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Numerical dynamo models based on convection-driven flow in a rapidly rotating spherical
shell frequently give rise to strong, stable, dipolar magnetic fields. Dipolar dynamos can
be subcritical in the sense that strong magnetic fields are sustained at a Rayleigh number
lower than that required for a dynamo to grow from a small seed field. In this paper
we find subcritical behaviour in dynamos in line with previous studies. We explore the
action of Lorentz force in a rotating dynamo which gives rise to a strong preference for
dipolar modes over quadrupolar modes, and also makes subcritical behaviour more likely
to occur. The coherent structures that arise in rapidly rotating convection are affected
by the magnetic field in ways which strongly increase their helicity, particularly if the
magnetic field is dipolar. As helicity enhances dynamo action, an existing magnetic
field can hold itself up, which leads to subcritical behaviour in the dynamo. We
investigate this mechanism by means of the asymptotic small Ekman number theory of
rapidly rotating magnetoconvection, and compare our results with fully nonlinear dynamo
simulations. There are also other mechanisms which can promote subcritical behaviour.
When Reynolds stresses are significant, zonal flows can lower the helicity and disrupt the
onset of dynamo action, but an established dipole field can suppress the zonal flow, and
hence boost the helicity. Subcriticality means that a slow gradual reduction in Rayleigh
number can lead to a catastrophic collapse of the dynamo once a critical Rayleigh number
is reached. While there is little evidence that the Earth is currently in a subcritical regime,
this may have implications for the long-term evolution of the geodynamo.
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1. Introduction
Planetary magnetic fields are generated by dynamo action occurring in their cores.

The electrical conductivity arises either from the presence of a liquid iron core, or
in the case of giant planets from metallic hydrogen present due to high pressure in
the deep interior. It is widely believed that the fluid in planetary cores is stirred
by the convection which transports the heat outward from the deep interior, though
precessional effects may also be involved in magnetic field production. There has been
considerable progress in modelling convection in rapidly rotating fluid shells, and the
way in which it may lead to dynamo action; see for example the recent reviews of
Kono & Roberts (2002) and Christensen & Wicht (2007). The case of Boussinesq
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6 B. Sreenivasan and C. A. Jones

convection, where the only density variations allowed are the small fluctuations driving
the flow, has been particularly well studied. There are, however, numerical difficulties
in reaching the rather extreme values of the parameters found in planetary cores, in
particular the very low Ekman number, E, and magnetic Prandtl number ν/η, where
ν is the kinematic viscosity and η is the magnetic diffusivity.

These studies of convection-driven dynamos have revealed that many different types
of magnetic field may be generated, for example axial dipoles, quadrupoles (see e.g.
Busse & Simitev 2006) and even equatorial dipoles (Aubert & Wicht 2004), that is, a
dipolar field with its axis lying in the equatorial plane. However, there is a large region
of the parameter space where axial dipole dynamos dominate, which is essentially
where the inertial terms in the equation of motion are negligible, that is, at very
low Rossby number (Sreenivasan & Jones 2006a). Simple estimates of the core flow
velocity (see e.g. Jones 2007) suggest that inertia will only be significant in planetary
cores at length scales so small that magnetic diffusion is very rapid, so the expected
regime is indeed where axial dipole dominance is found. This may explain why most
planetary dynamos are approximately axial dipoles, the only exceptions being Uranus
and Neptune, whose physical properties are poorly understood.

While the dipole dominance of low-Rossby-number spherical-shell convection-driven
dynamos is well known, its physical reasons are not well understood. Convection in
rapidly rotating spherical geometry takes the form of columns parallel to the rotation
axis (Roberts 1968; Busse 1970; Zhang 1992) and this is also observed in experiments
(Busse & Carrigan 1976). However, this flow in itself does not necessarily lead to an
axial dipole dynamo. Taking z as the coordinate parallel to the rotation axis, if the
rolls have no flow component in the z direction there can be no dynamo as the flow is
then planar (Zeldovich 1957). In the Roberts (1970) flow u= (cosy,sinx,siny+ cosx)
in Cartesian geometry, where there is flow parallel to z along the rolls, a magnetic
field can be generated, but it is aligned perpendicular to the rolls, and not parallel to
them. Cardin & Schaeffer (2006) investigated dynamo action in spherical geometry
produced by rolls whose axis was in the z direction but which also had a flow
component parallel to z with uz proportional to z. This flow has the same equatorial
symmetry as convection-driven flow in rotating spherical geometry, but nevertheless,
Cardin and Schaeffer found that quadrupolar modes were generally preferred over
axial dipolar modes. The preference for axial dipoles in convection-driven dynamos
is not simply a matter of having columnar convection together with a uz of the right
equatorial symmetry. We explore below why axial dipolar modes are common in
convection-driven, rotating-dynamo simulations.

Another feature of convection-driven dynamos is that they can show subcritical
behaviour. This means that the bifurcation from non-magnetic, nonlinear rotating
convection to a magnetic state can be subcritical. Note that this is a slightly different
issue from the distinction between a strong-field and a weak-field dynamo that was
discussed by Roberts & Soward (1992). The scenario we discuss here relates to
figure 3 of that paper, whereas in the strong-field dynamo picture, it is suggested
that because the magnetic field can increase the thickness of the convection rolls, it
might be possible to find a nonlinear convecting magnetic state at a Rayleigh number
below that required for the onset of non-magnetic convection (Fautrelle & Childress
1982). This may indeed be possible, but in this paper, although we find fully nonlinear
magnetic solutions below the critical Rayleigh number for the onset of dynamo action
from a small seed field, we never found such fully nonlinear states at the much lower
Rayleigh numbers at which convection itself sets in.
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Helicity generation and subcritical behaviour in rapidly rotating dynamos 7

The existence of subcriticality in the sense that nonlinear magnetic solutions can
exist at Rayleigh numbers below that required for the onset of dynamo action from
a small seed field might be inferred from the fact that the dynamo benchmark
(Christensen et al. 2001) can be found if the specified (strong) magnetic field is
used as an initial condition, but it cannot be found at the given parameters by
starting from a random seed magnetic field. Perhaps surprisingly, there have not been
many investigations of subcritical behaviour in spherical dynamo simulations, though
a recent exception is Morin & Dormy (2009).

In the nonlinear numerical simulations, it is not always a simple matter to
understand which interactions are important for a particular physical effect, such as
the existence of subcriticality. We have therefore also investigated the problem of the
onset of convection with an imposed magnetic field, which is amenable to asymptotic
analysis in the relevant low-E limit (Jones, Mussa & Worland 2003). This enables
us to investigate how the flow is affected by the magnetic field, which is relevant
to the issue of subcriticality because it is when the flow changes in a way which
enhances dynamo action that we may expect subcritical behaviour. A similar approach
was adopted by Busse (1976) in the context of the annulus model of rapidly rotating
convection (see e.g. Busse 1970). In the work of Jones et al. (2003), attention was
focused (for computational reasons) on the case of the Malkus field, Bφ = B0s, where
s is the distance from the rotation axis. This field has quadrupolar symmetry, and
the main effect found was the thickening of the convection columns with increasing
field strength. Below we also focus on the differences in the flow patterns induced by
dipolar and quadrupolar fields.

To estimate whether a particular flow pattern enhances dynamo action or not
we compare the helicity generated by different flows. It is known that helicity
is not essential for dynamo action but it helps (Gilbert, Frisch & Pouquet 1988),
and the critical magnetic Reynolds numbers for flows with helicity are generally
lower than those without helicity (e.g. Roberts 1970). The analysis of the dynamo
mechanism operating in spherical convection-driven dynamos (Olson, Christensen &
Glatzmaier 1999) also suggested that helical flow was important in generating the
field. Recent studies with laterally varying thermal boundary conditions (Sreenivasan
2009) suggest that the helicity produced by inhomogeneities at the Earth’s core-mantle
boundary (CMB) can, under negligible background convection, support the long-time,
high-latitude flux lobes in the observed geomagnetic field. Here the lateral variations at
the boundary drive strong axial fluid motions via the Coriolis force, in turn generating
the helicity that amplifies a seed magnetic field. All of the above studies have provided
the impetus to understand the role of helicity in field generation in rapidly rotating
dynamos.

The geodynamo is probably strongly supercritical at the present time, and so its
effective Rayleigh number is well above the relatively near-critical values investigated
here. However, the compositional and thermal driving of the geodynamo is likely to
continually diminish over geological time as the Earth cools, and any radioactive heat
sources will also gradually weaken. So if the geodynamo goes into a subcritical state,
it may suffer a sudden death rather than a slow extinction. There is evidence that Mars
had a strong field in the past, but that the field collapsed some 350 myr after the
planet’s formation (Lillis et al. 2008). There are several possible explanations for this,
but Kuang, Jiang & Wang (2008) have suggested that if the Martian dynamo was in a
subcritical state, this might have led to a sudden collapse rather than a more gradual
decline.
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8 B. Sreenivasan and C. A. Jones

2. Governing equations
We consider a thermal convection-driven dynamo where an electrically conducting

fluid is confined between two concentric, co-rotating spherical surfaces. The radius
ratio ri/ro is chosen to be that in the Earth, 0.35. In the Boussinesq approximation, the
time-dependent, 3-D magnetohydrodynamic equations for the velocity u, the magnetic
field B and the temperature T are solved. The governing dimensionless equations are

E

Pm

(
∂u
∂ t
+ (∇ ×u)×u

)
+ 2ẑ×u

= −∇p? +Ra
Pm

Pr
T

r
ro
+ (∇ ×B)×B+E∇ 2u,

(2.1)

∂B
∂ t
= ∇ × (u×B)+∇ 2B, (2.2)

∂T

∂ t
+ (u ·∇ )T = PmPr−1 ∇ 2T , (2.3)

∇ ·u= 0, (2.4)
∇ ·B= 0, (2.5)

where p? is an augmented fluid pressure that includes the irrotational part of the
nonlinear inertial forces. The dimensionless groups in (2.1), (2.2), (2.3) are the Ekman
number, E = ν/ΩL2, the Prandtl number, Pr = ν/κ , the magnetic Prandtl number,
Pm= ν/η and the ‘modified’ Rayleigh number Ra= goα1TL/Ω κ . In the above
dimensionless groups, ν is the kinematic viscosity, κ is the thermal diffusivity, η is
the magnetic diffusivity, L is the gap width of the spherical shell, Ω is the angular
velocity of rotation, go is the gravitational acceleration at the upper boundary, α is the
coefficient of thermal expansion and 1T is the superadiabatic temperature difference
between the boundaries. The Ekman number is a measure of the rotation rate and
the Rayleigh number represents the strength of convective buoyancy in the problem.
As velocity is scaled by η/L, the volume-averaged dimensionless velocity in the
model directly gives the magnetic Reynolds number, Rm. The unit of magnetic field
is (Ωρηµ)1/2, and the unit of time is L2/η. Both stress-free and no-slip boundary
conditions are investigated. The two boundaries are kept electrically insulating and
isothermal. The applied basic state temperature distribution is one of pure basal
heating, T0(r) = β/r, where β = riro.

Note that when stress-free boundary conditions are used in conjunction with
insulating boundaries, the total angular momentum of the core fluid is conserved. The
angular momentum value must therefore be set in the initial condition, and the natural
choice, which we made here, is that the total angular momentum is exactly that of
uniformly rotating fluid with angular velocity Ω . This means the angular momentum
relative to the rotating mantle frame is zero. Some care must be taken here, because if
initial conditions from no-slip solutions are used, the relative angular momentum will
not in general be zero.

The system equations are solved using a pseudospectral method in which the
magnetic field and the velocity are expanded as toroidal and poloidal scalars (broadly
similar to the method described in Clune et al. 1999), for example the magnetic field B
is written

B= ∇ ×T r+∇ ×∇ ×P r. (2.6)

The scalars T and P are then expanded in spherical harmonics, and the numerical
equations are derived from the coefficients in these expansions.
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Helicity generation and subcritical behaviour in rapidly rotating dynamos 9

3. The dynamo properties of linear magnetoconvection at low Ekman number

Busse developed the annulus model (Busse 1970) (see also Jones 2007 for a recent
review) to explore convection in rapidly rotating fluids. He then used the linear theory
of magnetoconvection in rotating systems to explore the onset of dynamo action
(Busse 1976) using the annulus model. He found the surprising result that the effect of
a magnetic field on convection can enhance magnetic field generation. This suggests
that it could lead to subcritical behaviour. Here we use the asymptotic theory of
convection in a rotating spherical shell in the limit E→ 0 to explore this idea further.

The asymptotic theory of the onset of rapidly rotating convection in the low-E
limit was originated by Roberts (1968) and Busse (1970), and developed by Jones,
Soward & Mussa (2000) and Dormy et al. (2004). In the configuration used here, the
heating is differential, that is, all the heat flux enters the bottom boundary, and there
is no internal heating. In this situation, Dormy et al. (2004) showed that the onset of
convection occurs close to the tangent cylinder (an imaginary cylinder touching the
inner boundary and parallel to the axis). They also noted that this situation is a little
simpler than the case where the heating is internal and the onset of convection occurs
at some point in the interior of the fluid (Jones et al. 2000). When the onset occurs at
the inner core boundary, the solution has three different length scales in the cylindrical
polar coordinate s, φ and z directions,

1
s

∂

∂ φ
∼ O(E−1/3),

∂

∂ s
∼ O(E−2/9),

∂

∂ z
= O(1) as E→ 0. (3.1)

The weak z-dependence means that the velocity can be written in a quasigeostrophic
form,

u= uzẑ+∇ ×ψ ẑ. (3.2)

The boundary conditions require that uz and us are the same order of magnitude in
the E→ 0 limit, but uφ is O(E1/9) smaller. This is because in the asymptotic limit
E→ 0, the radial wavenumber scales as O(E−2/9) whereas the azimuthal wavenumber
scales as O(E−1/3) (Dormy et al. 2004), so the spiralling angle of the convection
pattern becomes small. This vanishing of the spiralling angle is specific to the case
where onset occurs near the tangent cylinder. When these scalings are inserted into
the equations, a Wentzel–Kramers–Brillouin (WKB) theory emerges, in which the
z-structure is determined by a second-order equation known as the Roberts–Busse
equation and the s-dependence is governed by an Airy equation (see (3.18) of Dormy
et al. 2004). Disturbances have dependence exp(imφ − iωt), where m∼ E−1/3 and
ω ∼ E−2/3, so we replace ψ by the real part of A(s)ψ (z)exp(imφ − iωt) and uz

by the real part of A(s)uz(z)exp(imφ − iωt), where the amplitude function A(s) is
an Airy function (see Dormy et al. 2004 for details). This second order system is
affected by the magnetic field, but provided the field is not too strong the scalings
(3.1) remain the same (Jones et al. 2003). In the induction equation, field is generated
by the B ·∇u term. Because the shortest length scale is in the φ direction, the
φ -component of magnetic field has the strongest influence on the convection, provided
all three magnetic field components have a similar field strength, which our nonlinear
simulations suggest is true. We can therefore simplify the problem significantly by
considering only an azimuthal field in the magnetoconvection problem.
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10 B. Sreenivasan and C. A. Jones

Using equations (3.14)–(3.18) of Jones et al. (2003) (modified slightly to take into
account the different non-dimensional units), the linearised z-vorticity equation is then

E(a2− iωPm−1)a2ψ − 2
duz

dz
+ imRaPm

Pr ro
θ = −Λ

(
bφ
s

)2 m2a2

a2− iω
ψ (3.3)

where ω is the frequency, ψ the horizontal flow streamfunction, uz is z-velocity,
θ is temperature perturbation, a2 = k2+m2/s2, k being the radial wavenumber, and
k = 0 when onset of convection occurs close to the tangent cylinder as here. The
magnetic field Bφ is written as B0 times a normalised bφ , and the Elsasser number
Λ = B2

0/Ωρµη. In this equation, the z-vorticity ζz = a2ψ is driven by the buoyancy,
damped by the magnetic field (though damping is reduced if m reduces), further
damped by viscosity and moderated by stretching of the vorticity due to the
background rotation.

The equations for the z-velocity and temperature perturbation complete the system

E(a2− iωPm−1)uz− 2
dψ
dz
− zRaPm

Pr ro
θ = −Λ

(
bφ
s

)2 m2

a2− iω
uz, (3.4)

(a2PmPr−1− iω)θ = imψ + zuz

r3

η

(1− η)2
. (3.5)

This second-order system has boundary conditions

imψ + zuz = 0 (stress-free), = ∓ 1
2

√
Ero

h
(imuz+ a2zψ )(no-slip), (3.6)

at z= ±h= ±(r2
o− s2)1/2, the no-penetration/Ekman suction condition. We chose

bφ /s= 3
√

3z(h2− z2)/2h3 (maximum bφ /s= 1), which is a reasonable model for
the dipole fields found in our numerical simulations, so the actual field Bφ =
Λ1/23

√
3sz(h2− z2)(Ωρµη)1/2/2h3. The Ekman number can be scaled out of these

equations, details being given in Appendix A, and these scaled equations were solved
numerically. Note that for the small E scalings to be consistent, we must have
Λ ∼ O(E1/3), showing that even a comparatively weak magnetic field can affect the
convection. This is generally consistent with the results of dynamo simulations. It
comes about because at low E the rolls are thin in the azimuthal direction, and the
high velocity-gradients stretch out field efficiently, generating Lorentz forces strong
enough to influence the balance of Coriolis, buoyancy and viscous forces. In the
Earth’s core, the molecular value of the viscosity is so small that E ∼ 10−15, which
would imply roll thicknesses of only tens of metres. Nonlinear effects mean that
it is unlikely rolls in the core are quite as thin as that. Nevertheless, tall thin
columns are suggested by low-E simulations, so linear theory may provide a useful
guide to the nature of core convection. The scaled Elsasser number is then λ =
ΛE−1/3. In table 1 we show the scaled Rayleigh numbers, critical wavenumbers and
frequencies in the low-E limit for cases relevant to the numerical runs in § 4. Note
that increasing the magnetic field reduces the critical Rayleigh number, frequency and
azimuthal wavenumber, provided the scaled Elsasser number λ is greater than unity.
The reduction in critical Ra is due to the magnetic field breaking the Proudman–Taylor
constraint on the rapidly rotating fluid.
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Helicity generation and subcritical behaviour in rapidly rotating dynamos 11

λ Pr Pm R̂ m̂ ω̂

0 1 1 1.15910 0.30175 0.40147
1 1 1 1.84769 0.25941 0.41451
2 1 1 1.93124 0.28074 0.07600
3 1 1 1.55264 0.22589 0.03457
4 1 1 1.24775 0.18199 0.01964
5 1 1 1.02801 0.15015 0.01263
0 10 10 2.31984 0.37092 0.45478
1 10 10 2.53093 0.36085 0.15973
3 10 10 1.58320 0.23101 0.03043
5 10 10 1.03308 0.15114 0.01215

TABLE 1. Scaled critical Rayleigh number, critical azimuthal wavenumber and frequency at the
onset of convection in the low-E theory. Here λ is the scaled Elsasser number, measuring the
strength of the magnetic field. The definitions of the scaled variables are given in Appendix A.

3.1. Helicity
The kinetic helicity u · ζ, ζ being the vorticity, is known to be an important quantity
for dynamo action (see e.g. Moffatt 1978). It is known that dynamo action can occur
even if there is no helicity anywhere in the flow (Gilbert et al. 1988), but zero-helicity
flows generally require high magnetic Reynolds numbers to become dynamos. In
the rapidly rotating convection considered here, the local magnetic Reynolds number
based on the convection column width is not that large, and so the first-order
smoothing approximation (Moffatt 1978) is relevant. In these circumstances, we expect
the helicity to be important, as found in the analysis of the dynamo mechanism
occurring in rotating spherical dynamos by Olson et al. (1999) (although they did
not consider the effect of the Lorentz force on helicity production in that paper). We
would certainly advocate caution in relating dynamo action directly to the strength
of the helicity, but it appears that at least in rapidly rotating flows where first-order
smoothing is applicable, helicity does strongly influence the onset of dynamo action.
Using the scalings (3.1), the dominant contributions to the helicity are from usζs and
uzζz. In fact,

u · ζ = 1
s2

(
∂uz

∂ φ

∂ ψ

∂ φ
− uz

∂ 2ψ

∂ φ 2

)
, (3.7)

so both the s and z contributions to the helicity are equal. Averaged over the short
azimuthal wavelength

H(z) = 〈u · ζ〉 = m2

2s2
(uzψ̄ + ūzψ ). (3.8)

In figures 1(a) and (b) we show the eigenfunctions from the Roberts–Busse equation
which gives the z dependence of the solution, normalised so that the axial vorticity
is unity at the boundaries. The s-dependence is less interesting, as the convection is
simply concentrated near the tangent cylinder as described in Dormy et al. (2004). The
most striking difference between figures 1(a) and (b) is the huge increase in helicity
in the presence of the magnetic field. The reason for this increase is evident when
the nature of the axial vorticity, ζz = a2ψ , and axial velocity, uz are considered. In
figure 1(a), the axial velocity is mainly out-of-phase with the axial vorticity, thus in
the normalisation used axial vorticity is primarily real (and fairly constant along the
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12 B. Sreenivasan and C. A. Jones
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Re{ζz}

H
Im{uz}

Re{uz}
Im{ζz}
Re{ζz}

H

(a) (b)

(c) (d)

FIGURE 1. (Colour online available at journals.cambridge.org/flm) The solution of the
Roberts–Busse system (3.3), (3.4), (3.5), (3.6) is shown for Pr=Pm= 1, together with the
helicity H. Both the real and imaginary parts of ζz, Re{ζz} and Im{ζz}, are shown, and of uz,
Re{uz} and Im{uz}. (a) λ= 0, the non-magnetic solution, (b) λ= 5, solution influenced by a
dipolar magnetic field. Note the massive increase in helicity when magnetic field is present.
(c) λ= 5, with the quadrupolar field. Some increase in helicity over non-magnetic case is seen,
but much less than with dipolar field. (d) Non-magnetic, but with the Ekman suction (no-slip)
boundary condition at E= 10−4. There is a modest increase in helicity over the stress-free case.

column), while the axial velocity is dominated by its imaginary part. Hence the mean
helicity is small, because the azimuthal average is small. However, in figure 1(b), the
axial vorticity is not that different, but the magnetic field ensures there is a large
in-phase component to the axial velocity, and hence a much greater helicity.

The reason for this dramatic difference lies in a major change in the z-vorticity
balance; see (3.3). The z-vorticity is primarily driven by buoyancy, which is strongest
near the equator, where gravity acts perpendicular to the rolls and the temperature
gradient is greatest. In the magnetic case, this is balanced by magnetic damping (via
the Lorentz force) as well as the small viscous damping, and magnetic damping mainly
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Helicity generation and subcritical behaviour in rapidly rotating dynamos 13

acts where the Bφ field is strongest, which for a dipole field is not at the equator
(where it is zero), but between the equator and the boundaries. Because the driving and
damping occur in different locations, stretching of the vorticity due to the background
rotation is required to maintain a local balance. In both figures 1(a) and (b), the real
part of the axial vorticity is roughly constant, as the term 2 dψ/dz in (3.4) is balanced
only by small terms. Since it is the in-phase part of the axial velocity that provides
most of the helicity, and when the field is strong the frequency is quite small, to a
rough approximation we can ignore the imaginary parts of (3.3), which in the scaled
form (A 2) gives

2
dûz

dz
≈ â2 ζ̂z+ λb2

φ ζ̂z− s2R̂ζ̂z

roâ2r3

η

(1− η)2
, (3.9)

where we have used (A 4) to express the buoyancy term in terms of the z-vorticity.
The z-integral of this relation from the equator to the top boundary has to give a
fixed value of ûz related to ψ̂ on the boundary through boundary condition (A 5).
This actually gives the real part of ûz = 0 at the boundary. This integral determines
the Rayleigh number required to balance the magnetic and viscous friction on the
z-vorticity: the buoyancy must be sufficient to overcome both. However, the buoyancy
is largest near the equator, because of the 1/r3 factor, whereas the magnetic friction
is largest at z≈ h/

√
3. So (3.9) shows that dûz/dz is very negative near the equator,

where magnetic friction is low and buoyancy is strong. Away from the equator, where
magnetic friction is large and buoyancy is quite weak, dûz/dz is positive: vortex
stretching generates vorticity to balance the Lorentz force. This simple argument
explains the striking behaviour of the real part of the axial velocity, and hence the
helicity, in figure 1(b). It follows from this argument that the axial velocity, and hence
the helicity, of a quadrupolar field should be much less: in a quadrupolar field the
Lorentz force peaks approximately at the same location as the buoyancy force. We
expect a larger R̂ to balance the magnetically enhanced friction, but as the friction and
the driving occur in the same place, there is no need for much vortex stretching, the
right-hand side of (3.9) being roughly in balance all along the column.

In figure 1(c), the helicity and associated eigenfunctions for a quadrupolar field
model are shown, with bφ /s= (h2− z2)2/h4 (again maximum bφ /s= 1), and the same
value of λ = 5 as in figure 1(b), so that the maximum field strength is the same in
both pictures. The corresponding critical values of R̂= 3.07281, m̂= 0.27271 and ω̂ =
0.12741. Note that the helicity is significantly enhanced over the non-magnetic case,
but the effect is very much weaker than in the dipolar case. The helicity does increase
in this quadrupolar case as the field strength increases (as it does with dipolar fields),
but for the same field strength, the dipolar field produces very much more helicity. We
therefore not only have a mechanism for why these dynamos are subcritical, but also
have a mechanism giving a strong preference for dipolar fields over quadrupolar fields.
It has long been somewhat mysterious that planetary magnetic fields are generally
dipolar rather than quadrupolar (Uranus and Neptune being possible exceptions), as
quadrupolar fields are quite often preferred in α-effect models and the critical dynamo
numbers of dipolar and quadrupolar modes are often quite similar (Roberts 1972).
Indeed, Cardin & Schaeffer (2006), who studied dynamos produced by columnar rolls
driven by differential rotation (the Stewartson problem, Stewartson 1966), found that
quadrupolar modes were preferred at kinematic dynamo onset, despite the geometry
of the rolls being very similar to that found in this work. The essential difference,
which leads to the preference for dipolar modes, is that there is an enhanced velocity
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along the roll-axis, in phase with the axial vorticity. This component of the flow is
much strengthened by the dipole field itself, so that once a dipolar field is established,
it enhances the helicity and so tends to last for a long time. For a field reversal
to occur, it is perhaps necessary to be in a strongly convecting regime, where the
buoyancy force in regions away from the equator is large enough to offset the effect
of the Lorentz force, so that vortex stretching in (3.9) is inhibited. In this way, strong
convection can overcome the preference for dipolar solutions.

The issue of why axial dipoles are preferred to equatorial dipoles (dipolar fields
with axis lying in the equatorial plane) has been discussed by Moss & Brandenburg
(1995) and Tilgner (2004). Moss & Brandenburg found that strong differential rotation
tended to break up large-scale non-axisymmetric fields such as equatorial dipoles by
enhancing their diffusion. Tilgner notes that even in the absence of differential rotation
an enhanced flow along the roll axis also favours axial dipoles over equatorial dipoles
by increasing the diffusion parallel to the rotation axis. Diffusion parallel to z is more
damaging to equatorial dipoles than to axisymmetric magnetic field configurations.

In figure 1(d), we repeat the figure 1(a) calculation with no imposed field, but this
time use the Ekman suction condition, which corresponds to a no-slip boundary. E was
chosen as 10−4 in this figure, and since the suction diminishes with E as E1/6 (see
(A 5) of Appendix A), a smaller E will give a lesser effect. The corresponding critical
values are R̂= 1.27870, m̂= 0.28104 and ω̂ = 0.30109. The suction is in phase with
the axial vorticity, and so the helicity follows the axial vorticity fairly closely, and
the suction increases the helicity. The maximum helicity with suction in figure 1(d)
is 0.2238, as opposed to a maximum of 0.1968 with no suction, but probably more
significant is that there is considerably more helicity in the Ekman layer near the upper
boundary with suction. However, overall, the effect of suction on the helicity is not
that great. As we see below, the effect of the boundaries in damping the nonlinearly
created azimuthal flow is probably of greater significance than the effect of enhancing
the helicity.

We also did some runs at Pr = Pm= 10 for comparison, as these values were
explored by our nonlinear code. Some results are given in table 1, but the helicity
graphs are not included here as they were qualitatively similar to the Pr=Pm= 1 case.

4. Nonlinear results
To investigate whether the results of § 3, which are based on linear studies, extend

into the nonlinear regime, we performed nonlinear numerical simulations with the
parameter values listed in table 2. These runs can usefully be supplemented by runs
from the study of Morin & Dormy (2009), which also used the same equations (2.1),
(2.2), (2.3), (2.4), (2.5) with no-slip boundary conditions.

Table 2 also gives the critical Rayleigh numbers for the onset of convection
from the stationary state. For this bifurcation, small disturbances have dependence
proportional to exp(imφ− iωt), φ being the azimuthal coordinate and m the azimuthal
wavenumber. The azimuthal wavenumber and frequency ω at onset are also given in
table 2. Note that the asymptotic results in table 1 predict a critical value of Ra almost
a factor 2 smaller even at E = 10−5, though the predicted critical values of m and ω

are closer to their numerically computed values. Dormy et al. (2004) noted the very
slow convergence of the critical Rayleigh numbers to their asymptotic values, though
the correct asymptotic values are eventually reached.

Figure 2 shows the time evolution of the magnetic energy for E = 10−4, Pr =
Pm= 1 and stress-free boundaries. Runs (i) (Ra= 400) and (ii) (Ra= 600) were
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Case E Pr Pm Boundary
conditions

Raconv mcrit ωcrit

1 1×10−4 1 1 Stress-free 65.11 8 180.12
2 5×10−5 1 1 Stress-free 73.17 10 288.62
3 10−5 1 1 Stress-free 100.50 16 851.45
4 5×10−5 1 1 No-slip 77.49 9 224.49
5 5×10−5 10 10 Stress-free 123.77 11 382.66

TABLE 2. Critical Rayleigh number, critical azimuthal wavenumber and frequency ω at the
onset of convection for the five cases studied numerically.

Em

(i)

(ii)

(iii)

(iv)

(v)

(vi)

0.5 1.0 1.5
t

0.0 2.0
10–8
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10–2

100

102

104

106

FIGURE 2. (Colour online) Evolution of magnetic energy with magnetic diffusion time for
E= 10−4, Pr=Pm= 1 and stress-free boundary conditions. (i) Ra= 400, dipole-dominated
solution. (ii) Ra=600, strong-field dipole-dominated solution. (iii) Ra=600, initial small-field
solution grows into a relatively weak quadrupolar solution. (iv) as case (iii) but with a different
small initial field. (v) Ra=500, an initial small field decays away. (vi) Ra=550, a small initial
field grows, eventually resulting in a quadrupolar field.

integrated forward in time starting from a strong-field, nonlinear dynamo solution,
based on the field configuration found in the dynamo benchmark (Christensen et al.
2001). Here we use the term ‘strong-field’ to denote situations where the field is
strong enough to significantly affect the convection. This is essentially the same
definition as employed by Roberts & Soward (1992), though they were considering
situations where the magnetic field could affect the critical Rayleigh number for the
onset of convection, whereas here we are more interested in magnetically induced
changes in the convection which affect the helicity, and hence dynamo field generation.
A snapshot of the radial and azimuthal fields for the saturated dynamo is shown in
figures 3(a) and (b), and a snapshot of the strong dipole field at Ra= 600 from a
point on curve (ii) is shown in figure 3(c). Runs (iii), (iv) (v) and (vi) in figure 2
were started with a small random seed field containing all spherical harmonics up
to the truncation level, too small in magnitude for the Lorentz force to have any
effect on the convection initially. Since in (v) the field decays rather than grows, we
deduce that Ra> 500 is needed for amplification of a seed magnetic field. However,
at Ra= 550, curve (vi) shows that a dynamo does emerge from an initial, small
magnetic perturbation, so the critical Rayleigh number for seed-field growth, Ramag,
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16 B. Sreenivasan and C. A. Jones

lies between 500 and 550. An established dipole field dynamo can, however, be
sustained at Rayleigh numbers at least down to Ra= 400 as shown by curve (i). This
clearly establishes the existence of subcritical dynamo action, that is to say, that a
nonlinear dynamo can be maintained at values of Ra below Ramag, the critical value
for seed-field growth. Note, however, that the value of Ra is still considerably larger
than Raconv in table 2, though it is possible that, because a given magnetic field allows
onset of convection at a lower critical Ra, dynamos could exist even at Ra< Raconv

as suggested by Roberts (1978) and Fautrelle & Childress (1982); see also Zhang
& Gubbins (1999). Morin & Dormy (2009) found isola solutions in some parameter
regimes, that is, dynamos which cannot be obtained from the growth of a small
magnetic disturbance to the purely hydrodynamic convecting state, but are entirely
nonlinear. For these isola solutions, a value of Ramag will not exist, though an Ramag

was found for all the cases listed in table 2.
Interestingly, the magnetic field that grows from a small seed field (runs (iii), (iv)

and (vi)) has a different structure from the established strongly dipolar fields of runs
(i) and (ii). The starting seed field had mainly, but not exactly, a dipolar symmetry,
that is, the radial and azimuthal components of the magnetic field were approximately
antisymmetric about the equator. When these runs first reach saturation, they still have
an approximately dipolar symmetry, an example snapshot being shown in figure 3(d).
At this stage, the field is by no means dominated by the dipole component, that is,
the spherical harmonic P0

1 ∼ cos θ of the poloidal component of the magnetic field P ,
the higher harmonics being much stronger than in the run (ii) at the same Rayleigh
number. The radial field strength and magnetic energy is also considerably less than
for the strong dipole case (ii). This figure 3(d) behaviour is however only a transient,
though often a quite long-lived transient. After several magnetic diffusion times, the
quadrupolar parity components of the field begin to grow, and eventually the field
becomes entirely quadrupolar, as shown in figure 3(e). This establishes that not only is
there subcriticality at E= 10−4, there is also bistability, that is, more than one solution
is stable (see also Simitev & Busse 2009; Morin & Dormy 2009).

The departure from dipolarity for the seed-field solution noted at E = 10−4 is not
observed for E = 5× 10−5 and E = 10−5: at lower Ekman numbers, the amplified
seed field remains dipolar. This suggests that nonlinear inertia is present in the force
balance for the seed-field state at E = 10−4, whereas at lower E the inertial forces
are weaker. Indeed, the Rossby number, Ro= EPm−1Rm, progressively decreases for
decreasing Ekman number. (The strong-field solutions found at E = 10−4 and Ra=
400; E= 5×10−5 and Ra= 400; and E= 10−5 and Ra= 460 all have volume-averaged
magnetic Reynolds number Rm around or just below 100.) The strong-field solutions
generally produce dipolar fields when inertia is negligible (Sreenivasan & Jones
2006a).

In figure 4(a) we see results for a lower E = 5× 10−5 case also at Pr = Pm= 1.
This establishes that growth of a seed field occurs at a Rayleigh number between
500 and 530; from runs at intermediate Rayleigh numbers we obtain Ramag ≈ 515. In
figure 4(b) we see that the nonlinear solution starting from a large-amplitude solution
can be maintained at Ra= 400, but at Ra= 385 although the solution is established for
nearly 0.5 diffusion times, the magnetic field does eventually fail. It seems probable
that there is some critical value of Ra= Rabc between 385 and 400 above which the
dynamo is ‘safe’, i.e. it persists for all time, but below which the solution eventually
decays, possibly after a long time. This behaviour is known as a boundary crisis of
the attractor (Ott 2002), and plays a similar role to the saddle-node bifurcation found
in normal hysteresis of steady solutions. We can measure the depth of subcriticality as
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FIGURE 3. Solutions for E=10−4, Pr=Pm=1 and stress-free boundary conditions. (a) Radial
magnetic field, Br at the outer radius for Ra=400, a saturated solution from curve (i) of figure 2.
Range (−0.159, 0.220). (b) Azimuthally averaged azimuthal field for the same solution. Range
(−0.620,0.620). (c) Strong dipole field saturated solution at Ra= 600, a point on curve (ii) of
figure 2. Range (−0.273, 0.563). (d) Transient weak dipolar solution, from a point on curve (iv)
in figure 2, at Ra= 600. Range (−0.265, 0.251). (e) Quadrupolar solution at Ra= 600, from
the curve (iii) run of figure 2, but after 8 magnetic diffusion times. Range (−0.200, 0.311). The
solid lines shown in (a), (c), (d) and (e) correspond to the equator and the latitude at which the
tangent cylinder cuts the surface.

dsub = (Ramag−Rabc)/Rabc. It would be very time-consuming to evaluate this exactly,
but figure 4 suggests that at these parameter values dsub ≈ 0.25.

In figures 5(a) and (b) we find similar behaviour at lower E, suggesting that
subcriticality may persist at much lower values of E, which are out of range for
direct numerical simulation. A seed magnetic field grows at Ra= 540 but decays at
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FIGURE 4. (Colour online) (a) Evolution of magnetic energy with magnetic diffusion time for
E=5×10−5 and stress-free boundary conditions from a small seed magnetic field. For case (i),
Ra= 530, the seed field grows, but for case (ii), Ra= 500, the seed field decays. (b) Evolution
of magnetic energy with magnetic diffusion time for E= 5×10−5 and stress-free boundary
conditions from a large-amplitude solution. Case (i): Ra= 400, the magnetic field stays large.
Case (ii): Ra= 385, the magnetic field solution stays large for almost half a diffusion time, but
eventually falls to zero.
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FIGURE 5. (Colour online) (a) Evolution of magnetic energy with magnetic diffusion time
for E= 10−5 and stress-free boundary conditions from a small seed magnetic field. Case (i):
Ra= 540, the seed field grows. Case (ii): Ra= 480, the seed field decays. (b) Evolution of
magnetic energy with magnetic diffusion time for E=10−5 and stress-free boundary conditions
starting from a large-amplitude field solution. Case (i): Ra= 460, the magnetic field persists in
time. Case (ii): Ra= 420, the magnetic field collapses.

Ra= 480, and interpolating the average growth rates suggests Ramag ≈ 500. Nonlinear
dipolar solutions can be sustained at much lower Ra, figure 5(b) showing a persistent
solution at Ra= 360, though at Ra= 340 the dynamo failed, suggesting that in this
case Rabc ≈ 350. The depth of subcriticality dsub is similar for the cases E = 10−5

and 5× 10−5 suggesting that the precise value is rather insensitive to the value of E,
provided the boundary conditions are not changed. Calculations at lower E would be
necessary to ascertain whether dsub remains relatively constant or gradually decreases
with decreasing Ekman number.

In figure 6 we consider no-slip boundaries rather than stress-free boundaries. As
has been discussed before (Kuang & Bloxham 1997; Christensen & Wicht 2007)
stress-free boundaries make a considerable difference to dynamo action. Zonal flows
are stronger in stress-free cases, but also Ekman suction at the boundaries provides
an additional source of helicity even when there is no Lorentz force. After careful
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FIGURE 6. (Colour online) (a) Evolution of magnetic energy with magnetic diffusion time for
E=5×10−5 and no-slip boundary conditions from a small seed field. (i) For Ra=390 the field
grows, but (ii) for Ra= 360 the field decays. (b) Evolution of magnetic energy with magnetic
diffusion time for E=5×10−5 and no-slip boundary conditions starting from a large-amplitude
solution. (i) Ra= 360 and the field is maintained, but in (ii) Ra= 340 and the magnetic field
collapses.

analysis it was established that E = 5× 10−5 is subcritical with no-slip boundaries,
but the depth of subcriticality is much less than in the stress-free case. Figure 6(a)
shows that Ra= 390 causes growth of a seed field but Ra= 360 causes the field to
decay. Intermediate runs established that Ramag ≈ 377. At Ra= 360, just below this,
a strong-field dipolar dynamo can be maintained, and this establishes subcriticality
for this case. However, the field collapses at Ra= 340, so the range of Ra for
which nonlinear field solutions are maintained while small amplitude fields decay is
comparatively small.

This no-slip case can be compared with the results of Morin & Dormy (2009), who
integrated the case E = 10−4 at Pm= 0.67 and Pm= 3. They also found subcritical
bifurcation at Pm= 0.67, the value closest to our parameters, but found supercritical
bifurcation at Pm= 3. We considered the case Pr= 1, Pm= 3 in our asymptotic linear
magnetoconvection theory, solving equations (A 2), (A 3), (A 4), (A 5), keeping the
magnetic field strength fixed at λ= 5, to compare with the case Pr=Pm= 1 shown in
figure 1(b). At Pm= 3 the helicity has a similar pattern but its maximum value drops
from just over 1.5 to around 1.1, so that the same magnetic field strength would lead
to less helicity at Pm= 3 than at Pm= 1. This fall in helicity seems to be associated
with an increase in the magnitude of the drift speed of the magnetoconvection, which
at higher Pm goes westward. Additionally, their figure 6 shows that the magnetic field
energy in the critical region of Ra is less at Pm= 3 than at Pm= 0.67. This means
that the magnetically generated part of the helicity will be reduced at Pm= 3, making
subcriticality less likely. The results of Morin & Dormy (2009) are therefore consistent
with our argument that magnetically generated helicity helps promote subcriticality in
the dynamo. It is unfortunately not easy to predict what the saturated field strength
will be without doing a nonlinear simulation, and it certainly depends on parameters
such as E, Pm and Pr. So subcriticality originating from magnetically driven helicity
enhancement will be highly parameter-dependent, consistent with the findings of
Morin & Dormy (2009).

At this point it is worth considering the case of low Pm (say, 0.1), with Pr kept
fixed at unity. We might naively expect that if larger Pm reduces magnetically driven
helicity enhancement, lower Pm would increase it. However, for a given E and Ra,
lowering Pm would merely shut down the dynamo due to enhanced magnetic diffusion.
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FIGURE 7. (Colour online) (a) Evolution of magnetic energy with magnetic diffusion time
for E= 5×10−5, Pr=Pm= 10, and stress-free boundary conditions from a small seed field.
(i) Ra= 420: not a dynamo; (ii) Ra= 450: near marginal for dynamo action; (iii) Ra= 480:
a dynamo. (b) Evolution of magnetic energy with magnetic diffusion time for E= 5×10−5,
Pr=Pm= 10 and stress-free boundary conditions starting from a large-amplitude solution. (i)
Ra= 420, (ii) Ra= 400, (iii) Ra= 360. For Ra= 420 and 400 the dynamo is sustained, but for
Ra= 360 it eventually fails.

Therefore, we must exercise caution in comparing numerical simulations at both large
and small Pm with linear magnetoconvection theory. The effect of the magnetic field
in enhancing helicity is best understood in a low-inertia, columnar dynamo regime.

In figure 7 we look at a solution with small nonlinear inertia, obtained by setting
Pr = Pm= 10. Here the seed field is amplified just above Ra= 450, but nonlinear
solutions are sustained at Ra= 400, so this case is again subcritical, but the depth of
subcriticality is not so great as for the Pr = Pm= 1 solution. We shall return to this
case later, while discussing figure 11.

In figure 8 we show the nature of the solution with stress-free boundaries at E =
5× 10−5, Pr = Pm= 1. The solution from a strong-field initial state is taken at Ra=
400; the solution from the weak seed-field initial state is at Ra= 500. In figure 8(a)
we show the radial magnetic field on the upper boundary, r= ro. The strongly dipolar
nature of the solution is apparent. There are occasional reversed flux patches near
the equator, and the field where the tangent cylinder cuts the upper boundary is
slightly stronger than it is at the poles, but these are the only significant departures
from dipolarity. It is very unlikely that this dynamo will ever reverse its polarity. In
figure 8(b) we see the radial velocity just below the upper boundary, at r = ri+ 0.8.
The columnar nature of the convection predicted by linear theory (Jones et al. 2000;
Dormy et al. 2004) is apparent at this moderately supercritical Rayleigh number. Note
also that convection is still quite weak near the poles, though at higher Ra we expect
much stronger polar convection (Sreenivasan & Jones 2006b; Tilgner & Busse 1997).
The convection pattern is not stationary, individual rolls lasting only of the order of a
turn-over time.

In figures 8(c) and (d) we compare the helicity for the strong-field solution with
that for the weak-field solution. The helicity is generally approximately antisymmetric
about the equator, and actually at these moderate values of Ra is quite accurately
antisymmetric about the equator. We therefore show a section at z= 0.5 rather than the
equatorial plane, where the helicity is nearly zero. This section just cuts the top of the
inner sphere of radius ri= 0.538. In the strong-field case, the helicity is predominantly
negative, except close to the outer boundary, where there can be some weak positive
helicity. In contrast, the helicity in the weak-field case is concentrated close to the
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FIGURE 8. E= 5×10−5, Pr=Pm= 1, with stress-free boundaries. (a,b,c,e,g) Solutions
starting from a strong field with Ra= 400; (d,f ,h) solutions starting from a weak (seed) field
with Ra= 500. (a) Radial magnetic field at the upper boundary, r= ro. Range (−0.161, 0.169).
(b) Radial velocity at radius r= ri+0.8. Range (−61.1, 65.3). (c) Helicity for the strong-field
solution on the plane z= 0.5. Range (−577000, 138000). (d) Helicity for the weak-field
solution on the plane z= 0.5. Range (−530000, 209000). (e) Radial velocity in the equatorial
plane for the strong-field solution. Range (−154, 141). (f ) Radial velocity in the equatorial
plane for the weak-field solution. Range (−87.3, 107). (g) Azimuthal velocity in the equatorial
plane for the strong-field solution. Range (−237, 262). (h) Azimuthal velocity in the equatorial
plane for the weak-field solution. Range (−344, 106).
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tangent cylinder and has both positive and negative values, and a much smaller mean
value. This is consistent with the results of linear magnetoconvection in § 3.

In figures 8(e) and (f ) the radial velocity in the equatorial plane is shown in the
strong and weak magnetic field cases respectively. The most notable feature here is
that when the field is strong, convection occurs almost everywhere outside the tangent
cylinder, but in the weak-field case, convection remains close to the tangent cylinder.
This could be due to the magnetic field breaking the Taylor–Proudman constraint and
allowing convection to occur more freely, but if this were the case we might expect
a much smaller azimuthal wavenumber to dominate in the magnetic case, whereas
in fact the magnetic field only reduces the dominant azimuthal wavenumber by a
rather small amount. The real cause of the suppression of convection away from the
tangent cylinder is the large shearing zonal flow in the weak-field case, shown in
figure 8(h). This shearing flow is excited by the Reynolds stresses due to convection,
but its effect is to inhibit convection where the shear is large. In contrast, when
there is a strong magnetic field, the zonal flow itself is suppressed, which allows the
convection to occur over a much wider region. The snapshot in figure 8(g) shows
there is a significant azimuthal flow, but it is associated with the convection rolls, not
the mean zonal flow. This is therefore a second nonlinear mechanism that can lead
to subcritical behaviour. The magnetic field suppresses zonal flow and hence allows
convection everywhere outside the tangent cylinder, thus enhancing the helicity and
aiding the dynamo process. If the magnetic field gets reduced, a zonal flow builds up
which switches off the convection away from the tangent cylinder, reducing the helicity
and making it unlikely that the magnetic field will recover.

In figure 9 the case with E reduced to 10−5 is shown. Overall, the behaviour is
quite similar to that at larger E. In figure 9(a) we see that the field is even more
dipole-dominated, and also slightly weaker, than in figure 8(a). The convection is still
columnar (as expected) in figure 9(b), and the helicity in the magnetic case is stronger
and more consistently negative in the northern hemisphere slice (figure 9c) than in the
weak-field case (figure 9d), as expected from the arguments in § 3. We also see that
the weak-field case has a strong zonal flow (figure 9h), whose shear is suppressing
convection away from the tangent cylinder (figure 9f ). It might seem surprising that
this low-E case, where the Reynolds stresses are weakened because the Rossby number
is reduced, can still generate a large zonal flow. However, because we have stress-free
and insulating boundaries, the Reynolds stresses are only opposed by weak viscous
stresses, which also are reduced at lower E. However, the strong magnetic field has
reduced the zonal flow in figure 9(g) very substantially, thereby allowing convection
over a much larger region (figure 9e). Thus both subcritical mechanisms are at work
here.

In figure 10 we return to the case E= 5×10−5, but now impose no-slip boundaries.
This case had some subcritical behaviour, but much less than in the stress-free cases.
The strong-field dynamo is still very dipole-dominated and columnar; see figures 10(a)
and (b). The helicity mechanism is still operating, in that in the strong-field case there
is more helicity and it is consistently of one sign, whereas in the weak-field case
there is less helicity, and it has a few reversed helicity patches (figures 10c and d,
and note the different scales). However, the second mechanism, originating from the
zonal flow, is now hardly noticeable. There is no consistent zonal flow either in the
weak-field case or the strong-field case – the no-slip boundary condition has much
reduced the zonal flow; see figures 10(g) and (h). In consequence, the convection now
occurs everywhere outside the tangent cylinder whether there is a magnetic field or
not; see figures 10(e) and (f ). Since the effect of the magnetic field on the helicity is
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  –15.0

   15.0
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FIGURE 9. E= 10−5, Pr=Pm= 1 with stress-free boundaries. (a,b,c,e,g) Solutions starting
from a strong field with Ra= 460; (d,f ,h) solutions starting from a weak field with Ra=
480. (a) Radial field at the upper boundary, r= ro. Range (−0.0847, 0.0904). (b) Radial
velocity at r= ri+0.8. Range (−37.5, 29.2). (c) Helicity for the strong-field solution on
the plane z= 0.5. Range (−1280000, 160000). (d) Helicity for the weak-field solution
on the plane z= 0.5. Range (−415000, 410000). (e) Radial velocity in the equatorial plane
for the strong-field solution. Range (−298, 179). (f ) Radial velocity in the equatorial plane for
the weak-field solution. Range (−61.6, 45.2). (g) Azimuthal velocity in the equatorial plane
for the strong-field solution. Range (−358, 342). (h) Azimuthal velocity in the equatorial
plane for the weak-field solution. Range (−421, 119).
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FIGURE 10. E=5×10−5, Pr=Pm=1 with no-slip boundaries. (a,b,c,e,g) Solutions starting
from a strong field with Ra= 360; (d,f ,h) solutions starting from a weak field with Ra=
360. (a) Radial field at r= ro. Range (−0.133, 0.177). (b) Radial velocity at r= ri+
0.8. Range (−33.3, 26.2). (c) Helicity for the strong-field solution on the plane z= 0.5.
Range (−516000, 74900). (d) Helicity for the weak-field solution on the plane z= 0.5.
Range (−193000, 40100). (e) Radial velocity in the equatorial plane for the strong-field
solution. Range (−176, 148). (f ) Radial velocity in the equatorial plane for the weak-field
solution. Range (−89.5, 93.9). (g) Azimuthal velocity in the equatorial plane for the
strong-field solution. Range (−177, 154). (h) Azimuthal velocity in the equatorial plane for
the weak-field solution. Range (−148, 72.7).
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FIGURE 11. E= 5×10−5, Pr=Pm= 10 with stress-free boundaries. (a,b,c,e,g) Solutions
starting from a strong field with Ra= 420; (d,f ,h) solutions starting from a weak field
with Ra= 420. (a) Radial field at r= ro. Range (−0.0359, 0.0381). (b) Radial velocity at
r= ri+0.8. Range (−34.5, 30.3). (c) Helicity for the strong-field solution on the plane
z= 0.5. Range (−343000, 67100). (d) Helicity for the weak-field solution on the plane
z= 0.5. Range (−350000, 65000). (e) Radial velocity in the equatorial plane for the
strong-field solution. Range (−139, 118). (f ) Radial velocity in the equatorial plane
for the weak-field solution. Range (−153, 118). (g) Azimuthal velocity in the equatorial plane
for the strong-field solution. Range (−182, 185). (h) Azimuthal velocity in the equatorial
plane for the weak-field solution. Range (−242, 162).
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still operative, it seems likely that the subcritical behaviour is due to this mechanism
in this case.

In figure 11 we again consider the case E = 5× 10−5, this time with stress-free
boundaries, but now with Pr = Pm= 10, which markedly reduces the magnitude of
the inertial terms in the equation of motion. As before, we still have strong dipole
dominance and columnar flow (figures 11a and b), but the zonal flow is suppressed
even with a weak field at the start (figure 11h), leading to convection occurring
everywhere outside the tangent cylinder (figure 11f ). This would explain why the
weak-field helicity in figure 11(d) is more evenly distributed than in the Pr = Pm= 1
calculation shown earlier in figure 8(d). From figures 11(c) and (d) we note that
the helicity is not enhanced much by the magnetic field, for which there is a simple
explanation. The saturated field strength shown in figure 11(a) is considerably smaller
than that shown in figure 8(a), and the azimuthally averaged component of Bφ is also
more than a factor 2 less than the Pr = Pm= 1 run at the same value of E. The
effective value of the scaled Elsasser number to be used in figure 1(b) is therefore only
around λ = 1 for Pr = Pm= 10, whereas it is around λ = 5 with the nonlinear field
strength found for Pr=Pm= 1. We therefore expect the effect of the magnetic field in
enhancing the helicity to be much reduced in this case. The weaker saturated field for
Pr=Pm= 10 can be traced to the higher critical Rayleigh number for convective onset,
Raconv , and hence a lower value of Ra/Raconv compared to the Pr = Pm= 1 case at
the same Ekman number (see table 2), which implies that the dynamo is less strongly
driven. We recall that there is subcriticality for Pr = Pm= 10 (see figure 7), but the
depth of subcriticality is less than for Pr = Pm= 1, which seems reasonable in view
of the reduction in the effective value of λ.

5. Discussion and conclusions
Subcritical behaviour in rapidly rotating convection-driven dynamos appears to be

quite common. For many parameter values, a nonlinear dynamo state can co-exist
with a stable non-magnetic convection state. For the runs considered here, the
non-magnetic convection state always became a dynamo if the Rayleigh number was
raised sufficiently, so it is possible to define a depth of subcriticality that measures the
range of Rayleigh number over which a nonlinear magnetic field can be maintained
while the convective state is stable to small magnetic perturbations. Morin & Dormy
(2009) found that at much higher Rayleigh numbers, the non-magnetic convection
solution could restabilise, leading to a finite range of Rayleigh number for which a
dynamo starting from a seed field is possible. We have not explored this possibility
here, but instead have concentrated on trying to understand the physical mechanisms
that are leading to subcritical behaviour.

The first mechanism we have established is that the magnetic field enhances the
helicity of the convective flow under rapid background rotation. This is achieved
by the Lorentz force enhancing the flow along the axis of the convection columns.
This effect is mainly found with fields of dipolar symmetry, and so dipolar fields
can more strongly enhance helicity than quadrupolar fields. Since helicity helps to
sustain the dynamo against magnetic diffusion, this effect gives a strong preference
towards dipolar fields over quadrupolar fields, or over fields with a more complicated
morphology. This may help to explain why dipolar fields are so frequently found in
dynamo simulations when inertial effects in the equation of motion are negligible.
Since inertial effects are believed to be of little importance in planetary dynamos,
this may indeed be the reason why many planetary magnetic fields are dipolar. This
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first mechanism also leads to subcritical behaviour, because if the magnetic field is
removed, the helicity is reduced and may be insufficient to allow a small seed field to
grow. On the other hand, if the magnetic field is imposed as an initial condition, the
helicity generated can be sufficient to maintain it against diffusion for ever.

This first mechanism can be studied by means of the linear theory
of magnetoconvection, as shown in § 3. Magnetoconvection studies such as this can
suggest plausible mechanisms, as here, but they do suffer from the disadvantage that
they assume a magnetic field with a simple uniform structure. In a dynamo simulation,
the magnetic field usually has in addition to the mean field a complicated small-scale
structure, caused by flux being expelled from eddies. It is therefore not always easy to
make a quantitative comparison of magnetoconvection results with dynamo simulations.
Nevertheless, the predicted effect of an enhanced and more coherent helicity in the
presence of a dipolar field fits the results from the simulations rather well.

The second mechanism for subcriticality we have discovered is connected with the
presence of a zonal flow, that is, an azimuthally averaged uφ . Strong shearing zonal
flows exist with stress-free boundaries and no magnetic field, and such a zonal flow
suppresses convection and hence helicity in a large fraction of the core. So if no
magnetic field is present, it is hard to get one started. On the other hand, if a strong
field is present ab initio, the shearing zonal flow is eliminated and there is plenty
of convection and helicity to sustain the field. This second mechanism is evident
in figures 8 and 9, but it is probably less robust than our first mechanism. Since
no-slip boundaries tend to reduce the zonal flow, there is less opportunity for helicity
suppression with these boundary conditions. Also, at larger Pr and Pm the driving of
the zonal flow by Reynolds stresses is reduced.

Since our helicity mechanism suggests a reason why dipolar fields are preferred,
natural questions are why dipolar fields are not found in all dynamo simulations, and
how can the dynamo reverse its polarity? The appearance of non-dipolar dynamos is
strongly associated with the importance of the inertial terms in the equation of motion
(Sreenivasan & Jones 2006a), that is, the Rossby number not being sufficiently small,
or more precisely the local Rossby number defined as U/`Ω where ` is the dominant
length scale of the convection (Olson & Christensen 2006). When nonlinear inertia
is important, the columnar structure tends to break down, and so the whole picture
of helicity giving rise to an α2-type dynamo ceases to be valid. Without well-defined
columns, the arguments given in § 3 become meaningless, because the actual flow is
nothing like the flow at onset. As noted in § 3.1, it is possible that departures from
dipolar symmetry, leading to field reversals, occur when the magnetically enhanced
columnar flow structure breaks down when the convective driving is very strong. At
large Pr and Pm, when inertial forces are negligible, dipole-dominated dynamos would
persist to a large Ra, but eventually we would expect small-scale components of
the flow to disrupt the columnar structure, and hence destroy the systematic helicity
correlation which seems to produce the large-scale magnetic field.

Appendix A. The low-E scaling of the linear equations
The equations (3.3), (3.4), (3.5), which are valid in the limit of small E, can be

rescaled to eliminate the Ekman number itself.
The appropriate asymptotic scalings for the variables are (Jones et al. 2000, 2003)

Ra= E−1/3R̂, ω = E−2/3ω̂ , m= E−1/3m̂, k = E−1/3k̂,

a= E−1/3â, θ = E2/3 θ̂ , ψ = E1/3ψ̂ , uz = ûz, Λ = E1/3λ .

}
(A 1)
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The resulting equations are

(â2− iω̂Pm−1)â2ψ̂ − 2
dûz

dz
+ im̂R̂Pm

roPr
θ̂ = −λ

(
bφ
s

)2 m̂2â2

â2− iω̂
ψ̂ , (A 2)

(â2− iω̂Pm−1)ûz− 2
dψ̂
dz
− zR̂Pm

roPr
θ̂ = −λ

(
bφ
s

)2 m̂2

â2− iω̂
ûz, (A 3)

(â2PmPr−1− iω̂ ) θ̂ = im̂ψ̂ + zûz

r3

η

(1− η)2
. (A 4)

The boundary conditions are

im̂ψ̂ + zûz = 0 (stress-free), = ∓ 1
2

E1/6

√
ro

h
(im̂ûz+ â2zψ̂ ) (no-slip), (A 5)

at z= ±h= ±(r2
o− s2)1/2, the no penetration or Ekman suction condition. Note that

the Ekman suction is still (weakly) dependent on E, even in the low-E limit. At
extremely low E, as may be found in the Earth’s core, Ekman suction will be small,
but in numerical models, where very low E is impossible for computational reasons,
Ekman suction is significant when there are no-slip boundaries. For the dipole model
bφ /s= 3

√
3z(h2− z2)/2h3, which has a maximum of unity, and for the quadrupole

model bφ /s= (h2− z2)2/h4, which has maximum unity on the equator. The actual
dipolar field Bφ =E1/6λ1/23

√
3sz(h2− z2)(Ωρµη)1/2/2h3. The equations (A 2), (A 3),

(A 4), (A 5) were solved by a finite-difference method to give the results shown in
table 1, and the helicity distributions in figure 1.

For comparison with the work of Dormy et al. (2004), which used a different scaling
of the equations from the scaling used here, the following relations may be useful,

ω̂P = (1− ri/ro)
2/3 22/3 Pm ωD, âP = 21/3(1− ri/ro)

1/3 aD,

m̂= 21/3(1− ri/ro)
−2/3 mD, R̂P = 24/3(1− ri/ro)

1/3r−1
i R̂D,

}
(A 6)

where the subscript P denotes the present values, and subscript D those quoted in
Dormy et al. (2004). Thus at λ = 0,Pr = Pm= 1, for the present differential heating
Dormy et al. found (equation (5.1) in their paper) R̂D = 0.285933, ωD = 0.337014
and mD = 0.179715. Using (A 6) to convert these values to our units we obtain R̂P =
1.15910, ω̂P = 0.401430, m̂= 0.301753, in excellent agreement with the values found
in table 1.
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