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The deformation of a liquid capsule enclosed by an elastic membrane in an infinite
simple shear flow is studied numerically at vanishing Reynolds numbers using a
boundary-element method. The surface of the capsule is discretized into quadratic
triangular elements that form an evolving unstructured grid. The elastic membrane
tensions are expressed in terms of the surface deformation gradient, which is evaluated
from the position of the grid points. Compared to an earlier formulation that
uses global curvilinear coordinates, the triangular-element formulation suppresses
numerical instabilities due to uneven discretization and thus enables the study of large
deformations and the investigation of the effect of fluid viscosities. Computations are
performed for capsules with spherical, spheroidal, and discoidal unstressed shapes
over an extended range of the dimensionless shear rate and for a broad range of the
ratio of the internal to surrounding fluid viscosities. Results for small deformations of
spherical capsules are in quantitative agreement with the predictions of perturbation
theories. Results for large deformations of spherical capsules and deformations of
non-spherical capsules are in qualitative agreement with experimental observations of
synthetic capsules and red blood cells. We find that initially spherical capsules deform
into steady elongated shapes whose aspect ratios increase with the magnitude of the
shear rate. A critical shear rate above which capsules exhibit continuous elongation is
not observed for any value of the viscosity ratio. This behaviour contrasts with that
of liquid drops with uniform surface tension and with that of axisymmetric capsules
subject to a stagnation-point flow. When the shear rate is sufficiently high and the
viscosity ratio is sufficiently low, liquid drops exhibit continuous elongation leading
to breakup. Axisymmetric capsules deform into thinning needles at sufficiently high
rates of elongation, independent of the fluid viscosities. In the case of capsules in
shear flow, large elastic tensions develop at large deformations and prevent continued
elongation, stressing the importance of the vorticity of the incident flow. The long-time
behaviour of deformed capsules depends strongly on the unstressed shape. Oblate
capsules exhibit unsteady motions including oscillation about a mean configuration
at low viscosity ratios and continuous rotation accompanied by periodic deformation
at high viscosity ratios. The viscosity ratio at which the transition from oscillations
to tumbling occurs decreases with the sphericity of the unstressed shape. Results on
the effective rheological properties of dilute suspensions confirm a non-Newtonian
shear-thinning behaviour.
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118 S. Ramanujan and C. Pozrikidis

1. Introduction

In the past two decades, considerable effort has been devoted to modelling and sim-
ulating the motion of flexible particles in Stokes flow. This work has been motivated
by numerous applications in the fields of particulate flow and biofluid-dynamics,
such as emulsion rheology and blood flow. Theoretical advances, including the devel-
opment of compact mathematical formulations and sophisticated boundary integral
algorithms, have allowed significant progress in the computational approaches rele-
vant to these applications. Liquid drops with uniform or variable isotropic surface
tension have received special attention. Solitary and collective drop configurations
have been studied extensively, and current efforts are directed toward the simulation
of emulsion flows with numerous suspended particles (Li, Charles & Pozrikidis 1996;
Loewenberg & Hinch 1996; Charles & Pozrikidis 1998).

Some progress has also been made in the simulation of liquid capsules with more
complicated interfacial behaviours. The Newtonian interface model introduced by
Boussinésq (1913) and further developed by Scriven (1960) incorporates isotropic
tension, regarded as the analogue of thermodynamic pressure, and viscous surface
tensions that depend linearly on the interfacial rate of deformation; generalization
to nonlinear interfacial behaviours is straightforward. The Boussinésq–Scriven model
is applicable to interfaces with impurities and large concentrations of surfactants.
Pozrikidis (1994) extended prior asymptotic theories by performing a numerical study
of the finite deformation of drops with constant surface tension and viscous interfacial
tensions. Shrivatsava & Tang (1993) also considered surface viscosity effects in a
finite-element study of the inflation of viscoelastic membranes in thermoforming.

Several types of capsules encountered in industrial or biomedical settings are liquid
drops enclosed by membranes with elastic characteristics. Examples include synthetic
capsules with polymerized interfaces and red blood cells. The red blood cell consists
of a Newtonian hemoglobin solution encapsulated by a bilayer membrane and a thin
protein skeleton (Evans & Skalak 1980). Unlike most biological cells, the red cell has
no internal structure and lacks a nucleus. Efforts to model white blood cells as elastic
bodies or multi-layered capsules have failed to reproduce experimental observations
with adequate accuracy; the development of appropriate models is under continued
investigation (Skalak, Dong & Zhu 1990). Thus, while a capsule model may be
relevant, a strong claim regarding its ability to describe white blood cell behaviour
cannot be made.

Asymptotic theories describing small deformations of elastic capsules were devel-
oped by Barthès-Biesel and coworkers (Barthès-Biesel 1980; Barthès-Biesel & Rallison
1981; Barthès-Biesel & Sgaier 1985), and numerical simulations of large axisymmet-
ric capsule deformations were presented by Li, Barthès-Biesel & Helmy (1988). The
numerical studies considered deformations of capsules with spherical, oblate, and
prolate shapes subject to axisymmetric straining flow, establishing the existence of a
critical strain rate above which the capsule continues to elongate without reaching a
steady asymptotic shape. This intriguing behaviour is seemingly counterintuitive, as
we expect that strong elastic tensions produced by large deformations will limit the
elongation. We shall address the existence of critical conditions more thoroughly in
a later section. More recently, Leyrat-Maurin, Drochon & Barthès-Biesel (1993) and
Leyrat-Maurin & Barthès-Biesel (1994) simulated the axisymmetric motion of elastic
capsules through tubes and constrictions and established critical conditions for pore
occlusion. Pozrikidis (1995) developed a method for simulating three-dimensional de-
formations and presented results for capsules with spherical unstressed shapes subject
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Elastic capsules in shear flow 119

to simple shear flow. In all of these numerical studies, in order to reduce the com-
putational cost, the viscosity of the capsule fluid was assumed to match that of the
ambient fluid. Laboratory observations of synthetic capsules were reported by Chang
& Olbricht (1993a, b). Apart from these hydrodynamic investigations, there have been
many experimental observations of red blood cell deformations in viscometric and
capillary shear flows.

Although a reasonable starting point, the numerical method used by Pozrikidis
(1995) has several shortcomings that limited the breadth and depth of his investi-
gations. In his method, the interface is described by two global surface curvilinear
coordinates that emanate from two singular points. The size of the boundary ele-
ments decreases rapidly near the singular points, causing numerical instability during
the transient deformation. Furthermore, the global discretization performs poorly for
complex shapes such as biconcave disks, and maintaining regularity by regridding
requires further numerical progress. Fortunately, these problems can be minimized
through the use of an unstructured grid of quadratic triangular elements, similar
to that used by Kennedy, Pozrikidis & Skalak (1994) for the simulation of liquid
drops.

Our two primary objectives in this work are as follows. First, we develop and
evaluate a method of computing the elastic tensions at the nodes of an unstructured
triangular grid describing the capsule membrane. The marker points defining the grid
are not necesarily material points, but may execute an arbitrary tangential motion.
Incorporating this method into the standard boundary-integral formulation, we obtain
a procedure that is superior to that used by Pozrikidis (1995). Second, we investigate
large capsule deformations for a variety of unstressed shapes, considering cases where
the internal viscosity of the capsule is different than that of the ambient fluid. We
characterize the behavioural modes observed and estimate the effective rheological
properties of dilute suspensions. The ability to compute large deformations allows us
to correct an erroneous conclusion drawn by Pozrikidis (1995) regarding the existence
of critical conditions for contined elongation. Finally, we compare our numerical
results with published experimental data for synthetic capsules and red blood cells
and find satisfactory agreement.

2. Problem formulation
We consider the deformation of a liquid capsule suspended in an infinite am-

bient fluid with viscosity µ, subject to an infinite simple shear flow with velocity
v∞(x, y, z) = (ky, 0, 0), as shown in figure 1. The capsule contains a Newtonian fluid
with viscosity λµ and is bounded by an elastic membrane S with infinitesimal thick-
ness and negligible resistance to bending. The precise mechanical properties of the
membrane will be specified later in this section. The capsule and ambient fluid densi-
ties are assumed equal, so that the capsule is neutrally buoyant. For future reference,
we label the ambient fluid as fluid 1 and the capsule fluid as fluid 2.

The size of the capsule is assumed to be sufficiently small so that the Reynolds
number of the flow is negligible and the motion of the fluid inside and outside the
capsule is governed by the equations of Stokes flow. These include the continuity
equation for incompressible fluids, ∇ · v(i) = 0, and the linearized equation of motion,
−∇p(i) + µi∇2v(i) = 0, where µi = µ for the external flow and λµ for the internal flow.
We assume the interface has a simple structure, so that the fluid velocity is identical
on either side: for x ∈ S , v(1)(x) = v(2)(x). The hydrodynamic traction exerted on either
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S

x

y

µ1 = µ

µ2 = λµ

vx = ky

Figure 1. Schematic diagram of capsule in shear flow.

side of the interface at the point xm, however, undergoes a discontinuity,

∆f = (σ(1) − σ(2)) · n (2.1)

where σ(i) is the stress tensor of fluid i at x, and n is the unit vector normal to the
interface, pointing into the ambient fluid. A differential balance of the hydrodynamic
and elastic tensions on an infinitesimal section of the interface yields a relation
between ∆f and the membrane tension tensor T ,

∆f = ∇s · T . (2.2)

The surface divergence operator is defined in terms of the normal vector as ∇s =
(I − nn) · ∇, where I is the identity tensor.

To complete the mathematical formulation, we must introduce an elastic constitutive
equation that expresses the membrane tensions in terms of the interfacial deformation.
We follow standard procedure (Beatty 1987) and consider the position vector X of
a point particle on the interface in the unstressed state, and the position x after
deformation. To develop a theory of elasticity for a three-dimensional solid, we
introduce the deformation gradient F , defined as

F (X , t) =
∂x(X , t)

∂X
. (2.3)

To model membrane tensions, we follow the alternative approach of Barthès-Biesel
& Rallison (1981) and introduce the surface deformation gradient

A = (I − nn) · F · (I −NN ), (2.4)

where N denotes the unit vector normal to the undeformed surface. Note that the
projections of a tangent vector on A and F are identical (dx = A · dX = F · dX when
dX · N = 0), whereas the projection of a normal vector on A vanishes (A ·N = 0).
Thus, the surface deformation gradient tensor A is singular with the zero eigenvalue
corresponding to the eigenvector N . We proceed by defining the stretch tensor Λ and
the left Cauchy-Green strain tensor B ,

B = Λ2 = A · AT . (2.5)

The eigenvalues λi of Λ are the principal extension ratios of the interface at a point.
Barthès-Biesel & Rallison (1981) introduced the strain invariants

Λ1 = log λ1λ2 = 1
2

log
{

1
2
[tr(B)2 − tr(B2)]

}
, (2.6a)

Λ2 = 1
2
(λ1

2 + λ2
2)− 1 = 1

2
trB − 1, (2.6b)
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Elastic capsules in shear flow 121

and derived the following relationship between the Cauchy stresses and the surface
strain energy function W (Λ1, Λ2) for a hyperelastic material:

T = e−Λ1

[
∂W

∂Λ1

(I − nn) +
∂W

∂Λ2

B

]
. (2.7)

Note that the strain energy does not depend on λ3 explicitly; instead, it is determined
by λ1 and λ2 through a constitutive assumption of the form λ3 = λ3(λ1, λ2). Treating
the thin membrane as the zero-thickness limit of a three-dimensional isotropic in-
compressible elastic shell and expanding W in a McLaurin series with respect to the
strain invariants, we obtain

W = c+
Eh

3
[−Λ1 + Λ2 + Λ1

2 + . . .], (2.8)

where c is an arbitrary constant, h is the membrane thickness, and E is the bulk
Young modulus of the three-dimensional elastic material (Barthès-Biesel & Rallison
1981). The surface elastic modulus for an elastic membrane is related to the bulk
modulus by Es = Eh.

Alternative constitutive equations for hyperelastic materials, such as Mooney elastic
solids or biological membranes, may be used. For example, elastomeric behaviour is
described by the Mooney–Rivlin strain energy function. For a thin membrane,

W =
Es

6
(1− ψ′)[2Λ2 + e−2Λ2 − 1] +

Es

6
ψ′[2Λ2e

−2Λ1 + 2e−2Λ1 + e2Λ1 − 3], (2.9)

where the dimensionless parameter ψ′ ∈ [0, 1] introduces nonlinear behaviour (Li
et al. 1988). When ψ′ = 0, the second term in (2.9) vanishes and the membrane is
known as a neohookean elastic. To describe the elastic behaviour of the red cell
membrane, which easily undergoes shear deformation but strongly resists local and
global dilatation, Skalak et al. (1973) proposed the strain energy function

W =
B

4
[2Λ2(Λ2 + 1) + 1− e2Λ2] +

C

8
[e2Λ1 − 1]2, (2.10)

where B � C .
Having made a choice for W , we have a complete system of governing equations

and accompanying boundary conditions. To compute the capsule deformation, we
must determine the interfacial velocity field. We use a well-established formalism
(Pozrikidis 1992) and derive the integral equation

v(x0) =
2

(λ+ 1)
v∞ − 1

4πµ(λ+ 1)

∫
S

∆f(x) · G(x, x0) dSp(x)

+
1− λ

4π(1 + λ)

∫
S

v(x) · Σ(x, x0) · n(x) dSp(x) (2.11)

for the interfacial velocity v at the point x0 that lies in the interface. The first and
second integrals on the right-hand side are respectively the single-layer potential and
the principal value of the double-layer potential of Stokes flow. The free-space Green’s
function and associated stress field are given by

G(x, x0) =
1

r
I +

(x− x0)(x− x0)

r3
, (2.12a)

Σ(x, x0) = −6
(x− x0)(x− x0)(x− x0)

r5
, (2.12b)
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122 S. Ramanujan and C. Pozrikidis

where r = |x− x0|. When the internal and external fluid viscosities are equal (λ = 1),
the double-layer term disappears. More generally, having computed ∆f from (2.2), we
obtain a Fredholm integral equation of the second kind for the interfacial velocity.
In §3, we discuss the numerical evaluation of ∆f and the solution of the integral
equation using a boundary-element method.

To identify the parameters affecting the capsule deformation, we recast the gov-
erning equations and boundary conditions in dimensionless form. Lengths are scaled
by the particle radius a, time by k−1, velocities by ka, fluid stresses by µk, and in-
terfacial stresses by an appropriate surface elastic modulus, Eh or Es for three- and
two-dimensional elastics respectively.

In terms of dimensionless variables indicated by an asterisk, the boundary-integral
equation (2.11) becomes

v∗(x∗0) =
2

(1 + λ)
v∞∗(x∗0)−

G

4π(λ+ 1)

∫
S

∆f∗(x) · G(x∗, x∗0) dS∗p (x∗)

+
1− λ

4π(1 + λ)

∫
S

v∗(x∗) · Σ(x∗, x∗o) · n(x∗) dS∗p (x∗). (2.13)

The dimensionless shear rate,

G = µka/Es, (2.14)

expresses the ratio of external viscous deforming stresses to restoring elastic tensions
and is the counterpart of the capillary number, Ca = µka/γ, associated with drops
with constant surface tension γ. Equation (2.13) shows that the drop deformation
is determined by the dimensionless shear rate G and the viscosity ratio λ, the two
parameters of our problem. The significance of their roles will be assessed in the
numerical investigations.

Considering now a dilute suspension, we neglect interparticle hydrodynamic inter-
actions and express the effective rheological properties in terms of the flow past an
isolated particle (Pozrikidis 1992). Pozrikidis (1995) showed that the effective stress
tensor of a dilute suspension can be recast into the form

〈σ〉 = −δ〈P 〉+ 2µ〈e〉+ Φ

∫
S

{(∆f)x− µ(1− λ)(vn+ nv)} dSp, (2.15)

where Φ is the number density of particles, P is the pressure, e is the rate of strain
tensor, and 〈 〉 denotes the volume average of its argument. The integral in (2.15)
represents the contribution of the suspended particles and is known as the particle
stresslet or particle stress tensor S .

3. Numerical method
Pozrikidis (1995) developed a numerical method for solving the preceding equations

and implemented it in the special case where the viscosity ratio λ is equal to unity.
His description of the capsule interface in global surface curvilinear coordinates has
several disadvantages outlined in the introduction. In this work, we circumvent these
difficulties by using an unstructured triangular grid. The present boundary-element
method involves the following steps:

(1) trace the interface with a collection of marker points that define an unstructured
grid of triangular elements;

(2) calculate the elastic tensions at the triangle vertices;
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(a) (b)

Figure 2. (a) Unstructured discretization of a sphere. (b) Unstructured discretization of the red
blood cell’s biconcave disk shape.

(3) calculate the velocity of each node by solving an integral equation using the
boundary-element method;

(4) advance the position of the nodes and update their coordinates in the unstressed
state for future computation of elastic tensions;

(5) return to step 2.
To discretize the unstressed interface, we subdivide each triangular face of a

regular octahedron (Ne0 = 8) or icosahedron (Ne0 = 20) into 4n triangular elements.
The triangles are then projected radially onto a sphere to give a nearly, but not
perfectly, isotropic grid of Ne = 4nNe0 elements, as shown in figure 2(a). To describe
an oblate spheroid with aspect ratio b/a and yet maintain a high density of points
at high-curvature areas, we use the mapping xobl = Rx, yobl = Ry, zobl = (b/a)Rz and
adjust the radius R to preserve volume.

In addition to spheres and oblate spheroids, we consider the biconcave disk shape
assumed by red blood cells at rest. Evans & Fung (1972) reported that the red cell
shape is described in polar cylindrical coordinates by

z(r) =

[
1−

(
r

R0

)]1/2
[
C0 + C2

(
r

R0

)2

+ C4

(
r

R0

)4
]
, (3.1)

where r ∈ [0, R0] and θ ∈ [0, 2π]. The experimentally determined coefficients R0, C0, C2

and C4 depend on the tonicity of the suspending medium. To discretize the biconcave
disk, we map the grid from the surface of the sphere using the equations

xrbc = Rx , yrbc = 1
2
R(1− r2)1/2

(
C0 + C2r

2 + C4r
4
)
, zrbc = Rz , (3.2)

where r2 = x2 + z2 and R is adjusted to preserve the volume. Figure 2(b) shows the
discretized shape of a healthy adult red blood cell suspended in an isotonic solution,
corresponding to C0/R0 = 0.207, C2/R0 = 2.003, and C4/R0 = −1.123.

The geometry of each element is described parametrically using six nodes, three
located at the vertices and three along the edges, as shown in figure 3(a). A grid of
Ne elements requires a total of Np = 2Ne + 2 nodes. A function h(x) defined over the
triangle, such as the position vector, is approximated by the quadratic form

h(ξ, η) =

6∑
i=1

hiφi(ξ, η) (3.3)

where hi is the value of h at node i, and the basis functions φi are given by Pozrikidis
(1998). The local parametric coordinates ξ and η vary over a parametric right triangle,
as shown in figure 3(b).
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(a) 3

5

2

4

1

6

3

5

241

6

(b) η

ξ

(γ, 1 – γ)

(1, 0)(α, 0)(0, 0)

(0, β)

(0, 1)

Figure 3. (a) Mapping of a curved surface triangle onto the parametric right triangle. (b) The six
nodes of the local parametric triangle.

The elastic tension tensor for a hyperelastic membrane is computed from the
Cauchy–Green strain tensor, which is determined from the surface deformation gra-
dient, A. Three vector equations are required to evaluate the three rows of A. Since
A acts on tangent and normal vectors according to dx = A · dX and 0 = A · N , we
require that

∂x

∂ξ
= A · ∂X

∂ξ
,

∂x

∂η
= A · ∂X

∂η
, 0 = A ·N . (3.4)

The tangent and normal vectors are discontinuous at the element edges and nodes,
causing discontinuities in A. After extensive experimentation, we found that the
accuracy of the simulation improves considerably if the multiple values of A are
averaged at each node, weighted by the angles formed by the element edges at the
point. Other averaging methods and a best-fit approach produced results of similar
or inferior accuracy. Once the deformation tensor has been determined, the elastic
strain and stress tensors follow from (2.5) and (2.7).

The velocity of each marker point is obtained by solving the integral equation (2.11).
The surface integrals are treated as the sum of integrals over the Ne elements, yielding

v(x0) =
2

(λ+ 1)
v∞(x0)−

1

4πµ(λ+ 1)

Ne∑
n=1

∫
En

∆f(x) · G(x, x0) dS(x)

+
1− λ

4π(1 + λ)

Ne∑
n=1

∫
En

v(x) · Σ(x, x0) · n(x) dS(x). (3.5)

Equation (2.2) relates the traction discontinuity multiplying the kernel of the single-
layer integral to the surface divergence of the elastic stress field. Even on a structured
grid where high-order differentiation is possible, numerical differentiation introduces
noise and amplifies the error. On an unstructured grid, the implementation of numer-
ical differentiation is complicated by the disordered distribution of the marker points.
As an alternative to numerical differentiation, we adopt the method developed by
Pozrikidis (1995) and calculate the average traction discontinuity on an element En
with area Sn enclosed by the contour Cn from the line integral

〈∆f〉n = − 1

Sn

∮
Cn

T · b dl. (3.6)

The binormal vector, b = t × n, is the cross-product of the unit vector tangent to C
and the unit normal to the surface. Equation (3.6) can be derived either by applying
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the divergence theorem to (2.2) or by performing a force balance on element En. The
stress field along the contour of an element is determined by interpolation from the
nodal values, and the contour integral is computed along each edge using a Gaussian
quadrature. Quadratic interpolation of the stress field causes errors in the tensions
at non-vertex nodes, leading to numerical instability. With linear interpolation, only
vertex-node values of the stress are required, and the stress field behaves smoothly
up to significantly longer times.

Having computed the elastic tensions over all elements, the single-layer integral is
expressed in terms of the average traction discontinuity by the approximation∫

En

∆f(x) · G(x, x0) dS(x) ' 〈∆f〉n ·
∫
En

G(x, x0) dS(x), (3.7)

which is the surface-integral equivalent of the trapezoidal rule. Since the domain
of integration is closed and may thus be extended to become periodic, the Euler–
McLaurin formula ensures that the integral converges with respect to the number of
boundary elements at a rate that is faster than algebraic.

Using these approximations, we apply (3.5) at each node to obtain a system of
Np equations with the Np unknown node velocities appearing on both sides of the
equations. The Neumann series of the underlying integral equation converges for any
finite and non-zero λ (Pozrikidis 1990), and thus the system may be solved by the
method of successive substitutions. Typically, 3–50 iterations are required per velocity
evaluation depending on the viscosity ratio and the size of the time-step. The rate of
convergence may be accelerated by eigenvalue deflation, but this was not necessary
in the present study.

Non-singular integrals are calculated using a Gaussian quadrature formula for
triangular domains (Cowper 1973). The O(1/r) singularity in the single-layer integral
is treated by transforming the parametric triangle to polar coordinates with origin
at the singular point, such that the Jacobian of the mapping exactly cancels the
singularity in the integrals. To treat the singularities in the double-layer integrals, we
use the desingularization method described by Pozrikidis (1992).

The nodes defining the interfacial grid can be either material points that represent
infinitesimal membrane elements or simply marker points. In the first case, they
move with the velocity of the fluid, whereas in the second case, they move with
the component of the fluid velocity normal to the interface and with an arbitrary
tangential component. A drawback of the second approach is that the unstressed
positions X of the marker points must be updated according to the evolution equation

DX

Dt
=
∂X

∂t
+ v · ∇X = 0, (3.8)

which states that the initial position of a material point moving with the fluid velocity
remains unchanged. An advantage of the second approach is that the tangential
velocity field may be optimized to minimize the grid distortion (Loewenberg & Hinch
1996; Coulliette & Pozrikidis 1998). Numerical experimentation showed that the best
results are obtained when the nodes are point particles; the elasticity of the interface
naturally prevents large distortions, especially at low deformations.

Once the velocity of the marker points has been computed, their positions are
advanced using the Runge–Kutta–Fehlberg method of orders 2 and 3 (Stoer &
Bulirsch 1976; Pozrikidis 1998). This explicit integration scheme requires three velocity
evaluations per time-step. The extra evaluation compared to the second-order Runge–
Kutta method allows adaptive adjustment of the time-step. The additional CPU
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requirement per step is outweighed by the reduction in the number of steps resulting
from adaptive time-stepping.

The deformation and inclination of a deformed capsule are computed from the
principal directions of the inertia tensor,

I =

∫
V

[r2I − xx]d3r =
1

5

∫
∂V

[r2xI − xxx] · n d2r. (3.9)

For numerical convenience, the divergence theorem was used to convert the volume
integral to a surface integral. The deformation is then expressed in terms of the Taylor
deformation parameter Dxy = (L − l)/(L + l), where L and l are the maximum and
minimum radii of the contour in the (x, y)-plane. In practice, we find it more suitable
to use the deformation parameter of the triaxial ellipsoid with the same inertia tensor,
which is computed using the relations

I1 = (ρV/5)(l22 + l23), I2 = (ρV/5)(l21 + l23), I3 = (ρV/5)(l21 + l22), (3.10)

where Ii are the principal moments of inertia, and li are the the corresponding
dimensions of the ellipsoid.

The numerical method was validated by comparing results with predictions of the
small-deformation theory of Barthès-Biesel and coworkers for spherical capsules in
weak flows (G = 0.0125, 0.025) as will be discussed in §4. Further comparison of
our results with those of Pozrikidis (1995) for spherical capsules with λ = 1 and
G = 0.0125–1.0 showed perfect agreement for the shorter times to which the latter
simulations were reliable.

An octahedral discretization with 512 elements and 1026 points was used in all cases.
Convergence was verified by considering several test cases under conditions of large
deformations. For the octahedral discretization, symmetry about the z-coordinate
plane and the z-axis was exploited to reduce the number of unknown point velocities
to only one quarter of the nodes. One iteration of a full velocity evaluation requires
approximately 13 s on a 266 MHz Alpha processor. A complete simulation requires
anywhere from 30–1000 time-steps, each involving three velocity evaluations. Each
simulation requires approximately 3–4 MB of memory.

4. Spherical capsules
Simulations were performed for capsules with spherical unstressed shapes and

viscosity ratios λ = 0.2, 1.0, and 5.0. In each case, a wide range of dimensionless
shear rates G was considered. For reference, the viscosity ratio of a red blood cell
suspended in plasma ranges between 5 and 10, and that of a cell suspended in a
standard medium used in viscometric experiments generally ranges between 0.1 and
1. In the simulations, the unstressed capsule is subjected to an impulsively started
steady simple shear flow. The original intention was to compare the results from
simulations performed with the zero-thickness shell formulation for the membrane
with results based on the neohookean membrane. However, after completing the
former simulations and embarking on the latter, it became obvious that the differences
in behaviour between the two cases were negligible. Although the deformations for
the neohookean membrane were slightly higher under all conditions, the maximum
difference in Dxy , for example, was less than 3% throughout the course of the
simulations, even for the most highly deformed capsules (λ = 0.2, G = 0.45). Therefore,
we present the results obtained with the zero-thickness shell approximation, noting
that these results are applicable to neohookean membranes as well.
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Figure 4. Evolution of (a) the deformation parameter and (b) inclination angle for spherical
capsules with λ = 1.0. Dotted lines indicate predictions of linear perturbation theory.
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Figure 5. As figure 4 but with λ = 0.2.

Figures 4–6 show the evolution of the Taylor deformation parameter, Dxy , and
inclination angle, θ, at the three values of λ. The predictions of the first-order small-
deformation analysis of Barthès-Biesel & Rallison (1981) are also plotted with dashed
lines for comparison. The agreement between the numerical and asymptotic results
is excellent at small deformations, but worsens at moderate and large deformations.
A more detailed comparison will be made later in the discussion. At low values
of λ and G, the deformation and inclination curves are monotonic, but as λ or
G is raised, the curves exhibit increasingly pronounced over-shoot accompanied
by decaying oscillations. Corresponding analytical and numerical results for high-
viscosity droplets (Cox 1969; Kennedy et al. 1994) also reveal decaying oscillations,
in agreement with experimentally observed ‘wobbling’ motions.

In all cases, the capsules deform to obtain nearly ellipsoidal steady shapes that
are inclined with respect to the x-axis at well-defined angles. In figure 7, we show
the initial and final capsule contours in the (x, y)-plane for λ = 1 at various values
of G. Figure 8 shows the profile along the capsule contour in the (x, y)-plane of
the membrane tensions in the plane (Txy) and normal to the plane, along the z-axis
(Tz) for the relatively large deformation at λ = 1, G = 0.5. At high deformations,
the capsules assume sigmoidal shapes familiar from experimental and numerical
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Figure 6. As figure 4 but with λ = 5.0.

studies of liquid drops (Taylor 1932; Kennedy et al. 1994). Incorporation of bending
resistance would likely prevent the formation of the extreme high-curvature tips seen
at G = 1.0; even so, the results show that the numerical method is able to handle
large deformations. Figure 9 illustrates the dependence of the steady-state deformation
parameter and inclination angle on G. An increase in G at constant λ or a decrease in
λ at constant G raises the ratio of deforming stresses to restoring tensions and leads
to greater deformations. As G is raised, the capsules elongate and tend to align with
the streamlines of the unperturbed flow. Membrane rotation allows the less-viscous
capsules to absorb the hydrodynamic stresses they experience while projecting across
streamlines of the undisturbed flow. High internal viscosity retards the motion of the
membrane, forcing the capsules to align with the flow. Thus, an increase in λ also
leads to greater alignment with the flow.

For liquid drops with λ less than approximately 4, there is a critical capillary
number above which the drops continue to elongate without reaching a steady state.
Our results show no evidence of an analogous critical behaviour. Previously, Pozrikidis
(1995) proposed the existence of a critical value of G between 0.2 and 1.0 for continued
elongation of capsules with λ = 1 in simple shear flow, similar to that established by
Li et al. (1988) for capsules in axisymmetric flow. His statement was based on small
and moderate deformations of rapidly deforming capsules at high shear rates. Our
results extend his findings to greater deformations and negate his proposition. The
experimentally observed burst of capsules probably results instead from nonlinear
membrane behaviour or material failure. Chang & Olbricht (1993b) noted that the
site of failure of their synthetic capsules corresponded with theoretical predictions
for the site of greatest membrane thinning. The numerical results of Pozrikidis (1995)
later indicated that the most severe thinning coincides with the largest interfacial
tensions, so burst may also have been due to material failure under high tension.
In addition, we note that the synthetic capsules in Chang & Olbricht’s experiments
exhibited definite nonlinear behaviour including plastic deformation.

At sufficiently small deformations, our numerical results agree with the predictions
of the first- and second-order small-deformation analyses of Barthès-Biesel & Rallison
(1981) and Barthès-Biesel (1980), shown respectively with the solid and dashed lines
in figure 9. As G is increased, the steady-state linear prediction Dxy = (25/4)G
overestimates the deformation. When λ = 1 or 0.2, the asymptotic results are accurate
only for G < 0.05. At λ = 5, the agreement is poor even at small deformations and low
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G = 0.025 G = 0.05

G = 0.1 G = 0.2

G = 0.5 G = 1.0

Figure 7. Initial and deformed contours in the (x, y)-plane of spherical capsules at various
dimensionless shear rates.

shear rates. The second-order theory not only overpredicts the steady deformation,
but also suggests that the deformation increases with increasing λ, which contradicts
the trend seen in both experiment and simulation. The linear analysis predicts a
steady inclination of θ = π/4 in all cases. The second-order theory does indicate that
the inclination decreases as λ is raised, but overpredicts the actual value for all but
the smallest deformations.

Chang & Olbricht’s (1993b) experiments with synthetic capsules also indicate
that Dxy and θ are overestimated by the small-deformation theory. Because the
experiments used capsules with appreciable membrane viscosity and λ � 0.2, a
detailed comparison with the present numerical results is not appropriate. Despite
the differences, the experimentally determined steady-state dependences of Dxy and θ
on G are similar to those predicted by the simulations. In addition, the value of Dxy
at which the experimental curve of Dxy vs. G begins to depart from the prediction of
first-order theory lies between 0.2 and 0.25, which matches the value seen in figure 9
for λ = 0.2 or 1.0.

Even after a capsule has obtained a steady shape, the membrane continues to
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Figure 8. Interfacial tensions along capsule contour in the (x, y)-plane, non-dimensionalized by µka.
Txy represents tensions in the (x, y)-plane, and Tz represents tensions perpendicular to the plane,
along the z-axis.
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Figure 9. Steady-state dependence of (a) the deformation parameter and (b) inclination angle
on dimensionless shear rate for initially spherical capsules with λ = 0.2, 1.0, and 5.0. Solid lines
indicate predictions of first-order perturbation theory (O(ε)). Dashed lines indicate predictions of
second-order perturbation theory (O(ε2)).

rotate around the interior fluid in a tank-treading mode. We illustrate this behaviour
in figure 10 by superimposing the trajectory of a material point on the initial and
final capsule contours in the (x, y)-plane for the case λ = 1, G = 0.2. Eventually, the
point simply travels around the steady contour in a periodic motion. In figure 11
we present the tank-treading frequencies (TTFs) at different G and λ, normalized
by the corresponding frequency of rotation for a rigid sphere, fs = k/(4π). A linear
increase of the TTF with shear rate has been seen in experimental observations of red
blood cells (Fischer, Stohr-Liesen & Schmid-Schönbein 1978; Tran-Son-Tay, Sutera
& Rao 1984), corresponding to a constant value of f/fs for all G. Our simulations
predict a decrease in f/fs with G. This difference may be attributed to the area-
incompressibility of the red cell membrane. In the numerical simulations, the reduction
in the normalized TTF with increasing G reflects the increased contour circumference
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Figure 10. Trajectory of a single material point superimposed on initial and final contours of an
initially spherical capsule with λ = 1.0 deformed at G = 0.2. Trajectory reflects initial deformation
of capsule and subsequent tank-treading at a steady configuration.
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λ = 0.2
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Figure 11. Steady-state dependence of tank-treading frequency on dimensionless shear rate for
initially spherical capsules with λ = 0.2, 1.0, and 5.0.

at large deformations. At low values of G, the more-viscous internal fluid retards the
motion of the membrane, and the TTF decreases with increasing λ. At high values
of G, the larger deformation at lower λ reduces the TTFs, and the trend reverses.

Next, we examine the rheological properties of a dilute suspension based on the
effective stresses defined in (2.15). The transient profiles of the particle shear stress
and the first and second normal-stress differences for λ = 1 and G = 0.2 are shown
in figure 12, where the stresses have been normalized by the particle shear stress for
a dilute suspension of rigid spheres, Sxy,s = 5kµ/2. The effective viscosity of the dilute
suspension can be expressed in terms of the non-dimensional particle shear stress
S∗xy = Sxy/Sxy,s as µeff = µ

(
1 + 5

2
S∗xy
)
. While the linear perturbation theory predicts

S∗xy = 1 at all values of G, the numerically determined S∗xy decrease with G, indicating a
shear-thinning behaviour. For any given λ and G, | N∗1 |>| N∗2 | and N∗2 < 0, suggesting
that the dilute suspension acts as a viscoelastic medium (Bird, Armstrong & Hassager
1977).
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Figure 12. Transient profiles of normalized particle (a) shear stress, (b) first normal-stress difference,
and (c) second normal-stress difference for initially spherical capsules with λ = 1. Dashed lines
indicate predictions of linear perturbation theory.

A graph of the steady-state shear stress vs. G at the different λ, shown in figure 13,
reveals shear-thinning behaviour at all values of λ. The dependence of the effective
shear stress on the viscosity ratio at a fixed value of G displays a curious trend.
At low shear rates, S ∗xy actually increases with decreasing λ, which suggests the
counterintuitive result that the suspension viscosity increases as the particles become
more deformable. This trend reverses at higher shear rates where the decrease in
S∗xy with G is steeper at lower values of λ. The unexpected trend at low G results
from higher interfacial stresses and traction discontinuities across the more-deformed
membranes at lower values of λ. As G is raised, the steady-state interfacial velocity
increases more significantly at low λ, leading to a complete reversal of the trend by
G = 0.45. Steady-state results for the first and second normal-stress differences are
not provided here because their approach to steady values is too slow at high G to
allow accurate determination.

5. Oblate spheroids and biconcave capsules
The spherical shape considered in the preceding section is an idealization of actual

shapes encountered in practice. Synthetic capsules deviate from perfect spheres due
to manufacturing imperfections, and resting red blood cells assume a biconcave disk
configuration, resembling highly oblate spheroids with dimples on the flat sides.
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Figure 13. Steady-state dependence of normalized particle shear stress on dimensionless shear rate
for initially spherical capsules with λ = 0.2, 1.0, and 5.0.

Because of analytical complexities, small-deformation theory has addressed only the
spherical shape. Previous numerical methods (Pozrikidis 1995) proved too unstable for
extended simulation of non-spherical shapes with definitive conclusions. Fortunately,
the unstructured triangulation used here allows for more extensive investigations. In
the series of simulations described in this section, we consider capsules with oblate
shapes of various aspect ratios. For an oblate capsule of volume V , the dimensionless
shear rate is defined in terms of the radius of an isovolumic sphere, a = (3V/4π)1/3.
Once again, we use the zero-thickness shell description of the membrane behaviour
for the same reason as noted previously.

First, we consider a capsule with the nearly spherical unstressed shape of an oblate
spheroid of aspect ratio b/a = 0.9, inclined at the angle θ0 = π/4 with respect
to the streamlines of the unperturbed flow. Figure 14 shows the evolution of the
deformation parameter and inclination angle for λ = 1 and G = 0.05, 0.1 and 0.2,
plotted along with the corresponding evolution curves of an initially spherical capsule,
indicated by dashed lines. Unlike the spherical capsule, the oblate capsule undergoes
non-decaying small-amplitude oscillations in both the deformation parameter and
inclination angle. The fluctuations are centred approximately at the steady-state
deformation and inclination of the spherical capsule.

We investigate the origin of the fluctuations by comparing the time scale of the
oscillations with the time scale of the membrane rotation. We calculate a tank-
treading period, from the mean value of the TTF, and then halve it to account for
the symmetry of the shape. In table 1, we compare half the membrane tank-treading
period (TTP) with the period of the oscillations in the deformation parameter and
inclination angle (Tosc) at different values of G. The agreement between the time scales
supports the hypothesis that the oscillations are related to the membrane rotation.
Discrepancies occur because the capsules have not established a perfectly periodic
motion, especially at G = 0.05.

In their experimental study of synthetic capsules in shear flow, Chang & Olbricht
(1993b) reported similar sustained small-amplitude oscillations in both Dxy and θ.
Their capsules were nearly but not perfectly spherical; the values of Dxy in the
unstressed state ranged between 0.02 and 0.1, encompassing the value Dxy = 0.05 for
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Figure 14. Evolution of (a) the deformation parameter and (b) inclination angle for oblate spheroidal
capsules with b/a = 0.9 and λ = 1.0 at different dimensionless shear rates. Dashed lines indicate
corresponding behaviour of initially spherical capsules.

G 〈TTF〉4π/k k(TTP/2) kTosc

0.2 0.63 10.0 9.6
0.1 0.75 8.4 8.7
0.05 0.85 7.4 6.6

Table 1. Comparison of tank-treading and oscillatory time scales for initially oblate capsules with
b/a = 0.9 and λ = 1.0.

G kTosc D̄xy/π ± ∆ θ̄/π ± ∆

Numerical 0.1 8.7 0.38±0.03 0.145±0.01
Experimental 0.1 7.4 0.38±0.04 0.17±0.04

Table 2. Comparison of numerically computed oscillations with those observed experimentally by
Chang & Olbricht. Numerical results are for an initially oblate spheroidal capsule with b/a = 0.9
and λ = 1.0. Experimental results are for a nearly spherical capsule with λ� 1.0.

the oblate spheroid of aspect ratio 0.9. Although the viscosity ratios in the experiments
were well below 1.0 and the capsules were enclosed by viscoelastic membranes, a
comparison between the motions observed in the laboratory with those simulated
here reveals strong similarities. Rough estimates of the periods, mean values, and
magnitudes of the fluctuations observed in the experiments at a shear rate k = 3.5 s−1

are given in table 2 alongside the results of our simulation for G = 0.1, λ = 1. The
good agreement, despite the differences in the physical properties of the capsules, can
be explained by the balancing effects of the higher surface viscosity and lower λ. The
former reduces the particle deformability, while the latter increases it.

To determine the effect of the initial inclination on the subsequent deformation, we
repeated the simulation for G = 0.2 using various initial inclinations. The results, re-
ported by Ramanujan (1998), indicate that the initial inclination does not significantly
influence the mean value, amplitude, or period of the sustained oscillations.

Chang & Olbricht (1993b) noted that the oscillations in the capsule motion should
be distinguished from the periodic tumbling of non-spherical rigid particles un-
dergoing Jeffery’s orbits. Small-deformation analysis of capsules with viscoelastic
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membranes (Barthès-Biesel & Sgaier 1985) predicts a periodic motion more akin to
Jeffery’s orbits as a result of reduced deformability at high surface viscosity.

Returning to figure 14, we observe that the amplitude of the oscillations decreases
with increasing G; the trend is especially noticeable in the evolution of the inclination.
This behaviour contrasts with the damped oscillations of spherical capsules, for
which the amplitude of the oscillations becomes more pronounced as G is raised.
The opposite effect of G on the oscillations of spherical and oblate capsules suggests
fundamental differences in the physical origin of the oscillations. It appears that the
small-scale oscillations for non-spherical unstressed shapes are different in nature from
the decaying oscillations or rotational behaviours of spherical capsules, capsules with
highly viscous membranes, and rigid particles. Additional simulations were performed
to determine the effect of λ on the deformation and inclination. A comparison of the
profiles at λ = 1.0, 5.0, and 10.0 (Ramanujan 1998) suggests that an increase in λ
amplifies the oscillation, as it does for the damped oscillation of spherical capsules.

Since the values of Dxy and θ for a nearly spherical capsule oscillate about the
corresponding values for a spherical capsule, the trends noted for spherical capsules
remain applicable. An increase in G leads to greater deformation and increased
alignment with the flow, whereas an increase in λ results in lower deformations but
still greater alignment with the flow.

Next, we consider spheroidal capsules with more-oblate unstressed shapes of aspect
ratios b/a = 0.5 and 0.3. In addition, we consider capsules with unstressed shapes of
biconcave disks. A basis for comparing different shapes is provided by the sphericity,
s = S/(36πV 2)1/3, where V is the capsule volume and S is its surface area. The
sphericity represents the ratio of the surface area of an isovolumic sphere to the
surface area of the capsule. Since the sphere has the minimum surface area for a
given volume, s is less than unity for any non-spherical shape. The sphericities of the
oblate spheroids with aspect ratio 0.9 and 0.5 are respectively s = 0.998 and s = 0.91.
The oblate spheroid of aspect ratio 0.3 and the biconcave disk described in §3 have
comparable sphericities of 0.76 and 0.75.

Figure 15 shows the evolution of Dxy and θ for oblate capsules with λ = 1.0 and
G = 0.2. Initial and deformed configurations are shown in figure 16. At long times,
all capsules obtain inclined nearly ellipsoidal shapes; the dimples of the biconcave
disk are smoothed out. In all cases, a material point on the membrane rotates around
the capsule in an unsteady tank-treading mode. Sustained oscillations in Dxy and θ
are seen for b/a = 0.9 and b/a = 0.5. For the spheroid with b/a = 0.3 and for the
biconcave disk, numerical instabilities due to grid degradation limited the extent of
the simulation. The results shown here reflect the reliable portion of the simulation,
during which all properties including deformation, inclination, rheological properties,
and interfacial tensions, vary smoothly in time/space. Despite the limited duration of
the simulations, the non-monotonic inclination and deformation curves suggest that
the capsules are likely to experience oscillations at later times. The amplitude and
period of the oscillations appear to increase with decreasing sphericity. The behaviour
of the biconcave disk is similar to that of the spheroid with b/a = 0.3 throughout the
course of the simulation.

The simulations were repeated for λ = 0.2 and λ = 5. At λ = 0.2, the numerical
method becomes unstable relatively early; however, the results are qualitatively similar
to those at λ = 1 (Ramanujan 1998). The inclination and deformation profiles for
λ = 5 are shown in figure 17. Although there is little change in the character of the
response for the b/a = 0.9 spheroid, we see significant differences in the behaviour
of the more-oblate capsules. For the b/a = 0.5 capsule, we still observe oscillations,
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Figure 15. Evolution of (a) the deformation parameter and (b) inclination angle for oblate
spheroidal and biconcave capsules with λ = 1.0 at G = 0.2.

(a) (b)

(c) (d)

Figure 16. Initial and deformed contours in the (x, y)-plane of oblate spheroidal and biconcave
capsules with λ = 1.0 at G = 0.2. Initial configurations are (a) b/a = 0.9 spheroid, (b) b/a = 0.5
spheroid, (c) b/a = 0.3 spheroid, and (d) biconcave disk.

but the amplitudes are larger at λ = 5 than at λ = 1, and the inclination drops below
zero before increasing again. The inclination profiles for the b/a = 0.3 spheroid and
the biconcave disk also drop below zero, but do not return to positive angles during
the course of the simulations, and there is no evidence that they will do so at later
times. Instead, the inclination profiles suggest continuous rotation in the clockwise
direction.
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Figure 17. Evolution of (a) the deformation parameter and (b) inclination angle for oblate
spheroidal and biconcave capsules with λ = 5.0 at G = 0.2.
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Figure 18. Evolution of the inclination angle for biconcave capsules with λ = 5.0 at G = 0.2 and
various initial inclinations. Regardless of initial inclination, capsule rotates in clockwise direction
only.

Additional results for the biconcave disk at various initial inclinations, shown
in figure 18, also indicate clockwise rotation. Evidence of continued rotation was
not seen for less-oblate and less-viscous spheroidal capsules. Plots of the capsule
contours, shown in figure 19, reveal that as the capsule deforms, the dimple becomes
deeper and sharper, and a cusp-like structure develops due to the absence of bending
resistance. This behaviour differs from the elongation and subsequent rotation of the
membrane around the interior fluid observed at lower values of λ. The monotonic
inclination profiles together with the continued association of given material points
with membrane features indicate that the motion is better described as simultaneous
rotation and deformation rather than elongation and tank-treading. Thus, there is a
transition to a rotational mode resembling the motion of rigid bodies in shear flow
predicted by Jeffery (1922).

To examine this hypothesis, we consider the behaviour of the oblate capsules at
λ = 10. The more oblate spheroids with b/a = 0.5 and b/a = 0.3 and the biconcave
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Figure 19. Progressive cross-sections of a biconcave discoidal capsule with λ = 5.0 deforming at
G = 0.2. Capsule deforms and rotates continuously until the onset of instabilities.

disk undergo a well-defined continuous rotation, as illustrated in figure 20 for the
biconcave disk. In figure 21 we compare the numerically determined inclination
profiles for the more oblate spheroids and the biconcave disc at λ = 10 with Jeffery’s
predictions for the rotation of rigid oblate spheroids,

tan(θ) =
−k
r2 + 1

(r2 cos2(t) + sin2(t)), (5.1)

where r is the spheroid aspect ratio. The aspect ratio of an equivalent rigid spheroid
is chosen such that the theoretical orbit period,

T =
2π

k

(
a

b
+
b

a

)
, (5.2)

matches the numerically obtained period of rotation. Rotation periods of kT = 20.5
for the biconcave disk, kT = 30.4 for the b/a = 0.3 spheroid, and kT = 21 for
the b/a = 0.5 spheroid yield equivalent aspect ratios of re = 0.34, re = 0.22, and
re = 0.33 respectively. The resulting inclination profiles show good agreement with
the numerical results, although discrepancies exist due to capsule deformability. In
experimental observations of red blood cells suspended in plasma in Poiseuille flow,
Goldsmith & Marlow (1972) observed rotation of individual cells and found that
Jeffery’s predictions for the rotation of a rigid spheroid closely matched their data.
The equivalent aspect ratio re = 0.34 determined here for the biconcave disk closely
matches the value re = 0.35 determined by Goldsmith & Marlow from experimental
data. The angular velocity is highest when the faces of the capsule are perpendicular to
the flow direction (θ = π/2), and lowest when they are aligned with the flow (θ = 0),
consistent with the ‘flipping’ behaviour (as opposed to steady rotation) described
in experiments (Goldsmith & Marlow 1972; Schmid-Schönbein & Wells 1969). The
particles are most elongated when aligned with the flow and least elongated when
perpendicular to it.

The numerical simulations of non-spherical capsules showed that: (1) the nearly
spherical capsule with b/a = 0.9 exhibits small-amplitude oscillations at all values
of λ studied, (2) the b/a = 0.5 spheroid rotates continuously at λ = 10 but exhibits
oscillations at λ 6 5, and (3) the biconcave disc and the b/a = 0.3 spheroid undergo
continuous rotation at λ = 10 and 5.0, but not at λ = 1.0 or 0.2. These results agree
with previous experimental and theoretical studies which found that the viscosity
ratio at which capsules switch from the rotational mode (high λ) to the elongational
‘tank-treading’ mode (low λ) decreases with decreasing sphericity (Bessis & Mohandas
1975; Keller & Skalak 1982; Kholeif & Weymann 1974; Morris & Williams 1978).
More-oblate shapes exhibit a greater tendency to tumble. The inclination profiles of
the b/a = 0.5 spheroid at the various λ, shown together in figure 22, illustrate how
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(a) (b) (c)

(d) (e) ( f )

Figure 20. Progressive cross-sections of a biconcave disk with λ = 10.0 deforming at G = 0.2
Corresponding dimensionless times are kt = (a) 0, (b) 3.86, (c) 5.64, (d) 10.0, (e) 15.86, (f) 19.61.
Capsule rotates continuously, as would a rigid particle.
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Figure 21. Evolution of inclination angle at λ = 10.0 and G = 0.2 for (a) b/a = 0.5 spheroid, (b)
b/a = 0.3 spheroid, and (c) biconcave disk. Dashed lines indicate corresponding behaviour of rigid
spheroids with b/a = 0.33, b/a = 0.22 and b/a = 0.34 respectively.
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Figure 22. Transient profiles of inclination angle for oblate spheroidal capsules with b/a = 0.5 and
various λ at G = 0.2. Capsule transitions from oscillatory to tumbling motion between λ = 5.0 and
λ = 10.0.

the small-scale oscillations grow with increasing λ while their mean values decrease,
leading to negative inclinations which eventually yield to continuous rotation. The
smoothing of oscillations as λ is decreased and as G is increased is consistent with
the observation that red cells attain apparently steady inclined configurations in
viscometric flows at high shear rates in viscous suspending media (Schmid-Schönbein
& Wells 1969). Although we see significant agreement between our numerical results
and experimental observations of blood cells, it is important to remember that red
cells deform at near constant area, with a maximum surface area expansion of 3–
4% before hemolysis. In contrast, the surface area of the biconcave disks in our
simulations varies by 4–25% at high-λ/low-G and low-λ/high-G respectively.

6. Discussion
Li et al. (1988) considered the deformation of axisymmetric capsules with λ = 1 in

uniaxial stagnation-point flow. Their numerical results predicted that when the rate of
elongation is increased above a critical value, the capsules continue to elongate while
their cross-sections decrease, and they transform into slender threads with pointed
ends. The continuous elongation despite increasing elastic tensions is possible only
because the radius of the nearly cylindrical membrane diminishes in time so that the
elastic force exerted on a cross-section remains finite; the elastic force is defined as
the product of the axial elastic tension and the total circumferential arclength. In the
case of simple shear flow, the cross-sectional area of an inclined capsule in a plane
perpendicular to the major axis of deformation does not decrease rapidly enough
to allow for continued elongation. This difference underlines the importance of the
vorticity of the incident flow.

In the case of axisymmetric flow, when the shear rate is subcritical and a steady
shape is established, the interfacial velocity vanishes, and the flow around the capsule
is identical to the flow past a rigid particle with the same shape; at that point, the
viscosity of the interior fluid ceases to play a role. However, the interior viscosity
can still affect the approach to steady state and the stability of the steady shape.
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To investigate the issue of stability, we implemented a boundary-integral method for
axisymmetric flow and extended the results of Li et al. (1988) to viscosity ratios other
than unity. The results showed that the critical shear rate for λ = 10 is only slightly
higher than that for λ = 1, and that for λ = 1 is somewhat lower than that for λ = 0.1.
Thus the viscosity ratio has a measurable but not a profound effect on the ability of
a capsule to establish a steady shape in axisymmetric flow.

Returning to simple shear flow, we note that nearly spherical capsules with low
to moderate internal-to-external viscosity ratios exhibit small-scale oscillations in the
deformation and inclination. These results agree qualitatively and quantitatively with
the experimental observations of synthetic capsules by Chang & Olbricht (1993b).
The oscillatory behaviour is a feature unique to non-spherical unstressed shapes. The
spherical capsule represents a special case where the surface points are completely
indistinguishable, allowing the capsule to maintain a steady configuration even as the
membrane tank-treads. In contrast, the material points on the membrane of the non-
spherical capsule are distinguished by their location on the unstressed shape. Thus,
rotation of the membrane affects the interfacial velocity field, and a steady tank-
treading behaviour cannot be established. Instead, we observe small-scale oscillations
related to the membrane rotation.

As the sphericity of the unstressed shape decreases or its internal viscosity increases,
the small-scale oscillations grow and give way to continuous rotation, accurately
described by Jeffery’s results for rigid bodies in shear flow. The tendency of more-
oblate particles to rotate, the value of the viscosity ratio at which the more-oblate
capsules are predicted to undergo rotation, and the predicted periods of rotation all
match experimental observations of red blood cells. Finally, the smoothing of the
oscillations as the viscosity ratio is decreased or as the shear rate is increased agrees
with observations that red cells obtain apparently steady configurations in viscometric
shear flow.

The boundary-element method developed in this work significantly improves our
ability to simulate capsules with hyperelastic membranes, enabling us to study moder-
ate to large deformations of spherical and oblate shapes. Even with the improvements
in the numerical method, numerical instability resulting from degradation of the grid
and the neglect of bending resistance are problematic under conditions of high and
low deformations, respectively. The development of adaptive grid regeneration using
the advancing-front method is the topic of a current investigation.
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