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SUMMARY
One of the main challenges in robotics is navigating autonomously through large, unknown, and
unstructured environments. Simultaneous localization and mapping (SLAM) is currently regarded
as a viable solution for this problem. As the traditional metric approach to SLAM is experiencing
computational difficulties when exploring large areas, increasing attention is being paid to topological
SLAM, which is bound to provide sufficiently accurate location estimates, while being significantly
less computationally demanding. This paper intends to provide an introductory overview of the most
prominent techniques that have been applied to topological SLAM in terms of feature detection, map
matching, and map fusion.
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1. Introduction
Mobile robotics’ ultimate aim is to develop fully autonomous entities capable of performing rather
complicated tasks, without the need for human intervention, during extended periods of time. Over
the past three decades, this objective has constantly faced harsh difficulties, which have hindered
progress. The most recurrent issues in the literature, which are yet to be completely resolved, are
stated below.

A mobile robot must be able to navigate through the environment in order to achieve its goals.
According to Leonard and Durrant-Whyte,63 this general problem can be summarized in three
questions: “Where am I?,” “Where am I going?,” and “How should I get there?” The first question
addresses the localization problem, which intends to estimate the robot’s pose (i.e., location and
orientation) using data gathered by distinct sensors and knowledge of previous locations. However,
the presence of noisy sensor measurements makes this problem harder than it may seem at first
sight. The precision with which this problem is solved decisively affects the answer to the other two
questions, as it is necessary to localize oneself in the environment to safely interact with it, decide
what the following step should be, and how to accomplish it.

During the localization process, a robot must resort to some kind of reference system; in other
words, it requires a map. The extensive research survey carried out by Thrun110 collects the main
open issues concerning robotic mapping, which are succinctly presented henceforth. Currently, there
are robust methods for mapping structured, static, and bounded environments, whereas mapping
unstructured, dynamic, or large-scale unknown environments remains largely an unsolved problem.

According to Thrun,110 the robotic mapping problem is “that of acquiring a spatial model of a
robot’s environment.” To this end, robots must be equipped with sensors that enable them to perceive
the outside world. Once again, sensor errors and range limitations pose a great difficulty.

The first challenge in robotic mapping develops from the measurement noise. Usually, this issue
can be overcome if the noise is statistically independent, as it can be canceled out performing enough
measurements. Unfortunately, this does not always occur in robotic mapping because, whenever

* Corresponding author. E-mail: jaime.boal@iit.upcomillas.es

https://doi.org/10.1017/S0263574713001070 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001070


804 Topological simultaneous localization and mapping: a survey

incremental sensors (e.g., encoders) are used, errors in navigation control accumulate progressively
and condition the way in which subsequent measurements are interpreted. As a result, if a robot does
not rely on the layout of the environment whatever it infers about its surroundings is plagued by
systematic, correlated errors. Leonard and Durrant-Whyte64 state the correlation problem as follows:

If a mobile robot uses an observation of an imprecisely known target to update its
position, the resulting vehicle position estimate becomes correlated with the feature
location estimate. Likewise, correlations are introduced if an observation taken from an
imprecisely known position is used to update the location estimate of a feature in the map.

The second difficulty of the robot mapping problem derives from the amount and complexity of the
features required to describe the objects that are being mapped, as the computational burden grows
exponentially as the map becomes more detailed. Obviously, it is absolutely different to restrict to
the description of corridors, intersections, and doors, than to build a 3D visual map.

A third, and perhaps the hardest, issue is the correspondence problem, which attempts to determine
if sensor measurements taken at different times correspond to the same physical entity. A specific
instance of this problem occurs when returning to an already visited area, because the robot has to
realize that it has arrived at a previously mapped location. This is known as the loop-closing problem.
Another particular case is the so-called first location problem or kidnapped robot problem,53 which
occurs when a robot is placed in an unknown position of an environment for which it has a map.

Fourth, the vast majority of environments are dynamic. Doh et al.28 further classify the concept of
dynamic environments in temporary dynamics, which are instantaneous changes that can be discarded
by consecutive sensor measurements (e.g., moving objects like walking people), and semi-permanent
dynamics or scene variability,58 which are changes that persist for a prolonged period of time. This
second type of dynamics makes the correspondence problem even more difficult to solve, as it provides
another manner in which apparently inconsistent sensor measurements can be interpreted. Suppose a
robot perceives a closed door that was previously modeled as open. This observation may be explained
by two equally plausible hypotheses: either the door position has changed, or the robot is in error
about its current location. At present, there are almost no mapping algorithms capable of coping with
this difficulty. On the contrary, most approaches assume a static world and, as a consequence of this
simplification, anything that moves apart from the robot is regarded as noise. In fact, the majority
of the experimental tests in the literature are carried out in rather controlled environments and never
mention how to deal with these troublesome dynamics. Doh et al.28 are an exception to this trend due
to the fact they take door position changes into consideration.

Finally, robots must navigate through the environment while mapping on account of sensor
range limitations. The operation of generating navigation commands with the aim of building a
map is known as robotic exploration. Although the commands issued during the exploration of the
environment provide relevant information about the locations at which different sensor measurements
were obtained, motion is also subject to errors (e.g., wheel slippage). Therefore, these controls alone
are insufficient to determine a robot’s pose.

2. The Simultaneous Localization and Mapping (SLAM) Problem
As mentioned by Thrun,110 the localization and mapping problems are often tackled together in
the literature. Essentially, both problems are uncertain and, when trying to solve them individually,
the other introduces systematic error. By contrast, estimating both at the same time makes the
measurement and control noises independent. Notice, nevertheless, that robot mapping is like the
chicken and egg problem: “A robot needs to know its position to build a map, and it requires a map
in order to determine its position.120”

The immediate question inferred from this idea is if it is possible for a mobile robot to be placed at
an unknown location in an unknown environment and, despite this, incrementally build a consistent
map of the environment using local information while simultaneously determining its location within
this map. This is known as the simultaneous localization and mapping (SLAM) problem.8, 33 During
more than a decade, a solution to this issue has been regarded as a key milestone in the pursuit for
truly autonomous robots. At present, it can be safely asserted that the SLAM problem has been solved
in different manners, at least, from a theoretical point of view. Notwithstanding, substantial issues
remain open concerning the implementation of these SLAM solutions.
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The majority of the problems that researchers are currently facing are those of computational
nature.8 In order to overcome the correspondence problem, each location in the environment must
be unequivocally distinguishable from all the rest. This implies gathering either plenty of similar
features or a more restricted number with richer information in every place analyzed. In any case, the
computational burden rapidly increases to intractable levels in large environments. Therefore, most
approaches make a trade-off between computation times and precision or global distinctiveness, that
is, they either limit the number of locations considered or reduce the number of features analyzed in
each place.

3. Types of Maps
This paper has so far referred to mapping as a whole. However, there exist several types of maps
that require diverse data acquisition techniques and present different associated problems. In general,
maps can be divided into the four groups listed below:

• Metric maps represent the environment as a set of object or obstacle coordinates with the aid of
raw data and geometric features (e.g., lines, edges). Although localization and mapping with this
approach can be very accurate and result in very high precision representations of the environment,
the required data volume grows at a much higher rate than the size of the region being mapped
and, therefore, involves complicated calculations.36, 64

• Conversely, topological maps model the environment as a graph. They are based on the
discretization of the continuous world into a finite set of places (nodes) connected according
to their relative position in the environment. These maps provide a compact representation,
since only distinctive places within the environment are encoded. Consequently, they are much
less computationally demanding, as there is no need for a precise localization, and navigation
commands follow naturally from the graph. Nevertheless, the main problem of this method is
perceptual aliasing, in other words, that there is always a risk that two distinct locations appear
identical to the robot’s sensors.18, 36, 56

• Hybrid maps are a combination of the previous two that intend to compensate the drawbacks of
both approaches when applied alone. On the one hand, reduce the computational burden of metric
maps and, on the other hand, increase topological distinctiveness. To this end, they use a global
topological map to move between places, and rely on a metric representation in bounded local
spaces for precise navigation.11, 83, 121 It is important to bear in mind that these maps are often
referred to in the literature as hierarchical. However, this term should be avoided, as it can be
easily confused with topological graph representations that involve several abstraction processes
(i.e., create an atlas with progressively detailed sub-maps).66

• Finally, semantic maps contain, in addition to spatial information about the environment,
assignments of the mapped features to entities of known classes. This means that they hold data on
objects, functionalities, events, or relations in the robot’s environment whose knowledge permits a
high-level goal-directed behavior, enables reasoning, and helps to resolve location ambiguities.84

According to the previous definitions, maps can be sorted in increasing level of abstraction in
metric, hybrid, topological, and semantic (Fig. 1).

4. Why Choose a Topological Approach?
In principle, two classical opposite approaches exist to address the SLAM problem. The first one
models the environment using a metric map, enabling an accurate estimation of the robot’s position.
It provides a dense representation of the environment, which has large storage requirements, and is
particularly well suited to precise trajectory planning.

In the second approach, the environment is segmented into distinctive places using a topological
map, which relies on a higher level of representation than metric mapping, making symbolic goal-
directed planning and navigation possible. It also provides a more compact representation that is
more in accordance with the size of the environment4 in spite of requiring more complex sensory
information that often implies more processing. The largely cited papers by Kuipers and Levitt60 and
Kuipers and Byun59 can be regarded as the seminal work that triggered a paradigm shift from a metric
to a topological approach in robotic map building. Contrary to previous developments, which extracted
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Fig. 1. (Colour online) Level of abstraction hierarchy for maps.

the geometry of the environment from sensor measurements and then inferred the topology from it
(see Chatila and Laumond, 198517 for instance), they proposed constructing a topological description
based on simple control strategies in the first place, and incorporate local metric information in each
of the identified nodes afterwards.

Albeit, considering that metric maps are more accurate and that a hybrid approach helps to
overcome storage problems, why should purely topological maps be used? To begin with, topological
navigation is a behavior employed by a variety of different animal species, including human beings.
We do not need to answer the question “Where am I?” in millimeters and degrees in order to safely
move through the environment.15 On the contrary, rather than navigating using coordinates, we have
an abstract notion of distance but are still able to recognize where we are in space.89 Moreover,
Brooks14 supports the belief that topological maps are a means of coping with uncertainty in mobile
robot navigation. The absence of metric and geometric information, which is replaced by notions of
proximity and order, eliminates dead-reckoning error issues, which no longer accumulate.

In conclusion, topological representation resembles human intuitive navigation system, which has
been proven to deal efficiently with uncertainty, and results in a straightforward map from which path
planning follows naturally.

5. Topological SLAM

5.1. Breaking up the problem
Implementing a topological SLAM algorithm is a four step process. First of all, it is essential to
define what is going to be considered a landmark in the environment and choose the appropriate
sensor technologies to perceive them. Once this decision is made, the following step is to determine
which feature extraction algorithms are going to be applied.

Afterwards, the gathered data must be compared with the stored nodes, starting with the last
observed. Due to the fact that it is almost impossible to extract exactly the same features when
revisiting a place, and that several locations may look alike, the most common situation is that the
robot is uncertain about its position after performing this comparison. This is depicted in Fig. 2 with
gray nodes. The robot may either be in various known positions or, alternatively, have reached a new
node (illustrated in Fig. 2 by a discontinuous line).

Consequently, the robot is forced to keep record of the probability of being in each node until
the uncertainty is somehow resolved. At this point, both the robot’s location and the map become
simultaneously unambiguous. Should it happen to be no match, the system must determine if the
current location is susceptible of being labeled as a distinctive place according to the adopted criteria.
Otherwise, data should be added to the current node definition in order to enhance its distinctiveness
for future revisiting.
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Fig. 2. (Colour online) Topological SLAM overview. From left to right: the system acquires sensory information
from one or several sources; selected features are extracted and encoded; the current location is compared with
a database of previously visited nodes resulting in a belief state (i.e., the robot could be in several locations
with different probabilities); finally, once the uncertainty has been resolved, either a new node is added to the
database or the information of an existing one is updated.

5.2. Perception and detection
In previous sections, it has been asserted that place definition plays a key role in topological map
building. The underlying problem concerning this matter could be stated as that of deciding whether
a given location should be encoded as a place.

The most common solution involves looking for places that are locally distinguishable and store
the distinctive features or landmarks. According to Stankiewicz and Kalia,106 the use of landmarks
implicitly assumes three properties: persistence, saliency, and informativeness. To begin with, a
landmark should be persistent, that is, the features should still be present when the robot returns to
the location anytime in the future. Furthermore, it ought to be perceptually salient, which means that
the landmark must be easily detectable and identifiable. Finally, a landmark needs to be informative.
In other words, it should provide evidence about the robot’s pose or the action it should take when
observing it.

Following with the reasoning by Stankiewicz and Kalia,106 there exist two different types of
landmarks: structural and object landmarks. The former are defined as geometric features that can
serve as cues, like intersections or entrances, named gateways by Kortenkamp and Weymouth,56

and corners or edges.108, 111 The latter are objects in the environment that are independent of its
structure, such as signs. These are often identified using computer vision by means of interest points
or regions. From these definitions, it is intuitively obvious that object landmarks typically provide
more information concerning spatial coordinates, as two intersections look alike but a poster on a
wall is probably unique. Unfortunately, it is more than somewhat unlikely to find a single type of cue
that combines all of the previous properties.

This section concentrates on the sensors and algorithms applied in the literature to detect and
extract landmarks from an environment. Although not all references cited henceforth correspond
strictly to SLAM implementations, they are relevant insofar as they present several techniques for
topological feature detection. Table I collects the different sensor technologies that have been applied
to extract topological data over the past two decades. Papers that build on earlier work are grouped
together. As stated by Ranganathan and Dellaert,93 laser range scanners are currently de facto standard
in robotics, due to their ability to provide precise depth estimates and form dense point clouds that
resemble the scene structure, although substantial research is currently being carried out on computer
vision due to recent progress in image processing, and because cameras are typically less expensive
and provide more distinctive features, which is fundamental for topological SLAM.72, 88

The use of visual data as the primary source of information in SLAM systems has not had time to
converge to generally efficient and robust solutions yet, hence leaving much room for experimentation
and improvement. Notwithstanding, albeit perceiving the world through a camera lens can be less
accurate than laser range sensing, the richness of the information encoded has already proved to be
sufficient to obtain reliable estimates of camera motion and scene structure. However, it is important
to point out that the vast majority of the articles reviewed in Table I opt for omnidirectional cameras.
This can be easily explained by the fact that omnidirectional cameras are the only ones that guarantee
rotational invariance (i.e., no matter what orientation a robot has in a given location, the image
captured is always the same).

Table II shows the numerous methods employed in the references presented in Table I. At early
stages, due to the fact that the only widespread sensor technology was sonar, feature detection reduced
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Table I. Sensors used in the literature to identify topological landmarks.

Cameras

Reference Sonar Laser Encoder Compass Monocular Omnidir. Stereo

Kuipers & Byun, 199159 � �
Kortenkamp & Weymouth, 199456 � �
Owen & Nehmzow, 199885 � �
Gutmann & Konolige, 199945 � �

Hafner, 200046 � �
Ulrich & Nourbakhsh, 2000113 �
Choset & Nagatani, 200118 � � �
Tomatis et al., 2002111 �

Anguelov et al., 20047 � �
Kuipers et al., 200461 � �
Modayil et al., 200478 � �
Andreasson et al., 20053 � �

Goedemé et al., 2005,43 200741 �
Stachniss et al., 2005105 � �
Tapus, 2005108, 109 � � �
Zivkovic et al., 2005121 �

Fraundorfer et al., 200739 �
Vasudevan et al., 2007114 � � �
Angeli et al., 20084–6 �
Cummins & Newman, 2008,22 201125 �

Koenig et al., 200852 � �
Nüchter & Hertzberg, 200884 �
Ranganathan & Dellaert, 2008,93 201194 � �
Sabatta et al., 2008,100 201099 �

Liu et al., 2009,67 Liu & Siegwart, 201268 � �
Doh et al., 200928 � �
Tully et al., 2009112 � �
Werner et al., 2009,116 2012119 �

Werner et al., 2009117 �
Lui & Jarvis, 201072 � � �
Romero & Cazorla, 2010,97 201298 �
Maddern et al., 2011,73 201274 � �

Total 7 12 10 3 7 14 3

to what has been called geometric features in Table II (i.e., distances to different obstacles that allow
to identify simple topological landmarks such as corners or dead ends) and gateways, which are an
extension of the previous to detect openings.

With the rise of laser range scanners, these approaches became more precise owing to
the acquisition of dense point clouds and, more recently, with the introduction of computer
vision techniques, simple methods like color histograms were applied. For instance, Ulrich and
Nourbakhsh113 extract histograms in the RGB and HSL color spaces from omnidirectional images.
However, it was soon widely accepted that the information obtained from histograms was not
sufficiently distinctive and reliable—they can be potentially identical for two images with different
content, and are very sensitive to illumination changes—to use them as a sole characteristic detector.
Thus, this approach has now become a part of, or a complement for, other more consistent and
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Table II. Landmark extraction techniques for topological navigation grouped according to sensor technologies: range sensors (i.e., sonar and laser), cameras, and both; and the
type of features obtained: distances, lines, frequency-based, edges, keypoints, affine regions, and probabilistic.

Range sensors Cameras R/C

Distances Lines Frequency Edges Keypoints Regions Prob.

Reference Geometric

features

Gateways Douglas-

Peucker

EM RANSAC Hough

trans.

Hist. Haar

wavelets

Sobel

operator

Invariant

columns

SIFT SURF KLT Harris-

affine

MSER Bayesian

surprise

Kuipers & Byun, 199159 �
Kortenkamp & Weymouth, 199456 � �
Owen & Nehmzow, 199885 �
Gutmann & Konolige, 199945 �
Hafner, 200046 �
Ulrich & Nourbakhsh, 2000113 �
Choset & Nagatani, 200118 �
Tomatis et al., 2002111 � �
Anguelov et al., 20047 � � � � �
Kuipers et al., 200461 �
Modayil et al., 200478 �
Andreasson et al., 20053 � �
Goedemé et al., 2005,43 200741 � �
Stachniss et al., 2005105 �
Tapus, 2005108, 109 � � �
Zivkovic et al., 2005121 �
Fraundorfer et al., 200739 �
Vasudevan et al., 2007114 � �
Angeli et al., 20084–6 �
Cummins & Newman, 2008,22 201125 �
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Table II. Continued.

Range sensors Cameras R/C

Distances Lines Frequency Edges Keypoints Regions Prob.

Reference Geometric

features

Gateways Douglas-

Peucker

EM RANSAC Hough

trans.

Hist. Haar

wavelets

Sobel

operator

Invariant

columns

SIFT SURF KLT Harris-

affine

MSER Bayesian

surprise

Koenig et al., 200852 �
Nüchter & Hertzberg, 200884 � �
Ranganathan & Dellaert, 2008,93 201194 � � � �
Sabatta et al., 2008,100 201099 �
Doh et al., 200928 � �
Liu et al., 2009,67 Liu & Siegwart, 201268 � �
Tully et al., 2009112 �
Werner et al., 2009,116 2012119 �
Werner et al., 2009117 �
Lui & Jarvis, 201072 � � �
Romero & Cazorla, 2010,97 201298 �
Maddern et al., 2011,73 201274 �
Total 11 6 2 1 1 1 8 1 3 1 7 3 1 1 3 1
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informative methods. In addition, other procedures like line extractors, Haar wavelets, edge, keypoint,
and affine covariant region detectors, and Bayesian surprise saw the light of day.

The rest of this section concentrates on the detection methods found in the literature. For those
techniques that are common knowledge in the field, only references to surveys or seminal papers are
put forward. Emphasis is put on the more recent and original techniques.

5.2.1. Line extractors. Human-made environments are full of vertical and horizontal lines and,
therefore, constitute an invaluable source of topological information. Line extraction techniques are
usually employed in conjunction with laser range scanners. There exist many approaches for line
extraction, some of which are compared by Nguyen et al.82 As far as topological feature detection
is concerned, the Douglas-Peucker algorithm108 (also known as split-and-merge), EM (Expectation-
Maximization) applied to line fitting,87 the Hough transform,38 and RANSAC (RANdom SAmple
Consensus)37 have been employed. Finally, it is worth mentioning that the latter is a general algorithm
for model adjustment in the presence of many data outliers, which has further applications, for
instance, Nüchter and Hertzberg,84 adopt this technique for plane extraction.

5.2.2. Haar wavelets. Yet another attempt to topological feature extraction is that of Lui and Jarvis72

who use a feature extraction method for unwarped stereo panoramic images based on the standard
2D Haar wavelet decomposition proposed by Jacobs et al.49 and adapted for mobile robotics by Ho
and Jarvis.47 Similarly to the Fourier transform, which is used to decompose complex signals into
a series of sine waves, Haar wavelets are applied to obtain a summation of simpler images that can
be used to extract a discriminative and robust to occlusions and light changes signature, although
rotation variant.

5.2.3. Edge-based detectors. They are used to obtain outlines in the context of computer vision. In
particular, Tapus108 utilizes the Sobel operator as an intermediate step to obtain segments of vertical
edges, whereas Goedemé et al.42 employs this operator to apply the so-called invariant column
segments method, which is not an edge detector strictly speaking but a specialization of the so-called
affine invariant regions that are commented below. For further reference, a comparison of several
edge detectors can be found in Maini and Aggarwal.76

5.2.4. Keypoint detectors. In the context of feature detection using computer vision, blobs are points
in the image that are either significantly brighter or darker than its neighbors. An initial comment
is required before proceeding with the most remarkable algorithms. Although the title alludes to
detectors, most of the methods cited below also include a descriptor to encode the distinguishing data
that can be extracted from the features localized using the detector. For the sake of simplicity, they
will be treated as a whole because they are usually presented together. Nevertheless, it is important
to bear in mind that detectors and descriptors are interchangeable.

The most pre-eminent blob detector algorithm is Scale Invariant Feature Transform (SIFT),69, 70, 102

which is the current standard for vision-based SLAM. Later on, Bay et al.9 developed Speeded-Up
Robust Features (SURF) with the aim of reducing the computational burden of SIFT. This fact makes
it a better candidate for real-time applications. Last but not least, it is worth mentioning another
promising feature detector named Center Surround Extremas (CenSurE),1 which is much faster than
the previous two methods at the expense of a slight increase in rotation sensitivity. More recently,
Ebrahimi and Mayol-Cuevas34 presented SUSurE, an interest point detector and descriptor based on
CenSurE, which is capable of executing two to three times faster with only a slight loss in repeatability.

However, there exist other type of interest points apart from blobs. An example of these is Kanade-
Lucas-Tomasi (KLT), included within the OpenCV library,13 which is a corner detector that has also
been applied in topological SLAM systems to perform visual odometry.72

5.2.5. Affine covariant region detectors. Affine covariant region detectors emerged with the idea of
extracting features from images that were robust to perspective transformations. It is unclear which
is the best among them, as they are often complementary and well suited for extracting regions with
different properties. Mikolajczyk et al.77 carried out a survey comparing the most common detectors,
among which Harris-affine and Maximally Stable Extremal Regions (MSER) can be found.

It is also interesting to point out that Romero and Cazorla97 run the JSEG segmentation algorithm27

prior to applying MSER described with SIFT with the aim of grouping features according to the image
region to which they belong and produce a graph with them.
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5.2.6. Bayesian surprise. Mainly based on the concept of saliency, it states that relevant stimuli
represent statistical outliers or, in other words, sudden or unexpected changes in the environment.48, 93

Thus, at least one of its attributes needs to be unique or rare over the entire scene (e.g., a red coat
is perceptually salient among black suits but not among many other red coats). This method, which
claims to fire at almost all locations that would be regarded as landmarks by a human being, as well as
at some others that would not, can be implemented for different sensor technologies, predominantly
laser and cameras, and applied to several elementary features such as color, intensity, orientation, or
motion. For example, Ranganathan and Dellaert93 illustrate this technique using laser range scanners
and, in the context of computer vision, by simultaneously applying this method to SIFT descriptors
computed over Harris-affine and MSER features.

5.2.7. A hybrid approach: fingerprint of places. Once set forth the most common feature extraction
methods, it is clear that they all have advantages and disadvantages that make them suitable for
specific applications. Thus, in the pursuit of a more generally applicable method, some authors have
tried to combine several of the aforementioned techniques.

An interesting approach has its origin in the paper by Lamon et al.62 where the term fingerprint
of places was coined to refer to a circular list of complementary simple features (color patches and
vertical edges), obtained from omnidirectional images, whose order matches their relative position
around the robot. This idea led to the publication of a series of pieces of work that further developed
on the concept of fingerprint. Of special relevance is that of Tapus and Siegwart109 where, thanks to
the information provided by two 180◦ laser range scanners, corners and empty areas (i.e., when there
are more than 20◦ of free space between two features) are additionally detected.

More recently, Liu et al.67 proposed a much simpler fingerprint procedure, exclusively based on
panoramic images, which extracts vertical edges under the belief that the prevailing lines naturally
segment a structured environment into meaningful areas, and uses the distance among those lines and
the mean U-V chrominance of the defined regions as a lightweight descriptor called FACT, which
was later granted with statistical meaning and renamed DP-FACT68.

5.3. Correspondence and map matching
After detecting the distinguishing features in the environment with any of the hitherto presented
algorithms, the subsequent step in traditional metric SLAM implementations is to track the features
detected between two consecutive sensor samples. The distance between equal features is then used
to compute how much the robot has moved and, if there is an encoder available, both measurements
are merged with the aim of minimizing errors. Afterwards, according to the movement, the current
location in the map is calculated.

By contrast, in pure topological SLAM systems, correspondence and map matching are the same.
In general, there is no need to know how much the robot has moved, but only to identify if it has
returned to an already visited place. Thus, it forces to repeatedly solve a loop-closing problem because
correspondence is computed among the already encoded nodes instead of with the previous sample.117

It is important to remember that it is almost impossible to obtain two identical samples because
of measurement noise, changes in the environment, and, in addition, because when revisiting
a place the robot performs the measurements in a slightly different location or with another
orientation. For these reasons, correspondence and map matching are usually carried out by means
of dissimilarity measurements, like the Mahalanobis,40, 100 Euclidean,3, 40 and χ2 distances35, or
the Jeffrey divergence,113 whereas Tapus and Siegwart109 employ a modified version of the global
alignment algorithm, proposed by Needleman and Wunsch80 to compare DNA sequences, which takes
the uncertainty of the detected features into consideration. The latter opted for this approach—which
accounts for an average 83.82% of correct classifications in indoor and outdoor environments—after
comparing it with Bayesian programming and a hybrid technique which merges the global alignment
with uncertainty and Bayesian programming methods.

Moreover, in the context of visual topological SLAM Angeli et al.4 and Romero and Cazorla97

utilize the relative position of the features within the images as a matching criteria. However, while
the former uses RANSAC to ensure that epipolar geometry constraints are met, the latter applies
the Graph Transformation Matching (GTM) algorithm by Aguilar et al.2 In addition, Li and Olson65

proposes the Incremental Posterior Joint Compatibility (IPJC) test to match constellations of features
together rather than considering them individually. Although its formulation is equivalent to the
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well know Joint Compatibility Branch and Bound (JCBB) test,81 it is faster and more accurate, and
performs better on non-linear problems.

Finally, because map matching becomes more demanding as the mapped area grows, some authors
like Goedemé et al.42 or Romero and Cazorla97 propose applying clustering techniques like kd-trees
to reduce the dimensionality of the features in order to optimize the search and comparison processes.
Cummins and Newman22 employ a Chow-Liu tree. Notice, nevertheless, that both Goedemé et al.42

and Cummins and Newman22 perform tree building offline due to time constraints.

5.4. Map fusion: dealing with loop-closing uncertainty
The final stage in topological SLAM involves updating the recorded map. If the current location does
not correspond to any node known in advance, then the robot is in an unexplored area and, therefore,
if the measurements meet the requirements to be considered a distinctive place, it should be added
to the map. A more complex situation occurs when there is a positive match. Remember that for
topological SLAM one of the most awkward problems is perceptual aliasing, and suppose that for
map matching only sensory information is used. Consequently, there may be several nodes in the map
that coincide with the measurements. Notwithstanding, this by no means signifies that it is an already
visited place. This section concentrates on the different manners in which loop-closing uncertainty
in topological maps has been tackled in the literature.

5.4.1. The consistent pose estimation paradigm. Some of the early developments on map fusion
are inspired by the concept of consistent pose estimation (CPE) introduced by Lu and Milios,71

which attempts to globally optimize the recorded set of poses based on how well neighboring sensor
scans match. Gutmann and Konolige45 presented the Local Registration/Global Correlation (LRGC)
algorithm that is based on building local metric maps (named local patches) from the last few
measurements in order keep the accumulated odometric error low and ensure topological correctness.
The global metric map is then incrementally updated by comparing the topological structure of the
latest patch with older portions of the map. A high match score with low ambiguity and variance
indicates a loop closure. The experiments, carried out with robots equipped with laser sensors and
encoders in four different environments of up to 80 by 25 m, yield fairly good metric maps under
the assumption that local patches are accurate enough. Later on, Konolige55 presented an efficient
algorithm for multiple-loop maps that allows to extend the CPE method to map much larger areas
(i.e., around 105 distinct locations).

5.4.2. Spatial semantic hierarchy. The Spatial Semantic Hierarchy (SSH) is a model of knowledge
for large-space introduced by Kuipers.57 It involves four qualitative and quantitative representations.
At the control level, the agent continuously seeks distinctive states with a combination of trajectory-
following and hill-climbing strategies. The causal level abstracts this pattern of behavior into a
discrete model described in terms of states, sensory views, actions, and the causal relations among
them. The topological level introduces the concepts of places, paths, and regions, and links them
through turn and travel actions in order to explain the regularities observed among views in the
control level. Finally, the metrical level represents a global geometric map of the environment in a
single frame of reference. This framework was subsequently formalized using non-monotonic logic
by Remolina and Kuipers.96

Kuipers et al.61 extended the basic SSH with local perceptual maps (LPMs), a bounded occupancy
grid. In this work, they identify gateways in corridors as the locations where the distance between
the medial axis edge and the obstacles is a local minimum close to a larger maximum. However, they
believe that other alternatives are possible. In addition, they include path fragments associated to the
gateways. This information, along with travel control laws, is employed to obtain a local topology of
a place in terms of distinctive states and directed paths.

In order to obtain the global topological map, a tree whose nodes are topological map-distinctive
state pairs is maintained and pruned over time by matching local topologies, and LPMs if necessary.
Instead of pruning, Johnson and Kuipers50 proposed expanding only the most probable hypothesis to
ensure that you can always backtrack in case of error and find the correct map. Further developments
of this research line include improvements to loop-closing with the incorporation of the planarity
constraint,101 and the construction of accurate global metric maps from the topological skeleton
obtained.78
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5.4.3. Markov decision processes. Markov decision processes—Hidden Markov Models
(HMMs)44, 103 and their extension, Partially Observable Markov Decision Processes
(POMDPs)16, 51, 54—have also been employed to determine the navigation policy that the robot should
follow in order to reduce uncertainty. Subsequently, Tomatis et al.111 and Tapus and Siegwart109

extended POMDPs to perform multi-hypothesis tracking and determine a pose distribution. However,
as computing an optimal policy is intractable in large environments, Tomatis et al.111 suggested using
the most likely state (MLS) criterion to choose the following action, whereas Tapus and Siegwart109

opted for another heuristic, the entropy of the current location probability distribution, to decide the
control commands. In the latter case, whenever the entropy falls below an experimentally determined
threshold, the robot’s location is assumed certain and the map is updated accordingly, either by adding
a new node or by merging the latest fingerprint information with the node representative.

Loop closures are also identified by means of the POMDP. Whenever the robot returns to a
previously visited location, the probability distribution should split in two. One hypothesis would
correspond to a new location and the other to a node already present in the map. If both divergent
peaks evolve similarly over time, a loop closure is assumed.108

5.4.4. Probabilistic topological maps. A Bayesian inference framework has also been explored
for topological mapping. Ranganathan and Dellaert coined the term Probabilistic Topological
Map (PTM), a sample-based representation that estimates the posterior distribution over all the
possible topologies that can be built given a set of sensor measurements.90, 91 Due to the fact
that this is a problem of a combinatorial nature, they proposed approximating the solution by
drawing samples from the distribution using Markov-Chain Monte Carlo (MCMC) sampling.91, 95

In principle, this technique is applicable to any landmark detection scheme as long as the landmark
detection algorithm does not provide false negatives (i.e., the robot’s sensors do not fail to recognize
landmarks).

Afterwards, they presented Rao-Blackwellized Particle Filters (RBPFs)29, 79 as an alternative to
MCMC sampling for PTMs.90, 92, 94 Particle filters is yet another Monte Carlo localization technique
used to probabilistically estimate the state of a system under noisy measurement conditions. They
claim that this technique permits incremental inference in the space of topologies—conversely to
MCMC, which is a batch algorithm—and can therefore be computed in real time. In order to
overcome the samples degeneracy problem over time,30 that can lead to convergence issues, they
suggest integrating odometric data to draw more likely particles with higher probability. However,
the selection of the appropriate number of particles still remains an open issue, as particle filtering
inherently has the risk of disposing the correct map. Koenig et al.52 also employ a RBPF. Each particle
incrementally constructs its own graph of the environment using color histograms and odometry
information. Local graphs are compared with the global graph to determine the best matches and,
simultaneously, the resampling weights for each particle.

The main advantage of PTMs is that all decisions are reversible and the algorithm is therefore
capable of recovering from incorrect loop closures. In the end, only a small set of similar topologies
have non-negligible probabilities. The experiments conducted suggest that, if the environment is
unambiguous, the ground-truth topology is assigned a much higher posterior probability mass than
the other alternatives.

5.4.5. Voronoi graphs and neighboring information. Choset and Nagatani18 represent the environment
by means of a generalized Voronoi graph (GVG). A GVG is a one-dimensional set of points equidistant
to n obstacles in n dimensions. When used in the plane, it reduces to the set of points equidistant
to two (or more) obstacles, and define a roadmap of the robot’s free space. Voronoi nodes, which
are locations equidistant to n + 1 obstacles, are used as natural landmarks because they provide
topologically meaningful information that can be extracted online (e.g., junctions, dead-ends, etc.).
The main problem with Voronoi nodes is that they are very sensitive to changes in the configuration
of the environment. If non-structural obstacles are moved, Voronoi vertices may appear or vanish.

In order to achieve SLAM, the robot follows simple control commands looking for these nodes in
the environment. Loop-closing is carried out by comparing the subgraph built from the latest observed
nodes to the already encoded map. Ambiguity is resolved by following a candidate path and ruling
out inconsistent matches based on the new visited places. This method as is assumes that the robot
is equipped with infinite range sonar sensors, and is only suitable for static and planar environments
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with plenty of obstacles. Based on this idea, Beeson et al.10 introduced extended Voronoi graphs
(EVGs) to address the problems of GVGs derived from limited sensory horizons by means of local
perceptual maps (LPMs).

The research path initiated by Werner et al.115, 118 is also remarkable. They apply Bayesian inference
to obtain a topological map in ambiguous environments that explains the set of observations without
the need for motion knowledge. The method is based on guaranteeing consistency between the local
neighboring information extracted from the latest n images and the constructed map while keeping the
number of topological vertices as low as possible, following the Occam’s razor principle. Topological
places, where captures are acquired, are identified by means of a GVG using sonar readings. The
algorithm assumes that there exist some prior information about the connectivity but not about the
number of distinct locations in the environment.

Initially, a sequential Monte Carlo technique was employed to maintain a series of candidate
maps,116 which was later replaced by a particle filter.117 In order to be able to recover from incorrect
loop closures, Tully et al.112 introduced a multi-hypothesis approach based on a tree expansion
algorithm specifically conceived for edge-ordered graphs,32 as well as a series of pruning rules
to keep the number of hypothesis under control. Recently, Tao et al.107 discussed the benefits of
saturated generalized Voronoi graphs (S-GVG), that employ a wall-following behavior to navigate
within sensor range limits, and performed SLAM using a similar hypothesis tree. Finally, Werner
et al.119 suggested applying stochastic local search (SLS) to produce the topological map.

Before concluding this section, it is worth mentioning the work by Doh et al.,28 who deal with semi-
permanent dynamics induced by door opening and closing. They classify GVG nodes in invariant
(i.e., junctions, corners, and ends of corridors) and variant (i.e., doors). Nodes are told apart using
the areas between two local minimums of a sensor scan (which identify doors), and looking for a
vanishing point from a range scan or in an image (for invariant nodes).

5.4.6. Appearance-based topological SLAM. Most early approaches to inferring topological maps
based only on visual information—they discard employing odometric data because it is prone
to cumulative errors, especially on slippery surfaces—rely on SIFT keypoints extracted from
omnidirectional images. Some examples include the work by Zivkovic et al.,121 who solve the
map building process using graph-cuts, and Goedemé et al.,41 who resort to Dempster-Shafer theory
of evidence26 for loop-closing. Unfortunately, these solutions require offline computation.

Later on, Fraundorfer et al.39 presented a real-time framework based on the bag-of-words
paradigm,19 where images are quantized in terms of unordered elementary features taken from
an offline-built dictionary. Loop-closing is identified by visual word comparison following a voting
scheme. Romero and Cazorla97, 98 take a similar approach but without the need for a dictionary.
They build graphs from homogeneous regions using MSER features described with SIFT and use the
GTM algorithm for matching. They then compare the graphs from newly acquired images with the
latest visited topological node representative. If the matching score is below a threshold, it is then
compared—using another threshold—with the rest of the encoded vertices in order to identify loop
closures. If no match is found, a new node is added to the map. The main drawback of this algorithm
is that it is extremely sensitive to the two thresholds. The value of these parameters has a decisive
impact on the final topology obtained.

Angeli et al.4–6 proposed a method that builds the vocabulary online, following the procedure
developed by Filliat.35 The problem of loop-closing is addressed following a Bayesian approach. The
probability of transition between locations is modeled using a sum of Gaussians to assign higher
probability to adjacent states, whereas the correspondence likelihood is computed by means of voting
using the tf-idf coefficient.104

Furthermore, Fast Appearance-Based Mapping (FAB-MAP), which is a Bayesian framework for
navigation and mapping exclusively based on appearance information developed by Cummins and
Newman as a solution to loop closure detection,20–22, 24 has attracted a great deal of attention. It relies
on a vocabulary model built offline from the clustering of SURF features extracted from a large
collection of independent images. The words obtained are then organized using a Chow-Liu tree to
capture the dependencies among them (i.e., car wheels and car doors are likely to appear together).
This vocabulary model is used to approximate the partition function in the Bayesian formulation,
which provides a natural probabilistic measure of when an observation should be labeled as a new
location.
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The experiments conducted outdoors suggest that it performs well in repetitive environments
and is fast enough for online loop-closing. The fact that it requires offline training is an drawback,
although tests carried out indoors with the bag-of-words model built for outdoor environments produce
surprisingly good results according to the authors.

Some improvements have been introduced to the original algorithm since its presentation. First,
speed was increased by more than 25 times, with only a slight degradation in accuracy, thanks to the
usage of concentration inequalities to reduce the number of hypothesis considered.23 The formulation
of the algorithm was also modified to operate on very large environments (over trajectories of around
1000 km).25 Finally, Paul and Newman86 incorporated the spatial arrangement of visual words to
improve distinctiveness.

5.4.7. Continuous appearance-based trajectory SLAM. Continuous Appearance-based Trajectory
SLAM (CAT-SLAM)73 incorporates odometry, following the approach of FastSLAM,79 to
appearance-based SLAM using FAB-MAP. The current location is modeled as a probability
distribution over a trajectory and appearance is treated as a continuous variable. The evaluation
of the distribution is carried out using a RBPF. Compared to FAB-MAP, it identifies three times
as many loop closures at 100% precision (i.e., with no false positives). By contrast, FAB-MAP is
capable of recognizing places when approached from a different direction, whereas CAT-SLAM
cannot because it relies on odometric information. Enhancements to computational and memory
storage requirements, like pruning those nodes in the trajectory that are locally uninformative once
a preset maximum number of nodes is reached, were subsequently introduced to allow continuous
operation on much larger environments.74, 75

5.4.8. Closing the loop with visual odometry. Lui and Jarvis72 have implemented a different correction
algorithm for loop closure detection, which relies on visual odometry. They employ the Kanade-
Lucas-Tomasi (KLT) features present in the OpenCV computer vision library13 to estimate the
distance traveled and column image comparison using the Sum of Absolute Differences (SAD) for
the front 180◦ field of view (FOV) of the robot to estimate the bearing. These are then used to
reduce the matches retrieved from the database, using a Haar wavelet-based signature, utilizing the
relaxation algorithm proposed by Duckett et al.31 The current location is then told apart by means of
SURF.9 This system has been proven effective in indoor and semi-outdoor environments. However, its
main drawback lies in the complexity of the robot infrastructure, which includes an omnidirectional
stereovision system and a web camera to perform visual odometry, as well as a stereo camera for
obstacle avoidance.

5.4.9. The final stage: updating the map. Finally, once the uncertainty has been resolved, the new
information gathered should be incorporated to the map for future reference. On the one hand, some
authors suggest removing any unobserved nodes, features, and relations or, better, implementing a
gradual “forgetting” process that could take into account changes in the environment (e.g., an open
door appears closed when revisiting a place).114 On the other hand, Kuipers and Beeson58 and Tapus
and Siegwart109 propose applying clustering techniques to create a mean node representative with a
view to reducing the impact of scene variability.

6. Conclusion
There is still a long way to go as far as topological SLAM is concerned. Although there exist plenty
of partial implementations and ideas for some of the phases, a robust and globally applicable method
is yet to be developed.

In detection, it seems that the best results have been achieved with a wisely chosen collection of
features. Nevertheless, the selection of these features is crucially affected by the sensory technology
used. Computer vision is rising as a promising alternative because, even though processing the data
gathered can be more difficult and computationally expensive, it provides richer information than
other sensors, like laser range scanners, and can be easily installed in any mobile entity.

In map matching and updating, the probabilistic approach seems to be the most consolidated
research line. However, in spite of the topological representation being less computationally
demanding, there are still some open issues in unbounded, dynamic, and ambiguous unknown
environments. Constantly solving a loop-closing problem can be cumbersome in large maps as
the robot can simultaneously believe to be in several locations, which results in having to deal with
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a huge pose distribution that multiply the calculations required. Because of this, new tracks are
being explored in the pursuit of scalability in metric SLAM. The work by Blanco et al.,12 which
demonstrates that an appropriate formulation of the SLAM problem can pose an upper limit on loop
closure complexity in unbounded environments, is a remarkable example.
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Thesis (École Polytechnique Fédérale de Lausanne, Switzerland, 2005).

https://doi.org/10.1017/S0263574713001070 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001070


Topological simultaneous localization and mapping: a survey 821

109. A. Tapus and R. Siegwart, “Incremental Robot Mapping with Fingerprints of Places,” Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada (2005) pp.
2429–2434.

110. S. Thrun, “Robotic Mapping: A Survey,” In: Exploring Artificial Intelligence in the New Millenium
(G. Lakemeyer and B. Nebel, eds.) (Morgan Kaufmann, San Francisco, CA, 2002) pp. 1–35.

111. N. Tomatis, I. Nourbakhsh and R. Siegwart, “Hybrid Simultaneous Localization and Map Building:
Closing the Loop with Multi-Hypotheses Tracking,” Proceedings of the IEEE International Conference
Robotics and Automation, Washington, DC (2002) pp. 2749–2754.

112. S. Tully, G. Kantor, H. Choset and F. Werner, “A Multi-Hypothesis Topological SLAM Approach for Loop
Closing on Edge-Ordered Graphs,” Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, St. Louis, MO, USA (2009) pp. 4943–4948.

113. I. Ulrich and I. Nourbakhsh, “Appearance-Based Place Recognition for Topological Localization,”
Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA,
USA (2000) pp. 1023–1029.
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