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Direct numerical simulation of a wall jet:
flow physics
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A direct numerical simulation (DNS) of a plane wall jet is performed at a Reynolds
number of Rej = 7500. The streamwise length of the domain is long enough to
achieve self-similarity for the mean flow and the Reynolds shear stress. This is the
highest Reynolds number wall jet DNS for a large domain achieved to date. The
high resolution simulation reveals the unsteady flow field in great detail and shows
the transition process in the outer shear layer and inner boundary layer. Mean flow
parameters of maximum velocity decay, wall shear stress, friction coefficient and
jet spreading rate are consistent with several other studies reported in the literature.
Mean flow, Reynolds normal and shear stress profiles are presented with various
scalings, revealing the self-similar behaviour of the wall jet. The Reynolds normal
stresses do not show complete similarity for the given Reynolds number and domain
length. Previously published inner layer budgets based on LES are inaccurate and
those that have been measured are only available in the outer layer. The current DNS
provides fully balanced, explicitly calculated budgets for the turbulence kinetic energy,
Reynolds normal stresses and Reynolds shear stress in both the inner and outer layers.
The budgets are scaled with inner and outer variables. The inner-scaled budgets in
the near wall region show great similarity with turbulent boundary layers. The only
remarkable difference is for the turbulent diffusion in the wall-normal Reynolds stress
and Reynolds shear stress budgets. The outer layer interacts with the inner layer
through turbulent diffusion and the excess energy from the wall-normal direction is
transferred to the spanwise direction.

Key words: boundary layers, turbulent flows, wakes/jets

1. Introduction
Launder & Rodi (1983) defined a wall jet as ‘a boundary layer in which, by virtue

of the initially supplied momentum, the velocity over some region in the shear layer
exceeds that in the free stream’. Normally, for a wall jet, fluid exits from a slot at
high velocity and flows along a wall. Wall jets are characterized by the presence
and interaction of two shear layers. The first is from the boundary layer, developing
due to the high momentum fluid along the wall, also called the ‘inner layer’. The
second develops between the high momentum fluid of the jet and the outer ambient
conditions, which can be quiescent, or moving with a different speed than the jet
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FIGURE 1. (Colour online) Various length and velocity parameters used for wall
jet scaling.

and is called the ‘outer layer’. The two layers have different kinds of large scale
structures responsible for the generation of shear strain, which produce turbulence.
These structures interact with each other. The inlet wall jet Reynolds number can be
defined as Rej=Ujh/ν, where h is the slot height, Uj is the jet slot exit velocity and
ν is the kinematic viscosity. The mean streamwise velocity profile of a turbulent wall
jet in the fully developed region is shown in figure 1. This profile is characterized by
a maximum velocity Umax, which separates the two layers in this flow. The location
of the maximum velocity is designated as ymax. A length scale for the outer layer is
defined as y1/2. This is the wall-normal distance above ymax, where the streamwise
velocity is half of the maximum velocity i.e. (1/2)Umax. A similar length scale (y1/2)in
can be defined for the inner layer, which is the wall-normal distance below ymax, where
the streamwise velocity again becomes (1/2)Umax.

Wall jets find wide ranging application in separation control on airfoils (Dunham
1968), and in the film cooling of combustion chamber liners and leading stage
blades in gas turbines (Launder & Rodi 1983). In the case of separation control,
the objective is to achieve enhanced near wall momentum and increased mixing
between the wall jet and the outer flow to suppress separation. On the other hand,
for film-cooling applications, the jet and ambient flow should have minimum mixing.
These are opposite requirements and for efficient application, a greater understanding
of this flow is needed at more relevant Reynolds numbers.

Since Glauert (1956), who coined the term wall jet and made the first attempt
to achieve a boundary layer solution for this, several analytical, experimental and
numerical studies have been performed. Launder & Rodi (1983) gave a comprehensive
overview of pre-1980 wall jet research. More recently Banyassady & Piomelli (2014)
reviewed the latest work on wall jets. A significant amount of work is concerned with
the self-similar solution or behaviour of the wall jet. George et al. (2000) explained
the significant benefits in defining self-similarity as follows: ‘Only a similarity solution
provides an unambiguous test of a turbulence model independent of computational
constraints and experimental difficulties. It does not depend on computational grid,
domain, or differencing schemes, nor does it depend on difficulties in realizing and
measuring a laboratory flow. It exists independent of closure approximations, and thus
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the scaling laws it offers can be used to test closure hypotheses. Its straightforward
boundary conditions are free from the finite limits of experimental facilities or
computer memories, and thus its profiles provide an ideal reference for testing the
effects of enclosure’.

A similarity solution was obtained by dividing the wall jet into inner and outer
layers (Glauert 1956; Schwarz & Cosart 1961; Myers, Schauer & Eustis 1963). The
inner layer is considered similar to the boundary layer, with Umax as the free stream
velocity and ymax acting as the boundary layer thickness. The outer layer above ymax
is treated as half of a free jet. This is a remarkably simple picture, however it is not
supported by measurements. The inner layer does not follow the turbulent boundary
layer behaviour exactly and is influenced by the outer layer turbulence. Also, the outer
layer does not expand like a free jet due to the presence of the wall.

Irwin (1973) and Wygnanski, Katz & Horev (1992) used y1/2 and Umax, as length
and velocity scales, respectively. Irwin (1973) showed that measured mean streamwise
velocity, Reynolds normal and shear stresses, scale with these parameters. However,
Wygnanski et al. (1992) showed that only streamwise velocity profiles collapse with
this scaling.

George et al. (2000) showed that for finite Reynolds numbers wall jets cannot have
a similarity solution. However, in the limit of infinite Reynolds number, mean flow
and Reynolds stress profiles can collapse with appropriate scaling parameters. In the
inner layer region, mean streamwise velocity and Reynolds stresses are scaled with the
friction velocity uτ =

√
ν∂u/∂y|y=0 and friction length ν/uτ , where ν is the kinematic

viscosity. In the outer layer, streamwise velocity and Reynolds normal stresses are
scaled with Umax and y1/2, whereas the Reynolds shear stress is scaled with both
Umax and uτ . More recently Barenblatt, Chorin & Prostokishin (2005) showed that the
wall jet has two self-similar layers i.e. outer and wall layers. Both of these layers
show a strong influence of the inlet slot height or incomplete similarity. The velocity
scale for this similarity is Umax, whereas the length scales are y1/2 and (y1/2)in for
the outer and wall layers, respectively. This incomplete similarity is at variance with
George et al. (2000), which has only one length scale for the mean flow. Eriksson,
Karlsson & Persson (1998) and Rostamy et al. (2011a) showed that the measured
mean streamwise velocity and all Reynolds stresses scale with the parameters defined
by George et al. (2000). Tang et al. (2015) showed that inner layer mean velocity
profiles collapse with the similarity parameters defined by Barenblatt et al. (2005).
Efforts have also been made to identify the inner layer region with the standard log
law, which is given for boundary layers as 〈u〉+ = A ln(y+) + B with 〈u〉+ = 〈u〉/uτ ,
y+= yuτ/ν, A=2.44 and B=5.0. Banyassady & Piomelli (2015) have compiled values
of A and B for various wall jet studies and showed that there is a large scatter in the
published data. George et al. (2000) have suggested a power-law profile, which unlike
the log law covers the entire inner layer.

Apart from self-similar behaviour, there are other aspects of wall jets which need
attention from the application point of view. Applications such as flow control or
heat transfer require greater understanding of inner and outer layer interaction and the
development and interaction of large scale structures. In order to explain turbulence
structure, turbulence kinetic energy and Reynolds stress budgets are needed both in
the inner and outer layer regions. There are few studies which address any of these
issues. Irwin (1973) and Zhou, Heine & Wygnanski (1996) may be the only two
examples of wall jet experimental investigations, that have provided the turbulence
kinetic energy budget and Irwin (1973) may be the only one for the Reynolds stress
budget. Measurements can provide only a few terms pertaining to dissipation directly
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and most of the budget terms have to be estimated using various assumptions (Zhou
et al. 1996). Moreover, experiments have provided the budgets only in the outer layer
region.

In order to investigate wall jets in greater detail, numerical techniques like large-
eddy simulation (LES) and direct numerical simulation (DNS) are invaluable. Dejoan
& Leschziner (2005) performed LES of a wall jet at a reasonably high Reynolds
number of Rej= 9700. However, their domain length was limited to 22h, which means
they might not have achieved the fully developed self-similar state. The outer and
inner layer budgets for turbulence kinetic energy and Reynolds stresses were presented.
They showed that turbulent diffusion transfers turbulent kinetic energy from the inner
and outer layers, where the production peaks exist, to the overlap region with minimal
production. Ahlman, Brethouwer & Johansson (2007) performed the first DNS for a
wall jet at a relatively low Reynolds number of Rej = 2000. Their focus was on the
dynamic and mixing properties of a wall jet. They considered the scalar transport and
presented the mixing properties in terms of mean scalar values, scalar flux, dissipation
and various scalings for these properties. Ahlman et al. (2009) also considered low
Mach number wall jets with a considerable density gradient between the jet and its
surroundings. This work showed the influence of density gradient on the development
of wall jets, which is important for film-cooling and combustion applications.

In a series of papers, Pouransari, Brethouwer & Johansson (2011), Pouransari,
Vervisch & Johansson (2013, 2014), Pouransari, Biferale & Johansson (2015) studied
wall jets with chemical reaction or combustion. Most of these studies are confined
to relatively low Reynolds number. However, they addressed fundamental issues
involving the effect of chemical reactions and associated heat release on the mixing
present in wall jet flows. Pouransari et al. (2013) showed that the heat release delays
transition and increases density, pressure and species concentration fluctuations. It
also dampens the velocity fluctuations and Reynolds shear stress, which enlarge the
finer scale structures and produce larger vortices. The effect of Reynolds number on
reacting turbulent wall jets was also investigated (Pouransari et al. 2014). Wall jets
at Reynolds numbers Rej = 2000 and Rej = 6000 were compared. This work showed
that the flame and turbulent structures become finer at higher Reynolds number.

Recently Banyassady & Piomelli (2014) performed LES of a wall jet on smooth and
rough surfaces. They considered a long domain up to 35h at a Reynolds number of
Re=7500, which provided a fully developed wall jet. These computations showed that,
for the roughness height and Reynolds number considered, the effects of roughness are
confined to the inner layer. Hence, the turbulence structures and scaling parameters for
the outer layer are not affected by the roughness. In the inner layer region, roughness
redistributes wall-normal and spanwise turbulence towards isotropy. Banyassady
& Piomelli (2015) further extended LES to even higher Reynolds numbers up to
Rej= 40 000. They compared plane and radial wall jets and showed that even though
the radial wall jet has one more direction to expand, it is fundamentally similar to
a plane wall jet. They also showed that the local Reynolds number determines the
intrusion of the outer layer in to the inner layer. The interaction of the outer layer
with the inner layer is weaker with increasing local Reynolds number.

In this paper a DNS of a wall jet at a Reynolds number of Rej= 7500 for a domain
longer than 40h is reported. To the best of authors’ knowledge, this Reynolds number
is the highest and the domain range the longest for any reported DNS of a wall
jet. This particular Reynolds number is selected in order to compare the DNS results
with the experiments of Rostamy et al. (2011a,b), Tang et al. (2015) and numerical
simulations of Banyassady & Piomelli (2014, 2015). The highly resolved unsteady
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flow field is used to present large scale coherent structures in the transition and fully
developed regions in the inner and outer layers. Hence a clear picture of the complex
unsteady flow physics is presented. The mean flow field, Reynolds normal and shear
stresses are presented with the various scalings given in the literature. The turbulence
kinetic energy, Reynolds normal and shear stress budgets are directly calculated and
presented both in the inner and outer layers.

2. Numerical simulation
Incompressible flow is considered for the wall jet in this study. This is governed by

the conservation of mass and momentum:

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+
∂uiuj

∂xj
=−

∂p
∂xi
+

1
Rej

∂2ui

∂xj∂xj
, (2.2)

where {x1, x2, x3} = {x, y, z} are the coordinates in the streamwise, wall-normal and
spanwise directions, respectively. The corresponding instantaneous velocities are given
as {u1, u2, u3} = {u, v,w} and the instantaneous pressure by p.

A second-order finite volume solver is used to solve (2.1) and (2.2). The solver
is based on a fractional step scheme. The spatial derivatives are discretized with
second-order central differencing. The momentum equation is advanced in time with
a semi-implicit scheme. In this procedure the convective terms are treated explicitly
using the Adams–Bashforth scheme and diffusive terms are solved implicitly with
the Crank–Nicolson method. The Poisson equation for pressure is transformed to
Fourier space by applying fast Fourier transforms in the spanwise direction. This
results in a system of equations for two-dimensional planes for each Fourier mode,
which are then solved using the bi-conjugate gradient stabilized method. The solver
is parallelized with message passing interface (MPI). It has been used extensively to
simulate turbulent flows (Radhakrishnan et al. 2006a,b; Naqavi, Tucker & Liu 2014).

The computational domain is in the shape of a rectangular cuboid. This has
the dimensions of Lx/h = 43.0, Ly/h = 40.0 and Lz/h = 9.0 in the streamwise,
wall-normal and spanwise directions, respectively. The spanwise width of the domain
is comparable to several previously reported wall jet simulations (Dejoan & Leschziner
2005; Ahlman et al. 2009; Banyassady & Piomelli 2014; Pouransari et al. 2014). The
spanwise two-point correlation coefficient at x/h= 30 for all the velocity components
goes to zero by z/h= 2. The wall jet requires a careful selection of inflow, outflow
and entrainment conditions for an efficient and accurate computation. The absence
of proper conditions may result in a large recirculation in the latter part of the
domain and reduces the effective streamwise range of the simulation (Levin, Herbst
& Henningson 2006).

The inlet flow conditions at the jet slot determine the transition of the jet shear
layer and the wall boundary layer in numerical simulations. Previously, Ahlman et al.
(2007) used a tangent hyperbolic profile for the streamwise velocity with prescribed
fluctuations at the jet slot inlet. To avoid any large recirculation in the domain,
they prescribed a co-flow of 10 % of the jet inlet velocity for the rest of the inlet
plane. Dejoan & Leschziner (2005) used an experimentally measured (Eriksson et al.
1998) laminar profile superimposed with random fluctuations. They used a prescribed
velocity at the top wall rather than co-flow for the entrainment and did not report
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FIGURE 2. (Colour online) (a) Inlet nozzle geometry from the experiment (Rostamy et al.
2011b), (b) mean streamwise velocity and Reynolds stress at the inlet slot (x/h= 0) and
(c) mean convective velocity Uconv profile for the outflow boundary condition.

any recirculation. Banyassady & Piomelli (2014) used a plane of time-dependent
flow field from a fully developed turbulent channel flow at the same bulk Reynolds
number as the wall jet and prescribed velocity at the top wall. These different inflow
conditions give mean flow and Reynolds stresses in the fully developed region,
which compare well with various measurements. In the current work, simulations
are performed at Re = 7500, for which measurements (Rostamy et al. 2011a,b) are
also available. However, the mean velocity profile and turbulence measurement at
the inlet are not available from Rostamy’s work. They did, however, provide the
inlet nozzle geometry (Rostamy et al. 2011b) as shown in figure 2(a). In the current
work, a precursor Reynolds-averaged Navier–Stokes (RANS) simulation is performed
with this two-dimensional inlet nozzle to obtain a mean streamwise velocity profile.
ANSYS Fluent 14.5, with the standard k − ε model and default parameters, is
used for the RANS simulation. In order to introduce a low level of turbulence at
the inlet, a separate channel flow direct numerical simulation is performed at the
Reynolds number of Re = Ubulkh/ν = 7500. The mean velocity is removed from the
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FIGURE 3. (Colour online) Quantification of the grid resolution of the current simulations:
(a) grid size 1x+, 1y+ and 1z+ distribution along the streamwise direction in wall units,
(b) contours of 1y+, the dashed line indicates the location of jet half-width y = y1/2,
(c) contours of mean grid size ∆= (1x+1y+1z)/3.0 with respect to the Kolmogorov
length scale η and (d) actual grid distribution in x–y plane with every 21st point in the
streamwise and every 11th point in the wall-normal direction shown.

channel flow field and the remaining fluctuations, indicated by the prime symbol, are
scaled to achieve a maximum streamwise Reynolds stress 〈u′u′〉/U2

max = 0.01 %. The
time-dependent inflow velocity plane for the DNS is defined using the mean velocity
from the precursor RANS calculation, superimposed with the time series of scaled
velocity fluctuations from the channel flow. The mean flow and Reynolds stress at
the inlet slot of the wall jet are shown in figure 2(b). For the rest of the inlet plane
(1.0 6 y/h 6 40.0) a uniform streamwise velocity of U∞ = 0.06Uj is defined as a
co-flow. This co-flow provides entraining fluid and helps to avoid any large scale
circulation in the computational domain. This co-flow is determined systematically
using coarse grid simulations with decreasing co-flow magnitude and is lower than
previous studies (Zhou et al. 1996; Ahlman et al. 2007).

At the bottom wall of the domain, the no-slip boundary condition is applied i.e.
u= v=w= 0. The top wall of the domain has a shear free boundary condition, which
is given as ∂u/∂y = ∂w/∂y = v = 0. In the spanwise direction a periodic boundary
condition is applied. At the exit plane, the convective outflow boundary condition
of Orlanski (1976) is applied, which is given as ∂ui/∂t + Uconv(∂ui/∂x) = 0. The
mean streamwise velocity profile at the exit plane is used as the convective velocity
Uconv. This convective velocity is calculated as a running time average (Lund, Wu
& Squires 1998), where the initial transients have to be removed. Figure 2(c) shows
a resulting outflow convective velocity Uconv profile at around t∗ = 1200, which has
become statistically steady.

The simulation is performed with 1652× 344× 302 grid points in the streamwise,
wall-normal and spanwise directions, respectively, which results in approximately 172
million cells. This grid is mildly non-orthogonal and non-uniform in the x–y plane,
which follows the shear layer development. The grid is uniform in the spanwise
direction. There are 78, 188 and 282 wall-normal points below ymax, y1/2 and 2y1/2,
respectively. Figure 3(a) shows the streamwise 1x+, wall-normal 1y+ and spanwise
1z+ grid size variations along the streamwise direction in wall units. The streamwise
and spanwise grid sizes are in the range of 5 6 1x+ 6 10.5 and 8 6 1z+ 6 12,
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FIGURE 4. (Colour online) Mean streamwise velocity and turbulent kinetic energy (tke)
profiles at x= 30.0h for coarse and fine grids: (a) outer scaling and (b) inner scaling.

respectively. The wall-normal distance of the first grid point is 1y+< 0.7. In the near
wall region there are 6 points below y+= 5 and 12 points below y+= 11. Figure 3(b)
shows the distribution of wall-normal grid size 1y+, which is less than 6 in the
active flow region, particularly below the jet half-width y/h < y1/2. The grid size
in wall units for the current simulation is comparable to previously reported DNS
of wall jets (Ahlman et al. 2007; Pouransari et al. 2014) and boundary layer flows
(Schlatter et al. 2009; Yuan & Piomelli 2015).

For the DNS of any turbulent flow, the smallest resolved scale should be of the
order of O(η), where η = (ν/ε)(1/4) is the Kolmogorov length scale and ε is the
dissipation of turbulence kinetic energy (Moin & Mahesh 1998). Figure 3(c) shows
that the mean grid size with respect to the Kolmogorov length scale ∆/η is less
than 6, where ∆= (1x +1y+1z)/3.0. The individual grid size in the streamwise,
spanwise and wall-normal directions are 1x/η < 10, 1z/η < 10 and 1y/η < 2,
respectively. The current estimates of the grid resolution at the dissipation scales are
comparable to the other studies reported in the literature e.g. Moser & Moin (1987),
Yuan & Piomelli (2015). Figure 3(d) shows the actual grid distribution.

An initial simulation was performed with 1250 × 344 × 194 grid points, totalling
approximately 83 million cells. Figure 4 compares the mean streamwise velocity and
turbulent kinetic energy (tke) profiles for the initial and final grids. The comparison is
performed with both inner and outer scalings. The velocity profiles do not show any
difference. The turbulent kinetic energy profiles have a maximum difference of 3 %.
All the following results presented in this work are for the final, fine grid.

A fixed time step based on the Courant–Friedrichs–Lewy (CFL) number is used,
which is defined as 1t((|u|/1x) + (|v|/1y) + (|w|/1z)) = 0.5. This results in a
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FIGURE 5. (Colour online) Iso-surfaces of the second invariant of the velocity gradient
tensor in the wall jet. The iso-surfaces are coloured with the local streamwise velocity
u. The x–y plane shows the contours of spanwise averaged fluctuating pressure field 〈p′〉z
and closed streamlines representing the footprint of large scale rotating structures.

maximum computational time step size of 1t∗ = 0.0015. The simulation is initialized
using a uniform flow field with u= 0.08, v= 0.0 and w= 0.0, which is the streamwise
bulk velocity at any y–z plane of the domain. The flow develops for 1200t∗ to reach
a statistically steady state and statistics are collected thereafter for a period of 1300t∗.

3. Results
3.1. Unsteady flow

There are not many examples available in the literature where large scale three-
dimensional structures are presented for wall jets at higher Reynolds numbers.
Banyassady & Piomelli (2014) used fluctuating pressure scaled with the maximum
local velocity p′/ρU2

max to visualize coherent structures in a wall jet at Rej = 7500.
The fluctuating pressure contours in their simulation showed only large roll structures
in the outer layer of the fully developed region of the wall jet. In this work, the
Q-criterion will be used to identify the large scale structures, which is defined as the
second invariant of the velocity gradient tensor ∇u.

Figure 5 shows an instantaneous picture of large scale vortical structures in the
outer layer of the wall jet. Along the outer lip of the wall jet in the shear layer
region for x/h < 3, Kelvin–Helmholtz instability generates roll structures, which are
convected downstream. The roll structures interact with each other and breakdown into
smaller more complex structures within a distance of x/h = 5 from the inlet. These
smaller structures undergo a complex motion and farther downstream for x/h > 20,
structures have some large scale rotation. In order to identify this rotation, time
averaged flow variables are subtracted from the instantaneous three-dimensional field
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FIGURE 6. (Colour online) Iso-surfaces of the second invariant of the velocity gradient
tensor in the inner layer region of the wall jet. The iso-surfaces are coloured with the
local streamwise velocity u.

shown in figure 5 and fluctuating flow variables are averaged in spanwise direction.
Figure 5 shows an x–y plane, with the contours of spanwise averaged fluctuating
pressure 〈p′〉z field and streamlines based on spanwise averaged fluctuating velocities
〈u′〉z and 〈v′〉z. The streamlines form closed loops. On moving downstream, these
grow in size and move away from the wall with the growth of the outer layer. These
closed loop streamlines coincide with the peak values of pressure fluctuations 〈p′〉z
and represent the footprint of large scale rotation present in the outer shear layer.
Banyassady & Piomelli (2014) used iso-surfaces of fluctuating pressure p′ to identify
large roll structures in the outer layer region far downstream beyond x/h> 25, similar
to the structures identified here.

The near wall inner layer structures are made visible by blanking the flow field
above y/h= 0.25. Figure 6 shows the instantaneous inner layer structures. The initial
transition region for the inner layer stretches over the range 0 6 x/h < 15 and the
developed region extends beyond x/h > 20. The transition region shows closely
spaced patches of turbulence. These look identical to the turbulence spots appearing
in transitional boundary layer flow (Wu & Moin 2009). In the developed region, for
x/h> 20, more streamwise aligned tube-like structures appear.

3.2. Global properties
Figure 7(a) shows the decay of maximum mean streamwise velocity Umax of the wall
jet as a function of streamwise distance from the jet exit plane on a log–log scale.
The current DNS is compared with the power law given by Barenblatt et al. (2005)
and Tang et al. (2015). The power law is generally defined as

Umax

Uj
= Am

( x
h

)γm

. (3.1)
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FIGURE 7. (Colour online) The decay of maximum mean streamwise velocity Umax as
a function of: (a) local streamwise distance from the jet inlet scaled with the slot height
and (b) the local half-width y1/2 normalized with the slot height. Current DNS (@); power
law fit to current DNS (——). LES of Banyassady & Piomelli (2014) (u). Experimental
data: Tang et al. (2015) (– – –); Barenblatt et al. (2005) (— · · —); George et al. (2000)
(— · —).

The exponents of the power law are given by Barenblatt et al. (2005) and Tang et al.
(2015) as γm = −0.482 and −0.6, respectively. The current DNS gives a value of
γm = −0.4907 beyond x/h = 20, which is within the measured range. Previously it
has been assumed that γm = −0.5 (Launder & Rodi 1981; Wygnanski et al. 1992).
However, Wygnanski et al. (1992) suggested that their experimental data fit the power
law better when the exponent is −0.47. This is within 2.5 % of the value given by
Tang et al. (2015). Narasimha, Narayan & Parthasarathy (1973) reported 4 6 Am 6 7
and −0.62 6 γm 6−0.49. The maximum streamwise velocity values from the recent
LES of Banyassady & Piomelli (2014) are included in figure 7(a). These are close
to the current DNS. Barenblatt et al. (2005) have argued that if γm 6= −0.5, flow
parameters have incomplete similarity or, in other words, they depend on the inlet
slot height. However, current DNS and several other measurements give γm close to
−0.5. The value of γm = −0.6, given by Barenblatt et al. (2005) is based on the
data of Karlsson, Eriksson & Persson (1993), which might be affected by reverse flow
(George et al. 2000).

Figure 7(b) shows the log–log plot of Umax/Uj against y1/2/h. George et al. (2000)
noted that there is no theoretical justification for this normalization. However, data
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FIGURE 8. (Colour online) Streamwise development of the wall-normal location ymax of
Umax. Current DNS (@); power law fit to current DNS (——). Experimental data: Tang
et al. (2015) (– – –); Tachie, Balachandar & Bergstrom (2004), linear fit (— · —), Re=
9100 (A), Re= 6100 (E).

from several studies collapse to a power law given as

Umax

Uj
= Bo

(y1/2

h

)n
. (3.2)

The exponent of the power law in figure 7(b) is given as n = −0.528 and −0.524
based on the measurements by George et al. (2000) and Tang et al. (2015),
respectively. These values are within 0.8 % of each other. The power law defined
by George et al. (2000) relies on data for x/h > 40 and for the data of Tang et al.
(2015) it is valid for x/h > 30. However, the current DNS shows that it is in good
agreement with these power laws at axial locations greater than x/h = 25, with the
values of Bo = 1.18 and n=−0.542.

Figure 8 shows the log–log plot of the streamwise variation of the wall-normal
location ymax of the maximum streamwise velocity. Tang et al. (2015) defined a power-
law relationship for ymax/h as

ymax

h
= Bm

( x
h

)m
. (3.3)

The accurate experimental measurement of ymax is challenging. However, a power-law
fit to the current DNS shows that it has the exponent m=−0.7403 as compared to
0.717 measured by Tang et al. (2015). The values of Bm are 0.0403 and 0.040 for
the DNS and experiment, respectively. Tachie et al. (2004) have also measured ymax
for various inlet Reynolds numbers. The linear fit through their measurements is also
included along with two of the representative values at Re= 9100 and 6100, shown
by symbols. These are in agreement with the current DNS.

Figure 9 shows the jet spreading rate (or the variation of jet half-width) in the inner
and outer layers along the streamwise direction. Barenblatt et al. (2005) have shown
that the streamwise development of the half-width in the inner and outer layer regions
follow independent scaling laws. The scaling power laws based on the jet slot height
h are defined as

y1/2

h
= Ao

( x
h

)γo

(outer layer), (3.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

50
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.503


Direct numerical simulation of a wall jet 519

y 1
/2

/h

10 15 20 25 30 35 40
1

2

3

4

5(a)
DNS
0.175(x/h)0.78

0.230(x/h)0.78

0.0732(x/h) + 0.332
0.0782(x/h) + 0.332

x/h

(y
1/

2)
in

/h

10 15 20 25 30 35 40

0.1

0.2
DNS
0.005(x/h)0.504

0.007(x/h)0.504

(b)

FIGURE 9. (Colour online) Wall jet spreading rate in (a) the outer layer and (b) the
inner layer. Current DNS (@); power law fit to current DNS (——). Experimental data:
Tang et al. (2015) (– – –); Launder & Rodi (1981) (— · —); Eriksson et al. (1998)
(— · · —).

and

(y1/2)in

h
= Ai

( x
h

)γi

(inner layer). (3.5)

The outer layer half-width y1/2 is compared with the power law given by Tang et al.
(2015) based on their experimental data (figure 9a). The power-law fit through the
current DNS and Tang et al. (2015) have the same exponent, γo= 0.78. This is 20 %
lower than the value γo= 0.93 reported by Barenblatt et al. (2005). Other researchers
have reported higher values for γo, for example, Narasimha et al. (1973) gave
γo= 0.91 and Wygnanski et al. (1992) 0.88. The coefficient Ao for Tang et al. (2015)
is 0.230, which is significantly higher than 0.175 for the current DNS. The measured
values of y1/2 are hence greater than the DNS. Linear relationships for half-width
have also been defined as y1/2/h= 0.0732(x/h)+ 0.332 (Launder & Rodi 1981) and
y1/2/h = 0.0782(x/h) + 0.332 (Eriksson et al. 1998), which are closer to the current
DNS than the measurements of Tang et al. (2015). The average value of the ratio
ymax/y1/2 for 25 6 x/h 6 40 is given by current DNS as 0.2, which is higher than a
previously reported value of 0.17 (Karlsson et al. 1993).

Figure 9(b) compares the inner layer half-width (y1/2)in from the DNS with
the power law given by Tang et al. (2015). The power-law fit through the DNS
data has the same exponent γi = 0.504 as the measurements (Tang et al. 2015).
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FIGURE 10. (Colour online) (a) Streamwise development of the wall shear stress scaled
with momentum–viscosity scaling. Current DNS (@); power law fit to current DNS (——).
LES of Banyassady & Piomelli (2014) (u). Experimental data: Rostamy et al. (2011b)
(– – –); Wygnanski et al. (1992) (— · —). (b) Variation of skin friction coefficient Cf
with local Reynolds number Rem =Umaxymax/ν. Current DNS (@). LES of Banyassady &
Piomelli (2015) (u). Experimental data: Eriksson et al. (1998) (A); Tachie et al. (2004)
(C); Rostamy et al. (2011b) (E); George et al. (2000) (— · · —).

Barenblatt et al. (2005) gave the power-law exponent γi= 0.68, which is 20 % higher
than the current value. The coefficient Ai = 0.005 for the DNS is lower than the
measured value of 0.007 (Tang et al. 2015). The measured data hence produce higher
values of (y1/2)in than the DNS.

Figure 10(a) shows the streamwise evolution of wall shear stress τw = µ∂u/∂y|y=0,
where µ is the dynamic viscosity of the fluid. The scaling used here is defined by
Narasimha et al. (1973), which uses the initial kinetic momentum flux Mo=

∫ h
0 Uj

2 dy,
kinematic viscosity and density to scale wall shear stress. This approach eliminates the
effect of inflow Reynolds number Rej on the scaling. The power-law form for this
scaling is given as

τwν
2

ρMo
2 = Aτ

(
xMo

ν2

)γτ
. (3.6)

The exponent for the power-law fit through the current DNS is γτ = −0.967.
The value of γτ based on measurements is given as −1.053 and −1.07 by
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Umax

Uj
= Am

( x
h

)γm

Am γm
Umax

Uj
= Bo

(y1/2

h

)n
Bo n

DNS 3.55 −0.4907 DNS 1.18 −0.542
Tang et al. (2015) 3.442 −0.482 Tang et al. (2015) 1.15 −0.524
Barenblatt et al. (2005) 5.150 −0.600 George et al. (2000) 1.17 −0.528
Wygnanski et al. (1992) — −0.470
Narasimha et al. (1973) 4 to 7 −0.49 to −0.62
y1/2

h
= Ao

( x
h

)γo

Ao γo
(y1/2)in

h
= Ai

( x
h

)γi

Ai γi

DNS 0.175 0.78 DNS 0.005 0.504
Tang et al. (2015) 0.230 0.78 Tang et al. (2015) 0.007 0.504
Wygnanski et al. (1992) — 0.88
Narasimha et al. (1973) — 0.91

τwν
2

ρM2
o

= Aτ

(
xMo

ν2

)γτ
Aτ γτ

ymax

h
= Bm

( x
h

)m
Bm m

DNS 0.03 −0.967 DNS 0.0403 0.7403
Rostamy et al. (2011b) 0.161 −1.053 Tang et al. (2015) 0.040 0.717
Wygnanski et al. (1992) 0.146 −1.070

TABLE 1. Various power laws for wall jets.

Rostamy et al. (2011b) and Wygnanski et al. (1992), respectively. These values
are within 10 % of each other. The coefficient Aτ is determined to be 0.03, 0.161
and 0.146 for the current DNS, Rostamy et al. (2011b) and Wygnanski et al. (1992),
respectively. The wall shear stress predicted with LES (Banyassady & Piomelli 2014)
is close to the current DNS.

Figure 10(b) shows the log–log plot of skin friction coefficient Cf against local
Reynolds number Rem = (Umaxymax)/ν. Cf is defined as

Cf = 2
τw

ρU2
max

= 2
(

uτ
Umax

)2

. (3.7)

The local Reynolds number Rem in the developed region ranges from 2500 to 3100
for the current DNS. The predicted values of Cf are in agreement with several
experimental studies (Eriksson et al. 1998; Tachie et al. 2004; Rostamy et al. 2011b).
George et al. (2000) gave a theoretical relation for friction velocity based on a power
law. This can be used to determine the skin friction coefficient variation against Rem.
This relationship is also included in figure 10(b). The current DNS approaches it
asymptotically beyond Rem = 2800. Banyassady & Piomelli (2015) have reported Cf
for a significantly longer range of Rem based on their LES, however, their reported
values are higher than the current predictions.

Various power laws for the wall jet discussed in this section are summarized in
table 1.

3.3. Mean flow and turbulence statistics
3.3.1. Mean velocity

Figure 11(a) shows mean streamwise velocity profiles at x/h= 25, 30 and 35. The
profiles are scaled with the outer parameters y1/2 and Umax. For the given range in the
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x = 30h
x = 35h

FIGURE 11. (Colour online) Mean streamwise velocity profiles scaled with outer length
scales (a) 〈u〉/Umax and (b) (〈u〉 − U∞)/(Umax − U∞). LES of Banyassady & Piomelli
(2014) (u), x = 30h. Experimental data: Rostamy et al. (2011a) (E), x = 30h; Eriksson
et al. (1998) (A), x= 40h; Irwin (1973) (C), x= 82.2h.

streamwise direction, the profiles show self-similar behaviour. Eriksson et al. (1998)
showed that the mean streamwise velocity profiles show self-similar behaviour in outer
scales beyond x/h = 20. The mean flow predicted by previous LES (Banyassady &
Piomelli 2014) is in agreement with the DNS. The current results also compare well
with the measurements of Rostamy et al. (2011a) and Eriksson et al. (1998). This is
with the exception of close to the edge of outer layer beyond y/y1/2 > 1.8. This is
due to the difference in outer flow conditions. The experiments have reverse flow for
entrainment.

In the presence of a weak co-flow with the velocity U∞, the outer scaling for the
mean streamwise velocity is defined as (〈u〉 −U∞)/(Umax −U∞) (Irwin 1973; Zhou
et al. 1996) and y1/2 is located where 〈u〉= (1/2)(Umax−U∞). Figure 11(b) shows that
the mean streamwise velocity profiles at x/h=25, 30 and 35 collapse with this scaling
in the outer layer region. The velocity profiles are compared with the experimental
data of Irwin (1973) at Rej = 28 000 with U∞/Umax = 0.38.

Figure 12 shows the outer-scaled mean wall-normal velocity 〈v〉. The velocity
profiles do not collapse beyond y/y1/2= 1.2. The calculated wall-normal velocity is in
good agreement with the measurements of Eriksson et al. (1998) up to y/y1/2 = 1.6.
The difference in measurements and computed values in the outer region is again due
to different entrainment conditions.

Figure 13 shows the inner-scaled mean streamwise velocity 〈u〉+ profiles in a
semi-logarithmic form. The computed profiles at three streamwise locations x/h= 25,
30 and 45 collapse up to y+ = 300. The current DNS is in agreement with the
experimental data (Eriksson et al. 1998; Rostamy et al. 2011a). The LES of
Banyassady & Piomelli (2014) gives slightly lower values for 〈u〉+ in the range
of 10 6 y+ 6 370, than the current DNS. There is agreement with the linear profile
〈u〉+ = y+ below y+ = 4, which is similar to the flat plate turbulent boundary layer
(Wu & Moin 2009). The near wall velocity profiles for wall bounded flows are
also expressed as a log law of the form 〈u〉+ = A ln(y+) + B. The current DNS is
compared with a log law having A = 2.44 and B = 5.0. These constants are the
generally accepted values for flat plate turbulent boundary layers (Spalart 1988).
Several previous experimental measurements of wall jets (Eriksson et al. 1998;
Tachie et al. 2004; Rostamy et al. 2011a) have shown agreement with these log-law
parameters. Eriksson et al. (1998) showed that their measurements are in agreement
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FIGURE 12. (Colour online) Mean wall-normal velocity profiles scaled with outer
parameters. Experimental data: Eriksson et al. (1998) (A), x= 70h.
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FIGURE 13. (Colour online) Inner-scaled mean streamwise velocity profiles 〈u〉+. Log-law
〈u〉+= 2.44 ln(y+)+ 5.0 (— · · —). Linear profile 〈u〉+= y+ (· · · · · ·). LES of Banyassady
& Piomelli (2014) (u), x= 30h. Experimental data: Rostamy et al. (2011a) (E), x= 30h;
Eriksson et al. (1998) (A), x= 40h.

with the log law in the range of 30 6 y+ 6 80, whereas the current DNS range is
206 y+6 90. The log-law parameters for the LES (Banyassady & Piomelli 2014) are
A= 2.22 and B= 5.0.

Figure 14 represents mean streamwise velocity profiles with incomplete similarity
parameters described by Barenblatt et al. (2005). The outer scaling parameters for
incomplete similarity are traditionally defined except for the factor Ao used for scaling
the y-axis (figure 14a). The parameter Ao is given in (3.4), which describes the
dependence of the outer layer length scale y1/2 on the streamwise distance x/h. The
semi-logarithmic plot clearly shows that outer scale mean streamwise velocity profiles
above ymax show perfect collapse, whereas profiles below ymax diverge. Figure 14(b)
shows the inner-scaled profiles of mean streamwise velocity. The y-axis is scaled with
Ai and (y1/2)in given in (3.5). The inner scaling is able to collapse the velocity profile
in the inner layer region below ymax. Barenblatt et al. (2005) gave a relationship for
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FIGURE 14. (Colour online) Mean streamwise velocity profiles scaled with incomplete
similarity parameters of Barenblatt et al. (2005): (a) outer scaled profiles and (b) inner-
scaled profiles.

mean streamwise velocity based on incomplete similarity as

〈u〉 =


(

M
ρh

)1/2 ( x
h

)γm

ψu

( y
h1−γoxγo

, Re
)
, if y> ymax;(

M
ρh

)1/2 ( x
h

)γm

ψu

( y
h1−γixγi

, Re
)
, if y< ymax.

(3.8)

ψu is a function of length scales and Reynolds number. Earlier it was shown that
the current DNS and several recent measurements give γm close to −0.5, which
results in a weak dependence on inlet slot height and hence at high Reynolds number
complete similarity is possible. It is important to point out that even if the hypothesis
of incomplete similarity is not applicable for the wall jet, the inner layer parameters
of (3.5) suggested by Barenblatt et al. (2005) show the same quality of scaling as the
inner scaling suggested by George et al. (2000), based on the asymptotic invariance
principle (AIP). It can be shown that the parameters given in (3.5) are consistent
with the similarity theory of George et al. (2000). The detailed derivation is given
in George et al. (2000), here the essential relationships are referenced to check the
scaling parameters. It has been shown (George et al. 2000) that at infinite Reynolds
number the momentum equation in the inner layer region is given as

∂

∂y

[
〈−u′v′〉 + ν

∂〈u〉
∂y

]
= 0, (3.9)

where 〈u〉 = 0 at y= 0. Equation (3.9) can be integrated to obtain

〈−u′v′〉 + ν
∂〈u〉
∂y
=
τw

ρ
= uτ . (3.10)

The form of similarity solution is given as

〈u〉 =Usi(x)fi∞(ysi), (3.11)
〈−u′v′〉 = Rsi(x)ri∞(ysi), (3.12)
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where Usi, fi∞, Rsi and ri∞ are spatial functions. ysi = y/lsi and length scale lsi = lsi(x)
is required for proper scaling. Substituting these solutions in (3.10) gives[

u2
τ

U2
si

]
=

[
Rsi

U2
si

]
ri∞ +

[
ν

lsiUsi

]
f ′i∞. (3.13)

For the similarity solution all the bracketed terms should have same x-dependence
i.e. [

u2
τ

U2
si

]
∼

[
Rsi

U2
si

]
∼

[
ν

lsiUsi

]
. (3.14)

It has been shown by George et al. (2000) that if the length scale is defined as
lsi = ν/Usi, uτ must be the inner velocity scale. Now if we use inner length scale
defined in (3.5) i.e. lsi = (y1/2)in, then any appropriate velocity can be used for the
scaling. In this case Umax is the obvious choice and figure 14(b) clearly shows that
these parameters are appropriate scales in the inner layer region. The only other
requirement from the George et al. (2000) similarity theory is that the Reynolds
shear stress should also scale with Umax and (y1/2)in in the inner layer region, which
is shown in the next section.

3.3.2. Reynolds stresses
Figure 15 shows outer-scaled Reynolds normal and shear stress profiles at

streamwise locations x/h = 25, 30 and 35. The normal and shear stresses are
normalized by (Umax − U∞)2. The streamwise 〈u′u′〉, wall-normal 〈v′v′〉 and shear
stresses 〈u′v′〉 from the current DNS are compared with the measurements of
Eriksson et al. (1998) at Rej = 9600, Rostamy et al. (2011a) at Rej = 7500 and
the LES of Banyassady & Piomelli (2014) also at Rej = 7500. The DNS results are
close to the reported LES and slightly higher than the measurements of Eriksson
et al. (1998). These measurements are at a higher Reynolds number than the current
DNS. Note, Wygnanski et al. (1992) showed that with increasing Reynolds number,
outer-scaled values of 〈u′u′〉 decrease slightly. The experimental data of Rostamy
et al. (2011a) give higher values for all the stresses at the same Reynolds number as
the current DNS. It is important to note here that the current DNS relies solely on
transition and resolution of the production mechanism for turbulence generation. On
the other hand, the LES of Banyassady & Piomelli (2014) used forcing at streamwise
locations x/h = 2, 4, 6 and 8 in the wall-normal momentum equation. This gave
Reynolds shear stress profiles equal to the measurements of Rostamy et al. (2011a)
at these locations. Beyond the forcing planes, the LES allowed the flow to evolve
naturally, however, even with this forcing, predicted stresses are still lower than the
measurements. A possible reason for the higher values of Reynolds normal and shear
stresses of Rostamy et al. (2011a) might be the uncertainties in the measurement of
their scaling parameters. Figure 15(c) shows the outer-scaled Reynolds stress profiles
in the spanwise direction 〈w′w′〉. Few experimental studies have measured 〈w′w′〉,
however, the current DNS shows agreement with the measurements of Irwin (1973)
at Rej = 28 000.

It has been shown by several experimental studies (Irwin 1973; Abrahamsson,
Johansson & Löfdahl 1994; Zhou et al. 1996; Eriksson et al. 1998; Rostamy et al.
2011a) that Reynolds normal and shear stress profiles exhibit self-similar behaviour
with outer scaling in the developed region of the wall jet. The Reynolds stresses have
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FIGURE 15. (Colour online) Outer-scaled Reynolds normal and shear stress profiles: (a)
streamwise 〈u′u′〉; (b) wall-normal 〈v′v′〉; (c) spanwise 〈w′w′〉 and (d) shear stress 〈u′v′〉.
LES of Banyassady & Piomelli (2014) (u), x = 30h. Experimental data: Rostamy et al.
(2011a) (E), x= 30h; Eriksson et al. (1998) (A), x= 40h; Irwin (1973) (C), x= 82.2h.

shown self-similarity as early as x/h = 30 (Rostamy et al. 2011a). The outer-scaled
Reynolds normal and shear stress profiles from the current DNS in figure 15 do not
show the same level of collapse as the mean streamwise velocity profiles in figures 11
or 14. However, the maximum differences in the peak values for these DNS profiles
at x/h= 30 and 35 are less than the experimental uncertainty given by Rostamy et al.
(2011a).

Figure 16 shows the inner-scaled Reynolds normal and shear stress profiles. The
friction velocity uτ and inner length scale ν/uτ are the velocity and length scales.
Again, the streamwise 〈u′u′〉+, wall-normal 〈v′v′〉+ and shear stress 〈u′v′〉+ profiles
from the current DNS are compared with the experimental data of Eriksson et al.
(1998) and Rostamy et al. (2011a) and the LES of Banyassady & Piomelli (2014).
The measurements of Eriksson et al. (1998) and LES are close to the current DNS
for 〈v′v′〉+ and 〈u′v′〉+ and lower for 〈u′u′〉+ in the inner layer region. The inner
layer region extends up to y/y1/2 = 0.2, or y+ = 160. The measurements of Rostamy
et al. (2011a) are significantly higher than the current DNS for 〈u′u′〉+ and 〈v′v′〉+,
whereas 〈u′v′〉+ is in agreement. The 〈v′v′〉+ and 〈u′v′〉+ profiles at x/h = 25, 30
and 35 collapse in the inner layer region. Whereas 〈u′u′〉+ and 〈w′w′〉+ have a small
variation, this is less than the uncertainty levels in the measurements (Rostamy et al.
2011a). Figure 16(d) also compares the velocity gradient profile y+(d〈u〉+/dy+) at
x=30h, with the Reynolds shear stress. The velocity gradient becomes zero at y= ymax
or y+= 161, where the Reynolds shear stress has a finite positive value. Moreover, for
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FIGURE 16. (Colour online) Inner-scaled Reynolds normal and shear stress profiles (a)
streamwise 〈u′u′〉+, (b) wall-normal 〈v′v′〉+, (c) spanwise 〈w′w′〉+ and (d) shear stress
〈u′v′〉+ and velocity gradient y+(d〈u〉+/dy+) at x = 30h. LES of Banyassady & Piomelli
(2014) (u), x = 30h. Experimental data: Rostamy et al. (2011a) (E), x = 30h; Eriksson
et al. (1998) (A), x= 40h.
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FIGURE 17. (Colour online) (a) Correct scaling of shear stress profile according to George
et al. (2000). Experimental data: Eriksson et al. (1998) (A), x= 40h and (b) inner-scaled
shear stress profiles with respect to incomplete similarity parameters (Barenblatt et al.
2005).

a narrow region below y= ymax both the velocity gradient and Reynolds shear stress
are positive. This invalidates the Boussinesq hypothesis 〈u′v′〉= − νT(∂〈u〉/∂y) for the
wall jet, where the positive scalar coefficient νT is the turbulent viscosity. It also shows
that the positive shear stress from the outer layer is transported against the velocity
gradient below y= ymax due to the turbulence transport.

George et al. (2000) showed, using the asymptotic invariance principle (AIP), that
for correct outer scaling, the shear stress 〈u′v′〉 should be normalized with the shear
velocity u2

τ . Figure 17(a) shows the shear stress profiles with this scaling. The profiles
at x/h= 30 and 35 show an improvement in their collapse with respect to this new
scaling (George et al. 2000) relative to the scaling based on a single velocity and
length scale (Irwin 1973). This can be seen in figure 15(d). The current-scaled profiles
are in agreement with the experimental data of Eriksson et al. (1998) up to y/y1/2 =

0.8. Beyond this, experimental values for 〈u′v′〉+ are higher. This might be due to the
higher Reynolds number for the experiment and difference in wall friction velocity.

Figure 17(b) shows the shear stress profiles scaled with incomplete similarity
parameters (Barenblatt et al. 2005). It has been discussed earlier that the incomplete
similarity parameters for the inner layer region would be consistent with the
asymptotic invariance principle (George et al. 2000), if they scale the Reynolds
shear stress. The figure shows a good collapse of shear stress profiles with this
scaling in the inner layer region.

The instantaneous values of velocity and pressure are saved at selected wall-normal
locations at x/h = 30, for each time step from t∗ = 1200 to 2500, giving 860 000
samples. Note, St = fh/Uj is the Strouhal number or non-dimensional frequency and
f is the frequency. As shown in figure 18, the streamwise Eu′ and wall-normal Ev′
spectra are given at y+ = 5 (y/y1/2 = 0.006), y+ = 17 (y/y1/2 = 0.02), y/y1/2 = 0.2
and y/y1/2= 0.8. These locations represent the end of the linear region in the viscous
sub layer, the first peak in 〈u′u′〉, Umax and the outer layer peaks in 〈u′u′〉 and 〈v′v′〉,
respectively. The Reynolds stress 〈u′u′〉 has a lower value at y+ = 5, and contains
less energy at the smaller scales relative to the other locations (figure 18a). At the
other three locations 〈u′u′〉 values are close to each other and so too are the spectra.
The wall-normal Reynolds stress 〈v′v′〉 increases continuously from the wall to a peak
value around y/y1/2= 0.8. Correspondingly spectra at increasing wall distance indicate
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FIGURE 18. (Colour online) Frequency spectra of velocity and pressure fluctuations at
x/h = 30 (a) streamwise Eu′ at: y+ = 5 (– – –); y+ = 17 (— · —); y/y1/2 = 0.2 (——);
y/y1/2= 0.8 (— · · —), (b) wall-normal Ev′ at: y+= 5 (– – –); y+= 17 (— · —); y/y1/2=

0.2 (——); y1/2 = 0.8 (— · · —), (c) spanwise Ew′ at: y+ = 5 (– – –); y+ = 40 (— · —);
y/y1/2= 0.2 (——); y/y1/2= 0.8 (— · · —) and (d) pressure Ep′ at: y+= 5 (– – –); y+= 17
(— · —); y/y1/2 = 0.2 (——); y/y1/2 = 0.8 (— · · —).

a higher energy level. The spanwise velocity fluctuation spectra Ew′ (figure 18c) are
given at the same locations as Eu′ and Ev′ , except for y+= 40 (y/y1/2= 0.05), which is
the first near wall peak in 〈w′w′〉. The streamwise velocity fluctuation spectra show a
−5/3 slope in the range of 0.06< St< 2.0 in the outer layer region. The wall-normal
and spanwise velocity fluctuations spectra have a −5/3 slope in a smaller range of
frequencies 0.4 < St < 2.0 in the outer layer region. The higher frequency region is
the viscous sub-range, where dissipation occurs and spectra can be compared to a line
with a slope of −7. The spectra in the inner layer region are closer to such a line as
compared to the outer layer region.

In the low frequency region below St < 0.06 spectra, particularly for Eu′ and Ev′ ,
peaks indicating large scale fluctuations in the flow can be observed. Figure 18(d)
shows the pressure spectra Ep′ at identical locations to the spectra for Eu′ and Ev′ . The
main features in the pressure spectra are multiple peaks in the low frequency range
for St < 0.06, as observed for Eu′ and Ev′ . The peaks appear to be the signature of
large scale structures passing in the outer layer region identified in figure 5.

3.4. Reynolds stresses and turbulence energy balance
An objective here is to present reliable turbulence kinetic energy tke and Reynolds
stresses budgets. The budgets are compared with a previously reported LES of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

50
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.503


530 I. Z. Naqavi, J. C. Tyacke and P. G. Tucker

Dejoan & Leschziner (2005). This LES is performed on a much coarser grid than
the current DNS. The total number of LES grid points is more than an order of
magnitude smaller than the DNS. The LES grid spacing, in streamwise and spanwise
directions, is twice that of the current DNS. The dynamical equation for the Reynolds
stress tensor in its non-dimensionalized form is given as

C〈u′iu′j〉 =P〈u′iu′j〉 + ε〈u′iu′j〉 + T〈u′iu′j〉 +Ψ〈u′iu′j〉 +D〈u′iu′j〉, (3.15)

where the following terms appear in this equation, with summation on repeated
indices,

C〈u′iu′j〉 = 〈uk〉
∂〈u′iu

′

j〉

∂xk
Convection, (3.16)

P〈u′iu′j〉 =−〈u
′

ju
′

k〉
∂〈ui〉

∂xk
− 〈u′iu

′

k〉
∂〈uj〉

∂xk
Production, (3.17)

ε〈u′iu
′
j〉
=−

2
Re

〈(
∂u′i
∂xk

)(
∂u′j
∂xk

)〉
Dissipation, (3.18)

T〈u′iu′j〉 =−
∂〈u′iu

′

ju
′

k〉

∂xk
Turbulent diffusion, (3.19)

Ψ〈u′iu
′
j〉
=−

〈
u′j
∂p′

∂xi

〉
−

〈
u′i
∂p′

∂xj

〉
Velocity–pressure gradient correlation, (3.20)

D〈u′iu′j〉 =
1

Re

∂2
〈u′iu

′

j〉

∂xk∂xk
Viscous diffusion. (3.21)

Note, tke = (1/2)(〈u′u′〉 + 〈v′v′〉 + 〈w′w′〉), and its budget can be calculated by
summing the budgets of individual Reynolds normal stresses given by (3.15).

3.4.1. Inner-scaled budgets
Figure 19 shows the budgets for tke, Reynolds normal and shear stresses at

x/h = 30 in the inner layer region. The profiles are scaled with the inner variables,
whereas the budget terms are normalized with u4

τ/ν. The balance or the sum of all
the budget terms for each Reynolds stress is O(10−2) of the maximum value. As
mentioned earlier, the current budgets are compared with the wall jet LES of Dejoan
& Leschziner (2005). This LES might be the only published budget for comparison
for wall jets in the inner layer region. The LES based budget is given at x/h = 20
and only the dominant terms from that budget are included here. The dominant
terms of the turbulence kinetic energy and Reynolds stress budgets from the flat
plate turbulent boundary layer DNS of Spalart (1988) are also included in figure 19.
This helps to understand how closely the inner layer of the plane wall jet follows a
turbulent boundary layer flow.

It is clearly shown that (figure 19a,b,d,e) the dominant terms of production,
dissipation and velocity–pressure gradient correlation for turbulent kinetic energy,
Reynolds streamwise, spanwise and shear stress budgets for the wall jet and boundary
layer are in agreement. The wall-normal Reynolds stress budget shows (figure 19c)
that the dominant terms of dissipation and velocity–pressure gradient correlation have
different peak values from the boundary layer, however the trend is the same for
both flows. The turbulent transport term for the wall-normal and shear stress budgets
indicate a major deviation of the wall jet from the turbulent boundary layer. This has
a significant effect on the Reynolds wall-normal and shear stress distribution of the
wall jet.
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FIGURE 19. For caption see next page.

In figure 19(a) a comparison of the tke budget with previously reported LES
(Dejoan & Leschziner 2005) shows that the level of production is lower than the
current DNS and the trend for the dissipation does not match below y+ = 20. The
Reynolds wall-normal and shear stress budgets (figure 19c,e) from LES show even
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FIGURE 19 (cntd). (Colour online) Turbulence kinetic energy (tke), Reynolds normal and
shear stress budgets in the near wall region. The terms are normalized with u4

τ/ν: (a)
tke = (〈u′u′〉 + 〈v′v′〉 + 〈w′w′〉)/2; (b) 〈u′u′〉; (c) 〈v′v′〉; (d) 〈w′w′〉 and (e) 〈u′v′〉. LES of
wall jet by Dejoan & Leschziner (2005): production (q); dissipation (p); velocity–pressure
gradient correlation (u); turbulent diffusion (s). DNS of turbulent boundary layer by
Spalart (1988): production (A); dissipation (@); velocity–pressure gradient correlation (E);
turbulent diffusion (C).

more drastic deviation from the current DNS. In the case of Reynolds shear stress
the LES gives a significantly lower level of production and velocity–pressure gradient
correlation. The wall-normal stress from the LES does not follow standard wall
behaviour, rather than velocity–pressure gradient correlation term it gives turbulent
transport as the dominant term, which is balanced by the dissipation. Moreover, the
trend for turbulent transport and level of dissipation for wall-normal stress from
LES do not match with the current DNS. A possible explanation is that the LES
predicted these budgets at x/h = 20, where the wall jet boundary layer may not be
fully developed and the outer shear layer is interacting with the wall. However, the
current DNS shows that the velocity–pressure gradient term is dominant for the 〈v′v′〉
budget in the inner layer region as far upstream as x/h = 15. Also, the dissipation
term in the LES is not calculated explicitly, but evaluated as a balance from the rest
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of the terms. This might be responsible for the near wall difference below y+= 20 in
〈u′u′〉, where sub-grid modelling may have some deficiencies. The overall difference
between the current DNS and LES is due to the lower grid resolution of the latter,
as mentioned earlier.

For the DNS, as can be seen from figure 19(a) in the inner layer region, the
turbulent kinetic energy budget shows that the dissipation is balanced by viscous
diffusion in the viscous sub-layer for y+ < 5. The production term has high values
outside the viscous sub-layer in the range of 56 y+6 50, with a peak around y+= 12.
This high value of production is balanced mainly by dissipation and up to a certain
extent, by turbulence diffusion. Eriksson (2003) estimated the near wall dissipation
value as 0.27, which is 12 % lower than the current value of 0.31.

Figure 19(b) shows the streamwise Reynolds stress 〈u′u′〉 budget. This is similar
to the turbulence kinetic energy budget, except for the velocity–pressure gradient
correlation term. This changes the sign and balances production along with dissipation
and turbulent diffusion. The velocity–pressure gradient correlation transfers streamwise
energy to other directions. The high level of production in the region of 5 6 y+ 6 50
is responsible for the inner layer peak of the streamwise Reynolds stress (figure 16a).
For the wall-normal stress 〈v′v′〉 budget in the inner layer region (figure 19c), the
dissipation is mainly balanced with the velocity–pressure gradient correlation and
turbulent diffusion terms. The production is small and wall-normal turbulence in the
inner layer region is maintained by turbulent diffusion and velocity–pressure gradient
correlation. These transfer turbulence energy from the streamwise to the wall-normal
direction. Figure 19(d) shows the budget for the spanwise Reynolds stress 〈w′w′〉. The
dissipation is balanced by viscous diffusion in the viscous sub-layer region y+ < 5.
Outside the viscous sub-layer, it is balanced with the velocity–pressure gradient term.
The Reynolds shear stress 〈u′v′〉 budget (figure 19e) has high negative production,
which is balanced by the velocity–pressure gradient term and turbulent diffusion.

3.4.2. Outer-scaled budgets
Figure 20 shows the turbulence kinetic energy, Reynolds normal and shear stress

budgets at x/h= 30 in the outer layer region. The budget terms are normalized with
(Umax − U∞)3 and wall-normal distance with y1/2. The balance for the outer-scaled
budgets is less than 4 % of the peak values of production and dissipation. The outer
scale LES budgets of Dejoan & Leschziner (2005) are compared with the current
DNS. The predicted turbulence kinetic energy budget is also compared with the
measurements of Irwin (1973) and Zhou et al. (1996).

Figure 20(a) shows the outer-scaled turbulent kinetic energy budget, where all
the terms have been evaluated explicitly for the current DNS. The viscous diffusion
and velocity–pressure gradient terms are negligible in the outer layer region. The
production and convection terms are mainly balanced by turbulent diffusion and
dissipation. The production term has a minimum around ymax, however it always
remains positive. The production, dissipation and turbulent transport terms are
compared with the measurements. In the experiments only turbulent transport can
be measured directly and the DNS values lie between the two sets of measurements
(Irwin 1973; Zhou et al. 1996) and is closer to Irwin’s data. In experiments the
production is estimated from a mean curve drawn through the measured mean
velocity values (Irwin 1973). Both experiments cited here give identical values of
production and are close to the current DNS. The dissipation is estimated either
from local spectra using the −5/3 law (Irwin 1973) or using the assumption of
local isotropy along with Taylor’s hypothesis (Zhou et al. 1996). The dissipation
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FIGURE 20. For caption see next page.

estimates from Irwin (1973) are close to the current DNS, whereas Zhou et al.
(1996) have estimated a higher level of dissipation. The current DNS shows that
the assumption of isotropy in dissipation is not valid in the inner layer region
below y/y1/2 = 0.2 = ymax. The DNS shows that in the outer layer region for
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FIGURE 20 (cntd). (Colour online) Turbulence kinetic energy (tke), Reynolds normal and
shear stress budgets in the outer layer region. The terms are normalized with (Umax −

U∞)3/y1/2. Legends for DNS are same as in figure 19. (a) tke = (〈u′u′〉 + 〈v′v′〉 +
〈w′w′〉)/2, (b) 〈u′u′〉, (c) 〈v′v′〉, (d) 〈w′w′〉 and (e) 〈u′v′〉. LES of wall jet by Dejoan &
Leschziner (2005): production (q); dissipation (p); velocity–pressure gradient correlation
(u). Experimental data, Irwin (1973): production (A); dissipation (@); turbulent diffusion
(+) and Zhou et al. (1996): Production (C); dissipation (6); turbulent diffusion (∗).

0.2 6 y/y1/2 6 1 the wall-normal dissipation 〈(∂v′/∂xk)(∂v
′/∂xk)〉 is 15–20 % smaller

and the spanwise dissipation 〈(∂w′/∂xk)(∂w′/∂xk)〉 is 10–15 % smaller than the
streamwise dissipation 〈(∂u′/∂xk)(∂u′/∂xk)〉, respectively. The dominant terms of
production and velocity–pressure gradient correlation from LES (Dejoan & Leschziner
2005) are slightly lower than the current DNS, whereas the dissipation is in good
agreement for various budgets.

Figure 20(b) shows the outer-scaled streamwise Reynolds stress 〈u′u′〉 budget.
The production has high positive values in the range of 0.2 < y/y1/2 < 1.5, which
is responsible for high values of Reynolds stress 〈u′u′〉 in the outer layer region.
A portion of this energy is dissipated and the remainder transfers to turbulent
and velocity–pressure gradient diffusion. The turbulent production has a minimum
value at ymax, where maximum mean velocity occurs and ∂〈u〉/∂y = 0. At this
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location, turbulence is maintained by the turbulent diffusion term. This transports the
turbulence energy from the outer high energy region. The velocity–pressure gradient
diffusion term transfers energy from the streamwise direction to the wall-normal
and spanwise turbulence components. The wall-normal Reynolds stress 〈v′v′〉 has
little production in the outer layer region (figure 20c). The turbulence is mainly
driven by the velocity–pressure gradient correlation term, which is balanced by the
dissipation and turbulent diffusion terms. The spanwise Reynolds stress 〈w′w′〉 budget
shows that the velocity–pressure gradient and convection terms are balanced with the
dissipation and turbulent diffusion terms in the outer layer region (figure 20d). The
turbulent diffusion term transfers energy from the outer layer region to the inner layer
maintaining turbulence around ymax.

The shear stress budget 〈u′v′〉 has the production and velocity–pressure gradient as
the dominant terms, which balance each other (figure 20e). In the outer layer region,
production is positive and is responsible for high values of shear stress 〈u′v′〉. At y=
ymax the velocity gradient and production become zero and below this point production
is negative, however shear stress remains positive for some distance in this region.
The turbulent diffusion is responsible for a positive shear stress at and below y= ymax,
where production is zero or negative.

3.4.3. Velocity–pressure gradient and triple-velocity correlations
It has been shown from the budgets that for the wall jet, velocity–pressure gradient

correlation and turbulent transport terms show the influence of the outer layer and
depart from pure boundary layer behaviour. The velocity–pressure gradient correlation
is responsible for energy redistribution among various Reynolds stresses. This term
can be split as

Ψ〈u′iu
′
j〉
=−

〈
∂p′u′j
∂xi
+
∂p′u′i
∂xj

〉
+ φij (3.22)

and

φij =

〈
p′
(
∂u′j
∂xi
+
∂u′i
∂xj

)〉
. (3.23)

The first term on the right-hand side in (3.22) is described as pressure diffusion
or pressure transport and the second term φij as pressure–strain correlation. The
pressure strain term is the main redistributive component, which transfers energy
from one component of turbulent kinetic energy to another. Negative values of
pressure–strain correlation indicate loss and positive values indicate gain of energy
by the corresponding Reynolds stress component. The trace of φij is zero. Figure 21
shows the inner-scaled profiles for velocity–pressure gradient, pressure–strain and
pressure diffusion term in the near wall region for turbulent kinetic energy, Reynolds
normal and shear stresses. The terms Ψ〈u′iu′j〉, φij and pressure diffusion for wall-normal
Reynolds stress for a channel flow (Mansour et al. 1988) are also included
(figure 21d) for comparison. It is important to note here that in the current DNS
velocity–pressure gradient and pressure–strain correlations are calculated explicitly
and pressure diffusion is the difference of the two terms.

The pressure–strain for turbulent kinetic energy is zero (figure 21a), which is the
trace of φij. It shows that the explicitly calculated pressure–strain is following the
expected behaviour. In case of streamwise fluctuations the velocity–pressure gradient
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FIGURE 21. (Colour online) The inner-scaled velocity–pressure gradient correlation,
pressure diffusion and pressure–strain correlation profiles in the near wall region for: (a)
tke = (〈u′u′〉 + 〈v′v′〉 + 〈w′w′〉)/2; (b) 〈u′u′〉; (c) 〈v′v′〉; (d) 〈v′v′〉 channel flow (Mansour,
Kim & Moin 1988); (e) 〈w′w′〉 and ( f ) 〈u′v′〉.

mainly consists of the pressure–strain correlation (figure 21b), which is negative,
indicating energy transfer from the streamwise to other directions.

The Ψ〈u′iu′j〉 and φij show more interesting behaviour for the Reynolds wall-normal
and shear stresses. It has been shown for wall turbulence, e.g. in channel flow
(figure 21d) (Mansour et al. 1988), that for wall-normal Reynolds stress, velocity–
pressure gradient and pressure–strain correlation follow the same trend and values,
except very close to surface below y+ = 20. In the near wall region for y+ < 20 the
pressure–strain correlation changes sign and becomes negative. It transfers energy
from the wall-normal direction to horizontal components of turbulence. The change
of sign in pressure–strain correlation is associated with a process termed as ‘splat’
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(Moin & Kim 1982), where high negative vertical velocity comes close to the wall
and creates a situation similar to jet impingement on a wall. On the other hand
low speed vertical velocity moves turbulence away from the wall. However, negative
vertical velocity brings more energy towards the wall than positive velocity takes
away from the wall and excess energy transfers to the horizontal components. This
wall-normal transfer of energy and splatting is associated with streak structures in
wall bounded turbulence. As compared to channel flow, in the case of wall jets φij
is negative for 〈v′v′〉 across the whole inner layer. It has been shown from unsteady
flow (figure 5) and various spectra (figure 18) that in the outer layer of wall jets there
are large scale structures, which generate wall-normal impinging flow superimposed
on the streak structures. A negative peak in φij below y+ < 20 is the outcome of
this superposition. For spanwise 〈w′w′〉, velocity–pressure gradient and pressure–strain
correlation are identical and positive (figure 21e). Since both φ11 and φ22 are negative,
all the energy from these components transfers to the spanwise direction.

The Ψ〈u′iu′j〉, φij and pressure diffusion terms for Reynolds shear stress 〈u′v′〉 transport
are shown in figure 21( f ). In case of channel flow wall turbulence (Moin & Kim
1982) pressure–strain correlation has the opposite sign of Reynolds shear stress,
except very close to the wall (y+ < 20), where due to splatting, energy transfers to
turbulence production. In the case of wall jets pressure–strain correlation has same
sign as Reynolds stress in the entire inner layer region due to the interaction of outer
layer.

The profiles for the dominant terms of triple-velocity correlation 〈u′u′u′〉, 〈u′u′v′〉,
〈v′v′v′〉 and 〈u′v′v′〉 are shown in figure 22. These correlations appear in the turbulent
diffusion term in the Reynolds stress budgets. The streamwise correlation 〈u′u′u′〉
is the largest term but it has a weak influence on the turbulent diffusion, since its
streamwise gradient is involved. The dominant term for the streamwise Reynolds
stress budget is 〈u′u′v′〉. It is positive in the inner layer region below y = ymax
and negative in the outer layer region. It indicates that this term is responsible for
transporting turbulence from high production regions of the inner and outer layers
to the low production region around y = ymax. The wall-normal velocity correlation
〈v′v′v′〉 is negative below y/y1/2 = 0.8, which is responsible for turbulence transport
from the outer layer to the inner layer. The Reynolds shear stress in the wall jet
has a finite positive value at y= ymax, where ∂〈u〉/∂y= 0 and eddy viscosity models
are not applicable. At this location, Reynolds shear stress is maintained by 〈u′v′v′〉,
which is negative below y/y1/2= 0.8 and transfers positive shear stress from the outer
layer to the inner layer.

4. Conclusions
A well resolved DNS of a wall jet at a Reynolds number of Rej = 7500 has

been performed. The quality of the simulation is ensured through grid-independence
tests, evaluation of resolution parameters and the comparison of these parameters
with several wall bounded flow simulations in existing literature. The set-up of the
simulation is described in detail, particularly the specification of the inflow and
outflow boundary conditions. This makes this DNS repeatable.

The current DNS provides a clear and detailed picture of the unsteady flow
evolution in a wall jet. It captures the transition process both in the outer shear layer
and in the inner or boundary layer region. The shear layer develops Kelvin–Helmholtz
instability, which generates roll structures. The roll structures interact with each
other, develop secondary instabilities and form streamwise braids. The roll structures
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FIGURE 22. (Colour online) Inner and outer-scaled profiles of triple-velocity correlation.

undergo mature coalescence, lose spanwise coherence and generate a wide range
of smaller structures. The boundary layer along the wall develops high spanwise
vorticity or spanwise instability waves, under the influence of large shear layer
structures. The spanwise waves are stretched in the streamwise direction and develop
Λ-shaped structures. These structures move farther downstream and evolve into
hairpin structures. The stretching of hairpin structures continues and gives rise to
secondary hairpin structures and finally turbulent spots, which start to interact with
the outer layer structures. The inner layer transition is quite similar to the bypass
transition of a boundary layer (Wu & Moin 2009). There are long streamwise oriented
structures near the wall in the developed region. The outer shear layer has multiple
small scale structures in the developed region, which collectively undergo large scale
rotation.

Several mean flow parameters such as the decay of the maximum velocity Umax, the
wall jet spreading rates for the outer and inner layers, location of maximum velocity
and wall shear stress are compared to power laws given in previous studies. Most
of these power laws are derived from experimental data, which are usually given for
x/h> 40. The current DNS barely reaches to x/h= 40, but shows that most of these
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power laws can be extended back to x/h= 25. In other words fully developed or self-
similar properties of the mean flow are achieved for x/h> 25.

The DNS mean flow and Reynolds stress profiles are presented with various
scalings. The streamwise mean flow profiles show good scaling with respect to the
outer-scaled, inner-scaled (George et al. 2000) and incomplete similarity (Barenblatt
et al. 2005) parameters, from x/h = 25 onwards. The outer-scaled Reynolds normal
stresses do not collapse before x/h = 35, but the Reynolds shear stress shows
better scaling for x/h > 30. The inner-scaled profiles show a better collapse in
the inner layer region below y+ = 200, particularly the wall-normal and Reynolds
shear stresses. The Reynolds shear stress profiles show better scaling with respect to
the shear velocity uτ and outer length scale y1/2 (George et al. 2000). The current
DNS shows that the hypothesis of incomplete similarity (Barenblatt et al. 2005)
is not completely applicable to wall jets. The mean streamwise similarity profile
is not strongly dependent on the jet slot height. Moreover, the inner layer scaling
parameters given by Barenblatt et al. (2005) are consistent with the asymptotic
invariance principle (George et al. 2000). However, separate scaling parameters
suggested for the inner and outer layer (Barenblatt et al. 2005) are at variance with
a single parameter based scaling for the entire flow field (George et al. 2000). It
is possible that a single scaling parameter can collapse both inner and outer mean
streamwise velocity profiles further downstream or at higher Reynolds numbers than
the current DNS. To settle this issue a longer domain and higher Reynolds number
data will be required.

The current DNS provides fully balanced, explicitly calculated budgets for the
turbulence kinetic energy, Reynolds normal and shear stresses, both in the outer and
inner layers. The inner layer budgets particularly for the turbulence kinetic energy
and Reynolds stresses in the streamwise and spanwise direction are in agreement
with turbulent boundary layer data. The only departure from the boundary layer
occurs for the turbulent diffusion term in the Reynolds wall-normal and shear stress
budgets. This is the result of inner and outer layer interaction. The outer layer
interacts with the inner layer mainly through the triple-velocity correlations 〈v′v′v′〉
and 〈u′v′v′〉, which bring in higher turbulence energy from the outer layer to the inner
layer. The pressure–strain correlation transfers this excess wall-normal energy to the
spanwise direction in the inner layer region. The DNS also shows that previous
budgets estimated from measurements are reasonable, however dissipation is not
homogeneous in the outer layer.
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