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COMPUTABLE ABELIAN GROUPS

ALEXANDERG. MELNIKOV

Abstract. Weprovide an introduction tomethods and recent results on infinitely generated
abelian groups with decidable word problem.

§1. Introduction. In this article we review results on algorithmic presen-
tations of infinitely generated abelian groups. A presentation 〈X |R〉 of a
group is computable if both the generators X and the relations R can be
algorithmically enumerated and the word problem in 〈X |R〉 is decidable.
This is equivalent to saying that there exists a naming of the elements of the
group by natural numbers such that the operation becomes a computable
function on the respective numbers (Rabin [93], Mal’cev [79]). All results
discussed in the paper are related to the following general research program
that goes back to Mal’cev [80]:

Study countable abelian groups that admit computable presentations.

We will shortly clarify the terminology.

1.1. Groups and their presentations. Recall that a presentation of a group
G is a pair 〈X |R〉 such that R is a set of elements of the free group F(X )
generated by X , and G ∼= F(X )/N (R), where N (R) is the least normal
subgroup of F(X ) containing R. We also say that X is the set of generators
and R are the relations on these generators.
There are two conflicting interpretations of the term recursive presenta-
tion in the literature. In combinatorial group theory, a presentation 〈X |R〉
of a group G is called recursive if both X and R can be algorithmically
(“recursively”) listed. If a group has a recursive presentation then it is called
recursively presented (see, e.g., Higman [55]). In effective algebra, a recursive
presentation is a synonym of a computable presentationwhich will be defined
shortly. Since these two approaches are not equivalent in general, to avoid
confusion we say that a presentation 〈X |R〉 of a group G is computably
enumerable (c.e.) if both the generators X and the relations R can be algo-
rithmically listed. If a group has a c.e. presentation we will say that it is
c.e. presented.
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316 ALEXANDERG. MELNIKOV

We are concerned with “effective” presentations of groups, but are c.e.
presentations “effective” enough? Recall that the word problem in 〈X |R〉
is decidable if there exists an algorithm for checking if x = y mod N (R).
It is easy to construct a c.e. presented group with undecidable word problem
(see, e.g., Higman [55] for an elementary example). It is not difficult to see
that an infinite group has a c.e. presentation with decidable word problem
exactly if it has a computable presentation as defined below:

Definition 1.1 (Mal’cev [79],Rabin [93]). A computable presentation or a
constructivization of a countably infinite algebraic structureA (e.g., a group)
is an algebraic structure C ∼= A upon the domain of natural numbers N such
that the operations of C are Turing computable functions.
Definition 1.1 also generalizes the earlier notion of an explicitly presented
field due to van der Waerden [108] that was later formalized by Fröhlich
and Shepherdson [41]. Definition 1.1 is typically excepted as the standard
approach to “effectively presented” countable structures (see books Ash and
Knight [4] and Ershov and Goncharov [37]).

1.2. Computable groups. Which countable groups admit computable pre-
sentations? Groups with undecidable word problem famously exist already
among finitely presented ones, see Novikov [89] and Boone [9]. In fact, it is
not known which finitely generated or finitely presented groups admit com-
putable presentations, but there are many partial results towards this prob-
lem. See Miller [87] for a survey of results on finitely generated computably
presented groups.
The infinitely generated case is even harder. But what if we restrict our-
selves to countable abelian groups? The class of countable abelian groups is
relatively well-understood (Fuchs [44,45], Loth [76]), and the word problem
is decidable in every finitely generated abelian group. Also, there is a long tra-
dition of mixing logic and abelian group theory (e.g., Szmielew [105]). So it
seems reasonable to first study countable abelian groups before approaching
any other class of infinitely generated groups. Despite of all these promising
simplifications, we will see that classifying computable abelian groups up
to isomorphism is an enormous task. Nonetheless, we can make progress
within some sufficiently broad natural classes of abelian groups.

1.3. Computable abelian groups. In the early 1960’s,Mal’cev [80] initiated
the systematic study of computable abelian groups. Among other results,
Mal’cev gave a full classification of computable subgroups of (Q,+) up
to isomorphism in terms of computably enumerable types (to be discussed
in Subsection 4.2.1). Mal’cev [80] also made the following fundamental
observation:

An infinitely generated abelian group may have two computable
presentations that are not computably isomorphic.

This is not true for finitely generated groups. This observation led Mal’cev
to the problems of uniqueness and determining the number of algorithmic
presentations of a group up to computable isomorphism.
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Mal’cev challenged the large Soviet algebra and logic group asking various
questions related to computable abelian groups and isomorphisms between
their computable presentations. His interest led to a systematic development
of the subject within the USSR, see a survey paper of Khisamiev [66]. At the
same time similar questions were independently raised by mathematicians in
theUSA andAustralia, see e.g. Lin [12], Smith [101], andCrossley (ed.) [20].
As we will see, some of the fundamental results of the theory were inde-
pendently discovered by representatives of these two isolated mathematical
traditions.

1.4. The selection of topics. Some topics that were covered in the earlier
surveys of Khisamiev [66] and Downey [26] will be omitted here. Very
little progress on decidable abelian groups (to be defined) has been done
since [66] appeared in print, and thus we will not concentrate on decidable
presentations. On the other hand, we will cover some topics that were not
touched in surveys [26, 66] such as computable completely decomposable
groups and ordered abelian groups. For the sake of exposition we will also
sketch proofs of many results. The main reason we provide sketches is that
many important results are scattered throughout the literature and some of
these results were only published in Russian. Since we are limited in space,
we will often give only a proof idea.
To piece together the various results in a logically structured way, we
will mostly concentrate on the following more specific problems and their
variations:

The Main Problems. Let K be a class of countable abelian groups.
I. Describe the isomorphism types of c.e. and computably presented
members of K .

II. Measure the algorithmic complexity of isomorphisms between
different computable presentations of a group in K .

III. Investigate direct decompositions of computable members of K .
IV. Study various notions of independence and different kinds of bases
for computable members of K .

Problems I–IV above are closely related. In the next few lines we give one
of the many examples illustrating this correlation.
In the context of computable completely decomposable groups, investi-
gations towards Problem II lead to an index set result, and the latter can
be viewed as a first step towards classification of such groups up to isomor-
phism, i.e., towards Problem I. The proof of this result relies on an analysis
of effective full decomposability; the latter is directly related to Problem III.
Furthermore, the main algebraic tool for the proof is a special notion of
independence which is within the scope of Problem IV. (See Subsection 4.2
for more details.)

§2. Preliminaries.
2.1. Abelian groups. All groups in this paper are countable, additive
and abelian. We assume that the reader is familiar with the notions of a
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factor-group, order of an element, direct sum, free abelian group, and
with the elementary classification of finitely generated abelian groups. The
standard references for pure abelian group theory are Fuchs [44, 45] and
Kaplansky [61]; we also recommend Kurosh [73] for a smooth and gentle
introduction. We briefly go through some basic notions special to the field
of abelian groups. Further notions will be introduced when needed.

2.1.1. Abelian groups as Z-modules. Let A be an abelian group. We can
make A a Z-module as follows. Given a positive n ∈ Z and a ∈ A, define

na = a + · · · (n times) · · · + a,
and also define (−n)a = −(na). We do not adjoin the module operation
to the signature of groups and use it as an abbreviation. In a torsion-free
group A, na �= 0 for any n �= 0 and each nonzero a ∈ A. In a torsion group,
the least nonzero n such that na = 0 is the order of a �= 0. For every abelian
group A, the collection of all its elements of finite order forms a subgroup
T (A). Then A/T (A) is torsion-free. The torsion subgroup T (A) further
splits into a direct sum of its maximal p-subgroups Tp(A).
For a ∈ A and a nonzero n ∈ Z, the equation nx = a does not have to be
solvable in A. If there is such a solution, then we write n|a and say that n
divides a. If for every k ∈ N we have nk|a, then we write n∞|a and say that
n infinitely divides a.
A subgroup B of A is pure or serving if for each b ∈ B and n ∈ Z, if n|b
in A then n|b already in B . A group D is divisible if n|d for every nonzero
n ∈ N and every d ∈ D. Every abelian group is contained in its divisible
hull (also called divisible closure). In a torsion-free group, there may exist at
most one solution for nx = a. Thus, for a torsion-free group A and a subset
X of A, we can define the pure closure (X )∗A of X in A to be the least pure
subgroup of A containing X .

2.1.2. Linear dependence. LetA be an abelian group. Then a1, . . . , ak ∈ A
are linearly independent if for each m0, . . . , mi ∈ Z, the equality

m1a1 + · · · +mkak = 0,
impliesmiai = 0 for all i ≤ k. We say that a1, . . . , ak are linearly dependent,
otherwise. A basis of A is its maximal linearly independent subset. Every
generating set of a free abelian group is a basis, but not every basis is
necessarily a generating set.
We will be using linear dependence mostly in the context of count-
able torsion-free abelian groups. Countable torsion-free abelian groups are
exactly the additive subgroups of V∞ ∼= ⊕

i∈� Q, the Q-vector space of
dimension �. The rank of a (countable) torsion-free abelian group A is the
smallest α ≤ � such that A �

⊕
i∈α Q. One can show that the cardinality

of any basis of a torsion-free abelian A is exactly the rank of A.
Recall that an abelian group is free if it has a group-presentations with no
relations except for the ones saying that its generators commute. Such groups
are isomorphic to direct powers ofZ. Every subgroup of a free abelian group
is free itself [44]. We will use the following well-known fact about generating
sets of subgroups of free abelian groups.
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Lemma 2.1 (Rado). Let G � F be free abelian groups. There exist
generating sets g1, . . . , gk and f1, . . . fm (k ≤ m) of G and F , respectively,
and integers n1, . . . , nk such that for each i ≤ k, we have gi = nifi .
See Fuchs [44] for a proof. We will also be using the fact that a pure cyclic
subgroup of an abelian group detaches as its direct summand.

2.2. Computability theory and computable structures. In contrast to com-
binatorial group theory, the study of computable abelian groups heavily
relies on methods of computability theory and computable model theory.
In fact, it is traditionally viewed as a topic in effective algebra.
We follow the standard terminology of computability theory. We assume
that the reader is familiar with the notions of computable (recursive) and
computably enumerable (c.e.) set, an oracle computation, Turing andmany-
one reducibility, andTuring degree.Wealso assume that the reader is familiar
with the Arithmetical hierarchy (i.e., lightface Σ0n, Π

0
n, Δ

0
n) and its relation to

c.e. sets and sets c.e. relative to 0(n). The latter stands for theHalting problem
iterated n times, i.e., the Halting problem for Turing machines with an ora-
cle for 0(n−1)). These notions can be found in Soare [102] and Rogers [96].
Some of our sketches will refer to the priority method. A detailed exposition
of the priority method can be found in Soare [102]. For a very readable
introduction to priority methods, see the first few chapters of Downey and
Hirschfeldt [29]. We discuss below some computability–theoretic and syn-
tactical notions specific to computable structure theory. These can be found
in Ash and Knight [4].

2.2.1. The Hyperarithmetical hierarchy. The (lightface) Σ0n+1-sets are
exactly the sets computably enumerable (c.e.) relative to 0(n). Using a trans-
finite recursion scheme, we can iterate the Turing jump over computable
ordinals. This way we obtain a transfinite extension of the Arithmetical
hierarchy called the Hyperarithmetical hierarchy. There are two conflicting
notations in the literature. In this paper we follow Soare [102] and take 0(�+1)

as the Σ0�+1-complete degree.
The class Σ11 is defined as the collection of sets of the form {y :

∃f∀nR(y,f(n))}, where R is a computable predicate and f : N → N

is a function. The Π11-sets are the complements of Σ
1
1-sets, and the class

Δ11 = Σ
1
1∩Π11 is equal to the union of Σ0α where α ranges over all computable

ordinals. The definition can be iterated to obtain the Analytical hierarchy,
but we will not go beyond Σ11- and Π

1
1-sets in our paper.

2.2.2. Index sets. We will measure the complexity of various properties
of computable groups using the following common approach (see, e.g.,
Goncharov andKnight [50] andAsh andKnight [4]). The standard effective
listing of all partial computable functions leads to an effective enumeration

M0,M1,M2, . . . ,Mk, . . .

of all partial computable structures upon the domainN that includes all total
computable algebraic structures. (A structure is partial if its operations are
not necessarily defined on all elements. A structure is total, otherwise. There
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is no effective listing of total computable structures because there is no
effective enumeration of total computable functions.)
Informally, given a property P, we can ask which computable structures
in this list satisfy P. For example, P could be “Mi is the free abelian group
of rank �”. Then the complexity of the set {i : Mi satisfies P} reflects the
complexity of P. The property may mention two or more structures (e.g.
“Mi ∼= Mj”), in this case we ask for the complexity of the set of tuples
satisfying P.
Given a classK of structures, we form the index set I (K) = {i :Mi ∈ K}
and the isomorphism problem E(K) = {(i, j) :Mi,Mj ∈ K andMi ∼=Mj}
for K . It is rather typical that algebraically well-understood classes have
the respective index sets and isomorphism problems of low complexities.
In contrast, “wild” classes such as computable linear orderings have at least
one of these sets not even hyperarithmetical. SeeGoncharov andKnight [50]
for a discussion and examples. If a class of computable structures K has a
relatively low complexity of the isomorphism problem and index set (e.g.,
arithmetical), then we say that K has a classification. Such a classification
may be “weak” in the sense that we do not necessarily have an explicit and
convenient list of isomorphism invariants.Nonetheless,we get some listing of
the isomorphism types and give a boundon the complexity of this listing. It is
also rather typical that the index set and isomorphism problem are complete
in the respective classes, and thus no “stronger” classification is possible.
We cite Lempp [74] for an application of index sets to the classification
problem for torsion-free (nonabelian) finitely presented groups.

2.2.3. Relativized computability and degree spectra. Although the main
objects of our study are computable groups and isomorphisms between
them, noncomputable invariants and processes arise naturally in effective
abelian group theory.

Definition 2.2. Let a be a Turing degree. A countable algebraic structure
A is a-presentable, or computable relative to a, if there exists a 1-1 numbering
of its universe under which the operations on A become a-computable.

The notion defined below has recently become central in the study of
noncomputable algebraic structures.

Definition 2.3 (Jockusch). The degree spectrum of a countable algebraic
structure A is the collection DSp(A) = {a : A is a-presentable}.
For example, every c.e. presented group has a 0′-computable presentation.
(As we will observe in Corollary 5.5, the converse fails already for direct
sums of cyclic abelian groups.)

2.2.4. Computable categoricity and beyond. The central notion of com-
putable algebra related to the complexity of isomorphisms (Problem II) is:

Definition 2.4. A computable structure A is computably categorical or
autostable if for any two computable presentations B andC ofA there exists
a computable isomorphism f : B ∼= C .
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Mal’cev [79] was the first to state Definition 2.4 in full generality. We believe
that Rabin, Fröhlich, and Shepherdson, and perhaps van der Waerden were
aware of this notion before Mal’cev, but they restricted themselves to groups
and/or fields.
Computably categorical algebraic structures in common classes tend to
be algebraically trivial, see Goncharov [49], Ash andKnight [4], and Ershov
andGoncharov [37] for examples and seeChapter 10.4 ofAsh andKnight [4]
for a formal clarification of this phenomenon. As we will see, computably
categorical abelian groups fall into this general pattern. Thus, we typically
have to deal with computable abelian groups that are not computably cate-
gorical. If a structure is not computably categorical, then perhaps a stronger
oracle can compute an isomorphism. For example, the additive group of the
Q-vector space of infinite dimension is not computably categorical (to be
discussed), but if we had access to the halting problem, we would be able to
compute an isomorphism between any two computable presentations of the
group. Furthermore, 0′ is sharp in this case, i.e., we would not be able to do
that with a weaker oracle. The following approach to structures that are not
computably categorical generalizing the example above goes back to Ash:

Definition 2.5 (Ash). A computable algebraic structure (e.g., a group)
A is Δ0α-categorical if for any two computable presentations B and C of A
there exists a Δ0α-isomorphism f : B ∼= C .
In the definition above, α is a computable ordinal. Definition 2.5 and its
variations play a central role in modern computable structure theory.

§3. Basic properties of computable abelian groups. This section contains
several important observations and notions that will be used throughout the
paper.

3.0.5. Definition 1.1 revisited. We say that H � A is a computable sub-
group of a (computable) group A if the domain of H is a computable
subset of the domain of A. We define Σ0n- and Π

0
n-subgroups in a similar

fashion. The free abelian group on countably many generators clearly has a
computable presentation with a computable generating set. We denote this
presentation by Z� . An infinite countable abelian groupA has a computable
(c.e.) presentation if, and only if, A is isomorphic to Z�/H , where H � Z�
is a computable (respectively, c.e.) subgroup of Z�.
We arrive at a natural generalization of Definition 1.1.

Definition 3.1. Say that an abelian group A is Σ0n-presentable if A ∼=
Z�/H for some Σ0n-subgroup H of Z� , and say that A is Π

0
n-presentable if

A ∼= Z�/H for a Π0n-subgroup H of Z� . Define Δ
0
n-presentations similarly.

Note that a group admits a Δ0n-presentation iff it has a 0
(n−1)-computable

copy, and Σ0n+1-presentations are exactly the ones that are c.e. relative to 0
(n).

A more detailed analysis of Σ0n- and Π
0
n-presentable abelian groups can be

found in Downey [26] and Khisamiev [66].

https://doi.org/10.1017/bsl.2014.32 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2014.32


322 ALEXANDERG. MELNIKOV

We will be frequently using that a c.e. subgroup of a computable group has
a computable presentation. The presentation can be obtained by a process
sometimes called “padding”. That is, we use the operation of the larger group
but we assign new names to elements of the subgroup. Note that it does not
imply that a c.e. subgroup is always a computable subgroup (viewed as a
subset), according to the terminology above. On the other hand, it explains
why Higman [55] called c.e.-presented groups “recursive”. Indeed, for each
c.e.-presentation 〈F|N 〉 the normal subgroup N generated by the relations
has a computable presentationC , and furthermore there exists a computable
isomorphism f : C → N � F. Nonetheless, the c.e. range of f does not
have to be computable in general.
Another stronger form of Definition 1.1 uses the first-order diagram of
a structure. Recall that the atomic diagram of an algebraic structure A in
language L is the collection of quantifier-free first order La∈A-formulae
that hold on A. Here La∈A is the language L augmented by constants for
each element of A (the latter can be identified with the natural numbers).
The a group has a computable copy if, and only if, its atomic diagram is a
computable set under the standard Gödel numbering. The full diagram of a
structure is the collection of all first-order La∈A-formulae that hold on A.
The definition below goes back to Ershov:

Definition 3.2. A countable structure is decidable or strongly constructive
if its full diagram is a computable set, under the standard Gödel numbering.

See Ershov [38] for more on decidable models. In the context of abelian
groups, the standard reference is Khisamiev [66]. The following result can
be derived from ( [38], Proposition 5 on p. 316):

Theorem 3.3 (Ershov). A computable abelian group A is decidable if,
and only if, Th(A) is decidable and the unary predicates pk|· are computable,
uniformly in k and p.

3.0.6. Divisible hull. Recall that every abelian group A is contained in its
divisible hull D(A) which is also called the divisible closure of A.

Fact 3.4 (Smith [101]). Every computable abelian group has a computable
presentation that is computably embedded into its divisible hull.

The proof is a straightforward effectvization of the classical argument.
In the context of reverse mathematics, a detailed discussion of the result can
be found in Simpson [99]. An analysis of the uniqueness of D(A) up to a
computable isomorphism that agrees on A, in the spirit of Rabin Embed-
ding Theorem for algebraically closed fields (Rabin [93]), can be found in
Smith [101].

3.0.7. Splitting a torsion group. Recall that every torsion group T splits
into a direct sum of p-groups Tp. The effective content of this result is:

Fact 3.5. A countable torsion abelian group T has a computable
presentation if, and only if, Tp are computable uniformly in p.
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The proof is again elementary. One might expect that Fact 3.5 reduces the
study of effective procedures in torsion groups to p-groups, but we will see
this is not quite the case.

§4. Torsion-free groups. Recall that a group is torsion-free if every
nonzero element of the group is of infinite order. In pure algebra, the class of
countable torsion-free abelian groups has been serving as a source of striking
counterexamples, see Fuchs [45]. The class of countable torsion-free abelian
groups is believed to be very “complicated” since only a few special classes
of countable torsion-free abelian groups are classically well-understood.
What can be said about c.e. and computable torsion-free abelian groups?
Can we classify such groups up to isomorphism? We will explain why the
answer to the latter question is believed to be negative in general, but we will
accumulate a good deal of information about the special class of completely
decomposable abelian groups.
The section is subdivided into subsections and paragraphs.
In Subsection 4.1 we give an effective analysis of linear dependence and
generating sets. In Subsection 4.1.1 we use linear independence to charac-
terize computable categoricity, and in Subsection 4.1.2 we manipulate with
finitely generated subgroups to show that every c.e. presented torsion-free
abelian group admits a computable presentation.
In Subsection 4.2 we discuss computable completely decomposable
groups. In Subsection 4.2.1 give a detailed analysis of the most elemen-
tary case of rank 1 groups, and in Subsection 4.2.2 we briefly discuss the
case of any finite rank. The homogeneous case is studied in Subsection 4.2.3,
and Subsection 4.2.4 contains results on arbitrary computable completely
decomposable groups.
In Subsection 4.3 we finally approach computable torsion-free abelian
groups that are not necessarily completely decomposable. In Section 4.3.1
we introduce a general method of constructing computable torsion-free
abelian groups. In Section 4.3.2 and Subsection 4.3.3 we apply the method
to show that computable torsion-free abelian groups are “unclassifiable”.
In Subsection 4.3.4 we discuss further applications of this method to degree
spectra of torsion-free abelian groups, and in Subsection 4.3.5 we apply the
method to study indecomposable computable abelian groups.

4.1. Linear independence and generating sets.

4.1.1. Linear dependence algorithm. We say that a computable torsion-
free abelian group A has a linear dependence algorithm if given any
a1, . . . , ak ∈ A we can uniformly decide if a1, . . . , ak are linearly dependent
or not. The fact below is well-known.

Fact 4.1 (Mal’cev [80]). For a computable torsion-free abelian group A,
the following are equivalent:

1. A has a linear dependence algorithm;
2. A has a computable base;
3. A has a c.e. base.
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Sketch. The implications (1) → (2) and (2) → (3) are straightforward.
For (3)→ (1), note that for every nonzero element ai there exists an ni ∈ Z

such that na belongs to the free group
⊕
b∈B Zb generated by a c.e. basis B .

Given a1, . . . , ak , find n1, . . . , nk ∈ Z with that properly. Now a1, . . . , ak are
linearly independent if, and only if, n1a1, . . . , nkak are so within

⊕
b∈B Zb.

The latter can be decided using the standard matrix analysis. �
Mal’cev [80] was possibly the first to discover that the divisible group⊕
i∈� Q has a presentation with no linear dependence algorithm. The group⊕
i∈� Q is naturally aQ-vector space. There has been a line of study into the

Turing degrees of linear dependence of computable and c.e. presented and
computable vector spaces, see Metakides and Nerode [85] and Shore [98].
For instance, one can show that there exists a computable copy of

⊕
i∈� Q in

which any basis computes the Halting problem. See Simpson [99] for a dis-
cussion. But rather than analyzing degrees of linear dependence, we present
two results on bases of arbitrary computable torsion-free abelian groups
that contrast each other.
Proposition 4.2 (Dobritsa [25]). Every computable torsion-free abelian
group has a presentation with a computable basis.
Proof sketch. We use the notion of a finite partial group which is self-
explanatory. Also, for an integer t ≥ 0, say that {a1, . . . ak} ⊆ A is
t-dependent in A if m1a1 + · · · + mkak = 0 for some m1, . . . , mk ∈ Z with
0 < |mi | ≤ t. The desired presentation is constructed by stages. At the end of
stage t we have a finite partial group Ct , its t-basis Bt , and an embedding of
Ct intoA. At stage t, we extendCt and the embedding using another element
of A that is t-independent of the image {a0, . . . , as} of Bt = {b0, . . . , bs}.
There is one crucial subtlety in the proof: At a later stage s we may discover
ai is s-dependent on a0, . . . , ai−1. We then do the following. For each integer
j ∈ [i, s], we re-define bj by setting it equal to aj + s ! cj, where cj ∈ A are
first found with the property:

For any choice of nonzero integers kj with |kj | ≤ s !, the set
{a0, . . . , ai−1, ai + kici , . . . , as + kscs} is s-independent.

The coefficients s ! allow to preserve the already declared divisibility
conditions. We leave the verification to the reader. �
In contrast, based on Nurtazin [90], we prove:
Proposition 4.3. Every computable torsion-free abelian groupA of infinite
rank has a presentation in which linear independence is undecidable.
If A is divisible then the usual trick of making elements equal to large
linear combinations of the previously enumerated ones would do the job.
However, if A is not divisible, then we need more.
The proof below relies on Lemma 2.1 and is different from the purely
combinatorial techniques of Nurtazin and other similar proofs in the
literature.
Proof sketch. For simplicity, suppose A has a computable basis B =

{bi : i ∈ �} (Proposition 4.2). At a stage s , we have a finitely generated
partial group Ds isomorphic to As , and an embedding �s : Ds → As .
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We will build � = lims �s a Δ02 isomorphism of D = ∪sDs onto A = ∪sAs .
This global strategy is split into sub-strategiesRj . EachRj attempts to define
and keep � unchanged on the least pure subgroup (Bj)∗ of A containing
Bj = {bi : i ≤ j}. At stage s , the diagonalization strategyNe searches for an
element x ∈ D outside the pre-image Us of (Be)∗s so that the e-th potential
dependence algorithm declares x independent of �−1

s Be. Suppose such an
element x is found. The purity of (Be)∗ guarantees that

Ds = Us ⊕ C,
where C is a finite partial free group, see Lemma 2.1. (Note that we are
dealing with partial groups here. The reader may verify that it is not a
problem though.)
Assuming the above, we have As = (Be)∗s ⊕ �sC . We then declare the
generators of C equal to linear combinations of the generators of Us =
�−1
s (Be)

∗
s that use very large coefficients never seen so far in the construction.

Note that we necessarily make x dependent on Be . After this is done, we
introduce new elements, put them into Ds , and correct the embedding �s
extending its range onto C . The construction can be organized using a finite
injury priority method. �
In contrast, if the rank of a torsion-free abelian group is finite, then we
can fix its finite basis and nonuniformly find its image in every computable
presentation of the group. Recall that a group is autostable or computably
categorical if any two computable presentations of the group are computably
isomorphic. An immediate consequence of Propositions 4.2 and 4.3 is the
following:

Corollary 4.4 (Nurtazin, Dobrica). A computable torsion-free abelian
group is computably categorical if, and only if, its rank is finite.

More can be said.

Corollary 4.5 (Goncharov). Every computably presentable torsion-free
abelian group has either one or infinitely many computable presentations, up
to computable isomorphism.

Proof. Goncharov [37, 47] showed that if an algebraic structureM has
two computable presentations,A andB , such thatA ∼=Δ02 B but1 A �∼=comp B ,
thenM has infinitely many different computable presentations up to com-
putable isomorphism. Propositions 4.2 and 4.3 produce two presentations
of a torsion-free abelian group of infinite rank that are not computably
isomorphic, but that are Δ02-isomorphic. �
4.1.2. Computable presentations vs. c.e. presentations. We use the tech-
nique of generating sets and bases to establish:

Theorem 4.6 (Khisamiev [64]). There exists a uniform procedure that on
input a c.e. presentation of a torsion-free abelian group outputs its computable
presentation.

1We believe that our notations are self-explanatory.
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Proof idea. The theorem fails for groups that are not torsion-free (to be
stated in Corollary 5.4). We briefly explain why being torsion-free mat-
ters. At every stage, we have a finitely generated partial group Cs and an
embedding of Cs into a c.e. presentation U of A. Suppose Cs is gener-
ated by b1, b2, . . . , bk(s). At a later stage we may discover that the image of
h =

∑
i mibi in U is declared equal to 0. By Lemma 2.1, we can pick a new

collection of generators g1, . . . , gk(s) of Cs such that ngk(s) = h for some n.
(Notice that here we are dealing with partial groups.) It is crucial that the
image of gk(s) in U must be 0 as well, because U is torsion-free.We thus can
safely dispose gk(s) by declaring it equal to a linear combination of the rest
of the generators using sufficiently large coefficients. We then introduce a
new generator g ′

k(s) which will replace gk(s), and re-define the embedding
accordingly. Now one needs to show that the map is eventually stable, i.e.,
is Δ02. This can be done by a careful dynamic analysis of ranks of finitely
generated subgroups. We omit technical details. �
Theorem 4.6 solves a problem left open in Baumslag, Dyer, andMiller [8].
They were interested in homologies of finitely presented groups that turned
to be c.e.-presented. We mention that Khisamiev originally proved a more
general fact that he implicitly stated in terms of linear dependence, see his
survey paper [66]. Khisamiev’s original proof was a relatively complicated
combinatorial argument. Our simple proof idea based on Lemma 2.1 and its
modifications (see Fuchs [44]) can be extended to this more general setting
as well, but we leave it to the reader. Khisamiev [69] also strengthened the
result by showing that every Σ0n+1-presented torsion-free abelian group has
a Π0n-presentation. A further discussion of related results can be found in
Downey [26] and Khismaiev [66].

4.2. Completely decomposable groups. AgroupG is completely decompos-
able (c.d.) if G ∼=⊕

i∈I Hi , whereHi � Q for all i ∈ I . Any decomposition
ofG into subgroups ofQ is called complete, full, or elementary, and the direct
components in a complete decomposition ofG are its elementary summands.
The isomorphism types of the elementary summands of G full determine
the isomorphism type of completely decomposable group G .
Baer [6] was the first to systematically study completely decomposable
groups. Algebraic properties of completely decomposable groups and their
pure subgroups are fairly well understood, see Mader’s relatively recent
book [77]. We will see that computable completely decomposable groups
are neither among the “easily classifiable” objects (e.g., vector spaces) nor
among the “unclassifiable” objects (e.g., linear orders). The results are
intermediate in nature as well.

4.2.1. Subgroups of Q. We first look at the degenerate case of only one
elementary summand. SupposeH � Q is a nonnull group, and let p0, p1, . . .
be the standard listing of primes. The characteristic of a nonzero element
h ∈ H is a sequence (α0, α1, . . .), where αi =∞ in case if pki |h for all k, and
otherwise αi is the largest k for which pki |h withinH . We also say that αi is
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the p-height of h. Two characteristics � = (α0, α1, . . .) and � = (�0, �1, . . .)
are equivalent, written � � �, if∑

i

|αi − �i | <∞.

The �-equivalence class of characteristics corresponding to h is called the
type of h, written tH (h). It is clear that every two nonzero elements of H
are of the same type. It thus makes sense to define the type of H , denoted
by t(H ), to be tH (h) for some (equivalently, any) nonzero h ∈ H .
Theorem 4.7 (Baer [6], after Levi [75]). Suppose A,B � Q. Then A ∼= B
if and only if t(A) = t(B).
To describe computable subgroups of Q, we need to slightly adjust the
standard invariants. Given a characteristic � = (α0, α1, . . .), define

S� = {〈i, k〉 : αi ≥ k ≥ 0}.
Clearly, � � � iff S� =∗ S�, i.e., the sets agree up to a finite difference. We
say that a type t is computably enumerable (c.e.) if for some (equivalently,
for all) � ∈ t the set S� is c.e. We are ready to state:
Theorem 4.8 (Mal’cev [80]). Suppose A � Q is of type t. Then A has a
computable presentation iff t is c.e.
The proof of Theorem 4.8 is elementary and can be found in Melnikov [82]
or Downey [26]. Given a rank 1 group that is not necessarily computable,
what is the algorithmically simplest presentation of it? To answer this and
similar questions, one typically uses degree spectra (Definition 2.3). Knight,
Downey, Soskov, and Soskova independently observed:

Fact 4.9. For any Turing degree a there exists a subgroupA ofQ such that
DSp(A) = {b : a ≤ b}.
Proof. For a set X of degree a, encode X ⊕X (here ⊕ stands for the join
of sets) into a type t by setting 〈i, 1〉 ∈ t if i ∈ X ⊕X , and keeping 〈i, 0〉 ∈ t
otherwise. Then use a relativized version of Theorem 4.8. �
Not every rank 1 torsion-free group has a cone serving as its degree
spectrum. Indeed, one can use the existence of nontotal enumeration degrees
(see, e.g., Odifreddi [92]) to establish:

Fact 4.10. There exists a subgroup A of Q such that DSp(A) has no least
element under Turing reducibility.
Recall that a′ stands for the Turing jump of a Turing degree a which is the
degree of the halting problem for machines having access to some (any) set
from a. In contrast to Fact 4.10, Coles,Downey, and Slaman [19] discovered:
Theorem 4.11. For every subgroup A of Q, the jump degree spectrum
DSp′(A) = {a′ : a ∈ DSp(A)} of A has a least element.
Proof idea. The result follows at once from Theorem 4.8 and the
computability-theoretic fact below:

Proposition 4.12 (Coles et al. [19]). For every set X , the collection {Y ′ :
X is c.e. in Y} has a least element under ≤T .
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Discussion. Soskov (see a discussion in [27]) observed that Proposition
4.12 can be derived from the theory of enumeration degrees, as follows. It is
known that for every enumeration degree a, there exists a total enumeration
degree c in the enumeration jump class of a, see Soskov [104]. One can show
that J (c) will be exactly the least jump enumeration of a in terms of Coles,
Downey, and Slaman [19]. �
4.2.2. A note on finite rank. It is clear that a completely decomposable
group of finite rank is computably presentable if, and only if, all its ele-
mentary summands are computably presentable, and there is not much to
say about these groups. Furthermore, all that is known about finite rank
c.d. groups also holds for computable abelian groups of finite rank that are
not necessarily completely decomposable. In this paragraph we briefly discuss
the case of arbitrary torsion-free abelian groups of finite rank.
Mal’cev [78] gave a rather complex complete system of isomorphism
invariants for torsion-free abelian groups of arbitrary finite rank in terms
of sequences of matrices over p-adics. See Kurosh [73] for a statement and
a proof. The invariants are so complex that algebraists are still looking for
better invariants for groups of rank≥ 2. The recent results of Thomas [106]
suggest that a nice classification of such groups might not exist at all.
Dobrica [24] effectivized the above mentioned result of Mal’cev. As one
would expect, computable groups correspond to effective sequences of
matrices. Needless to say, the result of Dobrica is very difficult to apply.
Nonetheless, some progress can be made when working with a group of
finite rank directly. For instance, Theorem 4.11 can be easily generalized to
torsion-free abelian groups of finite rank.

Fact 4.13 (Melnikov [82], Calvert, Harizanov and Shlapentokh [16]).
Every torsion-free abelian group of finite rank has a jump degree.

Proof. Every torsion-free group of finite rank n be associated with a
subset of a standard computable presentation of Qn, as follows. Pick the
standard basis B0 ofQn, and any basis B of the group. Given a presentation
C of A, take the image B1 of B in C and extend the embedding B1 → B0 to
an embedding � of C into Qn. Notice all isomorphic copies share the same
image within Qn. The construction above and the usual padding imply that
A has an X -computable copy if, and only if, its �-image is X -c.e. subgroup.
The latter hold if and only if the image is an X -c.e. subset of Qn. It remains
to apply Proposition 4.12. �
A few further observations on finite rank torsion-free abelian groups can
be found in Calvert’s PhD thesis [13].

4.2.3. Homogeneous completely decomposable groups. We say that a com-
pletely decomposable group

⊕
i Hi is homogeneous if all its elementary

summands Hi are isomorphic. It follows at once from Theorem 4.8 that a
homogeneous completely decomposable group is computably presentable if,
and only if, its type is c.e.
The interesting algebraic and effective properties of such groups are related
to their complete decompositions and Δ0n-categoricity. The nontrivial case
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is when the rank of the group is infinite. It turns out that finding a full
decomposition of a computable homogeneous c.d. group is closely related
to Δ0α-categoricity (recall Definition 2.5).
Theorem 4.14 (Downey and Melnikov [33]). Every computable homoge-
neous completely decomposable group is Δ03-categorical.
Proof idea. The proof of Theorem 4.14 contained in [33] heavily relies on
an effective analysis of full decompositions. It uses the following notion of
independence:

Definition 4.15. Let S be a nonempty set of primes. Then elements
g0, . . . gk of G are S-independent if for every p ∈ S and each mi ∈ Z,

p |m0g0 + · · · +mkgk
implies p|mi for every i ≤ k.
For S = ∅, we agree that S-independence is just linear independence. An
S-basis is a maximal S-independent set. If S is a singleton {p}, we obtain
the classical notions of p-independence and Kulikov basis (to be discussed
in Subsection 5.1.6). An S-basis is excellent if it is also a maximal linearly
independent set. There exist {p}-bases that are not excellent (see Downey
and Melnikov [33]).
Using the notion of an excellent S-basis, we can show that every
computable copy C of the given group H has a Δ03-basis B such that
C =

⊕
b∈B Db for some fixedD ≤ Q. Clearly, having such a special Δ03-basis

is equivalent to saying that the group is Δ03-categorical since the characteris-
tic α ofD has to be c.e. The special basis B can be chosen to be an excellent
S-basis of Gα = {g ∈ G : �(g) ≥ α}, where S = {pi : αi �= ∞}. This
remark completes the proof idea. �
One can show that Theorem 4.14 cannot be improved to Δ02 in general.
Furthermore, we can completely describe Δ02-categoricity:
Theorem 4.16 (Downey and Melnikov [33]). A computable homogeneous
completely decomposable group H is Δ02-categorical if, and only if, the type t
of H contains a characteristic � which is an alternation of 0 and∞ such that
the positions of 0 in � form a semi-low set.
Discussion. We briefly explain what semi-lowness is and how it can be
used. Semi-lowness is a natural generalization of lowness. Recall that a set
A is low if A′ = 0′. It means that answers to ΔA2 -questions are Δ

0
2 and thus

can be effectively approximated using the Limit Lemma. A set S is semi-low
if {e|We ∩ S = ∅} is Δ02, and thus we have a similar effective approximation
to ΠA1 -questions. Semi-low sets are used in the study of the automorphisms
of the lattice of c.e. sets under finite difference, see Soare [102].
The proof of Theorem 4.16 is too technical to be discussed here. We men-
tion that the proof splits into several substantially different cases depending
on the isomorphism type of the group and its effective properties. �
Since � is semi-low, we have:
Corollary 4.17. Every computable presentation of the free abelian group⊕
i∈� Z admits a Δ

0
2-generating set.
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In Corollary 4.17, Δ02 can be improved to Π
0
1 (see Downey and

Melnikov [33]), but there clearly are computable copies of
⊕
i∈� Z having

no computable generating base.

4.2.4. Completely decomposable groups that are not homogeneous. An
explicit description of computably presentable completely decomposable
groups by isomorphism invariants remains undiscovered. Nonetheless, fol-
lowing the usual approach of computable structure theory, we can derive a
“weak” classification result in the sense described in Subsection 2.2.2. For
the class of completely decomposable groups, the best that is known is:
Theorem 4.18 (Downey and Melnikov [32]). The index set and the
isomorphism problem for completely decomposable groups are both Σ07.
The only known proof of the theorem above heavily relies on the fact that
each computable completely decomposable group is Δ05-categorical (same
paper [32]). The latter can be derived using S-independence discussed in the
previous paragraph, where S varies depending on the considered homo-
geneous subcomponent. The main difficulty is that these homogeneous
subcomponents are not stable under automorphisms in general.
It is not yet known if Σ07 is sharp. Nonetheless, using group presentations
rather than constructivizations, one can show that the Δ05-categoricity can
not be improved to Δ04-categoricity in general Downey and Melnikov [32].
Perhaps, similar techniques can be used to improve Σ07 or show Σ

0
7 is sharp.

Not much is known towards the classification problem in the usual sense
(i.e., finding an explicit description of the isomorphism types by alge-
braic and computability-theoretic invariants). In fact, the problem seems
to be unexpectedly challenging even in the algebraically simplest cases. For
instance, Khisamiev in the late 1990’s asked for which sets S of primes the
group ⊕

p∈S
[Z]p,

has a computable (decidable) presentation; here [Z]p is the localization of the
integers by p. Only recently Downey, Goncharov, Kach, Knight, Kudinov,
Melnikov, and Turetsky [28] have discovered the exact answer:
Theorem 4.19 (Downey et al. [28]). The group

⊕
p∈S [Z]p has a com-

putable (decidable) presentation if, and only if, S is Σ03 (respectively, Σ
0
2).

The proof contained in [28] is one of the rare applications of infinite injury
priority method in computable commutative algebra. The theorem above
admits a generalization to a slightly broader class of completely decom-
posable groups (see the same paper [28]). Recently, Riggs (unpublished)
has announced an extension of Theorem 4.19 to the case of finitely many
symbols∞ in each characteristic (the rest symbols are 0). Nonetheless, the
general case is still an open problem.

4.2.5. Effective complete decompositions. Khismaiev [67, 70] suggested
that it is natural to restrict ourselves to those computable presentations
of completely decomposable groups that have an algorithm for a complete
decomposition.
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Definition 4.20. We say that a computable completely decomposable
group A of infinite rank is effectively completely decomposable or strongly
decomposable if it has a computable presentation of the form

⊕
b∈B Hbb,

where B is a c.e. set.

Similarly to classifying computable completely decomposable groups,
describing effectively completely decomposable groups seems to be a chal-
lenging task. The following result shows that such studies require new
computability–theoretic notions.
Theorem 4.21 (Khisamiev [67]). A group of the form

⊕
p∈S [Z]p is effec-

tively completely decomposable if, and only if, the set of primes S is Σ02 and
not quasi-hyperhyperimmune.
As before, [Z]p stands for the localization of the integers by a prime
p. The technical notion of a quasi-h.h.-immune set can be found in [67].
Khismaiev showed that each h.h.-immune set is quasi-h.h.-immune, but
that the converse fails.
A further discussion of effectively completely decomposable groups can be
found in Downey and Melnikov [32]. Effectively completely decomposable
groups have recently been used in the study of degree spectra of linear orders
on computable abelian groups (to be discussed in Subsection 6.2.4).

4.3. Computable torsion-free abelian groups in general. As we mentioned
at the beginning of the section, there is no satisfactory classification of count-
able torsion-free abelian groups. The recent results of Thomas [106] and
Hjorth [58] suggest that countable torsion-free abelian groups of rank ≥ 2
might have no nice invariants at all. Computable torsion-free abelian groups
can be very complicated as well. This subsection contains mostly “negative”
results, i.e., results illustrating that computable torsion-free abelian groups
are unclassifiable.

4.3.1. A method of constructing torsion-free abelian groups. Let Γ =
(V,E) be a countable graph. Suppose further that both edges and vertices
of T are labeled by multisets of primes with at most countable multiplicity
of elements. WriteMy for the multiset of primes that label y ∈ V , and write
M{u,w} for the multisetlabeling {u,w} ∈ E. For a p ∈Ms , where s ∈ V ∪E,
write r(Ms, p) for the multiplicity of p in the multisetMs .

Definition 4.22. Let Γ be a countable graph labeled by multisets of
primes. Define A(Γ) to be the least subgroup of

⊕
v∈V Qv such that:

1. pr(Mv,p)|v for each v ∈ V ;
2. pr(M{v,w},p)|(u +w) for very {u,w} ∈ E.
The group A(Γ) is clearly torsion-free. We may well have Γ �∼= Ξ but
A(Γ) ∼= A(Ξ).
Remark 4.23. Note that the underlying tree Γ can be associated with a
special basis of A(Γ).

Hjorth [58] was the first to use this approach to “code” information into
the isomorphism type of a countable group. The method was known to pure
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algebraists long before Hjorth, but it had been used for different purposes,
e.g., for constructing indecomposable groups, see Fuchs [45]. In the next
paragraphs we will use this method to build complicated computable groups.

4.3.2. The isomorphism problem. Recall that in Subsection 2.2.2 we
defined the isomorphism problem for a class K to be the set

E(K) = {(i, j) :Mi,Mj ∈ K andMi ∼=Mj}.
Downey and Montalban [36] adjusted the construction of Hjorth [58] to
obtain the following:

Theorem 4.24 (Downey and Montalban [36]). The isomorphism problem
for computable torsion-free abelian groups is Σ11-complete.

Intuitively, Σ11-completeness means that here is no simpler uniform way of
checking if A ∼= B rather than just asking if there exists an isomorphism
between A and B .

Proof sketch. The key algebraic idea is rather straightforward. Given
a rooted countable tree T ⊆ �<�, label � ∈ T by p2|�| with multiplicity
∞, and label an edge {�, �+} by p2|�|+1 with multiplicity ∞. We then use
Definition 4.22 to obtain a torsion-freeA(T ). Clearly, the process is effective
in T . Let F be the tree which consists only of the infinite chain. Then T has
a path iff A(F ) � A(T ). As a consequence, if T0 is well-founded and T1
is not, then A(T0) �∼= A(T1). We would like to apply the well-known result
of Harrison [53] about Σ11-completeness of well-foundness for computable
trees. To complete the proof we need an effective procedure that homoge-
nizes trees that are not well-founded, so that we obtain A(T0) ∼= A(T1) for
such trees. The latter can be done as in Goncharov and Knight [50]. �
Theorem 4.24 implies that the isomorphism problem for torsion-
free abelian groups is not hyperarithmetical. The latter had been earlier
announced by Calvert [13], but his proof was incomplete.

4.3.3. An injectivity result and its application. The restricted functor
of Definition 4.22 used in the proof of Theorem 4.24 is not injective
(Melnikov [83]). Nonetheless, using a relatively technical combinatorial
argument Fokina, Knight, Melnikov, Quinn, and Safranski [40] showed:

Theorem 4.25 (Fokina et al. [40]). The functor from the proof of
Theorem 4.24 is injective when restricted to the class rank homogeneous
trees.

We do not give the formal definition of a rank homogeneous tree, we
only note that such trees serve as technical tools for constructing structures
of high Scott rank. See Calvert, Knight, and Millar [17] for more details.
We also note that the proof of Theorem 4.25 that is contained in Fokina
et al. [40] has a rather confusing but easily fixable flaw. A corrected proof
can be found in the author’s PhD thesis [84].
Theorem 4.25 stated above has recently been applied to obtain another
strong evidence that computable torsion-free abelian groups are not
classifiable in general. To state the result, we need a few more definitions.
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Let E, R be equivalence relations on hyperarithmetical sets. Following
Fokina et al. [39], we write E ≤tc R if (x, y) ∈ E ⇔ (f(x), f(y)) ∈ R for a
partial computable f defined on the domain of E. Using ≤tc , we can define
the notion of ≤tc-completeness among members of a class as usual. Using
the enumeration of all partial computable structures (Subsection 2.2.2),
we measure the complexity of the isomorphism relation on a class using tc
reducibility. For torsion-free abelian groups, we obtain:

Theorem 4.26 (Fokina et al. [39]). The isomorphism relation on com-
putable torsion-free abelian groups is tc-complete among Σ11 equivalence
relations.

Proof sketch. It is clear that the isomorphism relation on computable
torsion-free abelian groups is Σ11. The isomorphism relation for rank-
saturated trees is tc-complete among Σ11 equivalence relations; see Fokina
et al. [39] for a definition and a proof. What we need to know is that rank
saturated trees are rank homogeneous. Since the coding from Theorem 4.24
is effective and 1-1 for rank homogeneous trees (Theorem 4.25), the theorem
follows. �
4.3.4. Degree spectra of torsion-free groups. It is not known if torsion-
free abelian groups realize fewer degree spectra than arbitrary countable
structures. We list below all that is currently known about degree spectra of
torsion-free abelian groups.
Theorem 4.11 states that for every torsion-free abelian group A of rank 1,
its jump degree spectrum DSp′(A) = {a′ : a ∈ DSp(A)} has the smallest
element. We also discussed in Subsection 4.2.2 that the same result holds for
groups of any finite rank.What about the case of infinite rank? As a corollary
of the next result, the answer is negative even for completely decomposable
groups.

Theorem 4.27 (Melnikov [82]). There exists a completely decomposable
abelian group whose degree spectrum is {X : X ′ >T 0′} (i.e., the nonlow
degrees).

Proof sketch. Given a finite set S, take the type tS containing (hi )i∈� ,
where hi = 0 ifDi ⊆ S and hi =∞ otherwise. Let AS be the subgroup of Q
of type tS . Given a family of finite sets R, take

GR =
⊕
i∈�

⊕
S∈R
AS.

We may assume that ∅ ∈ R. Then we claim that GR has an X -computable
presentation if and only if R has a uniform ΣX2 -enumeration (a little proof
is required). To complete the theorem, relativize the result of Wehner [109]
to obtain a family of finite sets that has no Σ02-enumeration yet for every X
with X ′ >T 0′ has a ΣX2 -enumeration. �
We may apply the Turing jump operator to the degree spectrum of A,
iterate this procedure over computable ordinals and seek for an α least so
that DSp(α)(A) = {a(α) : a ∈ DSp(A)} is just a cone above b; if such an
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α and a degree b can be found, then b called the (proper) α’th jump degree
of the corresponding group. Andersen, Kach, Melnikov, and Solomon [1]
proved:
Theorem 4.28 (Andersen et al. [1]). For every computable ordinal α there
exists a torsion-free abelian group having a proper α′th jump degree.
Proof idea. As it follows from a computability-theoretic result of Ash,
Jockusch, and Knight [3], it is sufficient to prove:
Proposition 4.29. For every Turing degree a and every infinite set S,
a group G(S) such that G(S) has an a-computable copy if, and only if,
S is Σaα .
We discuss the proof of Proposition 4.29. The construction of G(S) uses
the functor from Definition 4.22. Using a transfinite inductive scheme, we
define a computable sequence of infinite labeled trees naturally reflecting Σ0α-
and Π0α-outcomes. We then uniformly produce groups Gi , each encoding a
Σ0α- outcome if i ∈ S, and a Π0α-outcome if i /∈ S. We then take a new fresh
infinite computable set of primes {wj}, and make Gi infinitely divisible by
wi ; written [Gi ]wi . We let G(S) =

⊕
i∈N
[Gi ]wi . The main technical diffi-

culty of the proof is reconstructing the isomorphism types of these specific
labeled trees from an isomorphism type of the group. Not every choice of
the coding components would do the job, as it is explained in Andersen
et al. [1]. An effective reconstruction of S from the isomorphism type of
G(S) requires a development of a new machinery extending the earlier
ideas contained in Hjorth [58], Downey and Montalban [36], and Fokina
et al. [40]. The proof is too combinatorially involved to be further described
here. �
Despite of the mentioned above technical difficulties, we expect that the
method used in the proof of Proposition 4.29 will find more applications in
the future.
We also note that Proposition 4.29 is of some independent interest.
It says that a computable torsion-free abelian group can have an arbitrar-
ily complex hyperarithmetical set as its full isomorphism invariant. Thus,
Proposition 4.29 itself is an anti-structure result in the sense of Goncharov
and Knight [50].

4.3.5. Direct decompositions of torsion-free abelian groups. Recall that a
group is indecomposable if it is not a direct sum of two nonnull groups.
The standard construction of indecomposable groups of ranks n ≤ � uses
the functor from Definition 4.22, and the classical examples of countable
indecomposable groups are in fact computable. More can be said:

Theorem 4.30 (Riggs [95]). The index set of directly indecomposable
abelian groups is Π11-complete.
Although the construction of Riggs [95] uses Definition 4.22 and is similar
to those discussed inSubsection 4.3.4, its verification is less tricky since it uses
decomposability analysis (e.g., Fuchs [45]) rather than definability analysis.
The construction itself is more involved though. When restricted to finite
rank groups, this index set becomes arithmetical (Riggs [95]).
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§5. p-Groups. As it follows from Fact 3.5, the study of computable
torsion abelian groups often (but not always) can be reduced to the study of
p-groups. Countable abelian p-groups can be fully described up to iso-
morphism by their Ulm invariants and the dimension of their divisible
component (to be discussed, see also Fuchs [44]). Nonetheless, from the
algorithmic point of view these invariants are too complicated; the difficulty
is rooted in the ability to compute ordinal p-heights of elements within a
group. As a consequence, we should not hope for any reasonable classifi-
cation of computable abelian p-groups up to isomorphism. However, we
can fully describe, up to isomorphism, computable p-groups of finite Ulm
type using algebraic and computability–theoretic invariants. Remarkably,
already for the elementary case of sums of cyclic groups we need a new
computability–theoretic notion.
In Subsection 5.1 we discuss the algorithmic content of direct sums of
cyclic and quasi-cyclic p-groups. In Subsection 5.1.1 we look at computable
sums of cyclic p-groups, and in Subsection 5.1.2 we study degree spectra of
sums of cyclic p-groups. Quasi-cyclic summands first come into considera-
tion in Subsection 5.1.3. In Subsection 5.1.4we give an algebraic criterion for
an arbitrary computable abelian p-group to be computably categorical; all
such groups are direct sums of cyclic and quasi-cyclic summands. Categoric-
ity relative to an oracle is discussed in Subsection 5.1.5, and Subsection 5.1.6
contains a result on Kulikov bases.
In Subsection 5.2 we introduce and apply a rather useful method of
p-basic trees. Algebra necessary for the method is contained in Subsection
5.2.1, and the central computability–theoretic lemma about p-basic trees
is stated and sketched in Subsection 5.2.2. In Subsection 5.2.3, we use the
lemma to characterize computable reduced abelian p-groups of finite Ulm
type. In the same paragraph we also discuss the case of Ulm type �.
In Subsection 5.3 we consider computable abelian p-groups without
any further restriction on their isomorphism type. In Subsection 5.3.1 we
show that computable p-groups are “unclassifiable”. In Subsection 5.3.2 we
discuss Δ0α-categoricity for higher α.

5.1. Direct sums of cyclic and quasi-cyclic groups. We will need the
following computability-theoretic notion.

Definition 5.1 (Khisamev [57], Ash et al. [5], Khoussainov et al. [71]).
A total function F : � → � is limitwise monotonic if there is a computable
function f(x, y) of two arguments such that

F (x) = sup
y
f(x, y),

for every x ∈ �.
An infinite set is limitwise monotonic if it contains an infinite range of
a limitwise monotonic function. Without loss of generality, we could also
assume that the whole set is the range of an injective limitwise monotonic
function, see e.g. Harris [52] and Kalimullin et al. [60].
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5.1.1. Computable and c.e. presentations of sums of cyclic groups. Suppose
a p-group A is isomorphic to

⊕
i Ci , where Ci are cyclic groups. Clearly,

each Ci is isomorphic to Zpk for some k. Define the characteristic of A to
be the set

S(A) =

⎧⎨
⎩〈m, k〉 :

⊕
i≤m
Zpk is a direct summand of A

⎫⎬
⎭ ,

and also consider its projection onto the second coordinate

#A = {k : 〈1, k〉 ∈ S(A)}.
Limitwise monotonic functions describe computably presentable p-groups
that are countable sums of cyclic groups.
Proposition 5.2 (Khisamiev [57]). Suppose A is a direct sum of cyclic
p-groups. ThenA is computably presentable if, and only if, one of the following
holds:
1. #A is finite, or
2. #A is infinite and limitwise monotonic, and S(A) is Σ02.
Proof idea. The less elementary case is when #A is infinite. Sup-
pose A is computable. We show that (2) holds. Recall the definition of
p-height: hp(a) = sup{k : pk|a}, allowing hp(a) = ∞. We use O(a)
to denote the order of a. Notice that subsets Vk = {a ∈ A : O(a) =
p and hp(a) ≥ k} are computably enumerable uniformly in k. Whence, 0′
can uniformly enumerate bases of Zp-vector spaces Vk/Vk+1, showing that
S(A) is Σ02. To see why #A is limitwise monotonic, note that our guess on
the p-height of a chosen a ∈ A of order p can only increase. At stage s ,
define f(0, s) equal to our guess on hp(a) + 1 of the first found nonzero a
of order p. To define f(1, s), pick b least in Vf(1,s)+1 of p-height ≥ f(1, s)
and set f(1, s) = hp(b) + 1, etc. The range of sups f(x, s) is an infinite set
contained in #A witnessing that #A is limitwise monotonic.
Now suppose S is Σ02 and contains the infinite range of F (x) =
supy f(x, y), where f is computable. Then produce a copy of A as fol-
lows. Suppose at stage s we have enumerated only finitely many summands
of the form Zpz , for various z ≤ s . If at stage s + 1 we discover that one
of these summands has to be removed according to the new guess on S(A),
we take a large and fresh c > z such that u(c, s) = supy≤sf(c, y) > k
and expand Zpk to Zpu(c,s) . We re-introduce a summand of size Zpz using
new fresh generators. One can see that a summand isomorphic to Zpz will
occur in the resulting group if and only if z ∈ S. Note that we also have
to dynamically control the number of the cyclic summands. This remark
completes the sketch. �
A direct consequence of the proof of Proposition 5.2 is that every
computable p-group that splits into a direct sum of cyclic groups has a
presentation with a computable decomposition into cyclic summands.
We establish the following fact:
Proposition 5.3 (Khisamiev [69]). Suppose A ∼= ⊕

k∈S Zpk . Then A is
c.e. presentable if, and only if, S(A) is Σ02.
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Proof. It is clear that any group of this form with S(A) ∈ Σ02 has a
c.e. presentation. Indeed, at stage s , keep exactly m copies of Zpk for the
largestm such that 〈n, k〉 ∈ S(A)[s] for each n ≤ m.
For the other direction, suppose A = F1/F2, where F1 is a (computable)
free abelian group, and F2 is its c.e. subgroup. For every k > 1, define

Uk = {x ∈ F1 : px = 0modF2 & (∃b ∈ F1)pkb = xmodF2}
and

Vk = {x ∈ Uk : (∃c ∈ F1)pk+1c = xmodF2}.
BothUk andVk are c.e. subgroups ofF1.We can pass to a c.e. presentation
of Uk/Vk using padding. Since F2 � Vk � Uk , by the Third Isomorphism
Theorem

Uk/Vk ∼= (Uk/F2)/(Vk/F2).
The abelian group (Uk/F2)/(Vk/F2) is isomorphic to a vector space over
Zp whose dimension is equal to the number of Zpk -components in A. This
number is equal to sup{m : 〈m, k〉 ∈ S(A)}. Using 0′ as an oracle, we can
enumerate a Zp-basis of Uk/Vk, and thus approximate the k′th column of
S(A). �
Since there exist infinite Σ02-sets that are not limitwise monotonic
(Khismaiev [66], Khoussainov, Nies and Shore [71]), Propositions 5.2
and 5.3 imply:

Corollary 5.4 (Khisamiev). There exists a c.e. presented p-group without
elements of infinite height having no computable presentation.

The corollary contrasts Theorem 4.6.

Corollary 5.5. There exists a 0′-computable p-group without elements of
infinite height that has no c.e. presentation.

Proof of Corollary. By the previous, it is sufficient to construct a Σ03 set
that is not Σ02 but is the range of a function that possesses a 0

′-computable
limitwise monotonic approximation. One can easily construct a Σ02 (indeed,
d -c.e.) set that is limitwise monotonic but is not Σ01, and then relativize the
construction to 0′. �
For a further analysis of Σ0n and Π

0
n-presentations of direct sums of cyclic

groups, see Khisamiev [66].

5.1.2. Degree spectra of sums of cyclic groups. We open this paragraph
with a general result that holds for arbitrary abelian p-groups. We say that
a structure A satisfies the effective extendability condition (Richter [94])
if for every finite structure F isomorphic to a substructure of A, and every
embeddingφ : F → A, there is an algorithm that determineswhether a given
finite structure N extending F can be embedded into A by an embedding
extending φ. Richter [94] showed that if a structure satisfies the effective
extendability property, then its degree spectrum has no least element unless
the structure is computable.

Proposition 5.6 (Khisamiev, Jr. [62]). Countable abelian groups satisfy
the effective extendability condition.
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Proof idea. It is sufficient to observe that, if a group A has arbitrar-
ily large cyclic summands or its divisible subgroup has infinite rank, then
extendability of an embedding

φ : F → A
of a finiteF is completely regulated by the collection of p-heights of elements
in φ(A) compared to their p-heights inC ⊃ F . IfA does not have arbitrarily
large cyclic summands and its divisible subgroup has finite rank, then we use
the dimensionof the divisible part, the highest orderpm of a cyclic summand,
andalso the dimensions of⊕jZkp that detachas summandsofA (herek ≤ m)
as nonuniform parameters. A formal proof can be reconstructed using only
the first half of Kaplansky’s little book [61]. �
Corollary 5.7. No countable, noncomputable abelian p-group has a
degree.
In particular, if a direct sum of cyclic p-groups has a degree, it must be 0
(compare with Fact 4.9).Wewould like to knowwhich collections of degrees
can be realized as degree spectra of direct sums of cyclic p-groups.
Proposition 5.2 reduces the study of degree spectra of groups that split
into direct sums of cyclic groups to the study limitwise monotonicity relative
to an oracle. Working directly with limitwise monotonic sets, Kalimullin,
Khoussainov, and Melnikov [60] showed:
Theorem 5.8 (Kalimullin et al. [60]). There exists an abelian p-group A
such that A has an X -computable presentation relative to any noncomputable
Δ02-oracle, but does not possess a computable presentation. In fact, A splits
into a direct sum of cyclic groups.
The result resembles a similar fact for linear orders, see Russell Miller [88].
The proof of Theorem 5.8 combines the method of Δ02-permitting with
some specific properties of limitwise monotonicity relative to an oracle.
In contrast, we have:
Theorem 5.9 (Kalimullin et al. [60]). LetA be a direct sumof cyclic groups.
Suppose A has a computable presentation relative to every degree except
perhaps countably many degrees. Then A has a computable presentation.
For instance, no group of this form may have the degree spectrum con-
sisting exactly of noncomputable degrees. Countable structures with such
spectra surprisingly exist as it was shown by Slaman [100] andWehner [109].
The proof of Theorem 5.9 is a computability–theoretic forcing argument.

5.1.3. Computable sums of cyclic and quasi-cyclic summands. The quasi-
cyclic p-group, or the Prüfer p-group, is the abelian group

Zp∞ = 〈ai , i ∈ N|pa0 = 0, pai+1 = ai : i > 0〉.
These groups play a special role in abelian group theory since every divisible
p-group splits into a direct sum of Prüfer p-groups. As the name suggests,
algebraic properties of quasi-cyclic p-groups resemble properties of cyclic
p-groups, see Fuchs [44]. In the following, the rank of a divisible p-group
is the number of quasi-cyclic components in its full decomposition. The
proposition below and its corollaries were known to Khisamiev.
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Proposition 5.10. Suppose A = R ⊕D, where R is a direct sum of cyclic
p-groups, and D is a direct sum of quasi-cyclic groups. Then:

1. If D has finite rank, then A has a computable presentation if and only if
R has a computable presentation.

2. If D has infinite rank, then A has a computable presentation if and only
if R has a c.e. presentation.

Proof sketch. For (1), note that every element of order p in A, except
finitely many, has a nonzero projection ontoR. Similarly to how it was done
in the proof of Proposition 5.2, we can use these elements to show S(R) is Σ02
and obtain a limitwise monotonic function for #R. Then the other direction
of Proposition 5.2 implies (1) of the fact.
For (2), we can closely follow the proof of Proposition 5.3 and show
S(R) is Σ02. By Proposition 5.3,R has a c.e. presentation. Now suppose R is
c.e. presentable. A simple construction of a computable produces a copy of
A using the Σ02 set S(R). �
Corollary 5.11. Suppose A = R ⊕ D is a c.e. presented group, where R
is a direct sum of cyclic p-groups, and D is a direct sum of infinitely many
quasi-cyclic groups. Then A has a computable presentation.

The proof of the corollary above boils down to showing that S(R) is
Σ02. Another corollary follows at once from Corollary 5.4 and Proposi-
tion 5.10(2)

Corollary 5.12. There exists a computable abelian group whose reduced
component has no computable presentation.

Goncharov asked whether the corollary above holds for torsion-free
abelian groups. Khisamiev and Khisamiev [69] claimed that the answer is
negative.Nonetheless, the proof contained inKhisamiev andKhisamiev [69]
seems incomplete2. As it stands, the question of Goncharov is still open.

5.1.4. Computable categoricity of p-groups. As a consequence of the
following result, every computably categorical computable p-group is nec-
essarily a direct sum of cyclic and quasi-cyclic p-groups. We choose to state
it here.

Theorem 5.13 (Smith [101], Goncharov [46]). A computable abelian
p-group A is computably categorical if and only if either A ∼= R ⊕ D where
D is divisible and F finite, or G = D ⊕ F ⊕⊕

i∈� Zpm where D is divisible of
finite rank and F is finite.

Proof idea. Note that the result is stated incorrectly in Smith [101], while
the proof of the most nontrivial case is missing inGoncharov [46]. However,
an analysis of this case is contained in Smith [101]. This less elementary case
is when A has arbitrarily large cyclic summands. We informally describe the
main strategy in this case.

2More specifically, it is not clear how Lemma 4 of [69] helps in producing a desired single-
valued computable enumeration, since the latter heavily relies on a specific presentation of
the p-adics.
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We construct a copyB of the groupA and diagonalize againstϕe : B → B
as follows. We pick an element a0 in As , and make sure that hBp (ϕe(a0)) =
hAp (a0)+k for k > 0 using thatA has arbitrarily large cyclic summands. The
crucial subtlety is that the witness maywell have infinite height, inwhich case
the diagonalization is unsuccessful. If the height of the witness increases, i.e.,
hAs+1p (a0) > hAsp (a0), then we pick a new witness a1, but keep the previously
defined witnesses a0 as well. We pick s new a2 only if the p-heights of both
a0 and a1 have increased. Since we always pick a smallest possible witness,
we eventually find a stable one of finite height. We can then split the main
strategy into sub-strategies, each guessing the behavior of the i ′th witness’
height, and then put them onto a (dynamic) tree of strategies. �
Corollary 5.14 (Goncharov [46]). Every computable abelian p-group
has either one or infinitely many computable presentations up to computable
isomorphism.
Discussion. If a computable abelian p-group is not computably categori-
cal, then themain strategy from the proof ofTheorem canbe used to produce
infinitely many copies of the group. We leave details to the reader. �
5.1.5. Categoricity relative to an oracle. Recall the notion of Δ0n-
categoricity (Definition 2.5). It is not difficult to show that every p-group
that is a direct sum of cyclic and quasi-cyclic groups is Δ03-categorical.
Calvert, Cenzer, Harizanov, and Morozov [15] raised a surpassingly chal-
lenging question of which direct sums of cyclic and quasi cyclic p-groups are
Δ02-categorical. Recently,Downey,Ng, andMelnikov [34,35] announced sev-
eral results that partially answer the question. For instance, the proposition
below answers one of the two more specific questions left open in Calvert
et al. [15]:

Proposition 5.15 (Downey, Melnikov, and Ng [35]). Let A be a direct
sum of cyclic p-groups and finitely many quasi-cyclic p-groups. Then A is
Δ02-categorical if and only if the orders of the cyclic summands are bounded.
The proof of Proposition 5.15 relies on the technique of p-basic trees that
will be explained in the next section. Modulo this technique, the proof is not
difficult. In fact, using the technique of p-basic trees, we can lift the result
to groups of arbitrary finite Ulm type.
In contrast, one needs a much more combinatorially involved analysis
when dealing with the case of infinitely many quasi-cyclic summands. Com-
putableΔ02-categorical groupsof this kind exist and seemdifficult to explicitly
describe. Although Downey, Melnikov, and Ng [34] contains a good deal
of partial information about Δ02-categorical groups of this kind, a complete
description of Δ02-categorical groups in this class remains undiscovered.

5.1.6. Kulikov basis. The notion of p-independence is the special case of
S-independence that was defined in §4.2.3. We say that elements a0, . . . ak
arep-independent if pn|∑i miai implies

∧
i p
n|mi , for any choice of integers

n and mi . A maximal p-independent set of a group is called Kulikov basis
of the group. The subgroup generated by a Kulikov basis is called a Kulikov
subgroup of a p-basic subgroup of the group. A p-basic subgroup is always
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a direct sum of cyclic groups. A detailed exposition of p-independence in
the context of abelian p-groups can be found in Fuchs [44].

Proposition 5.16 (Khisamiev [63]). A computable presentation of an
abelian p-group has a c.e. Kulikov basis if, and only if, the unary predicates
pk| for pk-divisibility are computable uniformly in k in this presentation.
Proof sketch. Suppose the unary predicates pk| are uniformly com-
putable in a computable A. Then the basis is built by stages. At the first
stage we pick the first found b such that hp = 0, and pk−1 = a for some a
with the properties pa = 0 and hp(a) = k − 1. Since 〈b〉 is pure in A, and
pure cyclic subgroups detach, we have

A = 〈b〉 ⊕ C1
for some C1. The main difficulty in the construction is that C1 is defined
merely up to isomorphism, so at the next stage we will need to work mod-
ulo 〈b〉. We also have to calculate the p-height mod 〈b〉. We then iterate.
Algebra needed for implementing this idea does not go beyond the first half
of Kaplansky [61].
For the converse, suppose (bi )i∈I is a c.e. Kulikov basis ofA. Note that the
factor-group A/〈bi : i ∈ I 〉 is divisible (see Fuchs [44]). To verify whether
pk|x, find a presentation

x =
∑
i

mibi + pka,

where a ∈ A.From the definition of p-independence, we obtain that pk|x if,
and only if, pk|mi for each i . �
Theorem 3.3 and Proposition 5.16 imply:

Corollary 5.17. A computable abelian group A is decidable if, and only
if, Th(A) is decidable and A has a computable Kulikov base.
Theorem 3.3 and Proposition 5.16 are central in the proof of another
interesting result that expresses decidability of a presentation in terms of
quasibasis. Since decidable presentations are not in the scope of this survey,
and since the statement is rather technical, we do not state the result. See
Khisamiev [63, 66] for a formal statement and a proof.

5.2. Ulm invariants, and p-basic trees. In this subsection we discuss the
technique of p-basic trees and give a proof sketch of one very important
lemma that has various applications.

5.2.1. p-Basic trees. In mathematical practice, using tree-like diagrams
representing abelian p-groups is rather common.

Definition 5.18 (L. Rogers [97]). A p-basic tree is a setX together with a
binary operation pn ·x of the sort {pn : n ∈ � \{0}}×X → X such that:
(1) there is a unique element 0 in X for which p · 0 = 0,
(2) pk · (pm · g) = pk+m · g, for every g ∈ X and k,m ∈ �, and
(3) for each nonzero element x inX , there is a positive integer n such that
pn · x = 0.
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A p-basic tree can be visualized as a rooted tree, with 0 the root, as long as
p is fixed. Given a p-basic tree X , we can pass to an abelian p-group G(X )
as follows. We use X \ {0} as the set of generators, and put px = y into
the collection of relations if p · x = y in X . In fact, every countable abelian
p-group is generated by some p-basic tree, see Rogers [97].

Remark 5.19. Every element of a p-group generated by a tree T can be
uniquely expressed as

∑
v∈T mvv, where mv ∈ {0, 1, . . . , p − 1}. Thus we

are dealing with a special notion of independence. Also, the tree gives a way
to control direct decompositions of the group.

Nonisomorphic rooted trees may give rise to isomorphic p-groups. The
following operation gives a combinatorial description of trees corresponding
to isomorphic groups. Suppose T is a rooted tree (a p-basic tree). We can
“strip” T by detaching a simple chain of vertices from its original source
node v, and then attaching the chain to the root of T . If the tree rank3

of v, written rk(v), does not change after this “stripping” then we get a tree
corresponding to an isomorphic group. We can also strip the tree replacing
infinitely many chains at once, as long as all ranks are preserved. Trees give
rise to isomorphic groups if, and only if, they are equivalent up to stripping.
We will take for granted that any countable abelian p-group can be rep-
resented by some p-basic tree (Rogers [97]). In the next few lines we will
define Ulm rank and Ulm type using p-basic trees. This is somewhat circu-
lar, since the proof of Rogers [97] requires a definition of Ulm rank without
any reference to p-basic trees. See Kaplansky [61] and Fuchs [44] for a direct
approach that does not refer to trees. This direct approach is equivalent to
our approach.
Using any tree T representing an abelian p-group G , we define the
Ulm type of G , and of T , as follows. Define T ′ = {v ∈ T : rk(v) ≥
� or rk(v) = ∞}, and define Tα by transfinite induction in the obvious
way by taking an intersection at every limit stage. The least α such that
Tα = Tα+1 is independent of the choice of T and is called the Ulm type of
G . For example, every p-group that is a direct sum of cyclic and quasi-cyclic
p-groups has Ulm type 1, and there are countable p-groups of arbitrarily
large countable Ulm type. The Ulm factors Aα = A(α)/A(α+1) are isomor-
phism invariants ofA that completely determine its isomorphism type. Note
that Aα = A(α)/A(α+1) is a direct sum of cyclic groups.

5.2.2. Computable p-basic trees. So far, the lemma below has been the
main technical tool in the study of computable p-groups. It is the crucial
step in the proof of a generalization of Proposition 5.2 to any finite Ulm
type (Theorem 5.21 below). Khisamiev [65] was the first to realize that there
should be a way of passing from aΠ02-presented p-groupH to a computable
group G with G ′ ∼= H (according to [65], this approach was suggested to
Khisamiev by Goncharov). Independently and slightly later, Ash, Knight
and Oates [5] came up with a very clear procedure of passing from a Π02

3The rank of 0 and of any node on an infinite path is∞.
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p-basic tree T to a “right” computable p-basic tree Γ (to be clarified in
Lemma 5.20 below). Their paper [5] has never been published. All known
proofs of the lemma below are too technical to be fully explained here.
A sketch of Lemma 5.20 can be found in Ash and Knight [4], and see also
Downey,Melnikov andNg [35] for an extended sketch. We give only a proof
idea.

Lemma 5.20 (Ash, Knight and Oates [5]). Let T be a computable p-basic
tree of Ulm type 1 in which 0 has tree-rank �, and let C be anyΠ02 subtree of
�<� (C is viewed as a p-basic tree). There exists a computable p-basic tree
U expanding C such that U0 ∼= T and U ′ = C .
Proof idea. It follows from Proposition 5.2 that there exists a computable
limitwise monotonic function f such that

range sup
y
f(x, y)

is infinite and is contained in the set #T0 of finite lengths that occur in T .
We also fix a computable predicate R such that � ∈ C if, and only if,
∃∞yR(y, �). Using f and R, we attach and “grow” more chains below
a node x if we have more evidence x ∈ C . More specifically, if our cur-
rent approximation to a Π02-predicate ∃∞yR(y, �) “fires” on � ∈ �<�, as
well as on all initial segments of �, by providing new witnesses y for the
corresponding strings, we start growing a few more longer simple chains
below � using f. The main difficulty is that some of the components we
are constructing may become inactive forever, in this case we need to make
sure these components do not produce chains of wrong sizes after stripping
(recall we need U0 ∼= T ). This is done again using f. If the predicate does
not “fire” on �, we may extend the chains below � to slightly longer chains
to make sure they not contribute any wrong length into U0 after stripping
(consider some elementary examples). IfR fires again on �, we attach a new
fresh and very long chain to �, and then we may have to extend the other
(previously “slightly” extended) chains a bit more. In this case these other
chains will not be ever extended again. Note that we have to care about
repetitions of finite lengths; that is, in the notations of Proposition 5.2, we
need to keep S(T ) = S(U0). �
5.2.3. Reduced groups of finite Ulm type. We say that a p-group A is
reduced if it does not have a subgroup isomorphic toZp∞ .UsingLemma5.20
and Proposition 5.2, we obtain:

Theorem 5.21 (Khisamiev [65], Ash, Knight and Oates [5]). Let A be
a reduced (abelian) p-group of Ulm type n < �. Then the following are
equivalent:
1. A has a computable p-basic tree representing it;
2. A has a computable copy;
3. (a) for every i < n, the set

S(Ai ) = {(m, k) : at least k summands of Ai are of order pm}
is Σ02i+2, and

https://doi.org/10.1017/bsl.2014.32 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2014.32


344 ALEXANDERG. MELNIKOV

(b) for every i < n, the set

#Ai = {m : Zpm is a summand of Ai}
is 0(2i)-limitwise monotonic.

As far as we know, the following unexpected application of Theorem 5.21
and Lemma 5.20 is new:

Proposition 5.22 (Melnikov). Suppose G is a c.e. presented reduced
abelian p-group having a nonzero element of infinite height. Then G has a
computable presentation.

The proposition may be compared to Corollary 5.4 and Theorem 4.6.

Proof. Note that G ′ is generated by

{h ∈ G : h �= 0&(∀k)(∃x)pkx = h}.
Thus, 0′′ can list representatives of G ′. Since the operation on G is com-
putable and=G is 0′-computable, we conclude thatG ′ has a Δ03-presentation.
By Theorem 5.21 (relativized),G ′ can be represented by a Δ03 p-basic tree T .
Without loss of generality, we may assume that T is a Π02-subtree of �

<�.
(Hint: It is easy to show that every Δ02-tree is isomorphic to a Π

0
1-subtree

of �<�.) We also nonuniformly pick a nonzero g ∈ G such that (1) g
has infinite height and (2) no element x such that px = g has infinite
height. We can effectively list all elements in {x : px = g}, possibly with
repetitions. Let x0, x1, x2, . . . be such a listing. It is crucial that none of
the xi can be equal to zero in G , since it would imply g = 0. Then the
infinite set {hp(xi ) + 1 : i ∈ �} is the range of a limitwise monotonic
function, since each of the hp(xi) can be dynamically approximated from
below. Indeed, (∃y) (pky − xi = 0) is a c.e. relation on G , uniformly
in k. It is not difficult to show that #G0 ⊇ {hp(xi ) + 1 : i ∈ �}, and
indeed #G0 = {hp(xi ) + 1 : i ∈ �}. The proposition now follows from
Lemma 5.20. �
It has been an open problem for over 20 years whether Theorem 5.21 can
be extended to reduced p-groups of Ulm type �. The only known proof of
Theorem 5.21 is not uniform. It is believed that the difficulty of extending
the theorem to rank � is rooted in this nonuniformity.
Note that in a computable reduced p-group, #Gi must be 0(2i)-limitwise
monotonic. A straightforward analysis shows that finding an index for a
0(2i)-limitwise monotonic function ranging over #Gi takes at most three
extra jumps on top of 0(2i). In fact, the property is Π03(0

(2i)) uniformly in i .
This upper bound is sharp:

Theorem 5.23 (Downey, Melnikov, and Ng [35]). There exists a com-
putable reduced abelian p-group G of Ulm type � such that the (indices for)
0(2i)-limiwise monotonic functions ranging over #Gi are not uniformly Σ02i+3.
Furthermore, the group G witnessing Theorem 5.23 has a computable
p-basic tree. The proof of Theorem 5.23 relies on the technique of p-basic
trees. Its proof can be viewed as an iterated 0′′′ argument. Although
essentially 0′′′ in nature, it is sufficiently degenerate to make it work.
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More specifically, since we control the group, we can significantly simplify
many aspects of the construction. Theorem 5.23 gives evidence that char-
acterizing computable p-groups of Ulm type ≥ � would have to use an
iterated 0′′′-construction since limitwise monotonicity seems unavoidable in
any such proof.

5.3. Computable p-groups in general. Countable p-groups can be fully
classified, up to isomorphism, using Ulm invariants and the dimension of its
maximal divisible subgroup.From the effective point of view, these invariants
are very complicated. Even classically, having a sequence of dimensions
indexed by transfinite numbers may be too difficult to handle. In the previous
section, we have already seen that countable p-groups of Ulm type � can be
quite complicated algorithmically. This section contains several results that
show how complex abelian p-groups can be in general.

5.3.1. The isomorphism problem for p-groups. The isomorphism problem
for computable abelian p-groups is as hard as it could be:

Theorem 5.24 (Folklore, see Goncharov and Knight [50]). The isomor-
phism problem for computable abelian p-groups is Σ11-complete.

Proof. It is well-known that there exists a computable sequence of com-
putable trees (Ti)i∈� such that Ti is well-founded iff i ∈ O, the Kleene’s
canonicalΠ11-complete set.Wemay view the trees asp-basic trees, andobtain
the corresponding groups Gi . Then we effectively pass to Ai =

⊕
k∈� Gk

and Bi = Ai ⊕
⊕
k∈� Zp∞ . Then Ti has an infinite path iff Ai ∼= Bi . �

It is well-known that the Ulm type of a computable reduced abelian
p-group has to be a computable ordinal, see e.g., Lin [11, 12] and
Khisamiev [66]. Given a computable ordinal α, we could restrict the iso-
morphism problem to computable abelian p-groups of Ulm length≤ α, and
denote the resulting set of pairs byEα,p. The upper bound on the complexity
of Eα,p can be calculated using Lc�1� logic (see Calvert [14]). The precise
upper bound depends on the form of α and is tedious. This obvious upper
bound is sharp for every computable α (Calvert [14]).

5.3.2. Categoricity relative to an oracle. As we have seen before, every
abelian p-group that is a direct sum of cyclic and quasi-cyclic summands is
Δ03-categorical. In contrast, abelianp-groups in general do not have any com-
putable upper bound on categoricity (follows from Theorem 5.24). In [7],
Barker produces examples of Δ0α-categorical but not Δ

0
� -categorical, for

� < α, computable p-groups. Barker’s construction relies on the earlier
work of Ash [2]. The machinery contained in Ash [2] is rather intricate,
and in fact several (fixable) flaws have been found since the paper [2] was
published. The author believes that the results of Barker [7] are correct and
can be either proved directly or derived form any meta-theorem in the spirit
of [2].

§6. Further topics. This section contains results that are not directly
related to torsion and torsion-free abelian groups.
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In Subsection 6.1 we discuss the little that is known about com-
putable abelian groups that are not p-groups and not torsion-free. In
Subsection 6.1.1 we look at torsion abelian groups that are not p-groups,
and Subsection 6.1.1 contains an unexpected result onmixed abelian groups.
In Subsection 6.2we survey results on computable ordered abelian groups.
Standard definitions are contained in Subsection 6.2.1. Linear dependence
is discussed in Subsection 6.2.2, and in Subsection 6.2.3 we give an algebraic
criterion for computable categoricity and state results on computable dimen-
sionandΔ0α -categoricity.Wediscuss degrees of orders on computable abelian
groups in Subsection 6.2.4, andSubsection 6.2.5 is devoted to degree spectra.
In Subsection 6.3, we briefly discuss some other subjects such as automatic
and polynomial-time abelian groups and give references to the literature.

6.1. Other classes of abelian groups.

6.1.1. Torsion groups that are not p-groups. By Fact 3.5, a torsion group
is computably presentable if and only if its p-components are uniformly
computable.

Fact 6.1. Let T be a computable torsion group. If T is computably cate-
gorical then T slits into a direct sum of cyclic and quasi-cyclic p-groups for
various p.

Sketch. Recall every computably categorical p-group splits into a detract
sum of cyclic and quasi-cyclic p-groups. The proof of Theorem 5.1.4 com-
bined with Fact 3.5 implies that if the maximal p-subgroup of T is not
computably categorical, then T is not computably categorical either. The
fact now follows. �
Computable categoricity in the class of torsion groups has not yet been
characterized. The author expects that a notion similar to settling time (see
Downey and Melnikov [33]) can be used to obtain a more elegant criterion.
Recall that there exist p-groups that have a a-computable presentation if
and only if a ∈ Δ02 \ {0} (Theorem 5.8). If we remove the restriction on the
group to be a p-group, we can use a simpler argument to obtain a stronger
result:

Theorem 6.2 (Kalimullin, Khoussainov andMelnikov [60]). There exists
a torsion abelian group that admits a a-computable presentation for every
hyperimmune a but has no computable presentation.

Wealsomention that, in contrast to torsion-free abelian groups, producing
a torsion abelian group having a proper α′th-jump degree is not too difficult,
see Oates [91].

6.1.2. Mixed groups. Recall that an abelian group is mixed if it is neither
torsion nor torsion-free. The algebraic class of countable mixed groups is
much less understood that the classes of abelian torsion-free and p-groups.
Even less is known about computable mixed groups. We discuss two results.
Recall that T (A) stands for the maximal torsion subgroup of A. Using
methods similar to the ones discussed in Subsection 4.1.1, Goncharov
proved:
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Theorem 6.3 (Goncharov [46]). Let A be a computable abelian group
such that A/T (A) is of infinite rank. Then A is not computably categorical.
Furthermore,A has infinitely many computable presentations that are pairwise
noncomputably isomorphic.

In 1981, Goncharov [48] conjectured that every computable abelian group
is either computably categorical or has infinitely many pairwise noncom-
putably isomorphic computable presentations. In 1983, Dobrica discovered
the following surprising and counter-intuitive example:

Proposition 6.4 (Dobrica [25]). There exists a noncomputably categorical
computable mixed group that splits into computably categorical torsion and
torsion-free summands.

Proof sketch. The group can be chosen of the form A ∼= F ⊕ ⊕
p Cp,

where F � (Q,+) and for every prime p,Cp ∼= Zp. We construct two copies
of A, say B and C .
At stage 0 we put the multiplicative identity 1 of Q into F and make
�F (1) = (1, 1, 1, 1, . . .). We also initially make A = B = C , and we slightly
obese our notations by not distinguishing between their elements. Note that
at stage 0, for any generator 1p of Zp,{

1
p
+ n1p : n = 0, 1, . . . , p − 1

}

is the automorphism orbit of 1
p
in A. We use this observation for

diagonalization purposes.
To win against ϕe , we use the e’th prime. We suppress e. Wait for ϕ : B →
C to converge on 1/p ∈ B . Then ϕ(1/p) must be of the form 1

p
+ n1p in C ,

for some n ∈ {0, 1, . . . , p−1}, otherwise we do nothing. Make 1/p divisible
by p in B , while in C declare p|( 1p + m1p) for some m ∈ {0, 1, . . . , p − 1}
such that m �= n. (Notice: the latter does not imply p2|1p in C .) We leave
the verification to the reader. �
The author is not aware of any other published works related to cate-
goricity of mixed groups. There is no proof of Goncharov’s conjecture in the
literature.

6.2. Ordered abelian groups.

6.2.1. Preliminaries. Standard references for algebra of ordered abelian
groups are Fuchs [43] and Kokorin and Kopytov [72].

Definition 6.5. An ordered abelian group is a triple (G,+,≤) such that
(G,+) is an abelian group and≤ is a linear ordering such that a ≤ b implies
a + g ≤ b + g for every a, b, g ∈ G .
Whenwe say that an abelian group admits an order, wemean a linear order
upon its domain that satisfies the definition above. A computable ordered
abelian group is a computable abelian group with a computable order on it.
Recall that the absolute value of a ∈ (G,+,≤), written |a|, is equal to
a if a ≥ 0, and |a| = −a otherwise. Two elements a, b of an ordered
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abelian group are Archimedean equivalent if there exists m ∈ Z such that
|ma| ≥ |b| and |mb| ≥ |a|. Archimedean classes are equivalence classes mod
Archimedean equivalence.

6.2.2. Linear independence v.s. order. It is well-known that an abelian
group admits a linear ordering if and only if it is torsion-free, see e.g.,
Kokorin and Kopytov [72]. What is the effective content of this result? It
is not difficult to show that there exists a computable presentation of the
free abelian group of rank � that is not computably orderable (Downey and
Kurtz [31]). In contrast, Solomon observed that Proposition 4.2 implies that
every computable torsion-free abelian group has a computable copy with a
computable order on it. Indeed, using a computable basis we can, say, embed
the group into an effectively ordered computable copy of

⊕
i∈� Q; the latter

of course admits various nonisomorphic computable orders.
Thus, given a computable basis we can produce a computable order.
Conversely, suppose we are given a computable ordered abelian group. Can
we produce a computable presentation of this ordered group that admits a
computable base? Goncharov, Lempp, and Solomon gave a partial answer
to this question:

Theorem 6.6 (Goncharov, Lempp, and Solomon [51]). If G is a com-
putable ordered abelian group with finitely many Archimedean classes, then G
has a computable presentation which admits a computable basis.

In fact, Goncharov, Lempp, and Solomon showed that every such group
has a base with a special nice property; we will not discuss this property
here.
It is not known if Theorem 6.6 can be extended to the case of infinitely
many Archimedean classes.

6.2.3. Computable categoricity, and beyond. The computable dimension
of an algebraic structure is the number of its computable presentations up to
computable isomorphism. Goncharov, Lempp, and Solomon applied their
techniques of special bases to prove:

Theorem 6.7 (Goncharov, Lempp, and Solomon [51]). Every computable
ordered abelian group has computable dimension 1 or �. Furthermore, such a
group is computably categorical if and only if it has finite rank.

A detailed and well-presented proof of the theorem can be found in
Goncharov, Lempp, and Solomon [51]. The paper [51] is highly recom-
mended to everyone who is willing to learn the subject.
Recall the notion of Δ0α-categoricity.

Theorem 6.8 (Melnikov [81]). Suppose α = 2n + 1 or α = � + 2n is
a computable ordinal, where � > 0 a limit ordinal, and n ∈ �. Then there
is a computable ordered abelian group which is Δ0α-categorical but not Δ

0
� -

categorical for any � < α.

Proof idea. For every Δ02-linear order L having a left-most element we
can uniformly produce a computable presentation of the free abelian group
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F of rank � so that the linear order on Archimedean classes of F is isomor-
phic to L. Using this functor, we can relativize and transfer the well-known
results of Ash [2] to ordered abelian groups. �
It follows from the main result of Section 6 in Solomon [103] that, in
the proof idea above, the functor mapping an ordered group to a Δ02-linear
order on Archimedean classes cannot be replaced by a functor mapping a
computable ordered group to a computable linear order. Indeed, there
are computable abelian groups encoding c.e.-presented linear orders into
Archimedean classes, and there exist c.e. presented linear orders having no
computable copies (folklore).

6.2.4. Noncomputable orders on computable groups. Downey and
Kurtz [31] demonstrated that the free abelian group of rank � has a com-
putable presentation that is not computably orderable. On the other hand,
it is not difficult to show that the orders on a computable torsion-free abelian
group can be represented by infinite paths through a computable subtree of
2� (i.e., they form a Π01-class). The Low Basis Theorem implies that every
computable presentation of a torsion-free abelian group admits a low linear
ordering compatible with +. (Recall that a Turing degree x is low if x′ = 0′.)
Can we say more?
It is well-known that there is an effective 1-1-correspondence between
Π01-classes and spaces of linear orders on computable orderable fields, see
Metakides and Nerode [86]. In contrast, Solomon proved:
Theorem 6.9 (Solomon [103]). There exists a nonemptyΠ01-class such that
no computable torsion-free abelian group realizes this class as degrees of linear
orders on the group.
We also site Hatzikiriakou and Simpson [54] for the reverse mathematics of
orderable abelian groups.
Recall that a completely decomposable group is effectively completely
decomposable if it has a computable presentation with an algorithm for a
complete decomposition (see Definition 4.20).
Theorem 6.10 (Kach, Lange, Solomon [59]). Every effectively completely
decomposable group of infinite rank has a computable copy in which the set of
degrees of orders is not closed upwards.
The proof uses the method of c.e. permitting. See Kach, Lange,
Solomon [59] for a detailed proof. We conjecture that the result can be
extended to arbitrary computable torsion-free abelian groups of infinite
rank.

6.2.5. A note on degree spectra. The functor from the proof of
Theorem 6.8 can be used to transfer results on degree spectra of linear
orders to ordered abelian groups.
Fact 6.11 (Melnikov [81]). For every computable α ≥ 3 and every Turing
degree a ≥ 0(α) there exists an ordered abelian group having α′th proper jump
degree.
Proof idea. Recall that the functor in the proof of Theorem 6.8 maps
Δ02-linear orders to computable ordered abelian groups, and the construction
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defining the functor can be fully relativized to any Turing degree. The known
results ondegree spectra of linear orders that can be found inFrolov et al. [42]
can be relativized to 0′.We thus obtain the desired spectra of ordered abelian
groups. �
6.3. Further related subjects. It is natural to impose restrictions on com-
putations in Definition 1.1. This way we obtain the notions of a polynomial-
time presented abelian group (see Cenzer and Remmel [18]) and an
automatic abelian group, see Tsankov [107] andBraun andStrüngmann [10].
Most of the computable groups that appeared in our survey have feasi-
ble presentations by default, but we have no formal explanation for this
phenomenon.
An abelian group can be viewed as a generalization of a vector space,
the algorithmic content of vector spaces has been intensively studied; see
Metakides and Nerode [85] and Dekker [22, 23] and also more recent
works of Shore [98] and Downey et al. [30]. On the other hand, abelian
groups are the simplest nilpotent groups. Not much is known about com-
putable nilpotent groups that are not abelian (e.g., Csima and Solomon [21]
and Khismaiev [68]), and their systematic theory is still to be developed.
We note that already a two-step computable nilpotent group may effec-
tively encode in a definable way any other computable algebraic structure
(Hirschfeldt et al. [56]), so one should not hope for a nicely structured theory
of computable nilpotent groups.
Baumslag, Dyer, and Miller [8] discovered an interesting relation of com-
putable abelian groups to homologies of finitely presented groups that we
have already mentioned in Subsection 4.1.2.
They showed that the integral homology sequence of any finitely presented
group is a sequence of c.e. presented abelian groups whose presentations are
given uniformly. They also showed that any uniformly computable sequence
of abelian groups with only first two terms necessarily finitely generated can
be realized as a homology sequence of some finitely presented group. One
of the results discussed in the survey, namely Theorem 4.6, solves a problem
that was left open in Baumslag, Dyer, and Miller [8].
Finally, many proofs in computable abelian group theory can be trans-
formed into proofs in reverse mathematics; see, e.g., Simpson [99]. Reverse
mathematics examines and compares the proof-theoretic strengths of
standardmathematical theorems. See Simpson [99] for a detailed exposition.

§7. Questions. We pose several questions which we think are central to
the theory at its present state. Some of these questions seem too general, and
thus they should be viewed as research programs.

7.1. Torsion-free abelian groups. Goncharov posed the following ques-
tion:

Question 7.1 (Goncharov). Is it true that for every n ∈ � there exists
a computable torsion-free abelian group that is Δ0n+1-categorical but not Δ

0
n-

categorical?
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Recall that for n ≤ 4 such examples have recently been found in the class of
completely decomposable groups, see Downey andMelnikov [32]. It follows
from Downey and Montalban [36] that no upper bound on categoricity
can possibly be obtained in general. Furthermore, the main construction of
[1] gives a uniform way of producing nonΔ0α-categorical examples for every
computable α.
Goncharov asked whether the reduced part of a computable torsion-free
abelian group has a computable presentation. As we already discussed in
Subsection 5.1.3, this question of Goncharov is still open as well.

Question 7.2 (Downey and Melnikov). Is the index set of computable
completely decomposable groups Σ07-complete?
See Downey and Melnikov [32] for more questions on completely decom-
posable groups.

7.2. Computable p-groups. Recall the notion of a p-basic tree.
Question 7.3 (Ash, Knight, and Oates). Is there a computable reduced
abelian p-group that does not possess a computable p-basic tree represent-
ing it?
If there are such computable reduced p-groups, they must be of Ulm type
at least �.

Question 7.4 (Khisamiev; Ash, Knight, and Oates). Which reduced
abelian p-groups of Ulm type � admit computable presentations?
See Ash and Knight [4] and Downey et al. [35] for a detailed discussion
related to the two problems above.

7.3. Abelian groups in general. The question below was independently
raised by Goncharov and Downey.

Question 7.5. Is there an abelian group that has a b-computable presenta-
tion iff b >T 0?
Such examples do not exist among direct sums of cyclic groups and finite
rank torsion-free abelian groups. More generally, we would like to know if
any degree spectrum of a countable structure can be realized as a degree
spectrum of an abelian group.
The next question below goes back to Mal’cev.

Question 7.6. Which computable abelian groups are computably categor-
ical?
The unknown cases are torsion groups in which p-components are com-
putably categorical, and mixed groups of finite rank. Such a characteri-
zation, if it can be obtained, would help to prove Goncharov’s conjecture
(see Subsection 6.1.2).

7.4. Ordered abelian groups. A partial solution to the problem below was
discussed in Subsection 6.2.2.

Question 7.7 (Goncharov, Lempp, and Solomon). Does every com-
putable ordered abelian group possess a computable presentation with a
computable base?
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While the problem above seems approachable, the next problem looks
more difficult.

Question 7.8. WhichΠ01-classes can be realized as classes of linear orders
on computable abelian groups?
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