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ABSTRACT

In this paper, the density of the time to ruin is studied in the context of the classi-
cal compound Poisson risk model. Both one-dimensional and two-dimensional
Fourier-cosine series expansions are used to approximate the density of the time
to ruin, and the approximation errors are also obtained. Some numerical exam-
ples are also presented to show that the proposed method is very efficient.
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1. INTRODUCTION

In this paper, we suppose that the surplus flow of an insurance company evolves
as the classical risk model

Ut = u + ct −
Nt∑
j=1

Xj , t ≥ 0,

where u ≥ 0 is the initial surplus level, and c > 0 is the constant premium
rate. The claim number process {Nt}t≥0 is a homogeneous Poisson process with
intensity λ > 0. The random variables X1, X2, . . ., representing the individual
claim sizes, are independent and identically distributed like a generic variable X
with density function fX and mean μX. Throughout this paper, we assume that
the net profit condition c > λμX holds true, so that ruin is not a certain event.

For the surplus process Ut, we define the time of ruin by

τ = inf{t ≥ 0 : Ut < 0},
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and let τ = ∞ if Ut ≥ 0 for all t ≥ 0. Given the initial surplus u, the Laplace
transform of the ruin time is defined by

φδ(u) = E[e−δτ I(τ < ∞)|U0 = u],

where δ ≥ 0 is the interest force, and I(A) is the indicator function of an event
A. When δ = 0, φδ(u) reduces to the ultimate ruin probability

ψ(u) = P(τ < ∞|U0 = u), u ≥ 0.

Let fτ (u, t) denote the (defective) density of the time to ruin so that

φδ(u) =
∫ ∞

0
e−δt fτ (u, t)dt.

Define the Laplace transform of φδ(u) by φ̂δ(s) = ∫ ∞
0 e−suφδ(u)du. It is well

known that (see, e.g., Gerber and Shiu, 1998)

φ̂δ(s) =
λ

(
1− f̂X(ρ)

ρ
− 1− f̂X(s)

s

)
cs − (λ + δ) + λ f̂X(s)

, (1.1)

where f̂X(s) = ∫ ∞
0 e−sx fX(x)dx is the Laplace transform of fX, and ρ is the

unique positive root of the following generalized Lundberg equation

cs − (λ + δ) + λ f̂X(s) = 0. (1.2)

Furthermore, the initial value is given by the simple formula

φ̂δ(0) = λ

c
1 − f̂X(ρ)

ρ
. (1.3)

Formula (1.1) is useful for deriving the explicit expression for φδ(u). However,
in order to find some closed-form expressions for fτ (u, t), we need to invert the
Laplace transform of the time of ruin φδ(u) w.r.t. to the argument δ. Usually,
this is very hard to achieve for most classes of claim size densities.

The finite time ruin problem has been a challenging research topic in ruin
theory for a long time. Recently, more and more attention has been paid to
the identification of a closed-form expression for the density of the time of ruin.
Existing results in the literature are mainly based on the inversion of the Laplace
transform of the time of ruin. In the classical compound Poisson risk model,
Drekic and Willmot (2003) studied the density of the ruin time for exponential
claim size density; Dickson and Willmot (2005) followed the same approach to
derive an expression for the density of the ruin time, and applied the result to
the case when the claim size distribution is a mixture of Erlang distributions
with the same scale parameter. It follows from Willmot and Woo (2007) that
the class of Erlang mixtures is very large and any density on the positive half
line can be approximated by this class of density functions. Hence, the results in
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Dickson and Willmot (2005) are very useful for computing the density of ruin
time. Garcia (2005) studied the survival probability through analytic inversion
of Laplace transform when the claim sizes followed exponential, a mixture of
two exponentials and Erlang (2) distributions. Dickson (2007) used probabilistic
arguments to derive the joint densities of the time to ruin, the surplus before ruin
and the deficit at ruin. Dickson (2008) applied Laplace inversion method to find
some explicit solutions for the joint density of the time to ruin and the deficit
at ruin when the individual claim sizes were distributed as Erlang (2) and as a
mixture of two exponential distributions.

Recently, some finite time ruin problems have also been solved in some
Sparre Andersen risk models in the past few years. Dickson et al. (2005) derived
the density of the time to ruin for a Sparre Andersen model with Erlang inter-
claim times and exponential claim sizes. This result was extended by Borovkov
and Dickson (2008) to a general Sparre Andersen risk model with exponen-
tial claim amounts. In the Erlang (2) risk model, Dickson and Li (2010, 2012)
derived some explicit formulae for the density of the time to ruin and the joint
density of the time to ruin and the deficit at ruin. Landriault et al. (2011) studied
some joint densities involving the time to ruin through the use of Lagrange’s ex-
pansion theorem. Shi and Landriault (2013) made use of a multivariate version
of Lagrange’s expansion theorem to obtain a series expansion for the density of
the time of ruin when the claim size density is a combination of exponentials.

Compared with the infinite time ruin problems, the finite time ruin problems
are very hard to tackle since very few explicit results can be found. Although
some formulae for the density of the rime of ruin have been developed by some
researchers, they are based on some specific assumptions of the claim size den-
sity. In particular, exponential, Erlang and combination of exponential densities
are widely used. The major difficulty comes from the explicit Laplace inversion
of (1.1). To relax the restriction of claim size distributions, we develop an effi-
cient method for computing the density of the time of ruin. Our method is on
the ground of Fourier transform of the density of the time of ruin, which is easily
applied as long as the Fourier transform of the claim size density is available.
Furthermore, in comparison with Laplace transform, Fourier transform has the
advantage of allowing for the use of some fast computation algorithms.

Fang and Oosterlee (2008) proposed a Fourier-cosine series expansion
method (also known as COSmethod) for pricing European options. Since then,
the COS method has been widely used in option pricing theory (see, e.g., Fang
and Oosterlee, 2009, Zhang and Oosterlee, 2013, 2014). Ruijter and Oosterlee
(2012) and Meng and Ding (2013) extended the COS method to higher dimen-
sions with a multi-dimensional asset price process. The COS method can be
easily used as long as the corresponding Fourier transform (or characteristic
function) is available. Because the Fourier transforms of the ruin probability and
Gerber–Shiu function are easily obtained, Chau et al. (2015a, 2015b) capitalized
on the COS method to compute the ultimate ruin probability and Gerber–Shiu
function in a class of Lévy risk models. The Fourier transform method has also
been used byZhang andYang (2013, 2014) to estimate the ruin probability in the
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Lévy risk model, where the FFT algorithm is used for computation. Different
from Zhang and Yang (2013, 2014), we use the COS method to approximate
the density of the time of ruin. Note that the COS method has O(n) computa-
tional complexity in comparison with that of O(n log n) complexity via the FFT
algorithm.

The remainder of this paper is organized as follows. In Section 2, we present
some preliminaries on the Fourier transform of the time to ruin. In Section
3, supposing that the initial surplus is fixed, we use one-dimensional Fourier-
cosine series expansion (1-COS) method to approximate fτ (u, t). The two-
dimensional Fourier-cosine series expansion (2-COS) method is applied for ap-
proximation of fτ (u, t) in Section 4. Several numerical examples are given in
Section 5 to show the efficiency of the proposed method, and some conclusions
are given in Section 6.

2. FOURIER TRANSFORM OF THE RUIN TIME

For ω ∈ R, we define the following one-dimensional Fourier transforms

F1 fτ (u, ω) =
∫ ∞

0
eiωt fτ (u, t)dt, F1 fX(ω) =

∫ ∞

0
eiωx fX(x)dx.

Furthermore, for ω1, ω2 ∈ R, we define the two-dimensional Fourier transform
of fτ (u, t) by

F2 fτ (ω1, ω2) =
∫ ∞

0

∫ ∞

0
eiω1u+iω2t fτ (u, t)dtdu =

∫ ∞

0
eiω1uF1 fτ (u, ω2)du.

By analytic continuation, we have

F1 fτ (u, ω) = E[eiωτ I(τ < ∞)|U0 = u] = φ−iω(u)

and

F2 fτ (ω1, ω2) =
∫ ∞

0
eiω1uφ−iω2(u)du = φ̂−iω2(−iω1).

It follows from (1.1) that F1 fτ (u, ω) has Laplace transform (w.r.t. u)

∫ ∞

0
e−suF1 fτ (u, ω)du =

λ
(
1− f̂X(ρ(ω))

ρ(ω)
− 1− f̂X(s)

s

)
cs − (λ − iω) + λ f̂X(s)

, (2.1)

where ρ(ω) is the unique root with positive real part of equation

cs − (λ − iω) + λ f̂X(s) = 0. (2.2)
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This can be proved by Rouche’s theorem. When ω = 0, we have ρ(0) = 0.
Applying analytic continuation to (2.1), we get

F2 fτ (ω1, ω2) =
λ

(
1− f̂X(ρ(ω2))

ρ(ω2)
− 1−F1 fX(ω1)

−iω1

)
−icω1 − (λ − iω2) + λF1 fX(ω1)

. (2.3)

When u = 0, formula (1.3) gives

F1 fτ (0, ω) = λ

c
1 − f̂X(ρ(ω))

ρ(ω)
. (2.4)

In the following two examples, we present some more explicit formulae for
the Fourier transforms of fτ (u, t).

Example 1. Assume that X follows a combination-of-exponentials distribution
with density function

fX(x) =
m∑
j=1

Ajα j e−α j x, x > 0, (2.5)

where m is a positive integer,
∑m

j=1 Aj = 1, 0 < α1 < · · · < αm < ∞. It is easily
seen that

f̂X(s) =
m∑
j=1

Aj
α j

s + α j
, F1 fX(ω) =

m∑
j=1

Aj
α j

α j − iω
.

Then, (2.3) becomes

F2 fτ (ω1, ω2) =
λ

∑m
j=1

Aj (ρ(ω2)+iω1)

(α j+ρ(ω2))(α j−iω1)

icω1 + λ − iω2 − λ
∑m

j=1 Aj
α j

α j−iω1

. (2.6)

We find that equation (2.2) reduces to

cs + iω − λ

m∑
j=1

Aj
s

s + α j
= 0,
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which has m+ 1 roots. One of these roots is ρ(ω). We denote the other m roots by
−R1(ω), . . . , −Rm(ω) which have negative real parts. By (2.1), we have

∫ ∞

0
e−suF1 fτ (u, ω)du =

λ
c

∑m
j=1 Aj

s−ρ(ω)

(ρ(ω)+α j )(s+α j )

1∏m
k=1(s+αk)

(s − ρ(ω))
∏m

k=1(s + Rk(ω))

= λ

c

m∑
j=1

Aj

ρ(ω) + α j

∏m
k=1,k �= j (s + αk)∏m
k=1(s + Rk(ω))

= Hc(s, ω)∏m
j=1(s + Rj (ω))

, (2.7)

where

Hc(s, ω) = λ

c

m∑
j=1

Aj

ρ(ω) + α j

m∏
k=1,k �= j

(s + αk)

is a polynomial function of s with degree m − 1. For convenience, suppose that
R1(ω), . . . , Rm(ω) are distinct for each ω. Then, applying partial fractions to (2.7)
gives ∫ ∞

0
e−suF1 fτ (u, ω)du =

m∑
j=1

Hc, j (ω)

s + Rj (ω)
,

where

Hc, j (ω) = Hc(−Rj (ω), ω)∏m
k=1,k �= j (Rk(ω) − Rj (ω))

, j = 1, . . . ,m.

Upon Laplace inversion we find that the one-dimensional Fourier transform of the
time to ruin takes the following form:

F1 fτ (u, ω) =
m∑
j=1

Hc, j (ω)e−Rj (ω)u, u ≥ 0. (2.8)

Example 2. Assume that X follows Erlang distribution with density function

fX(x) = αmxm−1

(m− 1)!
e−αx, x > 0, (2.9)

where m is the shape parameter which is a positive integer and α > 0 is the scale
parameter. The Laplace transform and Fourier transform of fX are given by

f̂X(s) =
(

α

α + s

)m

, F1 fX(ω) =
(

α

α − iω

)m

,
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respectively. In this case, (2.3) becomes

F2 fτ (ω1, ω2) =
λ

(
1−

(
α

α+ρ(ω2)

)m
ρ(ω2)

+ 1−
(

α
α−iω1

)m
iω1

)
−icω1 − λ + iω2 + λ

(
α

α−iω1

)m . (2.10)

The generalized Lundberg equation (2.2) becomes

cs − (λ − iω) + λ

(
α

s + α

)m

= 0.

Again, we denote the other m roots (with negative real parts) by
−R1(ω), . . . , −Rm(ω), which are assumed to be distinct. It follows from
(2.1) that ∫ ∞

0
e−suF1 fτ (u, ω)du = Hg(s, ω)∏m

k=1(s + Rk(ω))
, (2.11)

where

Hg(s, ω) = λ

c
(s + α)m

s − ρ(ω)

⎛⎜⎝1 −
(

α
ρ(ω)+α

)m
ρ(ω)

− 1 − (
α

s+α

)m
s

⎞⎟⎠
is a polynomial function of s with degree m− 1. By partial fractions, we find that
(2.11) becomes ∫ ∞

0
e−suF1 fτ (u, ω)du =

m∑
j=1

Hg, j (ω)

s + Rj (ω)
,

where

Hg, j (ω) = Hg(−Rj (ω), ω)∏m
k=1,k �= j (Rk(ω) − Rj (ω))

, j = 1, . . . ,m.

Finally, by Laplace inversion, we get

F1 fτ (u, ω) =
m∑
j=1

Hg, j (ω)e−Rj (ω)u, u ≥ 0. (2.12)

Remark 1. In the above two examples, we show that explicit expressions for the
one-dimensional Fourier transform of the density of the time to ruin can be
obtained for combination-of-exponentials and Erlang claim size densities. We
assert that the corresponding result is also readily obtained when the claim size
density belongs to the rational family. The detailed solution procedure is the
same, and hence we omit it here.
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3. ONE-DIMENSIONAL FOURIER-COSINE APPROXIMATION

In this section, we apply the 1-COS method to approximate the density of the
time to ruin. It is well known that for a function with a finite support [a1, a2], it
has cosine series expansion

f (x) =
∞∑
k=0

′Bk cos
(
kπ

x− a1
a2 − a1

)
, (3.1)

with

Bk = 2
a2 − a1

∫ a2

a1
f (x) cos

(
kπ

x− a1
a2 − a1

)
dx, k = 0, 1, 2, . . . (3.2)

where
∑ ′ indicates that the first term in the summation is weighted by one-half

(see, e.g., Fang and Oosterlee, 2008).
Let us consider the density of the ruin time fτ (u, t) with fixed initial surplus

u. For a > 0, define the following auxiliary function:

fτ,a(u, t) = fτ (u, t)I(t ≤ a).

As a function of t, fτ,a(u, t) has a finite domain [0, a], it follows from formula
(3.1) that

fτ,a(u, t) =
∞∑
k=0

′ B̂a,k(u) cos
(
kπ

t
a

)
, t ∈ [0, a], (3.3)

where

B̂a,k(u) = 2
a

∫ a

0
fτ,a(u, t) cos

(
kπ

t
a

)
dt, k = 0, 1, 2, . . . (3.4)

Furthermore, truncating the series summation in (3.3) yields

fτ,a(u, t) ≈ fτ,a,1(u, t) :=
K−1∑
k=0

′ B̂a,k(u) cos
(
kπ

t
a

)
, (3.5)

where K is a sufficiently large integer.
It is not convenient to compute the cosine coefficients B̂a,k(u) by formula

(3.4). Note that fτ,a(u, t) = fτ (u, t) for t ∈ [0, a]. When a is large enough, we
have

B̂a,k(u) ≈ Ba,k(u) := 2
a

∫ ∞

0
fτ (u, t) cos

(
kπ

t
a

)
dt = 2

a
Re (F1 fτ (u, kπ/a)) ,

where Re(·) denotes taking the real part of the argument. The coefficients
Ba,k(u) are easy to obtain when fX is either a combination of exponentials or
Erlang, since the Fourier transform F1 fτ (u, ω) is available. See formulae (2.8)
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and (2.12). Replacing B̂a,k(u) by Ba,k(u) in (3.5), we obtain the following ap-
proximant:

fτ (u, t) = fτ,a(u, t) ≈ fτ,a,2(u, t) :=
K−1∑
k=0

′Ba,k(u) cos
(
kπ

t
a

)
, t ∈ [0, a].

(3.6)

Remark 2. Define the finite time ruin probability by

ψ(u, t) = P(τ < t|U0 = u), t > 0, u ≥ 0.

Integrating (3.6) and interchanging the order of integration and summation, we
obtain for 0 ≤ t ≤ a

ψ(u, t) =
∫ t

0
fτ (u, s)ds ≈

∫ t

0

K−1∑
k=0

′Ba,k(u) cos
(
kπ

s
a

)
ds

=
K−1∑
k=0

′Ba,k(u)t · sinc
(
kπ

t
a

)
, (3.7)

where

sinc(x) =
{

sin(x)
x , x �= 0,

1, x = 0.

Now, we study the approximation error of (3.6). Fix A such that 0 < A≤ a,
we measure the error by

Er [ fτ,a,2](u) :=
(∫ A

0
( fτ (u, t) − fτ,a,2(u, t))2dt

) 1
2

.

Since fτ (u, t) = fτ,a(u, t) for 0 ≤ t ≤ a, by triangle inequality, we have

Er [ fτ,a,2](u) ≤
(∫ A

0
( fτ,a(u, t) − fτ,a,1(u, t))2dt

) 1
2

+
(∫ A

0
( fτ,a,1(u, t) − fτ,a,2(u, t))2dt

) 1
2

≤
(∫ a

0
( fτ,a(u, t) − fτ,a,1(u, t))2dt

) 1
2

+
(∫ a

0
( fτ,a,1(u, t) − fτ,a,2(u, t))2dt

) 1
2

:= εa,K,1(u) + εa,K,2(u),
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where εa,K,1(u) is the series truncation error for including only the first K terms,
and εa,K,2(u) is the error related to approximating B̂a,k(u) by Ba,k(u).

First, we consider the error εa,K,1(u). Using the well-known result

∫ a

0
cos

(
k1π

x
a

)
cos

(
k2π

x
a

)
dx =

⎧⎪⎨⎪⎩
a, k1 = k2 = 0,
a
2 , k1 = k2 �= 0,

0, k1 �= k2,

(3.8)

we have

[εa,K,1(u)]2 =
∞∑
k=K

|B̂a,k(u)|2
∫ a

0

(
cos

(
kπ

t
a

))2

dt = a
2

∞∑
k=K

|B̂a,k(u)|2. (3.9)

Using integration by parts, we have

B̂a,k(u) = 2
a

∫ a

0
fτ,a(u, t) cos

(
kπ

t
a

)
dt = 2

a

∫ a

0
fτ (u, t) cos

(
kπ

t
a

)
dt

= − 2
kπ

∫ a

0
sin

(
kπ

t
a

)
∂

∂t
fτ (u, t)dt,

which yields

|B̂a,k(u)| ≤ 2
kπ

∫ a

0

∣∣∣∣ ∂

∂t
fτ (u, t)

∣∣∣∣ dt = C(u)
k

, (3.10)

where

C(u) = 2
π

∫ ∞

0

∣∣∣∣ ∂

∂t
fτ (u, t)

∣∣∣∣ dt.
Hence, using the upper bound (3.10), we find that (3.9) gives

[εa,K,1(u)]2 ≤ a
2

∞∑
k=K

(C(u))2

k2
≤ (C(u))2

2
a

K − 1
. (3.11)

Next, we study εa,K,2(u). For n = 1, 2, . . ., let

mn(u) = E[τ n I(τ < ∞)|U0 = u]

be the nth moment of the ruin time. By Markov inequality, we have

|B̂a,k(u) − Ba,k(u)| =
∣∣∣∣−2

a

∫ ∞

a
fτ (u, t) cos

(
kπ

t
a

)
dt

∣∣∣∣
≤ 2
a

∫ ∞

a
fτ (u, t)dt ≤ 2m1(u)

a2
.
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Hence, using formula (3.8), we have

[εa,K,2(u)]2 =
K−1∑
k=0

′[B̂a,k(u) − Ba,k(u)]2
∫ a

0

(
cos

(
kπ

t
a

))2

dt

≤ a
2

K−1∑
k=0

[B̂a,k(u) − Ba,k(u)]2

≤ 2(m1(u))2
K
a3

. (3.12)

Finally, combining (3.11) and (3.12), we obtain the following result.

Proposition 1. The approximation error Er [ fτ,a,2](u) has the following upper
bound,

Er [ fτ,a,2](u) ≤ C(u)√
2

√
a

K − 1
+

√
2m1(u)

√
K
a3

. (3.13)

Remark 3. The cut-off parameter a plays an important role in calculating fτ,a,2.
To find the optimal cut-off parameter a∗, we minimize the right-hand side of the
above equation w.r.t. a by setting

d
da

(
C(u)√

2

√
a

K − 1
+

√
2m1(u)

√
K
a3

)
= 0

to obtain

a∗ =
(
6m1(u)
C(u)

√
K(K − 1)

) 1
2

= O(K
1
2 )

for a fixed initial surplus level u. Replacing a by a∗ in (3.13), we obtain the
following convergence rate

Er [ fτ,a,2](u) = O(K− 1
4 )

for a fixed initial surplus level u.

4. TWO-DIMENSIONAL FOURIER-COSINE APPROXIMATION

In this section, we apply the 2-COS method to approximate the density of the
time to ruin. If f (x1, x2) has a finite domain [a1, b1] × [a2, b2], we can express
f in terms of two-dimensional Fourier series (see, e.g., Pivato, 2010 and Meng
and Ding, 2013). In particular, f has the following cosine series expansion,

f (x1, x2) =
∞∑
k1=0

′
∞∑
k2=0

′Ĉk1,k2 cos
(
k1π

x1 − a1
b1 − a1

)
cos

(
k2π

x2 − a2
b2 − a2

)
, (4.1)
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where

Ĉk1,k2 = 2
b1 − a1

2
b2 − a2

∫ b2

a2

∫ b1

a1
f (x1, x2) cos

(
k1π

x1 − a1
b1 − a1

)
× cos

(
k2π

x2 − a2
b2 − a2

)
dx1dx2.

For a1, a2 > 0, we define the auxiliary function

fτ,a1,a2(u, t) = fτ (u, t)I(u ≤ a1, t ≤ a2).

Then, fτ,a1,a2(u, t) has a finite domain [0, a1]× [0, a2]. By formula (4.1), we have
for (u, t) ∈ [0, a1] × [0, a2],

fτ (u, t) = fτ,a1,a2(u, t) =
∞∑
k1=0

′
∞∑
k2=0

′Ĉa1,a2,k1,k2 cos
(
k1π

u
a1

)
cos

(
k2π

t
a2

)
, (4.2)

where

Ĉa1,a2,k1,k2 = 4
a1a2

∫ a1

0

∫ a2

0
fτ,a1,a2(u, t) cos

(
k1π

u
a1

)
cos

(
k2π

t
a2

)
dtdu

= 4
a1a2

∫ a1

0

∫ a2

0
fτ (t, u) cos

(
k1π

u
a1

)
cos

(
k2π

t
a2

)
dtdu. (4.3)

Truncating the series summation in (4.2) yields

fτ (u, t) ≈ fτ,a1,a2,3(u, t) :=
K1−1∑
k1=0

′
K2−1∑
k2=0

′Ĉa1,a2,k1,k2 cos
(
k1π

u
a1

)
cos

(
k2π

t
a2

)
,

(4.4)
where K1 and K2 are sufficiently large integers.

The coefficients Ĉa1,a2,k1,k2 can be approximated via characteristic function
F2 fτ (ω1, ω2) as follows. Using the following trigonometric relation

2 cos(α) cos(β) = cos(α + β) + cos(α − β),
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we have

Ĉa1,a2,k1,k2 = 2
a1a2

∫ a1

0

∫ a2

0
fτ (u, t) cos

(
k1π

u
a1

+ k2π
t
a2

)
dtdu

+ 2
a1a2

∫ a1

0

∫ a2

0
fτ (u, t) cos

(
k1π

u
a1

− k2π
t
a2

)
dtdu

= 2
a1a2

Re
(∫ a1

0

∫ a2

0
fτ (u, t) exp

(
ik1π

u
a1

+ ik2π
t
a2

)
dtdu

)
+ 2
a1a2

Re
(∫ a1

0

∫ a2

0
fτ (u, t) exp

(
ik1π

u
a1

− ik2π
t
a2

)
dtdu

)
. (4.5)

When both a1 and a2 are large enough, we have

Ĉa1,a2,k1,k2 ≈ Ca1,a2,k1,k2

:= 2
a1a2

Re
(∫ ∞

0

∫ ∞

0
fτ (u, t) exp

(
ik1π

u
a1

+ ik2π
t
a2

)
dtdu

)
+ 2
a1a2

Re
(∫ ∞

0

∫ ∞

0
fτ (u, t) exp

(
ik1π

u
a1

− ik2π
t
a2

)
dtdu

)
= 2

a1a2
Re

(
F2 fτ

(
k1π
a1

,
k2π
a2

))
+ 2
a1a2

Re
(
F2 fτ

(
k1π
a1

, −k2π
a2

))
.

(4.6)

Finally, replacing Ĉa1,a2,k1,k2 byCa1,a2,k1,k2 in (4.4), we obtain for (u, t) ∈ [0, a1]×
[0, a2]

fτ (u, t) ≈ fτ,a1,a2,4(u, t) :=
K1−1∑
k1=0

′
K2−1∑
k2=0

′Ca1,a2,k1,k2 cos
(
k1π

u
a1

)
cos

(
k2π

t
a2

)
.

(4.7)

Remark 4. Except for the 2-COS formula (4.7), there are also some other possibly
feasible trigonometric series expansions. The following are some examples.

• Sine–Sine expansion:

fτ (u, t) ≈
K1−1∑
k1=1

K2−1∑
k2=1

Css
a1,a2,k1,k2 sin

(
k1π

u
a1

)
sin

(
k2π

t
a2

)
, (4.8)

where

Css
a1,a2,k1,k2 = 2

a1a2
Re

(
F2 fτ

(
k1π
a1

, −k2π
a2

))
− 2
a1a2

Re
(
F2 fτ

(
k1π
a1

,
k2π
a2

))
.
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• Sine–Cosine expansion:

fτ (u, t) ≈
K1−1∑
k1=1

K2−1∑
k2=0

′Csc
a1,a2,k1,k2 sin

(
k1π

u
a1

)
cos

(
k2π

t
a2

)
, (4.9)

where

Csc
a1,a2,k1,k2 = 2

a1a2
Im

(
F2 fτ

(
k1π
a1

,
k2π
a2

))
+ 2
a1a2

Im
(
F2 fτ

(
k1π
a1

, −k2π
a2

))
.

• Cosine–Sine expansion:

fτ (u, t) ≈
K1−1∑
k1=0

′
K2−1∑
k2=1

Ccs
a1,a2,k1,k2 cos

(
k1π

u
a1

)
sin

(
k2π

t
a2

)
, (4.10)

where

Ccs
a1,a2,k1,k2 = 2

a1a2
Im

(
F2 fτ

(
k1π
a1

,
k2π
a2

))
− 2
a1a2

Im
(
F2 fτ

(
k1π
a1

, −k2π
a2

))
.

Here, Im(·) denotes taking the imaginary part of the argument. The above series
expansions can be obtained by some basic calculations as in the derivation of (4.7).
We omit the detailed procedure. The interested readers are referred to Section 2 in
Meng and Ding (2013).

Remark 5. Usually, when we expand a function in terms of cosine series, we should
first extend it to an even function; while for sine series expansion, we should first
make an odd extension. Because density function fτ (u, 0) �= 0 and fτ (0, t) �= 0,
the odd extension of fτ is not continuous at the zero point. If we use sine series
expansion, the approximation will lead to a large bias in the neighborhood of (0, 0).
Hence, the cosine series expansion is more preferable to sine series expansion. This
is the reason why we use the COS method to approximate the density of the time
to ruin.

Remark 6. For the finite time ruin probability, integrating (4.7) and interchanging
the order of integration and summation, we obtain for 0 ≤ t ≤ a2

ψ(u, t) ≈
∫ t

0

K1−1∑
k1=0

′
K2−1∑
k2=0

′Ca1,a2,k1,k2 cos
(
k1π

u
a1

)
cos

(
k2π

s
a2

)
ds

:=
K1−1∑
k1=0

′
K2−1∑
k2=0

′Ca1,a2,k1,k2t · sinc
(
k2π

t
a2

)
cos

(
k1π

u
a1

)
. (4.11)

Now, we study the approximation error of (4.7). For convenience, we con-
sider the special case a1 = a2 = a, K1 = K2 = K . We measure the approximate
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error over a finite domain [0, A] × [0, A] by the L2 distance, where 0 < A ≤ a.
Define

Er [ fτ,a,a,4] =
(∫ A

0

∫ A

0
( fτ (u, t) − fτ,a,a,4(u, t)2dtdu

) 1
2

.

We shall show that the above error converges to zero as a, K → ∞. To this end,
we need the following lemmas.

Lemma 1. Suppose that

max
u≥0

∫ ∞

0

∣∣∣∣ ∂

∂t
fτ (u, t)

∣∣∣∣ dt < ∞, max
t≥0

∫ ∞

0

∣∣∣∣ ∂

∂u
fτ (u, t)

∣∣∣∣ du < ∞,∫ ∞

0

∫ ∞

0

∣∣∣∣ ∂2

∂u∂t
fτ (u, t)

∣∣∣∣ dtdu < ∞, (4.12)

then

|Ĉa,a,k1,k2 | ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

D1
k1

, k1 �= 0, k2 = 0,

D2
k2

, k1 = 0, k2 �= 0,

D3
k1k2

, k1 �= 0, k2 �= 0,

(4.13)

where

D1 = 4
π
max
t≥0

∫ ∞

0

∣∣∣∣ ∂

∂u
fτ (u, t)

∣∣∣∣ du, D2 = 2C,

D3 = 4
π2

∫ ∞

0

∫ ∞

0

∣∣∣∣ ∂2

∂u∂t
fτ (u, t)

∣∣∣∣ dtdu.
Proof. By (4.3), we have

Ĉa,a,k1,k2 = 4
a2

∫ a

0

∫ a

0
fτ (u, t) cos

(
k1π

u
a

)
cos

(
k2π

t
a

)
dtdu.

Using integration by parts, we obtain∫ a

0
fτ (u, t) cos

(
k1π

u
a

)
du = − a

k1π

∫ a

0
sin

(
k1π

u
a

) ∂

∂u
fτ (u, t)du, k1 �= 0,∫ a

0
fτ (u, t) cos

(
k2π

t
a

)
dt = − a

k2π

∫ a

0
sin

(
k2π

t
a

)
∂

∂t
fτ (u, t)dt, k2 �= 0,
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and when k1 �= 0, k2 �= 0,∫ a

0

∫ a

0
fτ (u, t) cos

(
k1π

u
a

)
cos

(
k2π

t
a

)
dtdu

= − a
k2π

∫ a

0

∫ a

0
sin

(
k2π

t
a

)
∂

∂t
fτ (u, t)dt cos

(
k1π

u
a

)
du

= a2

k1k2π2

∫ a

0

∫ a

0
sin

(
k1π

u
a

)
sin

(
k2π

t
a

)
∂2

∂u∂t
fτ (u, t)dudt.

Hence, when k1 �= 0, k2 = 0,

|Ĉa,a,k1,0| = 4
k1πa

∣∣∣∣∫ a

0

∫ a

0
cos

(
k2π

t
a

)
sin

(
k1π

u
a

) ∂

∂u
fτ (u, t)dudt

∣∣∣∣
≤ 4
k1πa

∫ a

0

∫ a

0

∣∣∣∣ ∂

∂u
fτ (u, t)

∣∣∣∣ dudt ≤ D1

k1
;

when k1 = 0, k2 �= 0,

|Ĉa,a,0,k2 | = 4
k2πa

∣∣∣∣∫ a

0

∫ a

0
cos

(
k1π

u
a

)
sin

(
k2π

t
a

)
∂

∂t
fτ (u, t)dtdu

∣∣∣∣
≤ 4
k2πa

∫ a

0

∫ a

0

∣∣∣∣ ∂

∂t
fτ (u, t)

∣∣∣∣ dtdu ≤ D2

k2
;

when k1 �= 0, k2 �= 0,

|Ĉa,a,k1,k2 | = 4
k1k2π2

∣∣∣∣∫ a

0

∫ a

0
sin

(
k1π

u
a

)
sin

(
k2π

t
a

)
∂2

∂u∂t
fτ (u, t)dtdu

∣∣∣∣
≤ 4
k1k2π2

∫ a

0

∫ a

0

∣∣∣∣ ∂2

∂u∂t
fτ (u, t)

∣∣∣∣ dtdu ≤ D3

k1k2
.

This completes the proof.

Lemma 2. Suppose that∫ ∞

0
mn(u)du < ∞, ψ(u) ≤ D4u−(n+1), (4.14)

where D4 is a positive constant. Then,

|Ca,a,k1,k2 − Ĉa,a,k1,k2 | ≤ D5

an+2
, (4.15)

where D5 = 4
∫ ∞
0 mn(u)du + 4

n D4.
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Proof. Because

Ca,a,k1,k2 − Ĉa,a,k1,k2

= 4
a2

∫ ∞

0

∫ ∞

0
fτ (u, t) cos

(
k1π

u
a

)
cos

(
k2π

t
a

)
dtdu

− 4
a2

∫ a

0

∫ a

0
fτ (u, t) cos

(
k1π

u
a

)
cos

(
k2π

t
a

)
dtdu

= 4
a2

∫ ∞

0

∫ ∞

a
fτ (u, t) cos

(
k1π

u
a

)
cos

(
k2π

t
a

)
dtdu

+ 4
a2

∫ ∞

a

∫ a

0
fτ (u, t) cos

(
k1π

u
a

)
cos

(
k2π

t
a

)
dtdu,

we have

|Ca,a,k1,k2 − Ĉa,a,k1,k2 | ≤ 4
a2

∫ ∞

0

∫ ∞

a
fτ (u, t)dtdu + 4

a2

∫ ∞

a

∫ a

0
fτ (u, t)dtdu.

By Markov inequality, we have∫ ∞

0

∫ ∞

a
fτ (u, t)dtdu =

∫ ∞

0
P(a < τ < ∞|U0 = u)du

≤
∫ ∞

0

1
an
E[τ n I(τ < ∞)|U0 = u]du

= 1
an

∫ ∞

0
mn(u)du.

By the second inequality in (4.14), we have∫ ∞

a

∫ a

0
fτ (u, t)dtdu ≤

∫ ∞

a

∫ ∞

0
fτ (u, t)dtdu

=
∫ ∞

a
ψ(u)du ≤

∫ ∞

a
D4u−(n+1)du = D4

nan
.

Hence,

|Ca,a,k1,k2 − Ĉa,a,k1,k2 | ≤ 4
a2

1
an

∫ ∞

0
mn(u)du + 4

a2
D4

nan
≤ D5

an+2
.

This completes the proof.

Remark 7. The conditions in (4.14) are not very restrictive. If the claim size den-
sity fX is light-tailed, both the nth moment of the time of ruin and the ultimate ruin
probability have exponential upper bounds, which implies that conditions (4.14)
hold true. Furthermore, it follows from Lemma 1 of Pitts and Politis (2008) that

https://doi.org/10.1017/asb.2016.27 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.27


186 ZHIMIN ZHANG

the condition
∫ ∞
0 mn(u)du < ∞ in (4.14) is satisfied whenever EXn+2 < ∞. We

note that the error bounds in the 1-COS and 2-COS methods are both dependent
on the moments of the time to ruin. It follows from Lee andWillmot (2014, 2016)
that the moments of the time to ruin can be obtained for Coxian claim sizes. Some
other useful references on the moments of the time to ruin are Delbaen (1990) and
Lin and Willmot (2000).

Proposition 2. Suppose that the conditions in (4.12) and (4.14) hold true, then

Er [ fτ,a,a,4] ≤
(√

D2
1 + 2D2

3 +
√
D2

2 + 2D2
3

)
a√
K − 1

+ D5
K
an+1

. (4.16)

Proof. Since fτ (u, t) = fτ,a,a(u, t) for (u, t) ∈ [0, a] × [0, a], by triangle
inequality, we have

Er [ fτ,a,a,4]

≤
(∫ A

0

∫ A

0
( fτ,a,a(u, t) − fτ,a,a,3(u, t))2dtdu

) 1
2

+
(∫ A

0

∫ A

0
( fτ,a,a,3(u, t) − fτ,a,a,4(u, t))2dtdu

) 1
2

≤
(∫ a

0

∫ a

0
( fτ,a,a(u, t) − fτ,a,a,3(u, t))2dtdu

) 1
2

+
(∫ a

0

∫ a

0
( fτ,a,a,3(u, t) − fτ,a,a,4(u, t))2dtdu

) 1
2

:= εa,K,3 + εa,K,4.

First, we consider the error εa,K,3. Since

fτ,a,a(u, t) − fτ,a,a,3(u, t)

=
∞∑
k1=0

′
∞∑

k2=K
Ĉa,a,k1,k2 cos

(
k1π

u
a

)
cos

(
k2π

t
a

)

+
∞∑

k1=K

K−1∑
k2=0

′Ĉa,a,k1,k2 cos
(
k1π

u
a

)
cos

(
k2π

t
a

)
,
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then by triangle inequality, we have

εa,K,3 ≤

⎛⎜⎝∫ a

0

∫ a

0

⎛⎝ ∞∑
k1=0

′
∞∑

k2=K
Ĉa,a,k1,k2 cos

(
k1π

u
a

)
cos

(
k2π

t
a

)⎞⎠2

dtdu

⎞⎟⎠
1
2

+

⎛⎜⎝∫ a

0

∫ a

0

⎛⎝ ∞∑
k1=K

K−1∑
k2=0

′Ĉa,a,k1,k2 cos
(
k1π

u
a

)
cos

(
k2π

t
a

)⎞⎠2

dtdu

⎞⎟⎠
1
2

:= εa,K,3,1 + εa,K,3,2. (4.17)

It follows from formula (3.8) that

[εa,K,3,1]2 =
∫ a

0

∫ a

0

⎛⎝ ∞∑
k1=0

′
∞∑

k2=K
Ĉa,a,k1,k2 cos

(
k1π

u
a

)
cos

(
k2π

t
a

)⎞⎠2

dtdu

=
∞∑
k1=0

′
∞∑

k2=K
|Ĉa,a,k1,k2 |2

∫ a

0

(
cos

(
k1π

u
a

))2
du ·

∫ a

0

(
cos

(
k2π

t
a

))2

dt

≤ a2
∞∑
k1=0

∞∑
k2=K

|Ĉa,a,k1,k2 |2. (4.18)

Furthermore, by Lemma 2, we have

[εa,K,3,1]2 ≤ a2
∞∑

k2=K
|Ĉa,a,0,k2 |2 + a2

∞∑
k1=1

∞∑
k2=K

|Ĉa,a,k1,k2 |2

≤ a2
∞∑

k2=K

(
D2

k2

)2

+ a2
∞∑
k1=1

∞∑
k2=K

(
D3

k1k2

)2

≤ a2
(
D2

2 + 2D2
3

) ∞∑
k2=K

1

k22

≤ (D2
2 + 2D2

3)
a2

K − 1
. (4.19)

Similarly,

[εa,K,3,2]2 ≤ a2
∞∑

k1=K

∞∑
k2=0

|Ĉa,a,k1,k2 |2 ≤ (D2
1 + 2D2

3)
a2

K − 1
. (4.20)
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Hence,

εa,K,3 ≤
(√

D2
1 + 2D2

3 +
√
D2

2 + 2D2
3

)
a√
K − 1

. (4.21)

Next, for εa,K,4, we have

[εa,K,4]2

=
∫ a

0

∫ a

0

⎛⎝K−1∑
k1=0

′
K−1∑
k2=0

′[Ĉa,a,k1,k2 − Ca,a,k1,k2 ] cos
(
k1π

u
a

)
cos

(
k2π

t
a

)⎞⎠2

dtdu

≤ a2
K−1∑
k1=0

K−1∑
k2=0

|Ĉa,a,k1,k2 − Ca,a,k1,k2 |2

≤ D2
5
K2

a2n+2
. (4.22)

Finally, combining (4.17), (4.21) and (4.22) we complete the proof.

Remark 8. Suppose that the conditions in (4.14) hold true for n ≥ 1. We minimize
the right-hand side of the inequality (4.16) w.r.t. a by setting

d
da

((√
D2

1 + 2D2
3 +

√
D2

2 + 2D2
3

)
a√
K − 1

+ D5
K
an+1

)
= 0

to obtain optimal cut-off parameter

a• =
⎛⎝ D5(n + 1)K

√
K − 1√

D2
1 + 2D2

3 +
√
D2

2 + 2D2
3

⎞⎠
1

n+2

= O
(
K

3
2(n+2)

)
.

Replacing a by a• in (4.16), we obtain

Er [ fτ,a,a,4] = O(K− n−1
2(n+2) ).

5. NUMERICAL EXAMPLES

In this section, we present some numerical examples to check the approximation
performance of the COS method. The computer used for all experiments has
an Intel Core(TM) i5-4690 CPU, 3.50GHz with cache size 8.00 GB; the code is
written in MATLAB 2013b. In the sequel, we set c = 1.1 and λ = 1, and we
consider the following claim size densities:

1. Exponential: fX(x) = e−x, x > 0;
2. Erlang(2,2): fX(x) = 4xe−2x, x > 0;

https://doi.org/10.1017/asb.2016.27 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.27


APPROXIMATING THE DENSITY OF THE TIME TO RUIN 189

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

t

Reference

a=5K1/2

a=10K1/2

a=15K1/2

a=20K1/2

(a)

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

t

Reference

a=5K1/2

a=10K1/2

a=15K1/2

a=20K1/2

(b)

FIGURE 1: The 1-COS approximation of fτ (u, t) for u = 3, K = 2048 and a = 5K
1
2 , 10K

1
2 , 15K

1
2 , 20K

1
2 . (a)

Exponential claim size density; (b) Erlang (2,2) claim size density. (Color online)

3. Combination of two exponentials: fX(x) = 3e−1.5x − 3e−3x, x > 0;
4. Mixture of two exponentials: fX(x) = 1

6e
− 1

2 x + 4
3e

−2x, x > 0;

5. Erlang (4,4): fX(x) = 44x3e−4x

3! , x > 0;

6. Mixture of two Erlangs: fX(x) = 0.4 · 4xe−2x + 0.6 · 33x2

2! e
−3x, x > 0;

7. Mixture of four exponentials: fX(x) = 0.2 · 12e− x
2 +0.3 ·2e−2x+0.1 · 13e− x

3 +
0.4 · 3e−3x, x > 0;

8. Phase-type: fX(x) = α exp(Tx)t, x > 0, with α = ( 12 ,
1
3 ,

1
6 ) and

T =
⎛⎝−2 1 0

0 − 3
2

1
3

1 3
2 −3

⎞⎠ , t =
⎛⎝ 1

7
6
1
2

⎞⎠ ;

9. Inverse-Gaussian: fX(x) =
√

1
2πx3 exp

(
− (x−1)2

2x

)
, x > 0.

It can be checked that the means associated with the above density functions
are all smaller than 1.1, so that the net profit condition c > λμX holds true.

First, we conduct some numerical studies by using the 1-COS method to
approximate the density of the time to ruin. We consider exponential and Er-
lang (2,2) claim size densities. In these two cases, explicit formulae for fτ (u, t)
can be expressed via the modified Bessel function and the generalized hyperge-
ometric function. We refer the readers to Dickson (2007) and Dickson (2008).
It follows from Remark 3 that the optimal cut-off parameter a∗ = O(K1/2).
In Figure 1, we illustrate the effect of the parameter a by setting K = 2048
and a = 5K

1
2 , 10K

1
2 , 15K

1
2 , 20K

1
2 . For both exponential and Erlang (2,2)

claim size densities, we find that the approximation is not very sensitive to
the coefficient before K

1
2 . Next, we study the effect of the parameter K . In

Figure 2, we plot the approximated density curves by setting a = 10K
1
2 and
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FIGURE 2: The 1-COS approximation of fτ (u, t) for u = 3, a = 10K
1
2 and K = 512, 1024, 2048, 4096. (a)

Exponential claim size density; (b) Erlang (2,2) claim size density. (Color online)

K = 512, 1024, 2048, 4096. We observe that the larger the value of K , the bet-
ter the approximation. It follows from Figures 1 and 2 that the density of the
time to ruin is harder to approximate when t is in the neighborhood of 2. This is
possibly due to that the density curve is relatively complicated when t = 2 and
it is relatively smooth when t is large. Furthermore, we present some approxi-
mation errors in Tables 1 and 2, where we set K = 4096 and a = 10K

1
2 . Again,

we find that the errors are very small.
Next, we compare the 1-COS method with the existing methods in the lit-

erature. Dickson and Willmot (2005) derive an infinite series expression for the
density of the time to ruin when the claim size distribution is a mixture of Er-
lang distributions with the same scale parameter. We call their method D&W’s
method. As is shown in Willmot and Woo (2007), any countable mixture of Er-
lang distributions can be written in the form of a countable mixture of Erlang
distributions with the same scale parameter, as long as the supremum of the set
of scale parameters is finite. Hence, D&W’s method can be used to compute the
density of the time to ruin for a wide variety of claim size distributions. Now, we
compare the 1-COS method with D&W’s method. We shall consider the claim
size densities (2)–(8). Set u = 3, K = 4096 and a = 10K

1
2 . In Figure 3, we

plot the densities of the ruin time for different claim size densities, where we
use blue color to indicate D&W’s method and use red color to indicate the 1-
COSmethod.We can observe that all the blue curves are well covered by the red
curves, which implies that the 1-COS method performs very well from the point
view of accuracy. In Table 3, we also report some values of absolute error, where
the absolute error is defined as the absolute value of the difference between the
1-COS solution and the reference value that is computed by D&W’s method.
Here, C(M)-2(4)-Exps means combination (mixture) of 2(4) exponentials; M-2-
Erlangs means mixture of two Erlangs. We observe that the absolute errors are
very small. In Table 4, we report the computation times when using the 1-COS
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TABLE 1

THE 1-COS APPROXIMATION ERRORS FOR fτ (u, t) WITH EXPONENTIAL CLAIM SIZE DENSITY.

t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30

u = 1 1.28 × 10−2 3.01 × 10−6 1.14 × 10−6 7.97 × 10−7 6.75 × 10−7 6.17 × 10−7 5.85 × 10−7

u = 2 4.39 × 10−4 1.31 × 10−6 1.38 × 10−6 1.40 × 10−6 1.40 × 10−6 1.41 × 10−6 1.41 × 10−6

u = 3 1.41 × 10−3 2.29 × 10−6 2.09 × 10−6 2.05 × 10−6 2.04 × 10−6 2.04 × 10−6 2.04 × 10−6

u = 4 1.10 × 10−3 2.54 × 10−6 2.38 × 10−6 2.36 × 10−6 2.35 × 10−6 2.35 × 10−6 2.35 × 10−6

u = 5 6.21 × 10−4 2.70 × 10−6 2.61 × 10−6 2.60 × 10−6 2.59 × 10−6 2.60 × 10−6 2.60 × 10−6
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TABLE 2

THE 1-COS APPROXIMATION ERRORS FOR fτ (u, t) WITH ERLANG(2,2) CLAIM SIZE DENSITY.

t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30

u = 1 1.73 × 10−2 5.07 × 10−6 2.58 × 10−6 2.12 × 10−6 1.95 × 10−6 1.88 × 10−6 1.84 × 10−6

u = 2 2.80 × 10−3 1.38 × 10−6 9.54 × 10−7 8.77 × 10−7 8.57 × 10−7 8.52 × 10−7 8.52 × 10−7

u = 3 2.64 × 10−3 1.20 × 10−6 3.81 × 10−7 5.44 × 10−7 2.58 × 10−7 4.36 × 10−7 2.81 × 10−7

u = 4 9.65 × 10−4 3.19 × 10−6 1.76 × 10−5 1.78 × 10−5 1.38 × 10−5 1.01 × 10−5 7.23 × 10−5

u = 5 2.66 × 10−4 2.59 × 10−5 1.02 × 10−5 9.98 × 10−6 7.74 × 10−6 5.71 × 10−6 4.19 × 10−6
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FIGURE 3: Comparison of the 1-COS method and D&W’s method for u = 3, K = 4096 and a = 10K
1
2 . Red

curve: 1-COS method; blue curve: D&W’s method. (Color online)

method and D&W’s method, where the same parameter settings are used as
above. The computation time is counted based on computing the density curves
illustrated in Figure 3. We find that the computation time of the 1-COS method
is less than one second, and overall, the 1-COS method is more than 100 times
faster than D&W’s method.

Finally, we use the 2-COS method to approximate the density of the time
to ruin. We set u = 3 and consider exponential and phase-type claim size
densities. It follows from Remark 8 that the optimal cut-off parameter a• =
O(K

3
2(n+2) ). In Figure 4, we study the impact of the cut-off parameter a by

setting a = 10K
3
10 , 20K

3
10 , 30K

3
10 , 40K

3
10 . When K is large enough, we find

that the approximation is not very sensitive to the coefficient before K
3
10 . In

Figure 5, we show the approximation results for varying values of K with
a = 30K

3
10 , we find that the approximated curves perform well as K increases.

When the true density curve has a large curvature, the approximation is not
good enough. This fact has also been observed in the application of the 1-COS
method. For the approximated curve in Figure 5 with K = 4096, the compu-
tation time is about 90 seconds. In a comparison with the 1-COS method, the
computation of the 2-COS method is not only slower, but also lead to a lower
accuracy. However, the 2-COS method can be used to approximate fτ (u, t)
for a larger class of claim size density functions. Let us consider the Inverse-
Gaussian claim size density as illustrated at the beginning of this section. In
this case, both the 1-COS method and D&W’s method cannot be used, but
we can use the 2-COS method because fX has an explicit Fourier transform
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TABLE 3

ABSOLUTE ERRORS BETWEEN APPROXIMATES BY THE 1-COS METHOD AND D&W METHOD.

t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30

C-2-Exps 2.42 × 10−3 1.22 × 10−6 2.38 × 10−7 3.51 × 10−7 7.31 × 10−8 2.09 × 10−7 4.29 × 10−7

M-2-Exps 1.58 × 10−4 5.45 × 10−6 5.33 × 10−6 5.37 × 10−6 5.42 × 10−6 5.46 × 10−6 5.52 × 10−6

Erlang(4,4) 4.83 × 10−3 1.55 × 10−5 1.03 × 10−5 9.39 × 10−6 9.81 × 10−6 1.04 × 10−5 1.09 × 10−5

M-2-Erlangs 2.72 × 10−3 1.05 × 10−6 9.64 × 10−7 1.21 × 10−6 8.34 × 10−7 4.31 × 10−7 1.15 × 10−7

M-4-Exps 2.15 × 10−4 4.22 × 10−6 4.22 × 10−6 4.26 × 10−6 4.29 × 10−6 4.31 × 10−6 4.33 × 10−6

phase-type 1.43 × 10−3 8.91 × 10−7 3.14 × 10−7 1.38 × 10−7 1.36 × 10−7 2.56 × 10−7 7.77 × 10−4
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TABLE 4

COMPUTATION TIME (SECONDS) COMPARISON BETWEEN D&W’S METHOD AND THE 1-COS METHOD.

D&W’s method 1-COS

C-2-Exps 105.0872 0.1247
M-2-Exps 52.1508 0.1136
Erlang(4,4) 20.4540 0.1614
M-2-erlangs 105.1909 0.1957
M-4-Exps 110.1276 0.1876
phase-type 52.2192 0.1566
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FIGURE 4: The 2-COS approximation of fτ (u, t) for u = 3, K = 2048 and a = 10K
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3
10 , 40K

3
10 .

(a) Exponential claim size density; (b) phase-type claim size density. (Color online)

F1 fX(ω) = exp
(
1 − √

1 − 2iω
)
. We compare the 2-COS method with the path

Monte Carlo method. Again, we set u = 3. We generate 107 sample paths of
the surplus process to estimate the density function of the time to ruin and plot
the estimated result in Figure 6 with light blue color. When we use the 2-COS
method, we set K = 4096, a = 30K

3
10 , and plot the approximated curve in Fig-

ure 6 with red color. It can be observed that the 2-COS method also performs
well in this case. When we use path Monte Carlo method, it takes more than 20
hours; when we use the 2-COS method, it takes about 90 seconds. Hence, the
2-COS method is more efficient than the Monte Carlo method from the point
view of computation time.

6. CONCLUDING REMARKS

In this article, the density of the ruin time is studied in the classical compound
Poisson risk model. We use the COS method to approximate the density func-
tion of the time to ruin. Both error analysis and numerical experiments aremade
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FIGURE 5: The 2-COS approximation of fτ (u, t) for u = 3, a = 30K
3
10 and K = 512, 1024, 2048, 4096. (a)

Exponential claim size density; (b) phase-type claim size density. (Color online)
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FIGURE 6: Comparison of the path Monte Carlo method and the 2-COS method. Light blue color: path
Monte Carlo; red color: 2-COS. (Color online)

to check the efficiency of this method. It is shown that the COSmethod is easily
applied as long as the corresponding Fourier transform is available. In particu-
lar, the 1-COS method is applicable as long as the claim size density belongs to
the rational family, and the 2-COS method is applicable when the expression of
the Fourier transform of the claim size density exists. The 2-COS method can
be used for approximation for a larger class of density functions, however, the
1-COS method can lead to a faster computation speed and a higher accuracy.
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There are some open problems that can be done in the future. First, we can
study the statistical estimation of the density of the ruin time. We may suppose
that both the Poisson intensity λ and the claim size density are unknown, but
samples on the claim numbers and claim sizes are available. Because in this case
we cannot obtain the one-dimensional Fourier transform F1 fτ (u, ω), we have
to use the 2-COS method. The difficulty comes from the analysis of the consis-
tency of the estimator. Next, we can use the COS method to study the expected
discounted dividends before ruin in a risk model with constant dividend barrier.
It is known that the expected discounted dividends before ruin can be expressed
in terms of the q-scale function of the surplus process in the Lévy risk model.
Although the q-scale function is not integrable, we can multiply it by an expo-
nential decay factor so that its Fourier transform exists. Hence, we can recover
the q-scale function by the COS method. Finally, the COS method can also be
applied to compute the density of ruin time in some more general risk models,
such as the Lévy risk model and the Sparre Andersen risk model. Furthermore,
some more general density functions involving the number of claims and the
deficit at ruin can also be computed by this method.
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