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DEGREES OF RANDOMIZED COMPUTABILITY

RUPERT HÖLZL AND CHRISTOPHER P. PORTER

Abstract. In this survey we discuss work of Levin and V’yugin on collections of sequences
that are non-negligible in the sense that they can be computed by a probabilistic algorithm with
positive probability. More precisely, Levin and V’yugin introduced an ordering on collections
of sequences that are closed under Turing equivalence. Roughly speaking, given two such
collections A and B, A is below B in this ordering if A \ B is negligible. The degree structure
associated with this ordering, the Levin–V’yugin degrees (or LV-degrees), can be shown to be
a Boolean algebra, and in fact a measure algebra. We demonstrate the interactions of this
work with recent results in computability theory and algorithmic randomness: First, we recall
the definition of the Levin–V’yugin algebra and identify connections between its properties
and classical properties from computability theory. In particular, we apply results on the
interactions between notions of randomness and Turing reducibility to establish new facts
about specific LV-degrees, such as the LV-degree of the collection of 1-generic sequences, that
of the collection of sequences of hyperimmune degree, and those collections corresponding
to various notions of effective randomness. Next, we provide a detailed explanation of a
complex technique developed by V’yugin that allows the construction of semi-measures into
which computability-theoretic properties can be encoded. We provide two examples of the use
of this technique by explicating a result of V’yugin’s about the LV-degree of the collection of
Martin-Löf random sequences and extending the result to the LV-degree of the collection of
sequences of DNC degree.

§1. Introduction. The tools of algorithmic randomness have been particu-
larly useful in studying the power of random oracles in the context of Turing
reducibility. It is well-known that access to a random oracle does not aid in
the computation of any individual sequence, as Sacks [26] proved that any
sequence that is computable from positive measure many oracles must be
computable. However, if instead we attempt to compute some element of a
collection of sequences by means of a random oracle, the situation is quite
different.

For instance, in unpublished work, Martin proved that the collection of
sequences of hyperimmune degree has Lebesgue measure 1 (see [9, Theorem
8.21.1]). A careful examination of this proof yields, for any � ∈ (0, 1), an
algorithm which with probability at least 1 – � computes from a random
oracle a function not dominated by any computable function (as noted by
Gács and reported by Rumyantsev and Shen [25]). Other types of sequences
known to be computable from positive measure many sequences are the
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1-generic sequences (as shown by Kurtz [15] and Kautz [12]), the sequences
of DNC degree (first established by Kučera [14]), and sequences satisfying
certain algebraic properties in the upper semi-lattice of the Turing degrees
under Turing reducibility (studied by Barmpalias, Day, and Lewis-Pye [1]).

Collections of sequences C ⊆ 2� with the property that only measure 0
many sequences compute an element of C have been referred to as negligible
(for instance, in [18, 33]), and thus those collections C with the property
that positive measure many sequences compute an element of C are called
non-negligible. The focus of our study here is a Boolean algebra of non-
negligible subsets of 2� that are closed under Turing equivalence and
where two such subsets are identified with each other if they differ only
by a negligible set. This Boolean algebra, first introduced by Levin and
V’yugin [19] and systematically studied by V’yugin [33], will be referred
to as the Levin–V’yugin algebra; its elements will be referred to as the
Levin–V’yugin degrees, or LV-degrees for short.

A significant portion of this article is a survey of previously established
results about the Levin–V’yugin algebra, but we also establish new facts
about it as well. Much of our focus will furthermore be on explicating a
technique developed by V’yugin [33] for building left-c.e. semi-measures,
which has applications outside of the study of the algebra, such as in the
study of probabilistic computation. We first provide a general schematic
account of this technique and then use it to establish the following result.

Theorem 1.1 (V’yugin [36]). For any � ∈ (0, 1), there is a probabilistic
algorithm that produces with probability at least 1 – � a non-computable
sequence that does not compute any Martin-Löf random sequence.

We will then apply V’yugin’s technique to prove the following generaliza-
tion of Theorem 1.1.

Theorem 1.2. For any � ∈ (0, 1), there is a probabilistic algorithm that
produces with probability at least 1 – � a non-computable sequence that is not
of DNC degree.

Theorems 1.1 and 1.2 both follow from a result due to Kurtz [15], namely
that for every � ∈ (0, 1), there is a probabilistic algorithm that produces
a 1-generic sequence with probability 1 – �. Since a 1-generic sequence
can compute neither a Martin-Löf random sequence nor a sequence of
DNC degree, the results follow. However, V’yugin’s technique also has
implications for the study of Π0

1 classes, that is, effectively closed subsets
of 2�: the probabilistic algorithms whose existence can be shown using
V’yugin’s technique are in fact Turing functionals on 2� with a closed range;
and since such a functional is effective, its range is even Π0

1. Thus, V’yugin’s
proof of Theorem 1.1 establishes the following stronger result.

Corollary 1.3. For every � ∈ (0, 1), there is a Turing functional Φ
such that

(i) Φ maps no set of positive measure to any single sequence,
(ii) the domain of Φ has Lebesgue measure at least 1 – �,
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(iii) the range of Φ is a Π0
1 class, and

(iv) no sequence in the range of Φ computes a Martin-Löf random sequence.

Similarly, the proof of Theorem 1.2 that we provide here establishes the
following result.

Corollary 1.4. For every � ∈ (0, 1), there is a Turing functional Φ
such that

(i) Φ maps no set of positive measure to any single sequence,
(ii) the domain of Φ has Lebesgue measure at least 1 – �,
(iii) the range of Φ is a Π0

1 class, and
(iv) no sequence in the range of Φ is of DNC degree.

The remainder of this article is structured as follows. In Section 2,
we review the necessary background. Section 3 introduces the notions of
negligibility and non-negligibility and provides a number of examples from
classical computability theory and algorithmic randomness. The Levin–
V’yugin degrees, defined in terms of negligibility, are introduced in Section 4.
The general features of V’yugin’s technique for constructing semi-measures
are initially laid out in Section 5, while specific examples of the technique
are provided in Section 6. Lastly, in Section 7 we conclude with a final
observation about the connection between V’yugin’s technique and Π0

1
classes.

§2. Background.

2.1. Some notation. We fix the following notation and terminology. We
denote the natural numbers by �, and the set of infinite binary sequences,
also known as Cantor space, by 2�. We denote the set of finite binary strings
by 2<� and the empty string by ε. Let Q2 be the set of non-negative dyadic
rationals, that is, rationals of the form m/2n for m, n ∈ �.

Given X ∈ 2� and an integer n, X �n is the string that consists of the first
n bits of X, and X (n) is the (n + 1)st bit of X (so that X (0) is the first bit
of X). If � and � are strings, then � � � means that � is an initial segment
of �. Similarly, for X ∈ 2�, � ≺ X means that � is an initial segment of X.

Given a string �, the cylinder [[�]] is the collection of elements of 2�

having � as an initial segment. Similarly, given S ⊆ 2<�, [[S]] is defined to
be the collection

⋃
�∈S [[�]]. The cylinders form a basis for the usual product

topology on Cantor space, and thus the open sets for this topology are those
of the form [[S]] for some S. An open setU is said to be effectively open (or Σ0

1)
if U = [[S]] for some computably enumerable (hereafter, c.e.) set S ⊆ 2<�.
An effectively closed (or Π0

1) set is the complement of an effectively open
set. A sequence of open sets (Un)n∈� is said to be uniformly effectively open
if there exists a sequence (Sn)n∈� of uniformly c.e. sets of strings such that
Un = [[Sn]] for all n ∈ �.

ForA ⊆ 2�, we write (A)≡T for the closure ofA under Turing equivalence;
that is, we let

(A)≡T := {X ∈ 2� : (∃Y ∈ A) X ≡T Y}.
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2.2. Turing functionals and computable measures. We assume that the
reader is familiar with the basics of computability theory (for instance, the
material covered in [28, Chapters I–IV], [22, Chapter 1], or [9, Chapter 2]).

Definition 2.1.

(i) A Turing functional Φ: ⊆ 2� → 2� is represented by a c.e. set SΦ
of pairs of strings (�, �) such that if (�, �), (� ′, �′) ∈ SΦ and � � � ′,
then � � �′ or �′ � �.

(ii) For each � ∈ 2<�, we define Φ� to be the maximal string (in the
order given by �) in the set {� : (∃� ′ � �)((� ′, �) ∈ SΦ)} ∪ {ε}.
Similarly, for each s ∈ �, Φ�s is the maximal string in the set
{� : (∃� ′ � �)((� ′, �) ∈ SΦ[s])} ∪ {ε}, where SΦ[s] is the approxi-
mation of the c.e. set SΦ at stage s.

(iii) Let ΦX be the minimal (in the order given by �)z ∈ 2<� ∪ 2� such
that ΦX �n � z for all n.

(iv) We set dom(Φ) = {X ∈ 2� : ΦX ∈ 2�}.
(v) For � ∈ 2<�, let Φ–1(�) be {� ∈ 2<� : ∃�′ 
 � : (�, �′) ∈ SΦ}.

(vi) Lastly, for A ⊆ 2�, let Φ–1(A) be {X ∈ 2� : ΦX ∈ A}.

When ΦX ∈ 2�, we will often write ΦX as Φ(X ) to emphasize that we
view the functional Φ as a (partial) map from 2� to 2�.

A measure � on 2� is computable if � �→ �([[�]]) is computable as a real-
valued function, that is, if there is a computable function �̃ : 2<� × � → Q2

such that

|�([[�]]) – �̃(�, i)| ≤ 2–i

for every � ∈ 2<� and i ∈ �. For all measures appearing in this article we
assume that �(2�) ≤ 1 without explicit mention. From now on, we will
write �([[�]]) as �(�). By Carathéodory’s Theorem, if the values �(�), for
� ∈ 2<�, of a measure � on 2� are fixed, then there is a unique extension
of � to the Borel �-algebra generated by the sets [[�]], for � ∈ 2<�. In this
article, all measures will be defined in this way, which implies in particular
that the same sets are measurable for each of these measures.

The uniform (or Lebesgue) measure � is the probability measure for which
each bit of the sequence has value 0 with probability 1/2, independently of
the values of the other bits. It can be defined as the unique Borel measure
such that �(�) = 2–|�| for all strings �. Clearly, � is a computable measure.

2.3. Notions of algorithmic randomness. The primary notion of algo-
rithmic randomness that we will consider in this study is Martin-Löf
randomness.

Definition 2.2.

(i) A Martin-Löf test is a sequence (Ui)i∈� of uniformly effectively open
subsets of 2� such that for each i, �(Ui) ≤ 2–i .

(ii) X ∈ 2� passes the Martin-Löf test (Ui)i∈� if X /∈
⋂
i∈� Ui .

(iii) X ∈ 2� is Martin-Löf random, denoted X ∈ MLR, if X passes every
Martin-Löf test.
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We will also consider relative versions of Martin-Löf randomness,
obtained by relativizing the above notion of a Martin-Löf test to some oracle
A ∈ 2�; such a class will be written as MLRA. For A = ∅(n), the resulting
notion of randomness is known as (n + 1)-randomness. Other randomness
notions can be obtained as follows.

Definition 2.3. Let X ∈ 2�.

(i) X is Schnorr random if and only if X passes every Martin-Löf test
(Ui)i∈� such that �(Ui) is computable uniformly in i ∈ �.

(i) X is Kurtz random (or weakly 1-random) if and only if X is not
contained in any Π0

1 class of Lebesgue measure 0.
(ii) X is weakly 2-random if and only if X is not contained in any Π0

2 class
of Lebesgue measure 0.

(iii) X is difference random if and only if it is Martin-Löf random and not
Turing complete.

Let SR and KR denote the collections of Schnorr random and Kurtz
random sequences, respectively.

Each of the above notions of tests and randomness can also be formulated
for arbitrary computable measures� on 2� simply by replacing the Lebesgue
measure � in the respective definitions by �. Thus, for instance, for a fixed
computable measure �, a sequence X is �-Martin-Löf random, denoted
X ∈ MLR�, if and only if X is not contained in any �-Martin-Löf test.
Significantly, Martin-Löf randomness with respect to some computable
measure is Turing invariant in the following sense.

Theorem 2.4 (Levin and Zvonkin [20]; Kautz [12]). For every computable
measure� and for every non-computableX ∈ MLR�, there is someY ∈ MLR
such that X ≡T Y .

The requirement that X be non-computable is necessary since every
computable sequence X is random with respect to some computable
measures on 2�, for example the measure �X defined for A ⊆ 2� via

�X (A) =

{
1 if X ∈ A,
0 else.

§3. Negligibility and non-negligibility. To define the notions of negligibil-
ity and non-negligibility, we need to review the definition of left-c.e. semi-
measures, which were initially introduced by Solomonoff [29, 30] and first
systematically studied by Levin and Zvonkin [20].

3.1. Left-c.e. semi-measures.

Definition 3.1. A semi-measure is a function P : 2<� → [0, 1] that
satisfies

(i) P(ε) ≤ 1, and
(ii) P(�) ≥ P(�0) + P(�1) for every � ∈ 2<�.
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In addition, P is left-c.e. if P(�) is the limit of a computable, non-decreasing
sequence of rationals, uniformly in � ∈ 2<�.

Functions satisfying conditions (i) and (ii) above are sometimes referred
to in the algorithmic randomness literature as continuous semi-measures
to distinguish them from discrete semi-measures. As we do not consider
discrete semi-measures in this study, we will not make this distinction below.

In Section 6, the support of a semi-measure will play an important role.

Definition 3.2. The support of a semi-measure P, denoted Supp(P) is the
collection of sequences

{X ∈ 2� : ∀n P(X �n) > 0}.

It is not immediately clear how to extend semi-measures to Borel subsets
of 2�. Levin and V’yugin [19] proposed the following way of deriving
measures from left-c.e. semi-measures.

Definition 3.3. Given a left-c.e. semi-measure P and � ∈ 2<� we define

P(�) = inf
n

∑
��� ∧ |�|=n

P(�).

P can be extended to a measure on 2�, which we will also write as P, by
letting P([[�]]) = P(�) and then applying Carathéodory’s theorem. One can
show inductively that P is the maximal measure such that P(�) ≤ P(�) for
every � ∈ 2<� (see, for instance, [3, Proposition 6.5]). As a consequence,
P is typically not a probability measure.

Inversely, given any computable measure � defined on 2�, we can identify
it with the left-c.e. semi-measure � �→ �([[�]]) defined on 2<�; then we have
� = �.

An important property of left-c.e. continuous semi-measures is the
following.

Theorem 3.4 (Levin and Zvonkin [20]).

(i) For every Turing functional Φ, the function �Φ defined for every � ∈ 2<�

via

�Φ(�) = �([[Φ–1(�)]]) = �({X ∈ 2� : ΦX 
 �}),

where ΦX ∈ 2� ∪ 2<�, is a left-c.e. semi-measure.
(ii) For every left-c.e. semi-measure P, there is a Turing functional Φ such

that P = �Φ.

Using Theorem 3.4 one can derive an alternative characterization of P for
any left-c.e. semi-measure P.

Proposition 3.5. Let P be a left-c.e. semi-measure. Then

P(�) = �({X ∈ 2� : ΦX ∈ 2� ∧ ΦX 
 �}),
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where Φ is as in Theorem 3.4(ii). Moreover, for measurable A ⊆ 2�,
Carathéodory’s theorem implies that

P(A) = �(Φ–1(A)).

For a proof of the first part of the proposition, see [3, Proposition 6.5].

Theorem 3.6 (Levin and Zvonkin [20]). There is a universal left-c.e. semi-
measure, that is, a left-c.e. semi-measure M such that for every left-c.e. semi-
measure P, there is some constant c such that

P(�) ≤ c ·M (�),

for every � ∈ 2<�.

Remark 3.7.

(i) One way to define a universal semi-measure is via a universal func-
tional. For instance, for an effective enumeration (Φe)e∈� of all Tur-
ing functionals, we can define Φ: 2� → 2� via Φ(1e0X ) = Φe(X ) for
each e ∈ � and X ∈ 2�. It is not hard to verify that �Φ is universal.

(ii) For every left-c.e. semi-measure P, there is some c such that

P(�) ≤ c ·M (�).

To see this, observe that for the c appearing in Theorem 3.6 we have

P(�) = inf
n

∑
��� ∧ |�|=n

P(�) ≤ inf
n

∑
��� ∧ |�|=n

c ·M (�) = c ·M (�).

(iii) From (ii) and a straightforward argument using open covers of
null sets, we can derive the conclusion that for every left-c.e. semi-
measure P, P is absolutely continuous with respect toM ; that is, if
M (B) = 0 then P(B) = 0 for every measurable set B.

Using a universal semi-measure we can provide an alternative characteri-
zation of �-Martin-Löf randomness for each computable measure �.

Theorem 3.8 (Levin [17]; Schnorr, see Chaitin [6]). Let � be a computable
measure. Then X ∈ MLR� if and only if there is some c such that
�(X �n) ≥ c ·M (X �n) for every n.

We can now define the notion of negligibility.

Definition 3.9. We say that B ⊆ 2� is negligible ifM (B) = 0.

As a consequence of Remark 3.7(iii) we obtain the following corollary.

Corollary 3.10. Let P be a left-c.e. semi-measure and B ⊆ 2� a negligible
collection of sequences. Then P(B) = 0. In particular, �(B) = 0 for every
computable measure �.

Negligibility of a collection can alternatively be characterized by stipu-
lating that no Turing functional produce an element of that collection with
positive probability, as the following proposition shows.
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Proposition 3.11. Let (Φi)i∈� be an effective enumeration of all Turing
functionals. Then a measurable B ⊆ 2� is negligible if and only if

�

( ⋃
i∈�

Φ–1
i (B)

)
= 0.

Proof. (⇒:) Suppose that �
(⋃

i∈� Φ–1
i (B)

)
> 0. Then there is some

i such that �(Φ–1
i (B)) > 0. Setting P(�) = �([[Φ–1

i (�)]]) for � ∈ 2<�, it
follows from Theorem 3.4(i) that P is a left-c.e. semi-measure. Moreover,
we have P(B) = �(Φ–1

i (B)) by Proposition 3.5 and thus P(B) > 0. By
Remark 3.7(iii),M (B) > 0, so B is not negligible.

(⇐:) Let Φ be a Turing functional such that M = �Φ, which exists by
Theorem 3.4(ii). If B is not negligible, then we have 0 < M (B) = �(Φ–1(B))
by Proposition 3.5, and hence

�
(⋃
i∈�

Φ–1
i (B)

)
> 0. �

Intuitively, a collection of sequences is negligible if none of its elements
can be obtained with positive probability by any probabilistic algorithm.
Indeed, we can see a probabilistic algorithm as consisting of two steps: First
we generate infinitely many random bits, then we feed them to some Turing
functional to produce the desired output. More formally, we can think of a
probabilistic algorithm as given by applying a Turing functional Φ to some
random sequence. In this case, we can probabilistically compute an element
of some fixed collection B with positive probability if there are positive
measure many sequences X such that Φ(X ) ∈ B. Proposition 3.11 tells us
that the existence of such a probabilistic algorithm to compute elements of B
with positive probability is equivalent to the non-negligibility of B.

We conclude this subsection with a brief discussion of the atoms of a
semi-measure.

Definition 3.12. Let P be a semi-measure.X ∈ 2� is an atom of P if there
is some � > 0 such that P(X �n) > � for all n.

Lemma 3.13. Let P be a semi-measure. X ∈ 2� is an atom of P if and only
if P({X}) > 0.

Proof. (⇒:) If there is some � > 0 such that P(X �n) > � for all n, then
for each n and each m ≥ n,∑

X�n�� ∧ |�|=m
P(�) ≥ P(X �m) > �.

It follows from the definition of P that P(X �n) > � for all n.
(⇐:) P({X}) > 0 implies that there is a � > 0 such that P(X �n) > � for

all n. Then, for all n,

P(X �n) ≥ P(X �n) > �. �
Proposition 3.14 (Bienvenu et al. [3]). Let P be a left-c.e. semi-measure.

If X is an atom of P, then X is computable.
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3.2. Examples of negligible and non-negligible collections. We now provide
a number of examples of negligible and non-negligible collections of
sequences, where the first set of examples is given by a classical theorem
of Sacks.

Theorem 3.15 (Sacks [26]). For X ∈ 2�, �({Y ∈ 2� : Y ≥T X}) > 0 if
and only if X is computable. That is, {X} is non-negligible if and only if X is
computable.

Arbitrary subsets of 2� of positive Lebesgue measure are further
trivial examples of non-negligible collections. Thus, each of the notions
of randomness defined above in Section 2.3 forms a non-negligible
collection.

We can find more interesting examples by considering naturally occurring
collections of Turing degrees. We briefly review some of these collections.
First, a sequence has PA degree if it computes a consistent completion of
Peano arithmetic. A sequence X ∈ 2� is high (or has high Turing degree) if
and only if {X ∈ 2� : X ′′ ≥T ∅′}. A sequenceX ∈ 2� is 1-generic if for every
c.e. S ⊆ 2<�, there is some � ≺ X such that either � ∈ S or for all � 
 �,
� /∈ S. Similarly, X ∈ 2� is 2-generic if for every ∅′-c.e. S ⊆ 2<�, there is
some � ≺ X such that either � ∈ S or for all � 
 �, � /∈ S. Next, X ∈ 2�

has hyperimmune-free degree if and only if every X -computable function is
dominated by some computable function. Accordingly, X has hyperimmune
degree if and only if X computes a function that is not dominated by any
computable function. X ∈ 2� is of DNC degree if and only if there is some
f ≤T X such that f(e) �= ϕe(e) for all e ∈ �. Lastly, X is generalized low
(or is in GL1) if and only if X ′ ≡T X ⊕ ∅′.

To establish the negligibility or non-negligibility of the various collections
given above, we will use the following heuristic principles, which are justified
by Proposition 3.11.

(P1) If every sufficiently random sequence computes an element of some
measurable B ⊆ 2�, then B is non-negligible.

(P2) If no sufficiently random sequence computes an element of some
measurable B ⊆ 2�, then B is negligible.

Proposition 3.16. The following collections are non-negligible:

(i) the collection of sequences of DNC degree,
(ii) the collection of 1-generic sequences,
(iii) the collection of sequences of hyperimmune degree, and
(iv) the collection of generalized low sequences.

Proof. To show that each of the above collections is non-negligible, we
apply (P1) by identifying a notion of randomness such that every sequence
that is random in the respective sense computes an element of the given
collection. For (i), Kučera [14] proved that every Martin-Löf random
sequence is of DNC degree. For (ii), Kautz [12] established that every
2-random sequence computes a 1-generic. Since every 1-generic sequence
has hyperimmune degree, it further follows that every 2-random sequence
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computes a sequence of hyperimmune degree, yielding (iii). Lastly, for (iv),
Kautz [12] also proved that every 2-random sequence is generalized low. �

Proposition 3.17. The following collections are negligible:

(i) the collection of sequences of PA degree,
(ii) the collection of sequences of high degree,
(iii) the collection of 2-generic sequences, and
(iv) the collection of non-computable sequences of hyperimmune-free

degree.

Proof. To show that each of the above collections is negligible, we apply
(P2) by identifying a notion of randomness such that no sequence that is
random in the respective sense computes an element of the given collection.
For (i), Franklin and Ng [10] extended work of Stephan [31] to show that
no difference random sequence computes a completion of PA. For (ii),
Kautz [12] established that no 3-random has high degree. As the high
degrees are closed upwards under Turing reducibility, this implies that no
3-random computes a sequence of high degree. For (iii), Nies, Stephan, and
Terwijn [23] proved that every 2-random sequence forms a minimal pair in
the Turing degrees with every 2-generic, and so no 2-random computes a
2-generic. Lastly, for (iv), Barmpalias, Day, and Lewis-Pye [1, Theorem 5.1]
showed that for every 2-random sequence X, every non-computableY ≤T X
computes a 1-generic sequence and therefore in particular a sequence of
hyperimmune degree. So if any 2-random could compute a non-computable
sequence of hyperimmune-free degree, then this sequence could in turn
compute a sequence of hyperimmune degree, contradicting the fact that
hyperimmune-freeness is closed downwards under Turing reducibility. �

§4. The Levin–V’yugin degrees. Using the notion of negligibility, we can
define a degree structure whose elements are given by Turing invariant
subsets of 2�. Recall that A ⊆ 2� is Turing invariant if X ∈ A and Y ≡T X
imply Y ∈ A. Let I denote the set of measurable Turing invariant subsets
of 2�. In what follows, all Turing invariant collections of sets that we consider
are Borel and thus measurable. One can routinely verify that (I,∩,∪,c ) is a
Boolean algebra.

We now define a reducibility ≤LV on I.

Definition 4.1. Let A,B ∈ I.

(i) A ≤LV B if and only if A \ B is negligible.
(ii) A ≡LV B if and only if A ≤LV B and B ≤LV A.

Given A,B ∈ I, A ≤LV B says that, for any probabilistic algorithm, the
probability that it produces an element of A that is not in B is 0. The
stronger statement A <LV B says in addition that there is some probabilistic
algorithm such that the probability that it produces an element of B that is
not in A is strictly positive. In this sense, the larger a collection of sets is
with regard to the given order, the easier it is to probabilistically produce an
element of it.
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It is well-known that a Boolean algebra modulo an equivalence relation is
still a Boolean algebra. Thus, DLV = I/≡LV is a Boolean algebra, which we
refer to as the Levin–V’yugin algebra. In fact, DLV is a measure algebra, since
it is a Boolean algebra of measurable sets modulo M -null sets. Individual
elements of DLV will be referred to as LV-degrees. We will write LV-degrees
as a, b, ... and so on. For A ∈ I, degLV(A) denotes the LV-degree of A.
Given LV-degrees a and b and any A ∈ a and B ∈ b, we define

a ∧ b := degLV(A ∩ B),
a ∨ b := degLV(A ∪ B), and
ac := degLV(2� \ A).

It is straightforward to verify that these are well-defined. With slight abuse
of notation, we let ≤LV denote the order on DLV that is induced by the order
≤LV on I modulo the equivalence relation ≡LV; that is, we write a ≤LV b, for
two LV-degrees a and b, if there exist A ∈ a and B ∈ b such that A ≤LV B.
Then the following is immediate.

Proposition 4.2.

(i) The bottom element 0 of DLV consists of the Turing invariant negligible
subsets of 2�.

(ii) The top element 1 of DLV consists of all Turing invariant A ⊆ 2� such
that 2� \ A is negligible.

4.1. Elementary properties of the LV-degrees. Recall that A is an atom
of a Boolean algebra B if there are no elements A0, A1 ∈ B \ {0} such that
A = A0 ∨A1 andA0 ∧ A1 = 0. To avoid confusion with the atoms of a semi-
measure, we will hereafter refer to atoms of DLV as DLV-atoms. As reported
by V’yugin [33] in results attributed to Levin, two DLV-atoms are readily
identifiable: the LV-degree of the computable sequences, denoted c, and the
LV-degree of the Martin-Löf random sequences, denoted r. We provide the
proofs of these results here.

For A ⊆ 2�, let SpecT(A) = {degT(X ) : X ∈ A} be the Turing degree
spectrum of A. The following basic fact will be useful.

Lemma 4.3. Given a0, a1 ∈ DLV such that a0 ∧ a1 = 0, there are A0,A1 ∈ I
such that

(i) SpecT(A0) ∩ SpecT(A1) = ∅, and
(ii) degLV(A0) = a0 and degLV(A1) = a1.

Furthermore, for any given A ∈ I satisfying degLV(A) = a0 ∨ a1, we can
w.l.o.g. assume that

(iii) Ai ⊆ A for i = 0, 1.

Proof. The statement a0 ∧ a1 = 0 says that if we pick any element B0 ∈ I
of the equivalence class a0 and any elementB1 ∈ I of the equivalence class a1,
then B0 ∩ B1 is negligible. Then A0 := B0 \ B1 ≡LV B0 is in the equivalence
class a0, A1 := B1 \ B0 ≡LV B1 is in a1, and since B0 and B1 are closed under
Turing equivalence we also have SpecT(A0) ∩ SpecT(A1) = ∅.
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38 RUPERT HÖLZL AND CHRISTOPHER P. PORTER

To verify (iii), suppose that degLV(A) = a0 ∨ a1 for some A ∈ I
and let A′

0 and A′
1 satisfy conditions (i) and (ii) above. Then

degLV(A) = degLV(A′
0 ∪ A′

1), which implies that AΔ(A′
0 ∪ A′

1) is negligible.
As A′

0 and A′
1 are disjoint, this implies that A′

i \ A is negligible for i = 0, 1.
For i = 0, 1, setting Ai = A′

i ∩ A, we have

A′
i = (A′

i ∩ A) ∪ (A′
i \ A) = Ai ∪ (A′

i \ A).

Thus, A′
i and Ai differ only by a negligible set for i = 0, 1, and thus A0

and A1 satisfy (ii). Moreover, since Ai ⊆ A′
i for i = 0, 1, A0 and A1 also

satisfy (i). Thus, (iii) holds. �
Proposition 4.4. c is a DLV-atom.

Proof. Suppose that c is not a DLV-atom. Then there are LV-degrees
a0, a1 > 0 such that a0 ∧ a1 = 0 and a0 ∨ a1 = c. Then, if we choose A in
condition (iii) of Lemma 4.3 as the collection of all computable sequences,
there areA0,A1 ∈ I satisfying all three conditions of that lemma. But clearly,
conditions (i) and (iii) are in contradiction with each other in this case. �

Theorem 4.5. r is a DLV-atom.

To prove Theorem 4.5, we will need to draw upon several classical results
from measure theory, as well as several auxiliary lemmata. Here we follow
V’yugin’s general proof strategy while filling in more details, especially in
isolating and proving Lemma 4.6 below.

As noted in Remark 3.7(iii), for any left-c.e. semi-measure P, P is
absolutely continuous with respect toM . It follows by the Radon–Nikodym
Theorem that there is a measurable function dP

dM
such that, for all measurable

X ⊆ 2�,

P(X ) =
∫
X

dP

dM
(X )dM (X ).

The Radon–Nikodym Theorem further guarantees that for any measurable
f: 2� → R such that for all measurable X ⊆ 2� the property

P(X ) =
∫
X
f(X )dM (X )

holds, we have f(X ) =
dP

dM
(X ) forM -almost every X ∈ 2�.

Lemma 4.6.

dP

dM
(X ) = limn→∞

P(X �n)

M (X �n)
forM -almost every X ∈ 2�.

Proof. First, recall that for a measure � on 2�, a �-martingale is a
function d : 2<� → R≥0 such that

�(�)d (�) = �(�0)d (�0) + �(�1)d (�1),

for every � ∈ 2<�.1

1See, for instance, [22, Chapter 7] or [9, Section 6.3] for a discussion of the role of
martingales in the theory of algorithmic randomness.
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Now, observe that
P

M
is anM -martingale. Indeed, for every � ∈ 2<�,

M (�)
P(�)

M (�)
= P(�) = P(�0) + P(�1) =M (�0)

P(�0)

M (�0)
+M (�1)

P(�1)

M (�1)
.

Thus limn→∞
P(X �n)

M (X �n)
exists forM -almost everyX ∈ 2� by the martingale

convergence theorem.2 Thus, by the Radon–Nikodym theorem, we just need
to show that

P(A) =
∫
A

lim
n→∞

P(X �n)

M (X �n)
dM (X ), (‡)

for every clopen A ⊆ 2� (which can then be extended to every measur-
able A ⊆ 2�). Since there is some c such that P(�) ≤ c ·M (�) for every
� ∈ 2<�, we have for every n that

P(X �n)

M (X �n)
≤ c,

and hence by the dominated convergence theorem,

lim
n→∞

∫
A

P(X �n)

M (X �n)
dM (X ) =

∫
A

lim
n→∞

P(X �n)

M (X �n)
dM (X ). (†)

Using (†), it now suffices to show that P(A) is equal to the left-hand
side of (‡). For each sufficiently large N, let A =

⋃k
i=1[[�i ]] for distinct

�1, ... , �k ∈ 2N . Then

lim
n→∞

∫
A

P(X �n)

M (X �n)
dM (X ) =

∫
A

P(X �N )

M (X �N )
dM (X ) (1)

=
k∑
i=1

∫
[[�i ]]

P(X �N )

M (X �N )
dM (X ) (2)

=
k∑
i=1

P([[�i ]])

M ([[�i ]])
M ([[�i ]]) (3)

=
k∑
i=1

P([[�i ]]) = P(A). �

2It is well known that every martingale in the sense of algorithmic randomness (as given
above) is a martingale in the classical sense, and thus the classical martingale convergence
theorem is applicable. See [9, Theorem 7.1.3] for a proof of an effective version of the
martingale convergence theorem.
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Lemma 4.7 (V’yugin [33]). Let P be a left-c.e. semi-measure and suppose
that for B ⊆ 2�, we haveM (B0) = 0, where

B0 =
{
X ∈ B :

dP

dM
(X ) = 0

}
.

Then P(B) = 0 implies thatM (B) = 0.

Proof. By the hypothesis,

0 = P(B \ B0) =
∫
B\B0

dP

dM
(X )dM (X ).

Since
dP

dM
(X ) �= 0 for every X ∈ B \ B0, it follows that M (B \ B0) = 0.

Thus,M (B) = 0. �

Lemma 4.8 (V’yugin [33]). Let � be a computable measure, and let
B ⊆ MLR� be such that �(B) = 0. Then B is negligible.

Proof. Since B ⊆ MLR�, by Theorem 3.8, for every X ∈ B, there is
some c such that

�(X �n) ≥ c ·M (X �n),

for every n. It follows that for all n,

�(X �n)

M (X �n)
≥ �(X �n)
M (X �n)

≥ c.

By Lemma 4.6,
d�

dM
(X ) �= 0 for M -almost every X ∈ B, and so by

Lemma 4.7 and the fact that �(B) = 0, it follows that B is negligible. �

Lastly, we need one further classical result. Recall that A ⊆ 2� is a tailset
if for all � ∈ 2<� and all Y ∈ 2� with �Y ∈ A we also have that �Y ∈ A for
every � ∈ 2|�|. That is, for a tailset A, modifying a finite initial segment of
an infinite binary sequence has no bearing on whether that sequence is an
element of A or not. The following result will only be used in the context of
Cantor space; for a proof specific to that setting see [9, Theorem 1.2.4].

Theorem 4.9 (Kolmogorov’s 0–1 Law). If A ⊆ 2� is a measurable tailset,
then �(A) = 0 or �(A) = 1.

We can now prove Theorem 4.5.

Proof of Theorem 4.5. Suppose that r = a0 ∨ a1 and a0 ∧ a1 = 0 for
some a0, a1 > 0. Let A0,A1 ∈ I be collections of sequences as given by
Lemma 4.3 where degLV(Ai) = ai andAi ⊆ (MLR)≡T for i = 0, 1. Note that
for i = 0, 1, for each X ∈ Ai there is some Y ∈ MLR ∩ Ai such that
X ≡T Y . Let us consider the subcollections of sequences A∗

i = MLR ∩ Ai
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for i = 0, 1. Since each Ai is non-negligible, it follows that

�

(⋃
e

Φ–1
e (Ai)

)
> 0,

for i = 0, 1. Since each X ∈ Ai is Turing equivalent to some Y ∈ A∗
i , it

follows for i = 0, 1 that ⋃
e

Φ–1
e (Ai) =

⋃
e

Φ–1
e (A∗

i ),

and hence

�

(⋃
e

Φ–1
e (A∗

i )
)
> 0.

Then Proposition 3.11 and Lemma 4.8 imply that �(A∗
i ) > 0 for i = 0, 1. But

each A∗
i is a measurable tailset, so by Theorem 4.9 it follows that �(A∗

i ) = 1
for i = 0, 1, which is impossible as A∗

0 and A∗
1 are disjoint.

4.2. Additional results about the LV-degrees. It is reasonable to ask
whether the degree r ∨ c is the top degree in DLV. V’yugin gave a negative
answer to this question by proving that the complement of r ∨ c in DLV is
non-negligible. We will give the details of his proof in Section 6, where we
will provide the first instance of the technique of building semi-measures that
we mentioned in the introduction. However, in this subsection, we provide
a simpler proof of this result, and a number of new results about DLV.

Given a ∈ DLV and A ⊆ 2� such that degLV((A)≡T) = a, we say that A
generates a or that a is the LV-degree generated byA. We will use the following
lemma repeatedly.

Lemma 4.10. Let A,B ⊆ 2� be measurable sets.

(i) IfA \ B is negligible, then (A)≡T \ (B)≡T is also negligible. In particular,
we have (A)≡T ≤LV (B)≡T .

(ii) If A ⊆ B, then (A)≡T ≤LV (B)≡T .

Proof. (i) First observe that (A)≡T \ (B)≡T ⊆ (A \ B)≡T . Indeed, given
X ∈ (A)≡T \ (B)≡T , there is some Y ≡T X such that Y ∈ A and for
allZ ∈ B, we haveZ �≡T X . It follows thatY /∈ B, and henceX ∈ (A \ B)≡T .

Now suppose that (A)≡T \ (B)≡T is non-negligible. By the above observa-
tion, (A \ B)≡T is also non-negligible. For i, j ∈ � define

Si,j = {X ∈ 2� : (∃Y ∈ A \ B) (Φi(Y ) = X ∧ Φj(X ) = Y )}.
Then we have

(A \ B)≡T =
⋃

(i,j)∈�2

Si,j .

Since (A \ B)≡T is non-negligible, there is some pair (i, j) ∈ �2 such that
Si,j is non-negligible. Then by Proposition 3.11, there is some Turing
functional Ψ such that �(Ψ–1(Si,j)) > 0. By definition of Si,j , if Ψ(Z) ∈ Si,j ,
then Φj(Ψ(Z)) ∈ A \ B. Thus Ψ–1(Si,j) ⊆ (Φj ◦ Ψ)–1(A \ B), and so
�((Φj ◦ Ψ)–1(A \ B)) > 0. Thus by Proposition 3.11, A \ B is not negligible.
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(ii) If A ⊆ B, then A \ B = ∅ is trivially negligible. Thus by (i), (A)≡T ≤LV

(B)≡T . �

It is natural to ask how the LV-degree of the Martin-Löf random
Turing degrees compares to the LV-degrees associated with other notions of
algorithmic randomness. First we show that the LV-degree of the Schnorr
random Turing degrees is also r.

Theorem 4.11. degLV((SR)≡T) = r.

Proof. (≥LV:) MLR ⊆ SR, and thus by Lemma 4.10(ii),
(MLR)≡T ≤LV (SR)≡T . (≤LV:) We show that SR \ MLR is negligible,
which by Lemma 4.10(i) implies (SR)≡T ≤LV (MLR)≡T . As shown by Nies,
Stephan, and Terwijn [23], every X ∈ SR \ MLR has high degree. But by
Proposition 3.17, the collection of sequences of high degree is negligible. �

Corollary 4.12. Let R be any notion of algorithmic randomness such that
MLR ⊆ R ⊆ SR. Then

degLV((R)≡T) = r.

Proof. By Lemma 4.10(ii) and Theorem 4.11, we have

r = degLV((MLR)≡T) ≤LV degLV((R)≡T) ≤LV degLV((SR)≡T) = r. �

Thus, notions of randomness such as computable randomness,
Kolmogorov–Loveland randomness, and the non-monotonic randomness
notions studied in [2] all are of LV-degree r. Similar results hold for notions
of randomness stronger than Martin-Löf randomness, as the following
result shows.

Theorem 4.13. For everyZ ∈ 2�, degLV((MLRZ)≡T) = degLV((MLR)≡T).

Proof. (≥LV:) MLRZ ⊆ MLR, and so by Lemma 4.10(ii), (MLRZ)≡T

≤LV (MLR)≡T .
(≤LV:) We show that MLR \ MLRZ is negligible and apply Lemma 4.10(i).

Given anyX ∈ MLR \ MLRZ , by the XYZ Theorem of Miller and Yu [21],
ifX ≤T Y ∈ MLRZ , thenX ∈ MLRZ . Thus noY ∈ MLRZ computes any
X ∈ MLR \ MLRZ . That is, no sufficiently random sequence computes an
element of MLR \ MLRZ , and so by our heuristic (P2), this latter collection
is negligible. �

An immediate consequence of Theorem 4.13 is that for eachn ∈ �, the LV-
degree of the collection of n-random sequences is r. Another consequence is
the following, the proof of which is analogous to that of Corollary 4.12.

Corollary 4.14. Let R be any notion of algorithmic randomness such that
MLR∅′ ⊆ R ⊆ MLR. Then

degLV((R)≡T) = r.

It follows that notions of randomness such as difference randomness,
Demuth randomness, and weak 2-randomness all generate the LV-degree r.
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We now show that r ∨ c is not the top LV-degree by exhibiting an LV-
degree that is incomparable with it. Let g be the LV-degree generated by
the collection of 1-generic sequences. By Proposition 3.16 this collection is
non-negligible.

Proposition 4.15.

(i) r ∧ g = 0, and hence r, g <LV r ∨ g.
(ii) (r ∨ c) ∧ g = 0.

(iii) r ∧ (g ∨ c) = 0.

Proof. (i) As shown by Demuth and Kučera [8], no 1-generic can
compute a Martin-Löf random sequence. Thus the set of Turing degrees
containing a Martin-Löf random sequence is disjoint from the set of Turing
degrees containing a 1-generic sequence, from which the first part of (i)
follows. The second part of (i) immediately follows from the first part.
Statements (ii) and (iii) follow from (i) and the fact that the collection of
computable sequences is disjoint from the collection of 1-generic sequences
and from the collection of Martin-Löf random sequences. �

Corollary 4.16. Neither r ∨ c nor g ∨ c equals the top LV-degree 1.

Let h be the LV-degree of the collection of sequences of hyperimmune
degree, which is non-negligible by Proposition 3.16.

Remark 4.17. As shown by Kurtz, a Turing degree is hyperimmune if
and only if it contains a weakly 1-generic sequence, where a sequence is
weakly 1-generic if for every dense c.e. S ⊆ 2<�, there is some � ≺ X such
that � ∈ S. Here S ⊆ 2<� is called dense if every element of 2<� has an
extension in S. If we write the collection of weakly 1-generic sequences as
W1GEN we have h = degLV((W1GEN)≡T).

An additional characterization of h can be given in terms of the collection
KR of Kurtz random sequences.

Proposition 4.18. h = degLV((KR)≡T).

Proof. (≤LV:) Since every weakly 1-generic sequence is Kurtz random,
by Lemma 4.10(ii) we have

degLV((W1GEN)≡T) ≤LV degLV((KR)≡T).

(≥LV:). We need to show that the collection of Kurtz random sequences
that do not have hyperimmune degree is negligible. As shown by Yu
in unpublished work (see [9, Theorem 8.11.12]), every Kurtz random
sequence of hyperimmune-free degree is weakly 2-random. Since every
2-random sequence has hyperimmune degree, such a sequence must be
weakly 2-random and not 2-random. By Corollary 4.14, the collection of
weakly 2-random sequences that are not 2-random is negligible, from which
the conclusion follows. �

Since the collection of Kurtz random sequences includes every Martin-
Löf random sequence and every 1-generic sequence, we obtain the following
result.
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Proposition 4.19. r <LV h and g <LV h.

Proof. Since MLR ⊆ KR and 1GEN ⊆ KR, by Lemma 4.10(ii)
we have r ≤LV h and g ≤LV h. Moreover, 1GEN ⊆ KR \ MLR, so this
latter collection is non-negligible, which implies r <LV h. Similarly,
MLR ⊆ KR \ 1GEN implies g <LV h. �

h <LV h ∨ c, as the collection of computable sequences is disjoint from
the collection of sequences of hyperimmune degree. In fact, h ∨ c can be
identified as the top LV-degree.

Proposition 4.20. h ∨ c = 1.

Proof. By Proposition 3.17(iv) the collection of non-computable
sequences of hyperimmune-free degree is negligible, from which the result
immediately follows. �

The following corollary, pointed out to the authors by Frank Stephan,
allows identifying h also as the LV-degree of immunity notions.

Definition 4.21.

(i) Let IM denote the collection of immune sequences, where a sequence
is immune if it has no infinite computably enumerable subsets.

(ii) Let BI denote the collection of biimmune sequences, where a sequence
is biimmune if it and its complement are immune.

(iii) Let BHI denote the collection of bihyperimmune sequences, where
a sequence is bihyperimmune if it and its complement are hyperim-
mune.

Then set i = degLV((IM)≡T), b = degLV((BI)≡T), and bh = degLV
((BHI)≡T).

Corollary 4.22. We have i = b = h = bh = cc .

Proof. Let COMP denote the computable and HI denote the hyperim-
mune sequences. Then

(2� \ COMP)≡T = (IM)≡T ⊇ (BI)≡T ⊇ (BHI)≡T = (HI)≡T .

Here the first equality is by Dekker and Myhill [7] (see, for example,
[24, item (1) on page 498]), the first inequality is by definition, and the
final equality is by Kurtz [16, Corollary 2.1]. Using the definition of
hyperimmunity given in terms of strong c.e. arrays (see, for example, [24,
Definition III.3.7]), it is easy to see that every hyperimmune set is immune,
and by applying this to both a set and its complement, we see that every
bihyperimmune set is biimmune, giving the second inequality.

Therefore, by Lemma 4.10(ii), we have

h = bh ≤LV b ≤LV i = cc = h,

where the last equality is by Proposition 4.20. �
We can also conclude that there is no intermediate LV-degree between h

and 1.
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Corollary 4.23. There is no LV-degree e such that h <LV e <LV 1.

Proof. By Proposition 4.4, c is an atom of DLV, and by Corollary 4.22,
cc = h. It is a general fact that in Boolean algebras the complement of an
atom is a co-atom, that is, an element k such that there is no k′ such that
k < k′ < 1 (see, for instance, [5, item (3) on page 79]). �

Let d denote the LV-degree of the collection of sequences of DNC degree,
which is non-negligible by Proposition 3.16. Given that every Martin-Löf
random sequence is of DNC degree, we have r ≤LV d; Bienvenu and Patey [4]
showed the strictness of the relation.

Theorem 4.24 (Bienvenu and Patey [4]). r <LV d.

Since c ∧ d = 0, we have the following corollary.

Corollary 4.25. r ∨ c and d are incomparable.

We can also easily derive the following result and corollary.

Proposition 4.26. d ∧ g = 0.

Proof. No 1-generic sequence is of DNC degree by a result of Demuth
and Kučera [8], and thus the result follows from the same reasoning used in
the proof of Proposition 4.15(i). �

Corollary 4.27. (r ∨ g) <LV (d ∨ g).

Proof. Using general properties of Boolean algebras (see, for exam-
ple, [5]), we have

(d ∨ g) ∧ (r ∨ g)c = (d ∨ g) ∧ (rc ∧ gc) = ((d ∨ g) ∧ gc) ∧ rc

= (d ∧ gc) ∧ rc = d ∧ rc >LV 0,

where the last equality is by Proposition 4.26 and the final inequality is by
Theorem 4.24. In particular, (d ∨ g) >LV (r ∨ g). �

In Section 6, our new application of V’yugin’s technique for building semi-
measures implies that the collection of non-computable sequences that are
not of DNC degree is non-negligible, which in turn implies that d ∨ c is not
the top LV-degree. However, we can alternatively derive this latter fact as
follows.

Proposition 4.28. d <LV h.

Proof. By Proposition 4.20, d ≤LV h ∨ c, which implies that the col-
lection of sequences of DNC degree that are neither computable nor of
hyperimmune degree is negligible. But clearly no sequence of DNC degree is
computable, and thus we have d ≤LV h. Since every 1-generic sequence has
hyperimmune degree and is not of DNC degree, we have h �LV d, and thus
d <LV h. �

The following results about joins in DLV are immediate.
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Figure 1. Standard arrows represent strict separations in the LV-degrees. Dotted arrows represent the
following open questions: (a) Is g a DLV-atom? (b) Is d ∨ g = h, and thus is d ∨ g ∨ c = 1?

Corollary 4.29.

(i) c <LV r ∨ c <LV d ∨ c <LV 1.
(ii) c <LV g ∨ c <LV d ∨ g ∨ c.

(iii) d ∨ c, g ∨ c, and d ∨ g are pairwise incomparable LV-degrees.

The results of this section are summarized in Figure 1.

4.3. Open questions. We conclude with the following open questions.

Question 4.30. Is d ∨ g = h? In particular, is d ∨ g ∨ c = 1?

Given that r is a DLV-atom, it is also reasonable to ask whether the same
holds for g.

Question 4.31. Is g a DLV-atom?

For the definitions of the notions appearing in the following open
questions, see a standard reference such as [9].

Question 4.32.

– What are the LV-degrees of the collections of sequences that are Turing
equivalent to some sequence of Hausdorff dimension 1, of packing
dimension 1, of Hausdorff dimension < 1, of packing dimension < 1?
Given some α ∈ (0, 1), what are the LV-degrees of the collections of
sequences that are Turing equivalent to some sequence of Hausdorff
dimension α or of packing dimension α?
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– What is the LV-degree of the collection of sequences that compute some
1-generic sequence?

– What is the LV-degree of the collection of generalized low 1 sequences,
that is, sequences X with the property that X ′ ≡T X ⊕ ∅′?

§5. How to build a semi-measure. In this section, we outline a template for
building left-c.e. semi-measures that was developed [33] and applied [34–36]
by V’yugin and which has several applications in the study of DLV as well
as the study of Π0

1 classes. The main idea of V’yugin’s construction is that a
semi-measure on 2<� can be seen as a network flow on a directed graph G
such that

(i) the nodes of G, VG , are the elements of 2<�, and
(ii) the edges of G, EG , are pairs (�, �) of nodes �, � ∈ 2<� such that � ≺ �.
For �, � ∈ 2<� with � � � we will say that � is above � and that � is below �;

that is, in this article the binary tree 2<� grows downward. Note that, while
this goes against the usual convention in computability theory, it has the
intuitive advantage that measure will flow from the root ε downwards, as
liquids naturally do.

Given �, � ∈ 2<� with � ≺ �, the length of (�, �), written as |(�, �)|, is
defined to be |�| – |�|. If |(�, �)| = 1 then we always have (�, �) ∈ EG ; such
edges of G will be referred to as normal edges and the set of normal edges
will be denoted by NG . If |(�, �)| > 1 then (�, �) may or may not be in EG ; if
it is, we call (�, �) an extra edge of G. The set of extra edges will be denoted
by XG . We will omit the subscripts if G is clear from context.

Directed graphs G that satisfy VG = 2<� as described above will be called
2<�-digraphs. In the sequel, we will restrict our attention to computable
2<�-digraphs.

Definition 5.1. Given a 2<�-digraph G, a network on G is a function
q : EG → Q ∩ [0, 1] satisfying, for each � ∈ 2<�,∑

(�,�)∈EG

q(�, �) ≤ 1.

The idea here is that for a node �, q(�, �) gives the proportion of the flow
arriving in � that continues to flow into �.

In the remainder of the article, we will always have q(�, �) > 0 for every
extra edge (�, �) ∈ X . In fact, if |(�, �)| > 1, we will silently identify the two
properties q(�, �) = 0 and (�, �) /∈ E since both cases equally have no effect
on the outcome of the construction. Note however that for normal edges
(�, �) ∈ N the case q(�, �) = 0 will occur quite often.

Definition 5.2. The amount of flow into a node �, denotedR(�), is defined
inductively by

R(ε) = 1,

R(�) =
∑

(�,�)∈EG

q(�, �)R(�).
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Hereafter we will refer to R as the in-flow function associated with q.
Observe further that if q is computable, then so is R.

Remark 5.3. � ≺ � does not necessarily imply that R(�) ≥ R(�). In
particular, not all of the flow that we observe below � must have flowed
through � itself, as there could be an extra edge that bypasses � and diverts
flow to an extension of �.

To correct for this lack of monotonicity of R, we define the q-flow
associated with a network q. Given � ∈ 2<�, let T� be the collection of
finite prefix-free sets of strings � such that � � �.

Definition 5.4. Let q be a network on a 2<�-digraph G, and let R be the
in-flow function associated with q. Then the q -flow P is defined by

P(�) = sup
D∈T�

∑
�∈D
R(�).

P(�) is thus the maximal amount of flow that can be observed passing
through a set of extensions of the node �. The motivation for looking at
prefix-free sets D of nodes is to avoid counting the same quantity of flow
more than once. Note that since {�} ∈ T� , we always have P(�) ≥ R(�),
but equality need not hold due to the reason discussed in Remark 5.3.

We have the following important fact.

Lemma 5.5. Let q be a computable 2<�-digraph. Then the q-flow P is a
left-c.e. semi-measure.

Proof. Clearly, P(ε) = 1. Let s0 = sup
D∈T�0

∑
�∈D R(�) and s1 = sup

D∈T�1∑
�∈D R(�). Given � > 0, there are D0 ∈ T�0 and D1 ∈ T�1 such that∑

�∈Di
R(�) ≥ si – �/2,

for i = 0, 1. Then D0 ∪D1 ∈ T� , and hence

sup
D∈T�

∑
�∈D
R(�) ≥

∑
�∈D0∪D1

R(�) ≥ s0 + s1 – �,

for every � > 0. Thus P(�) ≥ P(�0) + P(�1). Lastly, P(�) is left-c.e.
uniformly in �, as G, q, and R are all computable. �

Definition 5.6. A network q is elementary if q(�, �) = 1/2 for all but
finitely many (�, �) ∈ N .

By the definition of a network q, it follows that the set of extra edges X
is finite if q is elementary. Since by definition networks q only take rational
values, every elementary network q is computable. Given a computable
network q, we can write q as a limit of elementary networks (qn)n∈� by
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requiring that

(i) qn(�, �) = q(�, �) if |�| ≤ n;
(ii) qn(�, �) = 1/2 if (�, �) ∈ N and |�| > n;

(iii) qn(�, �) = 0 if (�, �) ∈ X and |�| > n.

Note that these conditions imply that qn–1 and qn agree on every edge (�, �)
except possibly on edges (�, �) satisfying |�| = n. We refer to such a sequence
of elementary networks as the sequence of elementary restrictions of q.
Moreover, we will refer to each qn as the level n elementary restriction
of q.

5.1. The general template. The semi-measure P that we construct will be
one induced by a network flow q as described in the previous paragraphs.
Here, q will be constructed through an infinite procedure which works in
stages. At each stage n, an elementary network qn together with its extra edge
set Xn will be built. In the end we will then let q = limn qn and X =

⋃
n Xn.

We first make some general informal remarks about the overall procedure,
and then go on to describe in formal detail the individual stages.

The general construction template depends upon three parameters:

(1) A computable function t : � → �, called the task function, such that
the values

t(0), t(1), t(2), t(3), ... ,

follow the pattern

0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, ... .

In particular, for each i, the set {n : t(n) = i} is infinite and
t(n) �= t(n + 1) for every n. Every node will be assigned a task; namely,
each � ∈ 2<� will be assigned the task t(|�|). For a given task i, the
i-nodes are the nodes � ∈ 2<� with t(|�|) = i .

(2) A computable predicate B(q′, �, �) which is defined for elementary
networks q′ on a 2<�-digraph G and strings �, � such that both are
i-nodes for the same i ∈ �.

(3) A computable, strictly increasing function c : � → �.

The predicate B will be determined by the requirements we are attempting
to satisfy, while the function c will be specifically used to provide the initial
values for countdowns to expiration for certain nodes that are active in the
construction, in a technical sense to be explained shortly.

We take action towards fulfilling the task i if we add an extra edge
connecting two i-nodes; we will refer to such an edge as an i-edge (or as
an edge that is assigned to task i). That is, an edge (�, �) ∈ EG is an i-edge
if t(|�|) = t(|�|) = i . Let X [i ] be the set of extra edges assigned to task i.
Note that we never assign normal edges to any task i, since t(n) �= t(n + 1)
for every n.

In the course of the construction, for j < i , we would ideally want to
first perform all actions necessary for task j before beginning to work on
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50 RUPERT HÖLZL AND CHRISTOPHER P. PORTER

task i. That is, for every extra edge (�, �) between a pair of i-nodes � and �
and for any extra edge (� ′, �′) assigned to some task j with j < i , we would
like to have |�′| < |�|. But, in fact, during the construction we will not
be able to always ensure this property. After having added (�, �) for task
t(|�|) = t(|�|) = i it may turn out later in the construction that further
edges for task j need to be added. Adding them will then invalidate our
previous actions for task i. The edge (�, �) stays in the digraph, but we will
consider it a failure, as it does not help us achieve the desired goal for task i.
While the presence of (�, �) also causes no harm, we will, at some later stage,
have to completely restart the construction for task i. The construction can
therefore be thought of as a type of finite injury argument.

For a given task i, we will need to talk about the minimal length of an
i-node to which an extra edge can be attached. We thus define the following
auxiliary function w: Let q′ be an elementary network on G, with the
associated set of extra edges X ′ through which some of the flow passes.
Then for each i ∈ �, we define

w(i, q′) = min{n : t(n) = i ∧ (∀j < i)(∀(�, �) ∈ X ′[j]) |�| < n}.
That is, w(i, q′) is the least n such that (i) t(n) = i and (ii) every edge in G
assigned to task j for some j < i ends in a node of length less than n.

For an arbitrary (that is, not necessarily elementary) computable net-
work q′, w(i, q′) may be undefined in general. But in fact, for q’s built using
the template described here,w(i, q′) will always be well-defined by the above
equation, and w(i, q) = limn w(i, qn), where qn is the level n elementary
restriction of q. The lengths n where w(i, qn–1) �= w(i, qn) correspond to the
failures described above.

Another component of our construction is that at each stage, a number of
nodes may be set as active, serving as candidates to which an extra edge may
be attached. Before activation, all flow into a node � will be equally divided
to flow into �’s direct successor nodes �0 and �1 through the corresponding
normal edges. To activate a node we reduce the flow from � into �0 and �1,
resulting in a certain amount of flow into � being temporarily unused. We
say that we have delayed part of the flow. In a later step we may then attach
an extra edge to � and direct the delayed, leftover flow through this new
edge.

More formally, for an elementary network q′, we have a function d ′, called
a flow-delay function, which satisfies

d ′(�) = 1 – q′(�, �0) – q′(�, �1),

for every � ∈ 2<�. This is precisely the proportion of flow into � that is
prevented from flowing into �0 and �1. The active nodes consist of those
nodes � such that 0 < d ′(�) < 1; the construction will be such that if we
block all of the flow through a node � by setting d ′(�) = 1, then it, and
all of its extensions, will never be activated from that point on. Moreover,
for j < i , to enforce the requirement that all j-edges end before any i-edges
begin, whenever we attach an extra edge to a j-node �, all active i-nodes
whose length is less than |�| become unusable as, by the conditions in the
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construction, we will never attach edges to such nodes. We will call such
nodes deactivated. Intuitively, we can then think of the flow that was delayed
at such nodes as wasted.

Next, given a node � to which we would like to attach an extra edge,
there is a function �(�, q′, n) that selects (somewhat arbitrarily) a candidate
� � � of length n for connecting an edge between � and � in an elementary
network q′ in such a way as to satisfy the predicate B, if such a � exists.
Specifically,

�(�, q′, n) = min{� ∈ 2n : � � � ∧ t(|�|) = t(|�|) ∧ B(q′, �, �)},
where the minimum refers to the lexicographic ordering of strings � of
length n.

After these informal remarks, we describe in detail how to construct the
network q, with its set of extra edges X and its flow-delay function d:
As mentioned at the start of this subsection, we first build a sequence
(qn,Xn, dn)n∈�, where each qn is an elementary network with associated
set of extra edges Xn. For each n ∈ � we will let dn denote the flow-delay
function associated with qn. In the end we will set q = limn qn, X =

⋃
n Xn,

and d = limn dn.
The definition of the sequence (qn,Xn, dn)n∈� proceeds in stages as follows:

For n = 0,

q0(�, �) =

{
1/2 if � = �0 or � = �1,
0 otherwise.

Clearly d0(�) = 0 for all � ∈ 2<� and X0 = ∅.
Suppose we have defined (qn–1,Xn–1, dn–1), where for all (�, �) ∈ Xn–1,

|�| < n. We will first define Xn, dn, and then qn. The goal of this stage of the
construction is to attach an extra edge connecting a t(n)-node whose length
is strictly less than n – 1 with a t(n)-node of length n. We consider two cases.

Case 1:w(t(n), qn–1) = n. This means that the extra edges in Xn–1 assigned
to some task j < t(n) terminate in nodes of length ≤ n – 1, and this is the
least n for which this holds. This further implies that there is no active
t(n)-node of length less than n to which we can attach an extra edge. We
thus take the following steps:

(i) Set Xn = Xn–1.

(ii) Set dn(�) =

{
1/c(n) if |�| = n,
dn–1(�) otherwise.

Setting dn(�) = 1/c(n) for each � of length n has the effect of activating
these nodes, in anticipation of attaching a t(n)-edge to them later in the
construction. We call this the initial activation of the nodes, since Case 1 is
the case where we begin working towards task i (or where we begin anew to
work towards it, in case that a previous injury has occurred for task i that
requires us to start over).

Recall that c provides the initial value for a countdown mechanism that
we will use during the construction; once we implement this template for
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a specific application, we will have to choose c carefully to ensure that a
positive amount of flow stays in the network in the limit.

Case 2:w(t(n), qn–1) < n. Our hope in this case is that we can attach some
extra edges from t(n)-nodes of length≥ w(t(n), qn–1) to t(n)-nodes of length
n. Thus we search for � ∈ 2<� such that the following four conditions hold:

(a) w(t(n), qn–1) ≤ |�| < n;
(b) 0 < dn–1(�) < 1;
(c) �(�, qn–1, n) is defined; and
(d) � ≺ � implies that (�, �) /∈ Xn–1.

Condition (a) guarantees that the start of the new edge occurs beyond the
end of any currently present j-edge for j < t(n); in particular, this rules out
attaching edges at deactivated nodes. Condition (b) guarantees that � is
active (henceforth, we will refer to a node � such that 0 < dn(�) < 1 as
active at stage n). Condition (c) guarantees that � is assigned to task t(n)
and that there is a length n node that can serve as the endpoint of a new
t(n)-edge we want to attach at � (that is, the predicate B is satisfied). Finally,
condition (d ) guarantees that no extra edge has been previously attached
starting at �.

Let Cn be the set of � ∈ 2<� such that conditions (a)–(d ) are satisfied.
Then we have two subcases to consider.

Subcase 2.1: Cn �= ∅. For every � ∈ Cn and every � � � with |�| = n we let

dn(�) =
{

0 if � = �(�, qn–1, n),
dn–1(�)/(1 – dn–1(�)) else.

For all other � we let dn(�) = dn–1(�).
By condition (b) above, setting dn(�) = 0 makes � inactive, meaning that

we will not add any further t(n)-edges to any extensions of �, with one
possible exception: It may be that at a later stage n′ > n with t(n′) < t(n),
a new t(n′)-edge is added, which at some even later stage n′′ > n′ > n
with t(n′′) = t(n) would lead to Case 1 above occurring again for task
t(n′′) = t(n). This would in turn lead to all strings of length n′′ getting
initially activated for task t(n′′) = t(n) at stage n′′ where we begin anew to
work on that task. In this case we say that task t(n′′) = t(n) has been injured
by task t(n′).

When a node is assigned a non-zero delay value by the second line above,
we call this its non-initial activation. This is because that new delay value at
node � is a consequence of an earlier assignment of a non-zero delay value
to the strictly shorter node �.

Note that when initially activating a node �, we assign a delay of
the form 1/k, where c(|�|) = k for some k ∈ �. Moreover, the mapping
d �→ d/(1 – d ) used for non-initial activations maps such a number to
1/(k – 1), which is then mapped to 1/(k – 2), and so on. Note further
that the nodes where these new delay values are set are by construction
t(n)-nodes. The reciprocal of these assigned delay values are positive
integers, and we can interpret them as a counter counting down by 1 along
a path every time a t(n)-edge branches off it; see Figure 2.
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Figure 2. An edge for task t(n) is added. The root of the edge was initially activated with counter value
c(n). The node at the end of the new edge has delay value 0, thus is inactive. All other extensions of
the root receive a positive delay value by non-initial activation, and thereby become active. The counter
value on these nodes, which is the reciprocal of the value of d on the respective node, has been reduced
by 1 compared to the counter value on the root. Note how other, completely independent t(n)-edges
can occur off to the side.

Even on the same path different tasks are initially activated separately at
different nodes of appropriate length. The countdown happens separately
for all tasks, as a new delay value assigned to an i-node depends on the
delay value of an i-node of shorter length, and not on the delay values of
j-nodes with i �= j. It therefore makes sense to talk about the i-counter for
task i along a given path, and we will use this expression in the informal
explanations in the sequel.

As we continue to add edges for task t(n) that branch off a path, the
t(n)-counter may eventually reach 1 on some initial segment of that path.
Such a node is then by definition inactive. (Formally, the counter reaching
1 means that the delay value along the path has increased until all flow
is blocked at a value of 1.) Once this happens, by construction, we stop
attaching t(n)-edges on any extension of that initial segment of the path.

Next, we set

Xn = Xn–1 ∪ {(�, �(�, qn–1, n)) : � ∈ Cn},

and

qn(�, �) =

⎧⎨⎩
1
2 (1 – dn(�)) if � = �0 or � = �1,
dn(�) if (�, �) ∈ Xn,
0 otherwise.
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54 RUPERT HÖLZL AND CHRISTOPHER P. PORTER

Note that for j > t(n), w(j, qk) > n for all k ≥ n. In particular, we are now
prevented from attaching an edge to any j-nodes that were active at the
beginning of this stage; as mentioned above we call such nodes deactivated.

Subcase 2.2: Cn = ∅. Then we set dn = dn–1, Xn = Xn–1, and qn = qn–1. No
new nodes are activated, nor do any active nodes become deactivated.

To finalize the outline of the construction template we lastly set
q = limn qn, d = limn dn, and X =

⋃
n Xn. It is not difficult to check that

q and d are computable functions and that X is a computable set. It then
follows from Lemma 5.5 that the resulting q-flow P, as in Definition 5.4, is
a left-c.e. semi-measure.

5.2. Verification of the general template. We now work to establish the
desired properties of the constructed objects q, d, X , R, P, and so on. For
the sake of notational simplicity, during this verification, we will again use
the letters qn, dn, and Xn, for n ∈ �, to refer to the finite approximations of
q, d, and X that we built in the previous subsection. In particular note that,
for q, these finite approximations qn, n ∈ �, coincide with the sequence of
elementary restrictions discussed on page 23.

Before we implement this template, we show that a number of features of
the construction can be established independently of the concrete implemen-
tation. First, the following two lemmata show that the construction prevents
certain relative arrangements of extra edges.

Lemma 5.7. Assume that an extra edge (, �) is added during the
construction. Then no node � such that t() = t(�) and  ≺ � and |�| ≤ |�|
can ever become active during the construction.

Proof. The fact that (, �) is added implies that  was activated at
stage || and cannot have been deactivated until after stage |�|. This implies
in particular that between stages || and |�| no injury of task t() occurred,
so that � cannot have been initially activated at stage |�|. Assume that � was
activated non-initially. Then there must exist a sequence of extra t()-edges

(�1, �1), (�2, �2), (�3, �3), ... , (�� , ��)

such that for all 2 ≤ i ≤ � we have

 = �1, �i–1 ≺ �i , |�i–1| = |�i |, �i–1 �= �i , |�� | = |�|, and �� �= �;

see Figures 2 and 3. But, by condition (d) in Case 2 of the construction, the
presence of the edge (, �1) would have precluded (, �) from having been
added later, a contradiction. �

Lemma 5.8. There do not exist strings  ≺ � ≺ � and  ≺ � ≺ � such that
|�| ≤ |�| and (, �) ∈ X and (�, �) ∈ X .

Note that without the condition “|�| ≤ |�|” the statement is false, as
typically there are many pairs of extra edges for which that condition does
not hold but which satisfy the other conditions in the statement.

Proof. Assume for a contradiction that extra edges (, �) and (�, �) as in
the statement exist.
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Figure 3. A sequence of extra edges branching off a given path A. Note how the length of the start
point of every edge has to coincide with the length of the endpoint of the previous edge branching off
the path.

First assume that both are assigned to the same task; that is, t() = t(�) =
t(�) = t(�). Then by Lemma 5.7, the fact that (, �) was added implies
that � is never activated, and thus (�, �) cannot have been added, which
contradicts our initial assumption.

Thus, (, �) and (�, �) must be assigned to two different tasks. (In
particular, in this case, the strict inequality |�| < |�| must hold.) We
distinguish two cases.

If t() = t(�) < t(�) = t(�), then even if � was activated at stage |�|, the
addition of (, �) would have constituted an injury of task t(�) that would
have led to � becoming deactivated, which means that (�, �) could not have
been added later, a contradiction.

If, on the other hand, t(�) = t(�) < t() = t(�), then the fact that (�, �)
was added implies that � must have been activated at stage |�|. This could
be for two possible reasons:

Either w(t(|�|), q|�|–1) = |�| held at stage |�| and thus � was initially
activated as described in Case 1. The cause for that new initial activation,
namely the addition of some edge for some task j < t(�), would have also
deactivated , since j < t(�) < t(), and that would have precluded the
addition of (, �) later, again a contradiction.

Or, if � was non-initially activated due to Subcase 2.1, then that must
have been due to an extra edge (�, �) for task t(�) with |�| = |�| having been
added at stage |�|. Then the addition of that edge would have injured t(),
which again would have deactivated , yet another contradiction.
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In summary, there is no scenario that allows the presence of both (, �)
and (�, �) in the digraph at the same time. �

Next, we establish that the work towards every individual task terminates
eventually.

Lemma 5.9 (Stability Lemma). For every i ∈ �, X [i ] is finite and
w(i, q) <∞.

Proof. First, observe that if X [j] is finite for every j < i , then
w(i, q) <∞. It is therefore sufficient to prove the first part of the statement.

So suppose that i is minimal such thatX [i ] is infinite. Then by the previous
observation we have w(i, q) <∞. For � with |�| ≥ w(i, q), define m� to be
the maximal m > w(i, q) such that there is an edge (��m, �) ∈ X [i ] where �
is incomparable with �. If no such m exists, set m� = w(i, q).

Then define a function u via

u(�) =

{
1/d (��m�) if d (��m�) > 0, |�| ≥ w(i, q),
c(w(i, q)) if |�| < w(i, q).

Note that these two cases are exhaustive; to see this assume that |�| ≥ w(i, q).
If m� = w(i, q), then by construction d (��m�) = 1/c(m�) > 0. The only
other possibility is that m� is the maximal m > w(i, q) such that there is an
edge (��m, �) ∈ X [i ] where � is incomparable with �. But then d (��m�) > 0
as well, as otherwise the edge (��m�, �) would not have been added according
to the conditions in the construction.

We claim that u(�) is an upper bound on the number of possible i-edges
branching off below length max(w(i, q), |�|) from any path going through �.

First, consider � meeting the conditions of the first line of the definition,
and such that an edge (��m�, �) as in the definition of m� exists. Since by
the choice of m� the edge (��m�, �) is the last edge branching off above �,
and by the discussion of the i-counter mechanism above, we know that then
at most 1

d (��m�) – 2 further i-edges can branch off below � from any path
extending �, and the claim in this case follows.

Secondly, consider � meeting the conditions of the first line of the
definition, but where an edge of the form (��m�, �) as in the definition ofm�
does not exist. For those � we have that a parent � of � with |�| = w(i, q)
has been initially activated, but that there is no extra i-edge that branches
off between � and �. Again by the discussion of the i-counter mechanism,
we know that then at most c(w(i, q)) – 1 many i-edges can branch off below
� from any path extending �. Since

u(�) = 1/d (��m�) = 1/d (��w(i, q)) = c(w(i, q)),

the claim in this case follows.
Lastly, consider � satisfying |�| < w(i, q). Let � � � be of length w(i, q).

Then � is initially activated with d (�) = 1/c(|�|). By the definition of u,
u(�) = u(�), and we can argue as in the previous paragraph to conclude
that at most c(w(i, q)) – 1 many i-edges can branch off below lengthw(i, q)
from any path extending �.
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It should now be clear that u is constant on all strings � with |�| ≤ w(i, q);
and that for arbitrary strings � and � with � � � we have u(�) ≥ u(�). We
then define the function û : 2� → � by letting, for every A ∈ 2�,

û(A) = min{n : u(A�n) = u(A��) for all � ≥ n}.

We claim that the function û is continuous. This is because (a) u is non-
increasing over longer and longer initial segments of a path A, (b) u only
takes integer, positive values, and (c) a decrease in u cannot happen
arbitrarily late along A. This last point (c) follows from the two facts that (i)
at every node at most one edge starts (by construction) and that (ii) for an
i-edge branching off A at A�� we must have that � is either w(i, q) or the
length of the endpoint of the previous i-edge branching off A; otherwiseA��
would not be active; see Figure 3. Therefore, for a long enough initial segment
A�k of A, u(A�k) has stabilized, meaning thatA�k already determines û(A).

Because 2� is compact, û is bounded by some N ∈ �, meaning in
particular that u(�) = u(��N ) for all � with |�| ≥ N . But then no new
i-edge (�, �) can be attached to any such �, as that would imply u(�) < u(�),
contradicting the choice of N. Thus X [i ] cannot be infinite. �

Definition 5.10. For a finite sequence� ∈ 2<� we call an infinite sequence
X ∈ 2� an i -continuation of� if i = t(|�|), � ≺ X , andB(qn–1, �, X �n) holds
for almost all n with t(n) = i .

Definition 5.11. A sequence X is called i-discarded if d (X �n) = 1 for
some n where t(n) = i .

Note that a sequence X ∈ 2� becomes i-discarded if there exists an initial
segment X �k such that the counter for task i has reached the final value 1
on X �k. By the conditions stated in Case 2 of the construction, below such
anX �k no further extra edges for task i will branch off of X, hence the name
“discarded.”

Lemma 5.12 (Edge Existence Lemma.). Assume that for X ∈ 2� and for
all k ∈ � such that t(k) = i it holds that X �k has an i-continuation and that
X is not i-discarded. Then X contains an i-edge (�, �); that is, � ≺ � ≺ X .

Proof. Assume that X is not i-discarded. Let m be maximal with t(m) = i
and d (X �m) > 0. We know by the following argument that m is defined:
First, an m as described exists, since by Stability Lemma 5.9 we have that
w(i, q) is finite, and, by construction, d (X �w(i, q)) is set to a value strictly
between 0 and 1. Secondly, by construction, any positive value d (X ��)
for some � > w(i, q) with t(�) = i must be the result of a chain of i-edges
branching off X, as illustrated in Figure 3. Again by Stability Lemma 5.9,
X [i ] is finite, and therefore any such chain can only have finite length,
therefore only finitely many � with t(�) = i can have d (X ��) > 0. As a
result a maximal m as described must exist.

Since, by assumption, X �m has an i-continuation and d (X �m) < 1, the
conditions of Subcase 2.1 of the construction are met. Therefore, eventually
an i-edge of the form (X �m, �) is attached atX �m. By construction d (�) = 0
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and d (�) �= 0 for all � such thatX �m ≺ �, � �= �, and |�| = |�|. By the choice
of m we must therefore have � ≺ X . �

Lemma 5.13 (Continuity Lemma). The semi-measure P has no atoms.

Proof. Note that by definition of the function w, there are no extra
edges (�, �) ∈ X such that |�| < w(i, q) ≤ |�| for any i. That is, for any i, all
flow that flows from nodes of length less than w(i, q) to nodes extending
them flows through normal edges. Let � be a node of length w(i, q) – 1. By
construction q(�, �0) = q(�, �1) ≤ 1/2, and hence, for b ∈ {0, 1},

P(�b) = R(�b) = q(�, �b) ·R(�) ≤ 1/2 · P(�).

Since there are infinitely many numbers of the form w(i, q), i ∈ �, we have
limn→∞ P(X �n) = 0 for every X ∈ 2�. �

5.3. The roadmap. Everything discussed thus far in this section forms
the common part of the construction. In particular, we do not need to
re-prove Lemma 5.8, Stability Lemma 5.9, Edge Existence Lemma 5.12,
and Continuity Lemma 5.13 for each application of the template. However,
when applying the template to obtain different results, some parts of the
construction need to be adapted to the statement that should be proved.
There will still be a common structure with the following components.

Predicate B: The predicate B determines when edges are added to the
digraph, and therefore the information that will be coded into the semi-
measure constructed.
Cut-off Lemma: Here we show that if any positive flow occurs beyond
a node �, then at least some part of that flow must have passed through
normal edges.
Continuation Existence Lemma: To be able to apply the Edge Existence
Lemma 5.12 to all of the sequences in the support of the semi-measure
we construct, we need to prove that the hypotheses of the lemma
are satisfied by these sequences. That is, we need to prove that for
every i ∈ �, every sequence X in the support is an i-continuation for
all of its own initial segments X �n with t(n) = i .
Measure Lemma: This shows that the support of the constructed semi-
measure P has positive P-measure. Note that, together with Continuity
Lemma 5.13 and using Proposition 3.14, this implies that the support
of P does not exclusively contain computable elements.
Verifying the desired properties: Finally we need to verify that the
semi-measure we constructed has the desired properties needed for the
statement that was to be shown.

§6. Implementing the template.

6.1. A first example. We begin by giving V’yugin’s proof of Theorem 1.1.

Theorem 1.1 (V’yugin [36]). For any � ∈ (0, 1), there is a probabilistic
algorithm that produces with probability at least 1 – � a non-computable
sequence that does not compute any Martin-Löf random sequence.
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To prove this, we will show the following more general statement.

Theorem 6.1 (V’yugin [36]). For each � ∈ (0, 1), there is a left-c.e. semi-
measure P such that

(i) P has no atoms;
(ii) P(2�) = P(Supp(P)) > 1 – �; and

(iii) for eachX ∈ Supp(P) and each Turing functional Φ, if Φ(X ) is defined,
then Φ(X ) �∈ MLR.

We obtain the desired probabilistic algorithm from Theorem 6.1 by
applying Theorem 3.4(ii): Since P is a left-c.e. semi-measure, there is
some Turing functional Ψ such that P = �Ψ. The functional Ψ equipped
with a random oracle provides the probabilistic algorithmic satisfying the
conditions of Theorem 1.1.

One additional consequence of Theorem 6.1 is that r ∨ c is not the top
degree of DLV, which we already showed via an alternative method in
Section 4. Indeed, since Supp(P) contains no atoms and every atom of
a left-c.e. semi-measure is computable, it follows that

P(Supp(P) \ {X : X computable}) > 0.

By Corollary 3.10, this implies that Supp(P) \ {X : X computable} is non-
negligible. But, by construction, the Levin–V’yugin degree generated by
Supp(P) \ {X : X computable} is disjoint from r ∨ c.

V’yugin originally proved this result in [32] without use of the machinery
laid out in the previous section, but in a later article [36] he gave the proof
discussed here.

To prove Theorem 6.1, we first need to specify the predicate B and the
function c, as in the template outlined above. For an elementary network
q′ and nodes �, � with t(|�|) = t(|�|), B(q′, �, �) is defined to hold if and
only if

(a) � � �,
(b) d ′(��k) < 1 for all k such that 1 ≤ k ≤ |�|, where d ′ is the flow-delay

function of q′, and
(c)

∣∣Φ�
j,|�|

∣∣ > 〈#(�), s〉, where t(|�|) = 〈j, s〉. Here #(�) denotes the
position of � in the canonical lexicographic ordering of 2<� and
〈·, ·〉 denotes a pairing function that satisfies 〈m, n〉 ≥ m + n for all
m, n ∈ �.

The idea of this choice of B is that for each i ∈ � such that i = 〈j, s〉
for j, s ∈ �, we attach an i-edge between i-nodes � and � only if∣∣Φ�
j,|�|

∣∣ > 〈#(�), s〉; that is, Φ�
j,|�| is sufficiently long. Moreover, we will ensure

that for each X ∈ 2�, either there is some n such that the flow out of X �n
is completely blocked, or, for each Turing functional Φj such that Φj(X ) is
defined, Φj(X ) /∈ MLR. This latter condition will be accomplished by, for
〈j, s〉-edges (�, �) with s ∈ �, enumerating � into a Martin-Löf test.
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As for the choice of c, given � ∈ (0, 1), we let c(n) = (n + n0)2, where n0

is such that ∑
n∈�

(n + n0)–2 < �.

This will be used to prove Measure Lemma 6.2 below.
Now let P be the semi-measure produced by the template outlined in

Section 5.1 when used with this specific choice of B and c. We establish that
P has the desired properties.

Lemma 6.2 (Measure Lemma). P(Supp(P)) > 1 – �.

For X ∈ Supp(P) we already have that P(X �n) > 0 for all n; that is, at
any finite level n, not all measure has dissipated. We will show that for all n,
the amount of flow that flows into but not out of strings of length n is
bounded from above by (n + n0)–2. This implies that the total dissipation is∑
n(n + n0)–2 < �, thus establishing the result.
In the construction, when an i-counter runs out along a path, the delay

value is set to 1 at some node � that is an initial segment of that path to
remove the path from the support of the constructed semi-measure. As this
means that all flow arriving in � is blocked at �, the amount of measure lost
this way could be very large. This is why we start the countdown with larger
and larger numbers in the construction, as this ensures that there are more
and more chances to add edges, which preserves more and more measure.

On the other hand we do need that after finitely many attempts to add an
edge we give up and block all flow along that path completely, as otherwise a
single task might cause infinitely many of the failures described on page 24,
which might prevent the construction from ever successfully handling the
remaining tasks. Furthermore, if a currently investigated functional Φj
stops producing output somewhere, then we only lose the measure currently
delayed there; all the remaining measure keeps flowing through normal
edges. The measure lost this way is another quantity that we need to control.

The trade-offs needed to reconcile these necessities make the construction
quite complex and are the reason why establishing a lower bound for the
remaining measure requires the following involved argument.

Proof of Lemma 6.2. By the definition of R and d,∑
|�|=n+1

R(�) =
∑
|�|=n
q(�, �0)R(�) +

∑
|�|=n
q(�, �1)R(�)

+
∑

(�,�)∈X ,|�|=n+1

q(�, �)R(�)

=
∑
|�|=n

(1 – d (�))R(�) +
∑

(�,�)∈X ,|�|=n+1

q(�, �)R(�).

(4)

We set

Sn =
∑
|�|=n
R(�) –

∑
(�,�)∈X ,|�|=n

q(�, �)R(�), (5)
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so that it follows from (4) and (5) that

Sn+1 =
∑
|�|=n

(1 – d (�))R(�). (6)

That is, Sn+1 is the amount of flow into nodes of length n + 1 that comes
directly from nodes of length n (and not through extra edges whose end
nodes have length n + 1).

We claim that Sn+1 ≥ Sn – (n + n0)–2 for all n. For fixed n, we consider
the possible values of w(t(n), qn–1). First, we consider Subcase 2.2 of the
construction, where w(t(n), qn–1) < n but we added no extra edge (�, �)
where |�| = n. In this case, for each � such that |�| = n, d (�) = dn(�) =
dn–1(�) = 0. It then follows from (5) and (6) that Sn+1 = Sn.

Next, suppose that we are in Subcase 2.1 of the construction, where
w(t(n), qn–1) < n and we added at least one extra edge (�, �) with |�| = n.
For �, � ∈ 2<�, let

Fan(�, �) = {� : |�| = |�| ∧ � ≺ � ∧ � �= �}.
In Figures 2 and 3 the fans of extra edges were represented by dotted
cones.

Sublemma 6.3. For every (�, �) ∈ X ,∑
�∈Fan(�,�)

R(�) ≤ (1 – d (�))R(�). (7)

Proof. The term on the left-hand side of the inequality is the total
amount of flow that flows into all nodes in Fan(�, �), while the term on
the right-hand side is the total flow into � (the node at the base of the fan)
minus the flow that is diverted into the extra edge (�, �). The only case where
this inequality can fail to hold is if there is some flow through an extra
edge (, �) ∈ X such that  ≺ � ≺ � � � for some � ∈ Fan(�, �). However,
since (�, �) ∈ X , the existence of such an extra edge (, �) contradicts
Lemma 5.8.3 Thus the inequality must hold. �

The sum
∑

|�|=n d (�)R(�) can be understood as the total amount of
measure that is delayed at level n. Indeed, sinceR(�) is the absolute amount
of flow into a node � and d (�) is the relative fraction of flow delayed at �,
we have that d (�)R(�) is the absolute quantity of flow delayed at �.

Since we are in Subcase 2.1 (and therefore a non-trivial delay value at a
node � cannot be caused by an initial activation of � but must be caused by
an extra edge ending in a node � with � ∈ Fan(�, �)), we have:∑

|�|=n
d (�)R(�) =

∑
(�,�)∈X ,|�|=n

∑
�∈Fan(�,�)

d (�)R(�).

3For this, apply the lemma in such a way that the nodes in the current proof are identified
with the nodes of equal name appearing in the statement of the lemma.
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By definition of don � ∈ Fan(�, �):

=
∑

(�,�)∈X ,|�|=n

d (�)
1 – d (�)

∑
�∈Fan(�,�)

R(�).

By Sublemma 6.3:

≤
∑

(�,�)∈X ,|�|=n
d (�)R(�)

=
∑

(�,�)∈X ,|�|=n
q(�, �)R(�).

Then

Sn+1 =
∑
|�|=n

(1 – d (�))R(�) =
∑
|�|=n
R(�) –

∑
|�|=n
d (�)R(�)

≥
∑
|�|=n
R(�) –

∑
(�,�)∈X ,|�|=n

q(�, �)R(�)

= Sn.

(8)

Lastly, in Case 1 of the construction, we have w(t(n), qn–1) = n, and hence∑
|�|=n
d (�)R(�) ≤ 1/c(n) = (n + n0)–2.

Consequently,

Sn+1 =
∑
|�|=n

(1 – d (�))R(�) =
∑
|�|=n
R(�) –

∑
|�|=n
d (�)R(�)

≥
∑
|�|=n
R(�) – (n + n0)–2

≥
∑
|�|=n
R(�) –

∑
(�,�)∈X ,|�|=n

q(�, �)R(�) – (n + n0)–2

= Sn – (n + n0)–2. (9)

Now since Sn+1 ≥ Sn – (n + n0)–2 for every n and S0 = 1, we have

Sn ≥ 1 –
∞∑
i=1

(i + n0)–2 > 1 – �.

Lastly, by the definition of the support of a semi-measure, we have

P(Supp(P)) = inf
n

∑
|�|=n
P(�) ≥ inf

n

∑
|�|=n
R(�) ≥ inf

n
Sn > 1 – �.

Lemma 6.4 (Cut-Off Lemma). For � ∈ 2<�, P(�) = 0 if and only if there
is some � ≺ � � � such that � ∈ {�0, �1} and q(�, �) = 0.
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Proof. Assume that, for all 0 ≤ i < |�|, q
(
��i, ��(i + 1)

)
> 0 holds. Then

by definition of R we have

R(�) ≥
|�|–1∏
i=0

q
(
��i, ��(i + 1)

)
> 0,

which together with P(�) ≥ R(�) implies P(�) > 0.
For the other direction, suppose there is some n < |�| such that
q
(
��n, ��(n + 1)

)
= 0, but P(�) �= 0. Then there must be some extra

edge (�, �) such that � � ��n and ��(n + 1) � �. We have that
q
(
��n, ��(n + 1)

)
= 0 implies d (��n) = 1. But, by condition (b) in the

definition of B above, (�, �) can only be added if d (��k) < 1 for all k such
that 1 ≤ k ≤ |�|, contradicting the fact that d (��n) = d (��n) = 1. �

Lemma 6.5 (Continuation Existence Lemma). For every Turing func-
tional Φj , everyX ∈ Supp(P) such that Φj(X ) is defined, and every i = 〈j, s〉
for s ∈ �, X is an i-continuation of X �m for everym ∈ � such that t(m) = i .

Proof. Fix j,m, s ∈ �, and let i = 〈j, s〉. Recall that X is an
i-continuation of � ∈ 2<� with t(|�|) = i if � ≺ X and B(qn–1, �, X �n)
holds for almost all n such that t(n) = i . Thus, to show that X is an
i-continuation of X �m, it suffices to show that, for almost every n, the
following two conditions from the definition of the predicate B hold:

(b) d (X �k) < 1 for every k such that 1 ≤ k ≤ n, and
(c)

∣∣ΦX �n
j,n

∣∣ > 〈#(X �m), s〉.

Since X ∈ Supp(P), P(X �n) > 0 for every n, and it follows from the Cut-
Off Lemma 6.4 that d (X �n) < 1 for every n, and so (b) holds. Moreover,
as Φj(X ) is defined, for each N ∈ �, |ΦX�n

j,n | ≥ N for all sufficiently large n;
thus, (c) holds. �

Lemma 6.6. For any X ∈ Supp(P) and any Turing functional Φj such that
Φj(X ) is defined,

Φj(X ) /∈ MLR.

Proof. For s ∈ �, let

Us =
⋃

n : t(n)=〈j,s〉

⋃
�∈Cn

[[Φ�(�,qn–1,n)
j,n ]],

where Cn is the set of the same name that was defined during the construction.
Fix s ∈ �. Since X ∈ Supp(P) and Φj(X ) is defined, by Continuation

Existence Lemma 6.5, X is an i-continuation of X �m for i = 〈j, s〉
and every m ∈ � such that t(m) = i . Since X ∈ Supp(P), X cannot be
i-discarded. Then, by Edge Existence Lemma 5.12, there are n,m ∈ � with
m < n such that there is an extra i-edge (X �m, �(X �m, qn–1, n)) such that
�(X �m, qn–1, n) = X �n. It follows that [[ΦX�n

j ]] is enumerated into Us .
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Since
∣∣Φ�(�,qn–1,n)
j,n

∣∣ > 〈#(�), s〉 for each n ∈ � and � ∈ Cn,

�(Us) ≤
∑

n : t(n)=〈j,s〉

∑
�∈Cn

2–〈#(�),s〉 ≤ 2–s .

Hence, (Us)s∈� is a Martin-Löf test covering Φj(X ), and thus
Φj(X ) /∈ MLR. �

This completes the proof of Theorem 6.1, as Continuity Lemma 5.13
establishes the Theorem’s condition (i), Measure Lemma 6.2 establishes
condition (ii), and Lemma 6.6 establishes condition (iii).

In light of the second paragraph of the proof of Lemma 6.6 we can
now formulate an intuitive understanding of Edge Existence Lemma 5.12:
It states that every path (that meets the conditions in the statement of
the lemma) will eventually either be removed from the support of the
semi-measure during its construction, or, if not, will be treated using the
predicate B to make sure all paths that remain in the support have the desired
properties. In either case, the construction succeeds.

6.2. A new application of the technique. We now turn to the proof of
Theorem 1.2, an extension of V’yugin’s Theorem 1.1.

Theorem 1.2. For any � ∈ (0, 1), there is a probabilistic algorithm that
produces with probability at least 1 – � a non-computable sequence that is not
of DNC degree.

To prove Theorem 1.2, we prove a strengthening of Theorem 6.1 in terms
of a family of weak notions of randomness; just as Theorem 1.1 follows
from Theorem 6.1, so too will Theorem 1.2 follow from this strengthening.
The following notion was explicitly defined by Higuchi et al. [11] and was
further studied by Simpson and Stephan [27].

Definition 6.7. Let f: 2<� → � be a total computable function.

(i) An f-Martin-Löf test is a sequence of uniformly c.e. sets of strings
(Ui)i∈� such that ∑

�∈Ui
2–f(�) ≤ 2–i ,

for every i ∈ �.
(ii) A sequence X ∈ 2� is f-random if X /∈

⋂
i∈�[[Ui ]] for every f -Martin-

Löf test (Ui)i∈�.

We will focus our attention on notions of f -randomness for sequences X
and functions f where f is unbounded along X ; that is, limn→∞f(X �n) = ∞.
We can now state our generalization of Theorem 6.1.

Theorem 6.8. For each � ∈ (0, 1), there is a left-c.e. semi-measure P
such that

(i) P has no atoms;
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(ii) P(2�) = P(Supp(P)) > 1 – �; and
(iii) for each X ∈ Supp(P) and each Turing functional Φ, if Φ(X ) is

defined, then Φ(X ) is not f-random for any computable function f
that is unbounded along Φ(X ).

We call a function f: 2<� → � monotone if for any �, � ∈ 2<� with � � �
we have that f(�) ≤ f(�). For any f: 2<� → �, we define f∗: 2<� → � by
letting, for each � ∈ 2<�,

f∗(�) = max{f(�) : � � �}.

Clearly, f∗ is monotone and we have f(�) ≤ f∗(�) for all � ∈ 2<�. If f is
furthermore computable and unbounded along someX ∈ 2�, then the same
holds forf∗. The proof of Theorem 6.8 below will only ensure that (iii) holds
for monotone f. The following argument establishes that this is sufficient.

Lemma 6.9. Let f: 2<� → � be a total computable function. Then X ∈ 2�

is f-random if and only if X is f∗-random.

Proof. (⇐:) Suppose that X ∈ 2� is not f -random. Then there is some
f -Martin-Löf test (Ui)i∈� such that X ∈

⋂
i∈�[[Ui ]]. We claim that (Ui)i∈�

is an f∗-Martin-Löf test. Indeed, since f(�) ≤ f∗(�) for all � ∈ 2<�,∑
�∈Ui

2–f∗(�) ≤
∑
�∈Ui

2–f(�) ≤ 2–i .

It thus follows that X is not f∗-random.
(⇒:). Now suppose that X is not f∗-random. Then there is some
f∗-Martin-Löf test (Ui)i∈� such that X ∈

⋂
i∈�[[Ui ]]. We modify (Ui)i∈�

to produce an f -Martin-Löf test covering X as follows. First note that
for every � ∈ 2<�, if f(�) �= f∗(�), then there is some � ≺ � such that
f(�) = f∗(�) = f∗(�). In this case, let us set �̂ = �. In the case that
f(�) = f∗(�), set �̂ = �; in either case, we have �̂ � �. Then for each
i ∈ � and � ∈ 2<�, we define Ûi so that �̂ ∈ Ûi if and only if � ∈ Ui . It
follows that (Ûi)i∈� is an f -Martin-Löf test, since∑

�̂∈Ûi

2–f(�̂) =
∑
�∈Ui

2–f∗(�) ≤ 2–i .

Next, since for every � ∈ 2<� we have �̂ � �, it follows that [[Ui ]] ⊆ [[Ûi ]] for
every i ∈ �, and hence X ∈

⋂
i∈�[[Ui ]] ⊆

⋂
i∈�[[Ûi ]]. We thus conclude that

X is not f -random. �

The general strategy of the proof of Theorem 6.8 is much like that of the
proof of Theorem 6.1, but with several modifications. First, since we want
that elements of Supp(P) cannot compute any f -random sequences for any
monotone unbounded computable f: 2<� → �, our construction will have
to involve all total computable functions. Of course, there is no effective
enumeration of such functions, so we have to work with an enumeration of
all partial computable functions (ϕe)e∈� (where each ϕe is viewed as a map
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from 2<� to�). Moreover, we can assume that all functionsϕe are monotone
simply by replacing each ϕe with the corresponding monotone ϕ∗

e .
Second, we have to modify the definition of the predicate B from the proof

of Theorem 6.1 as follows: For an elementary network q′ and nodes �, �
with t(|�|) = t(|�|), B(q′, �, �) is defined to hold if and only if

(a) � � �,
(b) d ′(��k) < 1 for all k such that 1 ≤ k ≤ |�|, where d ′ is the flow-delay

function of q′, and
(c*) there is some � � Φ�

j,|�| such that ϕe,|�|(�)↓ > 〈#(�), s〉, where

t(|�|) = 〈j, s, e〉.4

Observe that for non-total ϕe condition (c ∗) may never become true and
as a result we may never attach a t(|�|)-edge to �. This is not a problem, as
condition (iii) in Theorem 6.8 only makes a promise about total functions,
so no action is required in this case. Tasks of the form 〈j, ·, e〉 can therefore
be safely ignored when verifying that the construction yields the desired
semi-measure.

As in the previous subsection, that Continuity Lemma 5.13 holds is an
inherent feature of the construction technique, independently of the specific
choice of the predicate B and the countdown function c. Measure Lemma 6.2
also still holds since its truth does not depend on the specific choice of B
while c is unchanged. As for Cut-Off Lemma 6.4, an inspection of its proof
shows that it only relies on condition (b) of the predicate B which we haven’t
changed from the last subsection; so this lemma still holds as well. The
Continuation Existence Lemma, however, needs to be modified.

Lemma 6.10 (Modified Continuation Existence Lemma). Suppose that we
have a Turing functional Φj , someX ∈ Supp(P) ∩ dom(Φj), and a monotone
total computable function ϕe such that ϕe(Φj(X )�n) is unbounded in n. Then
for every i of the form 〈j, s, e〉 for some s ∈ �, X is an i-continuation of X �m
for every m ∈ � such that t(m) = i .

Proof. That condition (b) in the predicate B holds is shown as in the
proof of Lemma 6.5.

For condition (c), since X ∈ dom(Φj) and ϕe(Φj(X )�n) is unbounded
in n, there are n1 and n2 such that ϕe,n2(ΦX�n1

j )↓ > 〈#(X �m), s〉. Then for

any n ≥ max{n1, n2}, ΦX�n
j has the initial segment � = ΦX�n1

j such that
ϕe,n(�) = ϕe,n2(�) > 〈#(X �m), s〉. Therefore, condition (c) holds for any
large enough n with t(n) = i . �

Lastly, we prove the following.

Lemma 6.11. Let f: 2<� → � be a monotone total computable function.
For any X ∈ Supp(P) and any Turing functional Φ such that X ∈ dom(Φ),
if f(Φ(X )�n) is unbounded in n, then Φ(X ) is not f-random.

4We cannot simply let � = Φ�j,|�| as there is no guarantee that running ϕe with input Φ�j,|�|
terminates within |�| steps.
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Proof. Let e be the index of f as a partial computable function and let j
be the index of Φ. Then we define an f -Martin-Löf test (Us)s∈�, where
Us consists of all strings of the form Φ�(�, qn–1, n)

j,n where n ∈ �, � ∈ Cn, and
t(n) = 〈j, s, e〉.

For each X ∈ Supp(P) ∩ dom(Φj) such that f(Φj(X )�n) is unbounded
in n, by the Modified Continuation Existence Lemma 6.10, X is an
i-continuation of X �m for every i such that i = 〈j, s, e〉 for some
s ∈ � and every m ∈ � such that t(m) = i . Furthermore, X is not
i-discarded, and hence by Edge Existence Lemma 5.12 there is an i-edge(
X �m, �(X �m, qn–1, n)

)
such that �(X �m, qn–1, n) = X �n for some n,m ∈ �

withm < n. Since t(n) = 〈j, s, e〉, it follows that ΦX�n
j,n is enumerated intoUs .

Choose any � ∈ Us . Then, by definition of Us , there is some � such that
Φ�j,n = � and some � ∈ C|�| such that (�, �) ∈ X . By condition (c∗) of the
predicate B, the fact that this extra edge was added to the digraph implies
that there is a witnessing initial segment � � Φ�j,n such that

ϕe(�) = ϕe(Φ�j,n) ≥ ϕe(�) = ϕe,|�|(�) > 〈#(�), s〉;

here the first inequality follows from the monotonicity of ϕe . As this line of
reasoning applies to every � ∈ Us , we obtain∑

�∈Us
2–ϕe(�) ≤

∑
n : t(n)=〈j,s,e〉

∑
�∈Cn

2–〈#(�),s〉 ≤ 2–s .

Hence, (Us)s∈� is an f -Martin-Löf test covering Φj(X ), and so Φj(X ) is
not f -random. �

This completes the proof of Theorem 6.8. We can recast this result in
terms of autocomplexity as well as in terms of being of DNC degree.
Recall that the Kolmogorov complexity of a string � ∈ 2<� is defined by
K(�) = min{|�| : U (�)↓ = �}, where U is a universal, prefix-free Turing
machine. Moreover, a functionf: � → � is called an order if f is unbounded
and non-decreasing.

Definition 6.12. X ∈ 2� is autocomplex if there is an X -computable
order f such that K(X �n) ≥ f(n) for every n ∈ �.

The following two propositions provide alternative characterizations of
f -randomness.

Proposition 6.13 (Higuchi et al. [11]). X ∈ 2� is autocomplex if and only
if there is some computable function f: 2<� → � such that f is unbounded
along X and X is f-random.

Proposition 6.14 (Kjos-Hanssen, Merkle, and Stephan [13]). X ∈ 2� is
autocomplex if and only if X is of DNC degree.

We can now recast Theorem 6.8 as follows.

Corollary 6.15. For each � ∈ (0, 1), there is a left-c.e. semi-measure P
such that
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(i) P has no atoms;
(ii) P(2�) = P(Supp(P)) > 1 – �; and

(iii) for eachX ∈ Supp(P) and each Turing functional Φ, if Φ(X ) is defined,
then Φ(X ) is not autocomplex, or equivalently, Φ(X ) is not of DNC
degree. Equivalently, for each X ∈ Supp(P), X is not of DNC degree.

By the same argument as the one that immediately follows the statement
of Theorem 6.1, Corollary 6.15 yields an alternative proof of the fact that
d ∨ c is not the top LV-degree.

§7. Applications to Π0
1 classes. As we have seen, V’yugin’s construction

as laid out in Sections 5 and 6 yields significant results in the study of the
LV-degrees. As noted in the introduction, the construction also has some
interesting consequences for the study of Π0

1 classes, that is, effectively closed
subsets of 2�. In particular, for each of the semi-measures P defined via
V’yugin’s construction, for � ∈ 2<�, the condition P(�) = 0 is computable,
as P(�) = 0 if and only if q(�) is set to 0 at stage |�| in the construction
of P. This implies that in each case, the support of P is a Π0

1 class. We thus
establish the two corollaries stated in the introduction.

Corollary 1.3. For every � ∈ (0, 1), there is a Turing functional Φ
such that

(i) Φ maps no set of positive measure to any single sequence,
(ii) the domain of Φ has Lebesgue measure at least 1 – �,
(iii) the range of Φ is a Π0

1 class, and
(iv) no sequence in the range of Φ computes a Martin-Löf random sequence.

Corollary 1.4. For every � ∈ (0, 1), there is a Turing functional Φ
such that

(i) Φ maps no set of positive measure to any single sequence,
(ii) the domain of Φ has Lebesgue measure at least 1 – �,
(iii) the range of Φ is a Π0

1 class, and
(iv) no sequence in the range of Φ is of DNC degree.
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[14] A. Kučera, Measure, �0
1 -classes and complete extensions of PA, Recursion Theory

Week, (H.-D. Ebbinghaus, G. E. Sacks, and G. H. Müller, editors) Lecture Notes in
Mathematics, vol. 1141, Springer, Berlin, 1985, p p. 245–259.

[15] S. Kurtz, Randomness and genericity in the degrees of unsolvability, Ph. D. thesis,
University of Illinois at Urbana, 1981.

[16] ———, Notions of weak genericity. Journal of Symbolic Logic, vol. 48 (1983), no. 3,
pp. 764–770.

[17] L. A. Levin, Laws on the conservation (zero increase) of information, and questions on
the foundations of probability theory. Problemy Peredachi Informatsii, vol. 10 (1974), no. 3,
pp. 30–35.

[18] ———, Randomness conservation inequalities; information and independence in
mathematical theories. Information and Computation, vol. 61 (1984), no. 1, pp. 15–37.

https://doi.org/10.1017/bsl.2021.46 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2021.46
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