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Abstract

Early detection of breast cancer is required to increase the chances of a successful treatment.
However, current breast-imaging systems such as X-Ray mammography, breast ultrasound,
and magnetic resonance imaging have technological limitations so that novel solutions are
needed to address this major societal problem. The current paper considers ultra-wideband
(UWB) microwave radiation in the frequency band from 1 to 9 GHz. Given by the non-ion-
izing nature of microwaves frequent check-ups are more feasible. In this work, we propose
algorithms for qualitative and quantitative microwave breast imaging for a transmission-
based UWB system. Based on numerical and experimental data, the performance of the algo-
rithms has been investigated and compared. Finally, microwave images obtained during an
initial patient study are discussed relative to corresponding X-ray images.

Introduction

Latest developments in the area of microwave breast imaging consist of improving both the
signal processing and image formation step [1–5] as well as the performance of data acquisi-
tion equipment [6–8]. Thanks to these advancements, different research groups have manu-
factured their pre-clinical imaging setups [9–13] aiming at breast screening in a larger
number of women.

During the past two decades, the mortality rate caused by breast cancer has steadily
decreased [14]. The reason for this trend can partly be explained by more women going
through routine screening tests, such as X-ray mammography and magnetic resonance
imaging (MRI). Given the ionizing radiation of X-rays, this type of mammography is confined
to women over 40 years. On the other hand, due to the high costs of manufacturing and main-
tenance, screening by MRI devices is usually only recommended to women with a family
history of breast cancer. These restrictions have forced researchers to look for other possibil-
ities in order to compensate for the aforementioned limitations [15–18]. Microwave imaging
systems have several advantages including cost-effectiveness, non-ionizing nature of micro-
wave radiation, high dynamic range, availability of amplitude and phase information, and
the ability to implement frequent check-ups [19–24]. In addition, microwave breast-imaging
techniques may complement the diagnostic information about the tumors’ microenvironment
given by the analysis of the tumors’ permittivity. A disadvantage is the larger wavelength of the
microwave approach, so that recent developments aim at mm-wave breast-imaging systems
which have a wavelength that is comparable with medical ultrasound systems [25].

While microwave tomography methods provide the permittivity map of breast tissue, they
suffer from considerable computational expenses for solving the ill-conditioned inverse scat-
tering problem [26]. Hence, it might be advantageous to consider radar-based
microwave-imaging systems equipped with real-time image processing. However, many
image reconstruction techniques have their own obstacles, e.g. assuming a constant and fre-
quency independent relative permittivity [27, 24].

From the signal processing point of view, the aim of most radar-based methods is to synthet-
ically focus the backscattered energy on the position of dominant scatterers [28]. In the case of
breast imaging, the dominant scatterer could imply the presence of malignancy. Confocal meth-
ods such as delay and sum and delay multiply and sum [29, 30] are well recognized and have
been used as standard techniques to assess performances of other image reconstruction schemes.
A comparison of several digital beamforming techniques was proposed in [31].
Time-reversal-based algorithms also exhibit better performances in high cluttered medium and
show promising results for breast tissues with severe inhomogeneities [32, 33]. Space-time
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beamforming methods claim that they are able to eliminate cou-
plings between array elements and also compensate for path loss
and frequency dispersion [34]. One of the main challenges in the
implementation of all these methods is to make an efficient estima-
tion of the relative permittivity of the breast tissue [35].

In this work, we introduce and compare qualitative and
quantitative techniques for breast cancer imaging using a
transmission-based imaging setup that operates in the frequency
range from 1 to 9 GHz. The first algorithm follows the
root-mean-square deviation (RMSD), analog to [24], to compute
a qualitative breast-imaging map based on relative signal changes.
The second algorithm uses, similar to [36], the differences
between the time of arrival of electromagnetic waves propagating
through air and breast tissue. However, the implementation of the
phase center compensation is not needed here, because the trans-
mitter and receiver are always aligned and move simultaneously to
scan the breast tissue. This leads to a two-dimensional (2-D) map
of estimated dielectric permittivity. In the third algorithm, the
attenuation level of the transmission signals are computed and
mapped to a 2-D image. This paper presents both, numerical
results derived from simulation models and also clinical results
obtained during an initial patient study. The experimental mea-
surements are compared with X-ray mammograms of the same
breast.

Experimental data acquisition

Figure 1 shows a schematic of our experimental setup which was
previously introduced in [37]. The imaging system consists of two
low loss plexiglass plates with 5 mm thickness used for breast
compression. During the tests, the upper plate could move in
the vertical direction to ensure a proper mechanical contact
between the plates and the breast. Two ultra-wideband (UWB)
bowtie antennas [38] for transmitting (top) and receiving (bot-
tom) are connected to a HP 8720C vector network analyzer.
Other UWB antenna sensors could have been used as well such
as Vivaldi antennas [39], dipole antennas [40], wide-slot antennas
[41], or dielectrically scaled horn antennas [42]. Measurements
are performed in the frequency domain from 1 to 9 GHz using
101 frequency points with a sweep time of 90 ms. Next, the
frequency domain measurements are transformed into time
domain t using an inverse Fourier transform.

Both antennas can move in the horizontal direction to con-
tinuously scan a specified sensing volume in two dimensions.
The measurement points and scan directions are depicted in
Fig. 2 showing the meander-shaped scanning path. The whole
system is controlled by an iPC25 (Isel, Eichenzell, Germany)
using a Matlab interface. A measurement at coordinates (x, y)
in the breast tissue is called S(x, y; ω) where ω represents the fre-
quency. At the end of the scan a measurement in air is taken out-
side the breast region called S0(x, y; ω).

The main advantages of our setup compared to related proto-
type systems are:

(i) no matching medium needed.
(ii) a mild breast compression is used to examine breasts with

different size and geometry.
(iii) through a control unit it is possible to scan the breast tissue

in a series of continuous points. Using only two antennas
eliminates the need for a HF switching network.

(iv) simplified image reconstruction, because information on
relative permittivity is not required.

Imaging algorithms

The numerical and experimental data are processed by three dif-
ferent imaging algorithms that are described below. Since the
RMSD has been used for image formation in [37], not all results
are presented in the results section.

Root-mean-square deviation

A qualitative 2-D microwave image IRMSD(xi, yj) can be computed
by the RMSD according to

IRMSD(xi, yj) =
�������������������
1
t

∑t
t=1

(s(xi, yj; t))
2

√
(1)

Fig. 2. Illustration of the spatial sampling during one breast scan. The scanning area
is limited to 50 mm × 50 mm due to the limited examination time in the clinical study
of 3 min.

Fig. 1. Schematic of the experimental breast-imaging setup.
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where the signal duration is expressed in samples and is denoted
by τ. Here, xi and yi represent the Cartesian coordinates of the
measurement position and s(xi, yi; t) represents the time-domain
radar signal recorded at (xi, yi).

Effective permittivity mapping

A quantitative 2-D microwave image can be obtained by a time dif-
ference analysis between a measurement in the breast s(xi, yj; t) and
a measurement in air s0(x, y; t). The time difference Δt(xi, yj)
between the first peaks maximum of s(xi, yj; t) and s0(t) is com-
puted and transformed into a permittivity map using the
relationship:

1r(x, y) = 1+ Dt(xi, yj) · c0
d

( )2

(2)

where c0 is the speed of light in free space and d is the separation
distance between the antennas.

Attenuation mapping

The third method also leads to a quantitative 2-D microwave
image. The algorithm computes the attenuation map I(xi, yj) for

every point in the imaging domain by processing the maximum
of first peaks of corresponding transmission signals ŝ(xi, yi; t)
according to:

I(xi, yj) = −20 log
ŝ(xi, yj; t)

ŝ(x, y; t)

( )
(3)

The denominator serves as reference and is the global maximum
of the first peaks of all signals.

Fig. 3. Geometry of the bowtie antenna, after [44].

Fig. 6. Material properties of skin, fat, and tumor models, after [46].Fig. 4. Simulated reflection coefficient of a bowtie antenna, after [44].

Fig. 5. Simulation setup for cancer tissue detection using two bowtie antennas
(Tx–Rx).
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Numerical modeling

Description of the numerical model

In this section, we discuss a numerical model for malignant tissue
detection in the frequency range from 1 to 9 GHz. The setup
includes antennas as sensors, and a simplified numerical breast
model for which the frequency-dependent material properties
were derived from experimental measurements. Simulations are
conducted by using CST Microwave Studio [43].

Antenna modeling
In this study, an UWB bowtie antenna [44] is used for the trans-
mitter (Tx) and receiver (Rx) as shown in Fig. 3. The bowtie
antenna has a width of tw = 9.9 mm, length td = 10.5 mm, and a
gap between two radiators of tg = 0.8 mm. In order to transform

the antenna’s input impedance to 50 Ω, a tapered microstrip
line (balun) is used. Furthermore, the bowtie antenna is designed
to radiate into the patient’s breast without a coupling medium.
Assuming an average relative permittivity of εr = 10 the bowtie
antenna is placed inside a matching solid medium, filled with
Eccostock HiK (εrHiK = 10 [45]). Dimensions of the block are
22mm× 35mm× 17mm (w× l × h).

Figure 4 shows the reflection coefficient at the antenna input.
According to the figure, the antenna has a 10 dB return loss in the
ultra-wideband frequency range from 2 to 9 GHz.

Detection scheme
A simplified numerical breast phantom for tumor detection is
modeled and simulated. The main goal is to understand the
behavior of the RMSD-based imaging technique in the pro-
posed transmission-based imaging configuration. Figure 5
shows a 2-D view of the setup where the Tx and Rx face each
other and move in one direction simultaneously along the
x-direction. The antenna structure from the previous section
is used for both sensors. Between the antennas is a homoge-
neous dispersive tissue, including skin and fat layers. Material
properties are shown in Fig. 6 [46]. Each skin layer has a

Fig. 7. Exemplary transmission signal at antenna position 71 mm from the numerical
simulation (top row) with the corresponding deviation between the pristine and the
scenario with tumor (bottom row).

Fig. 8. RMSD of the numerical signals between the pristine and the scenario with
tumor.

Fig. 9. Comparison between X-ray image and microwave image for patient A. The microwave image is estimated through time delays caused by the propagation
through the breast when compared to air. Locations with higher relative permittivity could be interpreted as cancerous tissue. The final thickness of the com-
pressed breast is 44 mm during microwave examination and is 41 mm during X-ray examination.
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thickness of tskin = 2.5 mm, and the thickness of the fat layer is
tfat = 50 mm. In addition, both sensors contact directly to the
skin surface. The scanning step is dscan = 1 mm over 150 mm
for maximum resolution.

The differential detecting procedure is divided into two steps:

(i) Baseline scanning (no tumors): the antennas scan along the
sample, which does not have any cancer tissues.
Transmission signals between Tx–Rx are set as references
(baseline values).

(ii) Detection scanning (with tumor): in this scenario, a spher-
ical tumor with diameter ∅ = 8 mm is placed at position
x = 71 mm. Transmission signals are recorded again and
compared to the baseline signals.

Numerical results

In Fig. 7, an illustrative numerical time-domain signal is dis-
played. In order to explore the possibility to localize a tumor,

the deviation between the tumor-free state and the state with
tumor is considered. Therefore, the RMSD between both trans-
missions measurements is evaluated for all antenna positions
according to equation (1). The early portion of the signal turns
out to be particularly indicative. In Fig. 8, the normalized
RMSD is plotted for all the antenna positions where
below-average RMSD values have been zeroized. Therefore, at
positions with a significant contribution to the RMSD the
tumor can be localized.

Experimental results

In Figs 9(a) and 10(a) X-ray images of the breast tissues for
patients A and B are displayed and the scanned regions of the
breasts during microwave data acquisition are shown by blue rec-
tangles. The scanning area is limited to 50 mm by 50 mm based
on the ethics vote with the reference number 2/16 obtained from
the ethics committee of the J.W. Goethe-Universitätsklinikum
(Frankfurt am Main, Germany).

Fig. 10. Comparison between X-ray image and microwave image for patient B. The microwave image is formed by calculating the signal’s attenuation. Locations
with higher attenuation could be interpreted as cancerous tissue. The final thickness of the compressed breast is 43 mm during microwave examination and is
37 mm during X-ray examination.

Fig. 11. (a) Exemplary transmission signals in patient A illustrating the variations in time of arrival; (b) transmission signals obtained from patient B illustrating
variations in signal attenuation.
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Looking at Fig. 9(b), one can see the permittivity map using
equation (2) for patient A. Compared with the corresponding
X-ray image, the area with higher permittivity enclosed by the
red circle can be determined as cancerous region. However, if
we consider the parts confined by red circles in Figs 9(a) and 9
(b) we can see a variability of permittivity of malignant tissue
which is in agreement with the obtained results of [28]. This
result indicates that even cancerous regions have inhomogeneous
dielectric properties.

The microwave attenuation image obtained using equation (3)
for patient B is depicted in Fig. 10(b) and the zone with higher
attenuation implies the tumor location. Comparing the microwave
image confined in the red circle with its counterparts in the X-ray
image confirms tumor existence. Like in the previous case, the
attenuation of cancerous region is not constant.

An analysis on signal level is provided in Fig. 11(a) in which
transmission signals in air are compared with transmission signals
from two points in the breast of patient A, namely P1 and P2 as
shown in Fig. 9(b). The time of arrivals for their first peaks are
tAir, t1, and t2. From these quantities the time difference Δt in
equation (2) can be derived. In contrast to what we would have
expected the time delay of the signal with the highest attenuation
is not automatically the signal with greatest time delay. This fact
can also be explained by the strong variability of dielectric prop-
erties of breast tissues obtained through spectroscopic studies
[28; 47]. Another signal example is depicted in Fig. 11(b) showing
transmission signals of patient B at the positions P3 and P4 shown
in Fig. 10(b). The differences in peak amplitude of the first max-
imum is labeled as ΔS. The corresponding maxima are processed
in equation (3) to compute the attenuation map.

Conclusions

This paper presented three image formation techniques for
microwave breast imaging in a transmission-based configuration.
A qualitative imaging was based on the RMSD. Two quantitative
image reconstruction methods for UWB microwave breast
imaging exploit variations in time delay for permittivity mapping
and variations in amplitude for attenuation mapping, respectively.
Besides a numerical breast phantom, initial results from a patient
study have been presented and the results have been compared to
X-ray mammography.
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financial support of this research by the Federal Ministry of Education and
Research (Grant Number: 13GW0361D).
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