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We consider the maximal operator defined on the real line by

1
Mo f(z) = sup —/

R>0 (2R)'™® JR<je—y|<2R
which is related to the Cesaro convergence of the singular integrals. We characterize
the weights w for which M, is of weak type, strong type and restricted weak type
(p, p) with respect to the measure w(z) dz.

lF Wz —y|— R)*dy, —1<a<0,

1. Introduction

In this paper we are interested in the study of the boundedness in weighted LP-
spaces of the maximal operator M, acting on measurable functions on R and defined
by

1
Mo f(@) = sup e | Sl =yl = R dy, ~1<a <0,
R<|z—y|<2R

r>0 (2R)!te
This operator is interesting by itself and it is useful in the study of the Cesaro-«
convergence of singular integrals associated to Calder6n—Zygmund kernels (see [1]).
Furthermore, M, is, up to constants, a particular case of the maximal function of
positive convolution operators associated with approximations of the identity given
by

1 r—y
Mo f(x) sup Rw( 7 )f(y)dy-
The operator M, was studied in [4], providing access to the study of the Cesaro
continuity of order less than one.

On one hand, it follows from [4, theorem 1] that if @ > —1, then M, is of
restricted weak type (1/(1 4+ «),1/(1 + «)) and, consequently, it is of strong type
(p,p) for p > 1/(1 + a). On the other hand, it was proved in [1] that if w is
in the Muckenhoupt A,144) class and p > 1/(1 + «) then M, is of strong type
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(p,p) with respect to w(z)dx, while if w € A;, then M, is of restricted weak
type (1/(1 + «),1/(1 + «)) with respect to w(x)dx. The aim of this paper is to
characterize the weighted inequalities of restricted weak type, weak type and strong
type for M,. Our results refer only to the case of equal weights.

The study of the boundedness of M, in weighted LP-spaces has two main dif-
ficulties. The first one is the kernel (|z — y| — R)*. The second one is to find a
non-centred maximal operator pointwise equivalent to M, as in the case of the
Hardy-Littlewood maximal operator, i.e. as in the case a = 0.

The paper is organized as follows. We introduce in §2 a non-centred version of
M, and we prove that it is pointwise equivalent to M,,. Sections 3 and 4 are devoted
to characterizing the weighted weak- and strong-type (p, p) inequalities, while the
restricted weak-type inequalities with weights are studied in §5. The main results
in the paper are theorems 3.1 and 4.3, where we prove the equivalence for p > 1 of
the weighted weak-type (p, p) inequality, the weighted strong-type (p, p) inequality
for M, and the fact that w satisfies the following condition: there exists C' > 0 such
that, for any interval I,

1/p ) L\
(/ w(s)ds) (/ w' TP ()]s — x|*P ds) < |t
I I

where z is the centre of I, |I] is the length of I and 1/p+1/p’ = 1. In the final section
we observe some relations between the good weights for M, and the Muckenhoupt
Ap-weights.

Throughout the paper, we shall use the following notations. If x and R are real
numbers with R > 0, the interval (z—R, z+ R) is denoted by I(z,R). If I = I(z, R)
and A is a positive number, then AI = I(z, AR), while 91 is the border of I, i.e. the
set {r — R,z + R}. If s,t € R and A C R, d(s,t) and d(s, A) are the Euclidean
distances from s to t and to A, respectively. By |A| and w(A) we denote the measure
of A and the integral wa(s)ds, respectively. If 1 < p < oo, then p’ denotes its
conjugate exponent. Finally, the letter C' means a positive constant not necessarily
the same at each occurrence.

2. The non-centred maximal function

Observe first that, with the notations introduced in § 1, we have that

M f(x) = sup .

_ |f(s)|d(s,I(z,R))™ ds.
r>0 [ (z, R)[}+e /QI(x,R)\I(x,R) ()lds. Iz, )

Notice also that My f < M, f (since a < 0) and that My f is pointwise equivalent
to the Hardy-Littlewood maximal function

1
Mf(x) = sup ——= | f(s)lds.
r>0 (2, R)| J (4 R)
We define the non-centred maximal operator N, associated with M, as

1
Naf(@)= swp i [ sl 1) ds,
“ Lzedr [P Jong
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where the supremum is taken over all the bounded intervals such that z € %I . The

next proposition shows that M, and N, are pointwise equivalent.

PROPOSITION 2.1. Let —1 < a < 0. There exists a constant C depending only on
a such that My f < Nof < CM,f, for all measurable functions f.

Proof. The first inequality is obvious. Let I = I(z, R) be an interval such that
T € %I. Without loss of generality, we may assume that x € (z — %R, z]. Then

z—R z+2R
[ el nmas= [ 1ol -R-stds+ [ IRl 2~ Ry ds
2I\I 2—2R +R
=I1+1I

On the one hand, if L = z — z + R, we have %R<L<Randx—2L>z—2R.
Thus

z—2L z—L
Ig/ |f(s)|(z—R—s)°‘ds+/ [f(s)|(x — L —s)ds

—2R x—2L

< (

N =

x+L+R
R [ i@l [ £ (s, o, )" s

—L—-R 2I(z,L)\I(z,L)

On the other hand, if T = 24+ R —z, then R < T < %R and x + 2T > z + 2R.
Therefore,

z+2T
II</ |f(s)|(s—x—T)“ds</ |f(s)|d(s, I(x,T))*ds.

+T 21 (x, T)\I(z,T)

Putting together the inequalities, we get

1 / 1
e |f(s)ld(s, ) ds < O | f(s)]ds
[ Jong | J (e, +m)
1 /
+ = |f(s)ld(s, I(z, L))" ds
1 Jor e\ 12,1
1 /
+ = |f(s)ld(s, I(z,T))" ds.
I J ot )\ 1 (2,1

Since the lengths of the intervals I, I(xz, L+ R), I(z,L) and I(x,T') are essentially
the same, the right-hand side is dominated by C[M f(z) + M, f(z)] < CM,f(z)
and we are done. d

3. Weighted weak-type inequalities

The first main result of the paper characterizes the weighted weak-type inequalities
for the maximal operator M, by means of a Muckenhoupt-type condition.

THEOREM 3.1. Let w be a non-negative measurable function on R and let —1 <
a<0. If1 <p<oo, then the following are equivalent.
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(i) M, is of weak type (p,p) with respect to w(x)dx, i.e. there exists C such that

w((Maf > M) <37 [17Pw,

for all A\ >0 and dall f € LP(w).

(ii) w satisfies Ap o, i.e. there exists C' such that, for any interval I,

1/p ) O\
(/ w) (/ w'™P (s)d(s, I)*P ds) < ClIjtte,
ir 2I\I

REMARK 3.2. Observe that for @ < 0 the weighted weak-type (p,p) inequality
is not possible for 1 < p < 1/(1 + «) unless w = 0 almost everywhere, since
if 1 <p<1/(1+ ), then (ii) does not hold. As a consequence, we have that the
weighted weak-type (1, 1) inequality for M,, with o < 0 never holds. In other words,
the weak-type (1, 1) inequality makes sense only for a = 0. In this case (M is point-
wise equivalent to the Hardy—Littlewood maximal operator), the weighted weak-
type inequalities are characterized by the well-known Muckenhoupt A,-conditions.
This is the reason why we do not include the case p = 1 in the statement of the
theorem.

Proof of theorem 38.1. By 2.1, statement (i) is equivalent to the weighted weak-
type (p,p) inequality for N,. Then (ii) follows from (i) by standard arguments,
i.e. roughly speaking, applying (i) (with N,) to the functions

wt™? (s)d(s, I)“(p/_l)xgl\l(s).

In order to prove (ii) = (i), we need to know that w is a doubling weight, i.e. that
w(2l) < Cw(I) for all intervals 1.

LEMMA 3.3. If1 <p < oo, =1 < <0 and w satisfies Ap o, then w is a doubling
wetght.

We postpone the proof of lemma 3.3 and continue with the proof of the theorem.
Assume that (ii) holds. Let x € R and let I be any interval with centre z. By the
Holder inequality and the A, ,-condition, we obtain

1/p 1/p’
o 1—p’ ap’
/21\1 |f(s)]d(s,I)*ds < (/21\1 |f|pw> (/QI\I’LU P (s)d(s,I)*P ds)

1/p —1/p
SC(/ |f|pw> (/ w) |T|1+e,
2I\I 1y

2

Since w is a doubling weight (lemma 3.3), we get

1 o 1/10
= RIS as<c( [ 1w / [ )"

Mo f(z) < CIM(IfP)]VP(2),

Therefore,
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where

Mug(a) = f;;%[m /M 'g'w]

Now (i) follows from the above inequality and the well-known fact that M,, is of
weak type (1,1) with respect to w(z) dz. O

Proof of lemma 3.3. If I = I(x,R), we obtain, by A, . and the Holder inequality,
that

(o) (1 e

x+2R
< C/ d(s,I)*ds
z+R

z4+2R \1/p z+2R ) ) 1/p'
< C(/ w) (/ w'™P (s)d(s, I)*P ds) .
z+R z+R

Since (z + R,z + 2R) is contained in 27 \ I, we have
w((x — 4R,x+4R)) < Cu((x + R,z + 2R)),

for every x € R and all positive R. Applying this property to the intervals
(x —2R,z — R) and (z — R,z — 3R) instead of (v — 1R,z + 3R), we obtain that

w((@—2R,a ~ §R)) < Clu(3D) + w(tD)] < Cu(iD).
Analogously, we have
w((z+ iR,z +2R)) < Cw(31).
Summing the inequalities, we get that w(21 \ 1) < Cw(3I). Thus

w(2]) < Cw(31) < Cw(I).

4. Weighted strong-type inequalities

We start by establishing different characterizations of the A, o-condition, which are
a key step for the study of the strong-type inequalities. In order to state the result,
we recall that if p is a Borel measure, then it is said that a non-negative measurable
function w satisfies A,(p), 1 < p < oo, if there exists a positive constant C' such

that
1/p ) 1/p’
(/wdu) (/ w!™P du) < Cu(I),
I I

for all bounded intervals I (see, for instance, [5]). (If 4 is the Lebesgue measure,
then A,(u) is the Muckenhoupt A,-condition.)

PrOPOSITION 4.1. Let =1 < a <0 and p > 1. Let w be a non-negative measurable
function. The following statements are equivalent.
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(a) w satisfies Ap o

(b) There exists C' such that, for any interval I,

1/p ) L\
(/ w) (/ w'P (s)d(s, )P ds) < C|Ijte,
I I

where x is the centre of I.

(c) The functions s — w(s)d(s,z)™* satisfy A,(u.) with a constant independent
of z € R, where du, = d(s,z)*ds, i.e. there exists C such that, for any
interval I and all z € R,

(/I w)””(/l WP (s)d(s, 2)° ds)l/p/ < C/Id(s,z)ads_

Proof. Tt is clear that (¢) = (b). Therefore, we only have to prove (a) = (b) = (¢)
and (b) = (a).

(a) = (b). Let I = (a,b), I~ = (a,z) and IT = (x,b), where x is the centre of I. It
suffices to establish that

1/p ) RN
(/ w) (/ w™P (s)d(s,x)P ds) < Ot
I *

for I* = I~ and I* = I". We shall only prove the inequality for I~, since the other
one is proved in a similar way. Let J be the interval with left end point equal to x
and the same length as I. It is clear that I~ C 2J \ J and d(s,x) = d(s, J) for all
s € I7. These properties, together with the fact that w satisfies A, o (and therefore
is a doubling weight), give

(o) (b

1/p ) O\
< C(/ w) (/ w'™P (s)d(s, J)*P ds) < ClIjtte.
17 2J\J

(b) = (c). Let I = (a,b). We shall consider the following two cases: (1) z € [a, D]
and (2) z ¢ [a, b].

CASE 1. Let J D I be an interval centred at z such that |I] < |J| < 2|I|. Enlarging
the interval I to J and applying (b), we obtain

1/p ) L\
(/ w) (/ w™P (s)d(s, 2)*P ds) < ClJ)Me = o)t
I I
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If z=a or z =0, we are done. If z € (a, b), we have

< Clb— 2" + (2 — a)' 7]

zC[(b—z)“/Zbds—i-(z—a)“/:ds:|
SC[/b(s—z)“ds—i-/:(z—s)“ds}

b
=C/ d(s,z)%ds.

Putting together the last inequalities, we obtain (c) for z € (a, b).

CASE 2. We shall prove it only for z > b. First observe that the function

is decreasing in the interval (a,b). Therefore,

(o omto. o as) " < (F22) (frws i as) "

Using case 1 (z = b) and the fact that o < 0, we obtain

(/1 w>1/p(/, W' ()d(s,2)°7 d8>1/p/ <Oz —a)l1| < C/I d(z, 5)° ds.

(b) = (a). First we observe that (b) implies that w is doubling. Now, let I = I(z, R)
be any interval. Applying (b), we have

z 1/p z ) , 1/p
(/ w) (/ w'™P (s)d(s,x — R)*P ds) < CR'™,
r—2R r—2R

Restricting the interval (x — 2R, x) in the second integral and using the fact that
w is doubling, we obtain

xz+R/2 \l/p z—R , , 1/p’
(/ w) (/ w'™P (s)d(s, 1)*P ds) < CR'™,
z—R/2 z—2R

Analogously, we get the same inequality changing the interval (z — 2R,z — R) to
(z + R,z + 2R). Finally, (a) follows adding both inequalities. O

As a consequence of the characterizations obtained in proposition 4.1, we have
the following proposition.

PROPOSITION 4.2. Let —1 < o < 0, 1 < p < 00 and let w be a non-negative
measurable function on the real line. If w satisfies Ap o, then there exists € > 0,
0 <e<p—1, such that w satisfies Ap—c .
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Proof. We know by proposition 4.1 that w(s)d(s,z)™* satisfies A,(u,) with an
Ap(pz)-constant independent of z. Then (see [5]) there exists € > 0, depending
only on the A,(u,)-constant, such that w(s)d(s, z)~“ satisfies Ap—¢(p-), where the
Ap—c(p2)-constant depends only on the Ap(u.)-constant and e. Applying again
proposition 4.1, we obtain that w satisfies A,_c 4. O

It is clear that Marcinkiewicz’s interpolation theorem and results 3.1, 4.1 and 4.2
give immediately the characterization of the weighted strong-type inequality.

THEOREM 4.3. Let —1 < a < 0 and p > 1. Let w be a non-negative measurable
function on R. The following statements are equivalent.

(a) M, is of strong type (p,p) with respect to w(x)dx, i.e. there exists C such
that

[1sasirw<c [ 1spw
for all f € LP(w).

(b) w satisfies Ap o or, equivalently, there exists C such that, for any interval I,

1/p ) L\
(/ w) (/ w' P (s)d(s, z)*P ds) < Ot
I I

where x is the centre of I.

5. Restricted weak-type inequalities

As we said above, the operator M, is not of weak type (1/(1 + «),1/(1 + «))
with respect to Lebesgue measure if @ < 0, but it is of restricted weak type
(1/(1+«),1/(14«)); in other words, M,, satisfies the weak-type inequality for char-
acteristic functions or, equivalently, M, maps the Lorentz space L1 /(14 q),1( d) into
the Lorentz space Lj/(14a),00(dz). Therefore, it is interesting to study the weights
w such that w({z : Myxgp(z) > A}) < CA7Pw(FE) for all A > 0 and all measurable
sets £ C R.

THEOREM 5.1. Let w be a non-negative measurable function on R and let —1 <
a<0. If1 <p<oo, then the following are equivalent.

(a) M, is of restricted weak type (p,p) with respect to w(x)dx, i.e. there exists
C such that w({z : Myxe(z) > A}) < CAXPw(E) for all A > 0 and all
measurable £ C R.

(b) w satisfies RAp o, i.e. there exists C such that, for every interval I and all
measurable E C R,

P
(/ w) (/ d(s,1)® ds) < C|I|(1+"‘)p/ w.
31 EN(2I\I) En(2I\I)

Proof. Using proposition 2.1, we see that (b) follows from (a), since

1
Nax 11362—/ d(s, I)* ds,
aXEN(2I\ )( ) |I|1+a Bn(I\D) ( )
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for all # € 1. Assume now that (b) holds. We shall need the following lemma.
LEMMA 5.2. If -1 < a < 0 and w satisfies RA, o, then w is a doubling weight.

We postpone the proof of the lemma and continue with the proof of the theorem.
By (b) and the fact that w is a doubling weight, we have

fEﬂ(QI\I) d(s, I)* ds < (w(Eﬂ(ﬂ\I)))l/p
|I|t e b w(21)

Therefore, Myxg < C(Myxg)'/P. As in the proof of theorem 3.1, we obtain (a)
using the fact that M,, is of weak type (1,1) with respect to w(x) dx. O

Proof of lemma 5.2. Let I = I(x, R) be any interval. Since w satisfies RA
E = (z+ R,z + 2R), we obtain

z+R/2 z+2R P z+2R
(/ w) (/ d(s,[)“ds) < C|I|(1+°‘)p/ w,
z—R/2 z+R T+ R

and therefore w((z — 1R,z + 1 R)) < Cw((z + R,z + 2R)). Now we continue as in
the proof of lemma 3.3. O

taking

P,

We can give equivalent formulations of the RA, ,-condition in the same way as
we did with the A, ,-condition in proposition 4.1. We collect them in the next
proposition. We omit the proof, since it is similar to the proof of proposition 4.1.

PROPOSITION 5.3. Let =1 < a < 0 and p = 1. Let w be a non-negative measurable
function. The following statements are equivalent.

(a) w satisfies RAp «.

(b) There exists C' such that, for any interval I and all measurable E C I,

(/1 w) (/E d(s,x)® ds)p < C|I|(1+a)p/Ew’

where x is the centre of I.

(¢) There exists C such that, for any interval I, all measurable E C I and all

z €R,
) (e e faor [

6. Further results

This section is devoted to establishing several relations among the classes of weights
considered in the previous sections. Some of them are proven easily; for instance:

(a) if 1 <p <ooand a <, then A, o, C Ap 5; and
(b) if 1 <p < g<oo,then 4,, C Ay q.

Others relations appear in the next proposition.
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PROPOSITION 6.1. If =1 < a < 0 and p(1 + ) > 1, then Apq4q) C Apa C A4,
and Ap.o # Ay for allr > p(1+ «).

Proof. Taking § = 0in (a), we obtain A, o, C A, and, applying the Holder inequal-
ity, we get that A, C A, for all r with 1 < r < p(1 4+ «). Keeping in mind
that w € Ap14q) implies w € A, for some r < p(1 + «) (see [3,5]), we have that
Ap(i4a) C Apo. In order to see that A, o # A, for all 7 > p(1 + «), we consider
the functions w(z) = |z|7. It is well known (see [3]) that w € A, if and only if
—1 <y <r—1. On the other hand, if w € A, o, then (proposition 4.1(b))

a a
/ w' P (s)d(s,0)*" ds = / |s[707P)F+er’ 45 < oo,
—a —a

This implies that v < p(1 + o) — 1. Therefore, if p(1 + o) —1 < v < r — 1, then
we A and w ¢ Ap . O

REMARK 6.2. The same argument in the proof of the above proposition shows that
if p(1+ ) > 1, then w(x) = |z|” € Apq if and only if -1 < v < p(1 +a) — 1.
However, we do not know if A1, is equal to A4, , for a < 0.

Now we check the same kind of relations among the classes RA, . Clearly, prop-
erties (a) and (b) also hold for the classes RA,, . If we denote the classes RAp o by
RA,,, we can prove the following proposition.

PROPOSITION 6.3. If—1 < a < 0 and p(1+a) > 1, then RA,14+q) C RA, o C RA,
and RA, o # RA, for all T > p(1 + a).

Proof. The relation RA, , C RA, is obvious. Now let w € RAp(114). Then (propo-
sition 5.3(b) for v = 0)

([ o) ccurie ]
I E

for all intervals I and all measurable E C I = I(z, R). Since
[ty as < e,
E

we obtain that w € RA,, , by proposition 5.3. In order to prove that RA, # RA, o
for all » > p(1 + «), let us consider w(x) = |z|"~!. It was noticed in [2] that
w € RA,. However, w does not belong to RA, ., because if w € RA,,, then
(proposition 5.3(b))

(/—z w) (/oE d(s,0)" d5>p < C(2a)P0+e) /OE o,

for all a and € with 0 < € < a or, equivalently, (a/€)” < C(a/e)?*®) 0 < € < a,
which is a contradiction since r > p(1 + «). O

REMARK 6.4. With the same arguments as those above, we can easily see that
w(x) = |z|" € RApo if and only if —1 < v < p(1 + ) — 1. On the other hand, as
in the case of the A, ,-classes, we do not know if RA,1,4) is equal to RA, , when
a < 0, but the equality holds when p is the endpoint, i.e. if p = 1/(1 + «).
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PROPOSITION 6.5. RAj/(14a),a = RA1 = Ay

Proof. First, notice that by proposition 6.3 (with p = 1/(1 + «)), we have that
RA1 C RAy/(14a),a- Second, RA; is clearly equivalent to A; since the restricted
weak type (1,1) is equivalent to the weak type (1,1). It only remains to show
that RA1/(1+a),a C A1. Let w € RAy/(14a),o and let I be any bounded interval.
Applying proposition 5.3(c) to E = (z — €,z +€) C I, we get

z+e 1/(14«) z+e
w(I)(/ d(s,z)* ds) < C|I|/ w.

z—€
1 /‘ 1 /‘Z+E
— | w<C— w.
|I| I h 2e z—e€

|71|/Iw < Cw(z)

Thus

If we let € go to 0, we obtain

for almost every z € I, i.e. w is in the class A; of Muckenhoupt. O
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