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A simple model for low-frequency unsteadiness
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A model to explain the low-frequency unsteadiness found in shock-induced separation
is proposed for cases in which the flow is reattaching downstream. It is based on
the properties of fluid entrainment in the mixing layer generated downstream of the
separation shock whose low-frequency motions are related to successive contractions
and dilatations of the separated bubble. The main aerodynamic parameters on
which the process depends are presented. This model is consistent with experimental
observations obtained by particle image velocimetry (PIV) in a Mach 2.3 oblique
shock wave/turbulent boundary layer interaction, as well as with several different
configurations reported in the literature for Mach numbers ranging from 0 to 5.

1. Introduction
In many aeronautical applications, parameters of critical importance are imposed

by unsteady conditions that can occur during flight, rather than steady conditions.
Although these events are rare or do not contribute much to the local average energy,
they can correspond to high local stress, which can affect the whole behaviour of
the system. In supersonic flows, an important case occurs when unsteadiness involves
shock waves producing locally large pressure fluctuations. They may act as strong
aerodynamic loads and are felt along the whole flow downstream of the shock
wave. This occurs in shock-induced separation, where low-frequency unsteadiness is
produced. The separated region and the shock wave system that develops upstream
of the separation line oscillate at low frequency, at least two orders of magnitude
lower than the energetic scales present in the upstream boundary layer. For decades,
the interaction with an incident shock and the compression ramp have been the
two most documented cases (see Delery & Marvin 1986). A recent review of the
main properties of these flows can be found in Dolling (2001). The origin of these
low frequencies is not totally understood, and several models have been suggested
to explain their development. A major problem is to separate the low-frequency
shock motions, which appear when the flow is separating, from the motions related
to unsteady conditions of the upstream boundary layer. This type of unsteadiness
is typically based on upstream energetic scales and generate some corrugations of
the shock wave (Debiève & Lacharme 1985; Wu & Miles 2001; Garnier & Sagaut
2002). The associated frequency scales differ by two orders of magnitude from the
low frequencies of the shock motions.
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If pioneer works have been essentially experimental, modern numerical simulations
have proved effective in simulating such flows (Garnier & Sagaut 2002), but the
time integration was too short to allow capture of the low-frequency unsteadiness
revealed by the experiments. Recently, significant improvements in the description of
this low-frequency unsteadiness have been obtained, both from experimental works
(Dupont, Haddad & Debiève 2006; Ganapathisubramani, Clemens & Dolling 2007b;
Dupont et al. 2008; Souverein et al. 2008) and from numerical studies (de Martel,
Garnier & Sagaut 2007; Wu & Martin 2007, 2008; Touber & Sandham 2008).
These results confirm that in the shock wave boundary layer interactions under
consideration (compression ramp or impinging shock wave) low-frequency movements
of the separated region and motions of the shock wave formed upstream are observed.
Nevertheless, there are still some discrepancies in the analysis of the results. Some
researchers found that the low-frequency shock motions are related to unsteady
aspects of the upstream boundary layer (Beresh, Clemens & Dolling 2002). They
invoke the large streamwise vortices formed in the upstream boundary layer, with
a very large longitudinal length scale. Such large scales have been observed both
experimentally (Ganapathisubramani, Clemens & Dolling 2006) and numerically
(Ringuette, Wu & Martin 2008) and seem to be similar to the superstructures observed
in subsonic turbulent boundary layer (Kim & Adrian 1999; Adrian, Meinhart &
Tomkins 2000). These superstructures can have a length of up to 30δ and could be
a source of very low-frequency unsteadiness, in the range of frequency of the shock
oscillations for some cases. Therefore, several attempts to correlate their dynamics
with the shock unsteadiness and the separated bubble behaviour have been carried
out. However, the results obtained appear to be contradictory. Ganapathisubramani,
Clemens & Dolling (2007a); Ganapathisubramani et al. (2007b), using conditional
analysis of their experimental observations, obtained evidence of strong links between
upstream large scales and unsteadiness in the interaction in the case of a Mach 2
compression ramp flow. On the other hand, Dupont et al. (2006, 2008), in a Mach 2.3
incident shock wave interaction, and Wu & Martin (2008), in a Mach 2.9 compression
ramp from direct numerical simulation (DNS) results, claimed that such a link was
not significant in their results. For many years, several experimental works (Erengil
& Dolling 1991b; Thomas, Putman & Chu 1994; Dupont et al. 2006, 2008) and
more recently some numerical simulations, large-eddy simulation (LES) as well as
DNS (Pirozzoli & Grasso 2006; Touber & Sandham 2008; Wu & Martin 2008), have
shown that the dynamics of the separated bubble have to be related to the shock
movements but without any certainty as to the source of the unsteadiness: do the shock
movements influence the instantaneous position of the separated region through some
upstream perturbations, or does the unsteadiness of the separated bubble impose the
large motions of the shock? Phase relations between shock movements and separated
bubble have been measured in experiments with compression ramps (Erengil &
Dolling 1991b; Thomas et al. 1994) and with in incident shock wave configurations
(Dupont et al. 2006; Debiève & Dupont 2007). The main result is the evidence that at
low frequency pressure fluctuations at the foot of the shock and inside the separated
bubble are out of phase. Negative lag times were obtained, but no clear convection
process could be determined. Recently, Wu & Martin (2008) suggested that shock
motions could be related to ‘some feedback loop between the separation bubble, the
separated shear layer and the separation bubble’. Finally, Dupont et al. (2006) have
measured the characteristic frequency of shock motions in the case of a Mach 2.3
oblique shock wave for several angles of flow deflection (7◦ <θ < 9.5◦). Using a
scaling derived from subsonic separated flows, initially proposed in Erengil & Dolling
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Low-frequency unsteadiness in shock-induced separation 89

(1991b), they found that for the same upstream turbulent boundary layer the shock
frequency is directly related to the intensity of the interaction. They obtained a typical
dimensionless frequency, or Strouhal number, based on the length of interaction L and
on the velocity outside the separated bubble (SL = f L/U1) of about 0.03. These results
suggest that the upstream perturbations cannot explain the time scale of the shock
movements. Moreover, Dussauge, Dupont & Debiève (2006) have shown that this
value of 0.03 gives a correct estimate of frequency in many cases, despite some scatter,
and with a limited effect with regard to the Mach number, except for the Thomas’s
experiments (a compression ramp at Mach number 1.5). Thus, if the separated bubble
is considered as a plausible source of shock unsteadiness, we have to consider the
different time scales associated with its dynamics. Dupont et al. (2006) compared the
longitudinal evolution of the wall pressure power spectral density (PSD) in an incident
shock wave interaction as well as in a compression ramp interaction, with subsonic
separated flows. They found similar spatial organizations, with the development of
large structures in the first half of the bubble, which are shed into the downstream
flow. Nevertheless, the characteristic frequencies cannot be directly compared, and
the compressibility effects associated with the mixing layer have to be taken into
account in order to relate the behaviour of subsonic separated bubbles to that of
supersonic separated bubbles. These authors have also observed very low frequencies
in the separated bubble, in the same range as for the shock motions, superimposed on
fluctuations related to the large scales of the mixing layer. They have been associated
to some large-amplitude oscillations of the bubble or flapping motions of the mixing
layer (Dupont et al. 2008) as observed in subsonic separated flows. These bubble
oscillations of large amplitude are correlated with the large longitudinal motions
of the reflected shock. But an important difference between subsonic and supersonic
characteristic frequency scales for the flapping motions is obtained. We just mentioned
that a typical value of SL � 0.03 can describe qualitatively the shock motions in several
experiments as well as in recent simulations (Touber & Sandham 2008; Wu & Martin
2008), whatever the geometry of the interaction. Nevertheless, a typical value of 0.12
is associated with the flapping of separated bubbles (Kiya & Sasaki 1983; Cherry,
Hillier & Latour 1984); therefore there is at least a factor four between the two
cases which is at present not understood. In this paper, we will propose to explain
this fact through a simple analysis leading to define the main parametric dependence
of this phenomenon, independent of the geometric conditions (compression corner,
incident shock wave and the like) if the flow reattaches downstream. The model will
be presented in § 2, then compared in § 3.1 with the experimental results obtained
in a Mach 2.3 oblique shock wave/turbulent boundary layer interaction installed at
the Institut Universitaire des Systèmes Thermiques Industriels (IUSTI). Finally, the
parametric dependence will be checked versus the data available in the literature in
§ 3.2.

2. Time scale of a separated bubble
2.1. Aerodynamic scheme

We propose here a simple analysis based on a global mass budget in the separated
region. The aim is to build a scheme that can explain the breathing of the separated
bubble when a turbulent boundary layer separates under the effect of an adverse
pressure gradient. We will not, at this point, discuss how this gradient is generated
(because of deceleration, shock wave interaction or any other reason). Nor will we
consider the presence of a shock upstream of the bubble. We will concentrate on the
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Figure 1. Sketch of the flow downstream of the reflected shock.

bubble itself. The separated zone is supposed to be of finite extent, with a spatial
behaviour as summarized in figure 1. In the first part of the bubble, that is from
the separation line, eddies are formed in the mixing layer zone and grow as it moves
downstream. In a quasi-steady view, it may be assumed that fluid from the separated
zone is entrained by the mixing layer. After some distance, these eddies are shed
into the downstream flow, bringing with them their mass, momentum and vorticity
outside the separated region. This generates, in the recirculating region, a default of
mass that increases over time. Therefore, when the flow reattaches downstream, the
mass amount inside the bubble decreases, and the steady separated situation cannot
be maintained.

Consequently, there should be some flapping of the bubble which would let an air
flux in the reverse direction occur with a time scale of T . The time scale required to
entrain a significant amount of mass from the separated bubble obviously takes the
form T = mass in the reverse flow/rate of mass entrainment. After a time of the order
of T , there is a significant deficit of mass in the separation and a necessity to insure
a new amount of reverse flow from the downstream region, thus allowing the process
to be repeated. We propose that the resulting large movements of the bubble are at
the origin of the large-amplitude shock motions. A similar scheme has already been
proposed in both subsonic and supersonic cases (Cherry et al. 1984; Dandois, Garnier
& Sagaut 2007; Wu & Martin 2008); here we propose to formulize it with simple
hypotheses based on the dynamics of the equilibrium mixing layer. We will show
that in shock-induced separated flows high convective Mach numbers can easily be
produced and that this mechanism becomes highly sensitive to compressibility effects.
Therefore, the model will be developed in as general a form as possible, taking into
account possible density effects, with characteristic Mach numbers ranging from 0 to
supersonic values.

2.2. Dimensional background

The spatial arrangement of a shock-induced separation can be sketched as in figure 1.
This sketch corresponds to the incident oblique shock case. The incident shock
wave and its reflection as an expansion are omitted. In the compression ramp case,
the reattachment occurs generally downstream of the corner; nevertheless, the basic
organization of the flow is similar to the sketch.
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Low-frequency unsteadiness in shock-induced separation 91

The basis of the model is to consider that the shed vortices bring with them a
certain amount of mass that has to be reinjected in the bubble in order to maintain a
mean separated region. The vortices are generated in the mixing layer that is formed
downstream the separated shock (from line S), and the entrainment by the mixing
layer produces a loss of mass in the recirculated zone. The high-velocity side of the
layer is continuously fed and therefore is not affected by the mass ejection. On the low-
velocity side, as the flow is reattaching, there is no source of mass to replace the amount
of flow that is entrained by the mixing layer. Therefore, estimation of the time required
to drain the initial bubble will be deduced from the entrainment rate of the low-
velocity side of the mixing layer. In this work, we are looking at the order of
magnitude of the time scale of the spreading of the bubble and the aerodynamic
parameters that control it. Thus, several simplifying approximations are made, based
on the classical properties of the plane mixing layer with variable density and/or
compressibility effects. As the aim is to relate the mass swept along the mixing layer
to the mass initially present in the mean recirculating bubble, we first evaluate this
quantity, noted Mb. If we approximate the bubble by a triangle of length L1 and of
height h (see figure 1), with an average density of ρm, then we have by unit span

Mb =
1

2
ρmL1h. (2.1)

Here, h characterizes the height of the bubble. We will therefore define h as the
maximum elevation of the dividing line defined as the set of points {yj (x)}, where∫ yj (x)

0
ρu dy = 0. In subsonic separated flows (Cherry et al. 1984) as well as in shock-

induced separated flows (Dupont et al. 2006), the shedding of large structures that
develop in the mixing layer occurs near of the middle of bubble, i.e. near x = L1/2.
Then, we can estimate the mass flux by unit span in the low-velocity part of the
mixing layer by

Mej =

∫ y0(x=L1/2)

δ2(x=L1/2)

ρu dy, (2.2)

where δ2(x) is the edge of the mixing layer on the low-velocity side and y0(x) the
centreline of the mixing layer. Moreover, Mej involves only the low-velocity side of
the mixing layer: in this region, the local Mach number is expected to be rather of
limited value, and, in a first approximation, the density will be considered constant in
this region and equal to the average density ρm. Thus, the characteristic time needed
to entrain the initial mass is given by

T =
Mb

Mej

=
1
2
L1h∫ y0(x=L1/2)

δ2(x=L1/2)

u dy

. (2.3)

It is obvious that the integral in the relation (2.3) can be related to the local thickness
of the mixing layer (δω) and to the shape of the velocity profile which is dependent
on the external velocity at the high-velocity side u1 and the velocity defect �U across
the mixing layer zone. Then, characteristic frequency of the bubble can be estimated
as

f = T −1 ∝ δω(x = L1/2)ξ (u1, �U )
1
2
L1h

∝ δ′
ωh−1ξ (u1, �U ),
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where the ratio δω(x = L1/2)/(L1/2) is used as the local estimate of the spreading
rate of the mixing layer δ′

ω = δω(x)/x. Thus, the model leads to the definition of the
characteristic Strouhal number of the breathing of the bubble due to mass entrainment
inside the mixing layer region, based on the characteristic frequency f = T −1, such as

Sh =
f h

u1

= δ′
ωζ (u1, �U ). (2.4)

The relation (2.4) shows that the characteristic frequency of flapping must be related
to the spreading rate of the mixing layer. This quantity is known to depend on the
external velocity and density ratio across the mixing layer: respectively r = u2/u1

and s = ρ2/ρ1 (Brown & Roshko 1974). Moreover, Papamoschou & Roshko (1988)
have shown that the spreading rate of the mixing layer is strongly dependent on
compressibility effects, and they proposed the following expression:

δ′
ω =

δ′
ref

2

(1 − r)(1 +
√

s)

1 + r
√

s
Φ(Mc),

where δ′
ref � 0.16 is the spreading rate for subsonic half jet (see Browand & Troutt

1985) and Mc is the isentropic convective Mach number, defined by

Mc =
�U

a1 + a2

,

where ai denotes the sound velocity. This leads to the final expression

Sh =
f h

u1

= Φ(Mc)g(r, s), (2.5)

where Φ(Mc) is the normalized spreading rate and g is a function to be specified.
Unfortunately, the quantity h is often not accessible in the literature, and the authors
generally give only the length of separation of the bubble (L1) or the length of
interaction (L). Therefore, we have to introduce another Strouhal numbers based on
these length scales:

Sl =
f l

u1

= Φ(Mc)g(r, s)
l

h
, (2.6)

where l can be chosen as the separation length L1 or the interaction length L. If
the separation length is retained, L1/h can be considered as the aspect ratio of the
separated region. Unfortunately, this quantity is not well documented in the literature:
in most of experimental works, only the length of interaction is available. In this case,
the ratio L/h will be considered as a crude approximation of the real aspect ratio
of the bubble. Thus, for a given L/h, similar influences of the Mach number can be
expected for SL and for Sh as will be shown in § 3.

The main result derived from relation (2.5) is the direct influence of the convective
Mach number of the mixing layer through the function Φ(Mc). It is well known
that this function is strongly Mach number dependent (see figure 2). This implies a
substantial decrease in the Strouhal number SL for convective Mach numbers up to
0.8. For higher convective Mach numbers, the function Φ(Mc) reaches a saturation
level (about 0.2) which shows that constant value of SL can be expected in this case.
This could explain the large difference between the subsonic time scale (SL � 0.12;
Kiya & Sasaki 1983) and the supersonic values when M � 2 (SL � 0.03). Effectively,
in shock-induced separated flows, an external Mach number larger than 2 leads to
isentropic convective Mach number of the order of 1. For such high values, we
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Figure 2. Normalized spreading rate as a function on the convective Mach number, adapted
from Smits & Dussauge (2006).

have Φ(Mc = 1) � 0.25, which corresponds to the range of variation observed for the
Strouhal number of the bubble breathing between subsonic and supersonic cases.

Relation (2.5) shows that the velocity and density ratios across the mixing layer
must also be taken into account. In order to evaluate their influence and compare
it with the drastic effects of the convective Mach number, we will now seek to
evaluate the function g(r, s) from classical similarity properties of the plane mixing
layer. Therefore, a reasonable estimate of the integral of the relation (2.3) has to be
obtained.

We will assume that self-similar velocity profiles describe the initial development
of the mixing layer. Strictly speaking, an integration of velocity along the normal of
the mixing layer axis should be performed. As the mean mixing layer makes an angle
α with the wall, this can make a difference by a factor cosα. In the present analysis,
where we are looking for parametric dependencies, such a refinement is ignored. As
we want to estimate integral quantities in the final section of development of the
mixing layer, such assumptions are not expected to be so restrictive. We consider the
similarity variable η defined as

η =
y − y0(x)

δω(x)
.

Here, δω(x) = δ1(x) − δ2(x) is the local mixing layer thickness; the indices 1 and 2
refer respectively to the high- and low-velocity sides of the mixing layer; and δi(x)
corresponds to the boundaries of the mixing layer on the high- and low-velocity side.
Thus, the velocity profiles are approximated by the similarity relation

u − u2(x)

�u
= F (η).

Therefore, expressed with the similarity variable η, the mixing layer profile extends
from η = −1/2 to η = 1/2:

T =
Mb

Mej

�
1
2
L1h

δω(x = L1/2)

∫ 0

− 1
2

u dη

.
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Figure 3. The function g for different density ratios.

Using the similarity relations in the previous definitions, we can rewrite relation (2.3) as

f = u1h
−1δ′

ω

{
(1 − r)C +

r

2

}
,

where C =
∫ 0

− 1
2
F (η) dη.

Finally, identifying the previous relation and the relation (2.5), we obtain

g(r, s) =
δ′
ref

2

(1 − r)(1 +
√

s)

(1 + r
√

s)

{
(1 − r)C +

r

2

}
. (2.7)

To estimate the function g, it is necessary to specify the constant C. As a matter
of fact, this integral quantity will depend slightly on the exact form of the velocity
profile. In order to obtain a reasonable estimate, we can choose the similarity function
F (η) such as

F (η) =
1

2
{1 + erf(

√
πη)}

where erf(η) is the error function. In this case, C � 0.14.
To illustrate the influence of the velocity and density ratio, figure 3 plots the

function g(r, s) for typical domains of reverse flows and density ratios that can be
expected in adiabatic conditions. The four cases under consideration correspond to
the M =2.3 incident shock interaction of the IUSTI experiment for flow deviations of
8◦ and 9.5◦ (see the next section), to a Mach 5 compression ramp (Erengil & Dolling
1991b) and to a subsonic separated flow (s = 1). The exact values of r and s are quite
difficult to estimate, as the mixing layer boundaries can be only poorly defined. In
order to obtain an estimate of these quantities in several cases, we chose to use the
extreme values on both sides of the mixing layer. Therefore, u1 and ρ1 were set to
the velocity and density values downstream of the separated shock outside the shear
layer and u2 and ρ2 respectively to the maximum intensity of the reverse flow and
the density at the wall. As shown in figure 3, the effects of the intensity of the reverse
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M Reδ2
U∞ δ0 δ2 δ∗ H

2.28 5.1 × 103 550 ms−1 11 mm 0.96 mm 3.4mm 3.53

Table 1. Characteristics of the incoming turbulent boundary layer.

Incident shock

Reflected shock

Expansion fan

Relaxation zone

Recirculating zone

M = 23

Figure 4. Spark Schlieren visualization of the interaction (θ = 8◦).

flow were rather limited, typically less than 30 %. The density effect in the range of
Mach numbers considered here was of the same order as the effect of the intensity of
the reverse flow and so was rather limited, compared with the reduction due to the
convective Mach number.

3. Comparison with experimental observations
3.1. The reflection case of IUSTI at M = 2.3

3.1.1. Experimental set-up

The model presented in the previous section was compared to experimental results
obtained in a Mach 2.3 oblique shock wave/turbulent boundary layer interaction.
The flow has been already extensively documented (Dupont et al. 2005, 2006, 2008;
Dussauge et al. 2006). The incoming boundary layer is turbulent fully developed.
The main aerodynamic parameters are listed in table 1, where the thickness δ0 was
based on 99 % of the external velocity U∞; δ∗ is the displacement thickness; δ2 is the
momentum thickness; and H is the shape factor. A short time exposure Schlieren of
the interaction is presented in figure 4.

The origin of the longitudinal coordinate x was fixed at the mean position (X0) of
the unsteady reflected shock. This position was derived from unsteady wall pressure
measurements (Dupont et al. 2006). It was normalized by the length of interaction
L defined as the distance between X0 and the extrapolation down to the wall of the
incident shock. The size of the interaction was 46 mm and 71 mm respectively for the
8◦ and the 9.5◦ cases. The dimensionless longitudinal coordinate X∗ =(x − X0)/L was
used to present the experimental results.

Velocity fields were obtained with particle image velocimetry (PIV) measurements.
The PIV investigation was made using a Dantec Dynamics system. The light sheets
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were generated by a double pulse Nd:Yag Laser New Wave Solo II, which delivered
30 mJ per pulse and separated in time by 1 μs, and the particle images were recorded
by FlowSense cameras (1600 × 1200). Measurements were made in vertical planes,
along the longitudinal axis of the wind tunnel, in order to characterize the velocity
fields along the interaction. Because of the presence of the shock generator on the
ceiling, some optical arrangements were necessary to illuminate the test section: a
prism was placed into the diffuser to allow the laser sheet to propagate back to the
measurement area. In order to perform conditional analysis of the velocity fields
and to highlight the unsteady breathing of the bubble and its connection with the
unsteady shock motions, sets of 5000 digital images were acquired. In the case of
the 9.5◦ deflection, where the interaction grows significantly, two cameras were lined
up next to each other in longitudinal direction to provide a wide field of view. The
two pictures recorded by each camera were overlapped by about 10 %. A calibration
grid was recorded, and the spatial correlation function between pictures gave spatial
correspondences between both fields; a global panoramic picture was then created,
covering an area of approximately 180 × 20 mm2 ( � 16δ0 × 2δ0). Incense smoke was
used as seeding particles. The particles were injected from the wall upstream of the
sonic section on the wind tunnel axis. As the wind tunnel stagnation pressure was
less than atmospheric, the particles were naturally entrained into the flow. The time
constant of the particles was estimated using PIV measurements of the mean velocity
across the incident reflected shock outside the boundary layer. A time constant of
4.55 μs was deduced corresponding to diameters of 0, 5 μm (see Elena, Tedeschi &
Gouin 1999). Samimy & Lele (1991) suggested that the particles accurately followed
the velocity fluctuations in a turbulent mixing layer if the Stokes number St = τp/τf

with τf = δ/U∞ and τp the time response of the particles was less than about 0.5.
In our experiments, the Stokes number is 0.23. This low value showed that the
particles were able to follow the large-scale velocity fluctuations in the interaction
(recirculation, mixing layer and the like). However, the shock still gave a drag of the
particles. In our analysis, our intention was to measure not the absolute position of
the shock but only the evolution of its position between several cases (see § 3.1.4). So
it can be assumed that the seeding we are using was adapted to this study.

The images were processed using the Dantec software Flow Manager 4.71. For
the wide field of view measurements, the calibration factor of the pictures was 17
pixelsmm−1. The intercorrelation was carried out recursively from a cell of size
128 × 64 to a final cell size of 32 pixels horizontally by 16 pixels vertically with a
Gaussian weighting window applied to the interrogation cell. Therefore, the final
effective cell size is 16 × 8 pixels; this led to a PIV resolution of 1 × 0.5 mm2. An
overlap of 75 % between cells provided a field of 390 × 80 vectors.

3.1.2. Mean velocity fields

The global organization of the interaction was illustrated for the θ = 9.5◦ case
by maps of mean normal velocity and standard deviation of the normal velocity
components (see figure 5). The mean dividing streamline was also reported on the
maps.

The reflected shock was unsteady. This was clearly highlighted on the maps of the
normal velocity standard deviation down to y/δ � 0.5. Just downstream of the foot
of the shock, a high-turbulent-intensity region could be observed and associated with
the development of the mixing layer. Its thickness was increasing continuously, up
to X∗ � 0.5–0.6, where it reached a maximum level, and its downstream evolution
was nearly parallel to the wall for large distances downstream of the interaction.
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Figure 5. (a) Mean and r.m.s. (b) maps of the normal velocity in the interaction (ms−1). The
black line is the mean dividing streamline (θ = 9.5◦).

The region in which the mixing layer reached its maximum thickness was shown
to correspond to the region in which large vortices that are shed downstream are
created, as in subsonic separated flows (see Dupont et al. 2008). The model proposed
in the previous section suggests that the mixing layer entrainment should control
the low-frequency breathing of the separating region. To validate this hypothesis,
conditional analyses of the instantaneous fields obtained by PIV were carried out.

3.1.3. Conditional velocity fields

Conditional analysis was applied to PIV velocity fields based on the instantaneous
vertical extent of the recirculating region. The instantaneous dividing streamline
was derived, and the unsteady recirculating bubble characteristics were sorted, from
the instantaneous elevation of the bubble defined as yi,max =max(yj (x)), where the
instantaneous dividing line yj (x) was defined as in § 2.2. As already mentioned, the
region of the flow in which the dividing streamline was estimated was a region of
limited Mach number. Therefore, the density variations will be set aside, and the

line will be approximated by
∫ yj (x)

0
u dy = 0. These results were checked for their

consistency with the determination that mean total enthalpy was supposed to be
constant and where pressure was set constant in one section and equal to the wall
pressure.

The probability density function (PDF) of yi,max in the 8◦ and 9.5◦ cases are shown
in figure 6. As suggested by the model, large-amplitude movements were observed.
We have selected three subsets of events:

(a) shallow bubbles, yi,max/δ0 < y1;
(b) medium bubbles, y2 <yi,max/δ0 <y3;
(c) thick bubbles, y4 < yi,max/δ0.

The values of yi have been adjusted in such a way that each class represents about
10 % of the data. The corresponding subsets are in grey tint on the histograms (see
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Figure 6. PDF of the instantaneous maximal elevation of the dividing streamline in the
recirculating bubble: (a) θ = 8◦, (b) θ = 9.5◦.

y/
δ

–0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
0

0.5

1.0

1.5

–100

–50

0

y/
δ

–0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
0

0.5

1.0

1.5

–100

–50

0

X*

y/
δ

–0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
0

0.5

1.0

1.5

–100

–50

0

Figure 7. Conditional longitudinal velocity fields. Only negative velocities ranging between
0 and −100 ms−1 are shown; θ = 8◦.

figure 6). As we used 5000 fields to select the realizations, this gives roughly 500
samples for each subset. The corresponding conditional mean longitudinal velocity
fields are reported in figure 7 for the 8◦ case and in figure 8 for the 9.5◦ case. To
highlight the recirculating region, greyscale is limited to the null or negative velocities.
This underlines the highly variable behaviour of the bubble.

As expected, the bubble can be nearly suppressed (at least in the 8◦ case), but this is
an unsteady state, and therefore large injection of fluid, associated with large inflation
of the bubble, can be observed with the same probability. Between these two extreme
situations, the bubble experiences consecutive contractions and expansions. The very
high intensity of the reverse flow should be noted in the cases of the thick bubbles:
up to −100 ms−1 in the 8◦ case and up to −150 ms−1 in the 9.5◦ case, twice as large
as the corresponding mean reverse flow velocity in both cases.
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Figure 8. Conditional velocity fields. Only negative velocities ranging between 0 and
−150 ms−1 are shown; θ = 9.5◦.

3.1.4. Links with shock movements

For the same subsets of realizations, the conditionally averaged positions of
the reflected shock have been estimated. We used the longitudinal evolution of

the conditional normal velocity standard deviation (
√

v′2) to localize the median
position of the shock. This is an efficient quantity to visualize the shock position
(see figure 5b). We used the same procedure as for root mean square (r.m.s.) wall
pressure measurements (see Dupont et al. 2006): the mean position of the reflected
shock oscillations in the field are deduced from the longitudinal evolution of the
transverse velocity fluctuations, applying a statistical scheme based on the presence
of an unsteady shock. In this analysis, the median position of the reflected shock is
associated with an extremum for the r.m.s. velocity.

Results for four vertical positions are reported in figure 9 for the 8◦ case and in
figure 10 for the 9.5◦ case. Results confirmed the proposed scheme: the contractions
of the bubble are related to downstream movements of the reflected shock, whereas
the dilatations are related to reverse flow of very high intensity and consequently
to upstream movements of the reflected shock. The amplitude of the conditionally
averaged positions of the reflected shock remain in the same proportion, if compared
to L, in the 8◦ and 9.5◦ cases (� 0.1L).

Finally, an asymmetry in the shock motions can be remarked. The shock
displacement downstream from its mean position remains limited during the bubble
contraction. In contrast, during the large injection phase, the amplitude of the
upstream shock motion is more than double. This is consistent with the proposed
model: contractions of the bubble correspond to a progressive evolution related to the
mass entrainment process, whereas the dilations correspond to a mass flux of large
intensity in the reverse direction (up to 20 %–25 % of the external flow velocity). This
behaviour is very similar to results from a DNS of a Mach 2.9 compression ramp
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Figure 9. Conditional r.m.s. vertical fluctuations (θ = 8◦).
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Figure 10. Conditional r.m.s. vertical fluctuations (θ = 9.5◦).

by Wu & Martin (2008), with shock motions correlated with low-frequency bubble
unsteadiness.

The characteristic frequency of these large motions of the shock and of the bubble
were derived from hot wire and unsteady wall pressure measurements in Dupont
et al. (2006). It was defined by the maximum of the premultiplied spectra f E(f ).
It is clear that the aim of (2.5) is to give the main parametric dependence of the
frequency f and cannot be expected to give its absolute value with high accuracy.
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θ L (mm) h (mm) u1 r s Mc Φ(Mc) g(r, s)10−2 f (Hz) ftheo(Hz)

8.0◦ 46 5.5 505 −0.11 0.56 0.92 0.3 1.69 384 466
9.5◦ 71.5 10.2 490 −0.13 0.58 0.92 0.3 1.62 171 233

Table 2. Aerodynamic parameters of the separated bubble and Strouhal numbers of the
shock motions from relation (2.5) and from experiments.

Nevertheless, it has to be able to give the right order of magnitude for f . In our
experiments, the different quantities are available, and table 2 provides comparisons
of the experimental results and the theoretical estimations.

Considering that several approximations have been made to derive the exact
expression of the function g(r, s) and that the height h is only used as a parameter
to evaluate the initial mass inside the bubble, estimations of the bubble frequency f

are of reasonable accuracy (+20 % and +36 % respectively for the 8◦ and 9.5◦ cases).
Moreover, the decrease in the frequency with the shock intensity (−55 % from the
experiments) is well captured by the model (−50 %). This confirms that the dramatic
decrease in the Strouhal number SL, with respect to the subsonic value (0.12), must
be related to the large Mach dependence of the mixing layer entrainment through the
function Φ(Mc) and that the time scale of the bubble breathing can be described by
the model (relation (2.5)).

Nevertheless, we considered only one configuration (shock reflection) for one Mach
number (M =2.28). It is necessary, in order to evaluate the generality of the model
proposed here, to compare its previsions with several other experiments involving
different geometries and/or Mach numbers, with computations and other possible
models. These comparisons are presented in the next section.

3.2. Application of the model to several experiments of shock-induced separation

Dussauge et al. (2006) proposed a compilation of the Strouhal number SL for several
data for separated flows available in the literature for Mach numbers ranging from
0 to 5, for compression ramps and shock reflection flows. We have adapted this
compilation in figure 11. Here, SL = f L/U1, where U1 is the velocity behind the
separation shock and L is the length of interaction. For compression ramp cases, L

is taken as the distance between the mean position of the foot of the shock and the
reattachment point. Typical values around 0.03 are obtained for interactions at Mach
numbers larger than 2, about four times lower than the Strouhal number observed
in subsonic flows. An intermediate value was observed for moderate Mach number
cases.

According to the relation (2.6), the characteristic flapping frequency of the mixing
layer that develops downstream of the separated shock should be expressed by the
classical Strouhal number SL = f L/U1 weighted by two functions: one that takes into
account the density and reverse flow intensity effects (g(r, s)) and a second accounting
for the effects of compressibility (Φ(Mc)). Therefore, we estimated the quantity
SL × {g(r, s)Φ(Mc)}−1

for the same flows. This quantity can also be considered as an
estimation of the aspect ratio of the interaction L/h (see relation (2.6)). As mentioned
in § 2.2, the exact values of r and s are quite difficult to estimate. Therefore, in a way
similar to our experimental results, u1 and ρ1 will be set to the velocity and density
values downstream of the separation shock outside the shear layer. The reverse flow
intensity is rarely given in the literature, but as shown in figure 3 this leads to limited
correction. Therefore, when the reverse flow intensity is unknown, we set a value of
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References M Reδ L s Mc Φ(Mc) g(r, s) SL SL/g(r, s)
(× 104) (mm) Φ(Mc)

Kiya & Sasaki (1983) 0 / 200 1 0 1 0.02 0.12 5.96
Thomas et al. (1994) 1.5 18 30.3 0.85 0.49 0.63 0.019 0.1 8.29

Touber & Sandham (2008) 2.3 2.1 39 0.56 1 0.27 0.0132 0.0286 8.08
Wu & Martin (2008) (DNS)

and Ringuette & Smits
(2007) (experiment)

2.9 3.7 26.9 0.63 0.77 0.37 0.0177 0.036 5.47

Dolling & Brusniak (1989) 2.89 144 54 0.64 0.86 0.32 0.0113 0.025 6.85
Erengil & Dolling (1991b) 5 87 28 0.49 0.91 0.298 0.0166 0.03 6.06

Table 3. Aerodynamic parameters and Strouhal number for various cases.
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Figure 11. Dimensionless frequency (SL) of the shock oscillation in various configurations:
(�) subsonic separation from Kiya & Sasaki (1983); (�) compression ramp cases; (∗) IUSTI
reflection cases; (+) overexpanded nozzle (restricted shock separation); (�) blunt fin; (�)
Touber & Sandham (2008); (�) estimated superstructures upstream influence for the 8◦ IUSTI
case. Adapted from Dussauge et al. (2006)

r = −0.1 which seems reasonable for many separated flows. To estimate the density
near the wall inside the interaction, a hypothesis of constant total temperature across
the layer is made once again, and we set aside the normal gradient of pressure across
the layer. Even if this last hypothesis is not strictly verified for this non-parallel flow,
it cannot generate strong deviation from the real value. These approximations are
believed adequate for testing the parametric dependencies established in § 2.2. Table
3 shows the parameters and Strouhal number values used in available experimental
or numerical works. The compilation is presented in figure 12.

Apart from the experimental data, we have also plotted the values of the Strouhal
number corresponding to the superstructures for IUSTI flow conditions (see figure 11).
We considered eddies as detected in experiments by Ganapathisubramani et al.
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(2007a), with a typical length of 30δ0, convected at a speed of 0.75Ue. Only the value
for a deflection of 8◦ has been considered: for θ = 9.5◦, the Strouhal number is 0.17,
much higher than from all the other data, and for that reason it has not been retained.
Moreover, we have reassessed the Strouhal number found in the LES simulations
of Touber & Sandham (2008) for θ =8◦, to use a normalization consistent with the
definition in the present paper. The result agrees with the experimental value.

While there is still significant scatter, the experimental data from the subsonic case
to the Mach 5 compression ramps in the range of a mean representative value of 6,
±20 %, except for the transonic case of Thomas et al. (1994), which is estimated
around 8. The value corresponding to Touber & Sandham (2008) simulation is
somewhat above the experimental value, because of discrepancies in the intensity of
the computed reverse flow. As the original values of Strouhal numbers vary by a
factor of four for these different cases, it is clear that the main effects due to the
Mach number are conveniently described, as well as for the subsonic case (SL � 0.12)
and for the higher Mach number cases (2 < M < 5, SL � 0.03).

4. Discussion and conclusions
Low-frequency unsteadiness in shock-induced separation has been considered. A

simple scheme based on the entrainment properties of the mixing layer which develops
at the edge of the separation is proposed to explain its origin in the cases in which the
flow is reattaching downstream. The main parameters that influence the time scale
are derived, in particular the dominant effect due to compressibility. This is related
to large differences observed in low-frequency flapping in subsonic and supersonic
separated flows. The experimental results obtained in the IUSTI incident shock wave
reflection are in very good agreement with the proposed model, while the action
of the superstructures on the interaction does not give an appropriate value for
the characteristic frequency in this experiment. Similarly, the low-frequency shock
unsteadiness observed in various shock-induced separation, experimentally or from
recent DNS and LES, are very well estimated from the model for a wide range
of Mach numbers, independent of the particular geometry of the flow. The large
decrease of the Strouhal number for upstream Mach number ranging from 0 to 2
and saturation with a value of about 0.03 is well predicted; these are associated with
the dramatic reduction of the compressible spreading rate of the mixing layer in this
range of Mach numbers. Therefore, the main source of low-frequency unsteadiness
in shock-induced separated flows seems clearly to be the dynamics of the separated
bubble, at least in flows far enough from incipient separation, as in figure 1.

Another issue would be the generality of the present formulation. All the flows
under consideration here refer to strong interactions in which mean separation is
occurring. Recently, Humble et al. (2007) and Souverein et al. (2008) have performed
advanced PIV experiments in a shock reflection at Mach 1.7 and 2, with flow
deviation of 6◦ and 10◦. These experiments correspond to incipient cases: there
is no mean separation. Nevertheless, instantaneous flow fields have highlighted an
intermittent development of bubbles of separated flow. Humble et al. (2007) made
tomographic PIV measurements and have suggested that shock motions are related to
structures of the upstream boundary layer. An attempt to characterize the time scale
of the shock motions has been derived from dual PIV measurements (see Souverein
et al. 2008). They used two consecutive velocity fields, separated by a tunable time
delay varying from 5 to 2000 μs. For the reflected shock motions, they obtained
significant autocorrelation values even for large delay times. Unfortunately, frequential
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Figure 12. Dimensionless frequency of the shock oscillation normalized as suggested by
relation (2.6): (�) subsonic separation from Kiya & Sasaki (1983); ( ) IUSTI’s reflection
cases; (�) Thomas et al. (1994); (�)Dolling & Brusniak (1989); (�) Erengil & Dolling
(1991a); (�) Wu & Martin (2008) (DNS) and Ringuette & Smits (2007) (experiment); (�)
Touber & Sandham (2008).

analysis was not possible in their operating conditions. The IUSTI configuration
was used to look for spectral information. The experiment was run at 5.5◦ flow
deviation; this corresponds to incipient separation in our experimental conditions.
The frequency of the shock motions has been determined from hot wire measurements.
The premultiplied spectrum of the signal recorded in the vicinity of the mean position
of the shock in the outer flow is reported in figure 13 together with the equivalent
spectra obtained in the 8◦ and 9.5◦ cases. It is clear that the spectra are very different:
in the separated cases, a low-frequency band is clearly dominant, while for the incipient
separation, the spectrum extends from low frequencies to the cut off from the signal
conditioner, with no maximum at low frequency. This is compatible with results
obtained by Souverein et al. (2008). Therefore, it seems that low-frequency shock
motions are closely related to the presence of a separated region downstream of the
separation shock, at least for a shock reflection. Indeed, it seems likely that if the
vertical extent h of the bubble becomes smaller with respect to the initial boundary
layer thickness the dynamics of the separated bubble are significantly affected by
the vicinity of the wall (see for example Simpson 1989). Consequently, the case of
unsteadiness in incipient separation has to be considered with some care.

Nevertheless, upstream influences cannot be completely ignored and must also be
considered. Therefore, the same conditional analysis as in § 3.1.3 has been made to
check whether the breathing of the bubble and the reflected shock motion can be
connected to events in the upstream boundary layer. The conditionally averaged
velocity profiles were compared in a section upstream of zone in which the shock
oscillates, for the subsets of realizations defined in figure 6. The conditional mean
longitudinal velocity in the section X∗ = −0.45 is reported in figure 14(a) for the
8◦ deviation and figure 14(b) for the 9.5◦ case. Only a very small modification of
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Figure 13. PSD of the unsteady reflected shock: (—) θ = 9.5◦; (r) θ = 8◦; (· · ·) θ = 5.5◦.

the profiles has been observed for the extreme bubble states: the large-amplitude
motions of the bubble correspond to mean conditional longitudinal velocity profile
with velocities slightly larger than the other events. This is very similar to the proposal
by Ganapathisubramani et al. (2007b) for a Mach 2 compression ramp. However, the
maximum differences between velocity profiles are 1 % for the 8◦ case and 2 % for
the 9.5◦: this is of the order of measurement accuracy. From several experimental
studies, the order of magnitude of velocity difference between the superstructures
with the other structures should be of the order of ±2uτ (Adrian et al. 2000;
Ganapathisubramani et al. 2007a). In our case, as uτ ≈ 25 ms−1, we would expect
conditional velocity variations of about 100 ms−1 or 20 % of the external velocity:
this is one order of magnitude larger than the observed variations.

We also checked the conditional analysis for higher-order statistics, i.e. the Reynolds
stresses. In figure 14(c) we present the conditional longitudinal intensity of turbulence
profiles in the same section; again, no significant modification can be observed.
Similar results were obtained in sections closer to the interaction, out of the domain
of oscillations of the reflected shock. Therefore, small variations in the upstream
conditions seem unlikely to be the main reason for the large-amplitude motions
of the separated bubble. This is consistent with the following observation: in our
experiments, the characteristic frequency of shock motions and separated bubbles are
affected by the shock intensity and are not related directly to any time scale of the
upstream boundary layer. Nevertheless, the slight dependence, if any, could indicate
that if the characteristic time is imposed by the dynamics of the bubble itself as
proposed here upstream perturbations can perhaps interfere with the development
of the extreme states of the bubble, when mass balance is sufficiently far from
equilibrium. This could generate the very slight dependence observed in our results,
despite the lack of evidence of any significant coherence at low frequencies between
the upstream boundary layer and the shock motions, as found by Thomas et al.
(1994), Debiève & Dupont (2007) and Wu & Martin (2008).
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Figure 14. Conditional mean profiles in the upstream boundary layer in the section
X∗ = −0.45 (open symbols: shallow bubble; closed symbols: thick bubbles). (a) Longitudinal
velocity, θ = 8◦; (b) longitudinal velocity, θ =9.5◦; (c) (�) longitudinal u′/U∞ and (�) normal
v′/U∞ intensity of turbulence, θ = 8◦.

The success in collapsing the data set of flows with relation (2.6) for a wide range
of Mach numbers (from 0 to 5) and a wide range of Reynolds numbers (Reδ from
3.7 × 104 to 144 × 104) suggests that the geometry of flow configurations does not
have much influence on the results. Moreover, the proposed scaling does not use
directly upstream frequency scales, so the influence of the Reynolds number may
appear only indirectly through the length scale h. This implies that, as supposed in
the model, the initial development of the mixing layer defines the time constant of
the bubble breathing and that the downstream history of the flow, in the vicinity of
the reattachment line, is not a key factor in the unsteadiness of the interaction. A
final result can be derived from the compilation reported in figure 14. As already
mentioned, the quantity SL × {g(r, s)Φ(Mc)}−1

can be related to the aspect ratio of the
interaction zone, L/h (see (2.6)). Therefore it seems that these different interactions
have very similar aspect ratios, which is around 6. This result has been directly verified
in our experiments in which the quantity h has been derived from the PIV data (see
table 2). The experimental values are respectively 8.4 and 7 for the 8◦ and 9.5◦ cases.
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However, the present model, which explicitly takes in account compressibility effects
inside the separated bubble, gives a consistent and efficient way to represent shock
unsteadiness in two-dimensional shock-induced separation for a wide range of Mach
numbers.
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Dupont, P., Haddad, C. & Debiève, J. F. 2006 Space and time organization in a shock induced
boundary layer. J. Fluid Mech. 559, 255–277.

Dupont, P., Piponniau, S., Sidorenko, A. & Debiève, J. F. 2008 Investigation of an oblique shock
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Dussauge, J. P., Dupont, P. & Debiève, J. F. 2006 Unsteadiness in shock wave boundary layer
interaction with separation. Aeros. Sci. Technol. 10, 85 –91.

Elena, M., Tedeschi, G. & Gouin, H. 1999 Motion of tracer particles in supersonic flows.
Exp. Fluids 26 (4), 288–296.

Erengil, M. E. & Dolling, D. S. 1991a Correlation of separation shock motion with pressure
fluctuations in the incoming boundary layer. AIAA J. 29 (11), 1868–1877.

Erengil, M. E. & Dolling, D. S. 1991b Unsteady wave structure near separation in a Mach 5
compression ramp interaction. AIAA J. 29 (5), 728–735.

Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2006 Large-scale motions in a
supersonic turbulent boundary layer. J. Fluid Mech. 556, 271–282.

Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2007a Effects of upstream boundary
layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369–394.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

64
17

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009006417


108 S. Piponniau, J. P. Dussauge, J. F. Debiève and P. Dupont
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