
be any interval. Applying (b), we have

³Z x

x 2R

w
1́=p³Z x

x 2R

w1 p0
(s)d(s; x R) ¬ p0

ds
1́=p0

6 CR1+ ¬ :

Restricting the interval (x 2R; x) in the second integral and using the fact that
w is doubling, we obtain

³Z x+ R=2

x R=2

w
1́=p³Z x R

x 2R

w1 p0
(s)d(s; I) ¬ p0

ds
1́=p0

6 CR1+ ¬ :

Analogously, we get the same inequality changing the interval (x 2R; x R) to
(x + R; x + 2R). Finally, (a) follows adding both inequalities.

As a consequence of the characterizations obtained in proposition 4.1, we have
the following proposition.

Proposition 4.2. Let 1 < ¬ 6 0, 1 < p < 1 and let w be a non-negative
measurable function on the real line. If w satis¯es Ap;¬ , then there exists ° > 0,
0 < ° < p 1, such that w satis¯es Ap ° ;¬ .
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Proof. We know by proposition 4.1 that w(s)d(s; z) ¬ satis es Ap( · z) with an
Ap( · z)-constant independent of z. Then (see [5]) there exists ° > 0, depending
only on the Ap( · z)-constant, such that w(s)d(s; z) ¬ satis es Ap ° ( · z), where the
Ap ° ( · z)-constant depends only on the Ap( · z)-constant and ° . Applying again
proposition 4.1, we obtain that w satis es Ap ° ;¬ .

It is clear that Marcinkiewicz’s interpolation theorem and results 3.1, 4.1 and 4.2
give immediately the characterization of the weighted strong-type inequality.

Theorem 4.3. Let 1 < ¬ 6 0 and p > 1. Let w be a non-negative measurable
function on R. The following statements are equivalent.

(a) M ¬ is of strong type (p; p) with respect to w(x) dx, i.e. there exists C such
that Z

jM ¬ f jpw 6 C

Z
jf jpw;

for all f 2 Lp(w).

(b) w satis¯es Ap;¬ or, equivalently, there exists C such that, for any interval I,

³Z

I

w
1́=p³Z

I

w1 p0
(s)d(s; x) ¬ p0

ds
1́=p0

6 CjIj1+ ¬ ;

where x is the centre of I.

5. Restricted weak-type inequalities

As we said above, the operator M ¬ is not of weak type (1=(1 + ¬ ); 1=(1 + ¬ ))
with respect to Lebesgue measure if ¬ < 0, but it is of restricted weak type
(1=(1+ ¬ ); 1=(1+ ¬ )); in other words, M ¬ satis es the weak-type inequality for char-
acteristic functions or, equivalently, M ¬ maps the Lorentz space L1=(1+ ¬ );1( dx) into
the Lorentz space L1=(1+ ¬ ); 1 (dx). Therefore, it is interesting to study the weights
w such that w(fx : M ¬ À E(x) > ¶ g) 6 C¶ pw(E) for all ¶ > 0 and all measurable
sets E » R.

Theorem 5.1. Let w be a non-negative measurable function on R and let 1 <
¬ 6 0. If 1 6 p < 1, then the following are equivalent.

(a) M ¬ is of restricted weak type (p; p) with respect to w(x) dx, i.e. there exists
C such that w(fx : M ¬ À E(x) > ¶ g) 6 C¶ pw(E) for all ¶ > 0 and all
measurable E » R.

(b) w satis¯es RAp;¬ , i.e. there exists C such that, for every interval I and all
measurable E » R,

³Z

1
2 I

w

´³Z

E \ (2InI)

d(s; I) ¬ ds

´p

6 C jI j(1+ ¬ )p

Z

E \ (2InI)

w:

Proof. Using proposition 2.1, we see that (b) follows from (a), since

N ¬ À E \ (2InI)(x) > 1

jIj1+ ¬

Z

E \ (2InI)

d(s; I) ¬ ds;
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for all x 2 1
2
I . Assume now that (b) holds. We shall need the following lemma.

Lemma 5.2. If 1 < ¬ 6 0 and w satis¯es RAp;¬ , then w is a doubling weight.

We postpone the proof of the lemma and continue with the proof of the theorem.
By (b) and the fact that w is a doubling weight, we have

R
E \ (2InI)

d(s; I) ¬ ds

jIj1+ ¬
6 C

³
w(E \ (2I n I))

w(2I)

1́=p

:

Therefore, M ¬ À E 6 C(Mw À E)1=p. As in the proof of theorem 3.1, we obtain (a)
using the fact that Mw is of weak type (1,1) with respect to w(x) dx.

Proof of lemma 5.2. Let I = I(x; R) be any interval. Since w satis es RAp;¬ , taking
E = (x + R; x + 2R), we obtain

³Z x + R=2

x R=2

w

´³Z x + 2R

x + R

d(s; I) ¬ ds
ṕ

6 C jIj(1+ ¬ )p

Z x + 2R

x + R

w;

and therefore w((x 1
2
R; x + 1

2
R)) 6 Cw((x + R; x + 2R)). Now we continue as in

the proof of lemma 3.3.

We can give equivalent formulations of the RAp;¬ -condition in the same way as
we did with the Ap;¬ -condition in proposition 4.1. We collect them in the next
proposition. We omit the proof, since it is similar to the proof of proposition 4.1.

Proposition 5.3. Let 1 < ¬ 6 0 and p > 1. Let w be a non-negative measurable
function. The following statements are equivalent.

(a) w satis¯es RAp;¬ .

(b) There exists C such that, for any interval I and all measurable E » I ,
³Z

I

w

´³Z

E

d(s; x) ¬ ds
ṕ

6 C jI j(1+ ¬ )p

Z

E

w;

where x is the centre of I.

(c) There exists C such that, for any interval I, all measurable E » I and all
z 2 R, ³Z

I

w

´³Z

E

d(s; z) ¬ ds
ṕ

6 C

³Z

I

d(s; z) ¬
ṕ Z

E

w:

6. Further results

This section is devoted to establishing several relations among the classes of weights
considered in the previous sections. Some of them are proven easily; for instance:

(a) if 1 < p < 1 and ¬ 6  , then Ap;¬ » Ap; ; and

(b) if 1 < p 6 q < 1, then Ap;¬ » Aq;¬ .

Others relations appear in the next proposition.
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Proposition 6.1. If 1 < ¬ 6 0 and p(1 + ¬ ) > 1, then Ap(1+ ¬ ) » Ap;¬ » Ap

and Ap;¬ 6= Ar for all r > p(1 + ¬ ).

Proof. Taking  = 0 in (a), we obtain Ap;¬ » Ap and, applying the H�older inequal-
ity, we get that Ar » Ap;¬ for all r with 1 < r < p(1 + ¬ ). Keeping in mind
that w 2 Ap(1+ ¬ ) implies w 2 Ar for some r < p(1 + ¬ ) (see [3, 5]), we have that
Ap(1+ ¬ ) » Ap;¬ . In order to see that Ap;¬ 6= Ar for all r > p(1 + ¬ ), we consider
the functions w(x) = jxj® . It is well known (see [3]) that w 2 Ar if and only if

1 < ® < r 1. On the other hand, if w 2 Ap;¬ , then (proposition 4.1(b))
Z a

a

w1 p0
(s)d(s; 0)¬ p0

ds =

Z a

a

jsj ® (1 p0 )+ ¬ p0
ds < 1:

This implies that ® < p(1 + ¬ ) 1. Therefore, if p(1 + ¬ ) 1 < ® < r 1, then
w 2 Ar and w =2 Ap;¬ .

Remark 6.2. The same argument in the proof of the above proposition shows that
if p(1 + ¬ ) > 1, then w(x) = jxj® 2 Ap;¬ if and only if 1 < ® < p(1 + ¬ ) 1.
However, we do not know if Ap(1+ ¬ ) is equal to Ap;¬ for ¬ < 0.

Now we check the same kind of relations among the classes RAp;¬ . Clearly, prop-
erties (a) and (b) also hold for the classes RAp;¬ . If we denote the classes RAp;0 by
RAp, we can prove the following proposition.

Proposition 6.3. If 1 < ¬ 6 0 and p(1+ ¬ ) > 1, then RAp(1+ ¬ ) » RAp;¬ » RAp

and RAp;¬ 6= RAr for all r > p(1 + ¬ ).

Proof. The relation RAp;¬ » RAp is obvious. Now let w 2 RAp(1+ ¬ ). Then (propo-
sition 5.3(b) for ¬ = 0)

³Z

I

w

´
jEjp(1+ ¬ ) 6 C jI jp(1+ ¬ )

Z

E

w

for all intervals I and all measurable E » I = I(x; R). Since
Z

E

d(s; x) ¬ ds 6 jEj1+ ¬ ;

we obtain that w 2 RAp;¬ , by proposition 5.3. In order to prove that RAr 6= RAp;¬

for all r > p(1 + ¬ ), let us consider w(x) = jxjr 1. It was noticed in [2] that
w 2 RAr. However, w does not belong to RAp;¬ because if w 2 RAp;¬ , then
(proposition 5.3(b))

³Z a

a

w

´³Z °

0

d(s; 0)¬ ds
ṕ

6 C(2a)p(1+ ¬ )

Z °

0

w;

for all a and ° with 0 < ° < a or, equivalently, (a=° )r 6 C(a=° )p(1+ ¬ ), 0 < ° < a,
which is a contradiction since r > p(1 + ¬ ).

Remark 6.4. With the same arguments as those above, we can easily see that
w(x) = jxj® 2 RAp;¬ if and only if 1 < ® 6 p(1 + ¬ ) 1. On the other hand, as
in the case of the Ap;¬ -classes, we do not know if RAp(1+ ¬ ) is equal to RAp;¬ when
¬ < 0, but the equality holds when p is the endpoint, i.e. if p = 1=(1 + ¬ ).
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Proposition 6.5. RA1=(1+ ¬ );¬ = RA1 = A1.

Proof. First, notice that by proposition 6.3 (with p = 1=(1 + ¬ )), we have that
RA1 » RA1=(1+ ¬ );¬ . Second, RA1 is clearly equivalent to A1 since the restricted
weak type (1; 1) is equivalent to the weak type (1; 1). It only remains to show
that RA1=(1+ ¬ );¬ » A1. Let w 2 RA1=(1+ ¬ );¬ and let I be any bounded interval.
Applying proposition 5.3(c) to E = (z ° ; z + ° ) » I, we get

w(I)

³Z z + °

z °

d(s; z) ¬ ds
1́=(1+ ¬ )

6 C jI j
Z z + °

z °

w:

Thus
1

jIj

Z

I

w 6 C
1

2 °

Z z + °

z °

w:

If we let ° go to 0, we obtain

1

jI j

Z

I

w 6 Cw(z)

for almost every z 2 I , i.e. w is in the class A1 of Muckenhoupt.
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