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Abstract

The pyridine carboxylic acid (PCA) herbicide family can exhibit differential activity within
and among plant species, despite molecular resemblances. Aminocyclopyrachlor (AMCP),
a pyrimidine carboxylic acid, is a recently discovered compoundwith similar use patterns to those
of the PCA family; however, relative activity among PCAs and AMCP is not well understood.
Therefore, the objective of this study was to quantify relative activity among aminopyralid,
picloram, clopyralid, triclopyr, and AMCP in canola, squash, and okra using dose-response
whole-plant bioassays. Clopyralid was less active than all other herbicides in all species and
did not fit dose-response models. Aminopyralid and picloram performed similarly in squash
(ED50= 21.1 and 23.3 g ae ha−1, respectively). Aminopyralid was 3.8 times and 1.7 times more
active than picloram in canola (ED50= 60.3 and 227.7 g ha−1, respectively) and okra (ED50= 10.3
and 17.3 g ha−1, respectively). Triclopyr (ED50= 37.3 g ha−1) was more active than AMCP
(ED50= 112.9 g ha−1) and picloram in canola. Aminocyclopyrachlor (ED50= 6.6 g ha−1) and
triclopyr (ED50= 7.8 g ha−1) were more active in squash than aminopyralid and picloram.
In okra, AMCP (ED50= 14.6 g ha−1) and aminopyralid (ED50= 10.3 g ha−1) performed similarly
but were more active than triclopyr (ED50= 88.2 g ha−1). Herbicidal activity among AMCP and
PCAs was vastly different despite molecular similarities that could be due to variable target-site
sensitivity among species.

Introduction

Once known as the picolinic carboxylic acids, the pyridine carboxylic acid (PCA) herbicide
family of synthetic auxins has been utilized in many facets of weed management since their
discovery in the 1960s (Gantz and Laning 1963; Hamaker et al. 1963; Shaner 2014). This family
of herbicides are predominately utilized in non-cropland areas such as pastures, rangeland,
natural areas, right-of-ways, and industrial sites due to their selectivity, low use rates, and soil
persistence (Akanda et al. 1997; Arnold and Farmer 1979; Ferrell et al. 2006; Herr et al. 1966;
Shaner 2014). However, some PCA herbicides provide selective weed control and are registered
for use in select crop species such as canola (Brassica napus L.), sugarbeet (Beta vulgaris L.), field
corn (Zea mays L.), rice (Oryza sativa L.), and small grains (O’Sullivan and Kossatz 1982;
Shaner 2014).

Several PCA herbicides have similar molecular structures characterized by a pyridine ring,
chlorine functional groups, and a carboxyl group (Figure 1). Despite their similarities,
differential activity has been often documented among PCA herbicides and plant species.
For example, blackberry (Rubus spp.) is more tolerant to picloram and clopyralid than to tri-
clopyr or fluroxypyr in combination with triclopyr (Ferrell et al. 2009; Harrington et al. 2003).
Bovey and Mayeux (1980) investigated the efficacy of clopyralid and triclopyr for the control of
honey mesquite (Prosopis glandulosa Torr. var. glandulosa) and concluded that honey mesquite
was more sensitive to clopyralid than triclopyr. Aminopyralid was more effective for control of
tropical soda apple (Solanum viarum Dunal) than triclopyr, picloram, or clopyralid plus 2,4-D
(Ferrell et al. 2006). Huisache [Acacia farnesiana (L.) Willd.] is more sensitive to picloram than
triclopyr, and cotton (Gossypium hirsutum L.) is more sensitive to triclopyr than clopyralid or
picloram (Bovey et al. 1979; Jacoby et al. 1990). Conversely, PCA herbicides have demonstrated
similar activity on certain species. For example, mile-a-minute (Mikania micrantha Kunth)
responded similarly to aminopyralid, fluroxypyr, and triclopyr under greenhouse conditions
(Sellers et al. 2014).

Distinct from PCA herbicides, aminocyclopyrachlor (AMCP) is synthetic auxin belonging to
the pyrimidine carboxylic acid herbicide family that is labeled for use in non-crop areas (Armel
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et al. 2009; Claus et al. 2008; Jenks 2010; Turner et al. 2009).
Although AMCP largely does not exhibit activity on monocots,
herbicidal activity has been reported in some grass species such
as winter wheat (Triticum aestivum L.), cogongrass [Imperata
cylindrica (L.) P. Beauv.], and select warm-season turfgrass species
(Edwards 2008; Enloe et al. 2012; Flessner et al. 2011a, 2011b; Kniss
and Lyon 2011; Lewis et al. 2011; Vassios et al. 2009). AMCP has a
similar structure to that of PCA herbicides but it differs by having
an additional nitrogen atom in its ring structure (Figure 1). Because
AMCP has not been available for as long as the PCA herbicides,
little is known of their relative activities on target weed species.
However, crop sensitivity studies have suggested that AMCP
may exhibit similar activity to some PCA herbicides. For example,
Solomon and Bradley (2014) reported that AMCP induced similar
yield reductions in soybean [Glycine max (L.) Merr] as the PCA
herbicides clopyralid and picloram under field conditions, although
yield reductions differed from those caused by aminopyralid, flurox-
ypyr, and triclopyr.

Slight functional group changes in PCA herbicide molecules
have been often shown to result in large changes in herbicidal activ-
ity and soil persistence (Bovey et al. 1979; Fast et al. 2010; Ferrell
et al. 2006; Gorrell et al. 1988; Hall and Vanden Born 1988; Jacoby
et al. 1990; Marple et al. 2007; Orfanedes et al. 1993; Solomon and
Bradley 2014). Themechanism for differential activity among PCA
herbicides has been extensively studied, although little work has
occurred to evaluate the relative activity of AMCP. Most research
has found little to no differences in herbicide absorption, translo-
cation, or metabolism between the PCA herbicides; therefore,
many authors conclude differential sensitivity of the target site
among species as the proposed mechanism of reduced activity
(Bovey and Mayeux 1980; Bukun et al. 2009; Gorrell et al. 1988;
Hall and Vanden Born 1988; Orfanedes et al. 1993).

Although structure-activity relationships have been described
for some herbicide families such as imidazolinone, triketone,
and diphenylethers, structure-activity relationships and relative
activity using dose-response techniques have not been described
for PCA herbicides or AMCP (Ladner 1990; Lee et al. 1998;
Nandihalli et al. 1992). Therefore, the objective of this study
was to investigate the differential activity among four PCA

herbicides and AMCP using a whole plant, dose-response bioas-
say in canola, squash, and okra. Due to previously reported dif-
ferential responses to PCA herbicides, we hypothesized that the
relative activity of AMCP compared to PCA herbicides will be
species dependent.

Materials and Methods

Plant Material and Growing Conditions

Greenhouse dose-response experiments were conducted on canola
(‘5525 CL’, Brett Young, Winnipeg, MB), okra (‘Clemson spine-
less’, Burpee, Warminster, PA), and squash (‘Early Summer
Crookneck’, Burpee) in 2016 at the University of Florida in
Gainesville, FL. Plant species were chosen as representatives of
the Brassicaceae, Malvaceae, and Cucurbitaceae families due to a
modicum of innate tolerance. Species of Solanaceae and
Asteraceae were not included in experiments due to the high level
of sensitivity observed in a pilot study and in previous literature
(Flessner et al. 2012; Tomkins and Grant 1974). Crop species
within the Brassicaceae, Malvaceae, and Cucurbitaceae families
were used instead of weeds to ensure uniform germination and
growth. Seeds from each species were planted into square plastic
pots (8 by 8 cm) uniformly filled with commercial potting
media (Fafard Mixes for Professional Use, Conrad Fafard,
Agawan, MA) amended with slow-release fertilizer (Osmocote
14-14-14 Smart-Release Plant Food, Scotts-Sierra Horticultural
Products, Marysville, OH). Shortly after emergence, experimen-
tal units were thinned to 1 plant pot−1. Plants were grown in a
greenhouse maintained at 30 C daytime and 24 C night-time
(±3 C) temperatures. Supplemental lighting was utilized to
maintain a 14-h photoperiod and plants were sprinkler irrigated
as needed.

Experimental Design and Herbicide Applications

Separate experiments were conducted for each species. A com-
pletely randomized design with four replications was utilized
for all experiments and each was repeated twice. Treatments
were arranged as a factorial consisting of five herbicides and eight
doses. Aminocyclopyrachlor (Method 50SG®, Bayer CropScience,
Research Triangle Park, NC), aminopyralid (4-amino-3,6-dichloro-
2-pyridinecarboxylic acid; Milestone®, Corteva Agriscience,
Wilmington, DE, 240 g ae L−1), picloram (4-amino-3,5,6-trichloro-
2-pyridinecarboxylic acid; Tordon 22K®, Corteva Agriscience,
240 g ae L−1), and clopyralid (3,6-dichloro-2-pyridinecarboxylic acid;
Stinger®, Corteva Agriscience, 360 g ae L−1) were applied at doses of
0, 0.25, 1, 4, 16, 64, 256, and 512 g ae ha−1. Based on previous research
by Dias et al. (2017), triclopyr ([(3,5,6-trichloro-2-pyridinyl) oxy]
acetic acid; Remedy Ultra®, Corteva Agriscience, 480 g ae L−1) was
applied at a different rate titration (0, 1, 4, 16, 64, 300, 650, and
1,300 g ae ha−1) to ensure a full range of responses were exhibited.
Herbicides were applied once plants reached the 2- to 3-leaf growth
stage, approximately 20 d after planting (DAP). Applications were
made using a compressed air-pressurizedmoving single-nozzle spray
chamber (Generation II Spray Booth, Devries Manufacturing Corp.,
Hollandale, MN) equipped with a Teejet 8002 EVS spray nozzle
(TeeJet® Technologies, Spraying Systems Co., Wheaton, IL) cali-
brated to deliver 187 L ha−1 at 172 kPa. All treatments and the non-
treated control (NTC) included a nonionic surfactant (Activator 90,
Loveland Products Inc., Greeley, CO) at 0.25% v/v−1. Herbicide treat-
ment sequences started with the lowest dose and ended at the highest
dose to prevent contamination of herbicide residue to treatments of

Figure 1. Molecular structures of triclopyr, picloram, clopyralid, aminopyralid, and
aminocyclopyrachlor.a
aFigures were built on www.chemspider.com.
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lower doses. Additionally, the entire application system was
thoroughly cleaned between active ingredients with three rinses
of ammonia and water to prevent contamination of previously
applied active ingredients. Plants were returned to the greenhouse and
maintained as previously described after herbicides dried on the leaf
surfaces.

Data Collection and Statistical Analysis

Aboveground biomass was harvested 21 d after treatment (DAT)
then dried at 65 C in a force-aired dryer for 5 d. Data were subjected
to ANOVA to test significance of main effects and interactions
(α= 0.05). Normality, independence of errors, and homogeneity
were examined, and all data were square root–transformed to meet
ANOVA assumptions; however, nontransformed means are pre-
sented for clarity. The effective dose needed to reduce biomass by
50% (ED50) for each herbicide was derived from a three-parameter
log-logistic regression model using the ED function under the DRC

package in R (version 0.98.1091, RStudio Inc, Boston, MA):

Y ¼ d=1þ exp½bðlog x � log eÞ� [1]

WhereY is the response variable (aboveground biomass expressed as
a percent of the NTC), x is herbicide dose (g ae ha−1), b is the relative
slope at the inflection point, d is the upper limit of the curve, and e is
the inflection point (ED50) of the fitted line (Knezevic et al. 2007).
Model selection was based on Akaike’s information criterion
(AIC) in the qpcR package of R (Ritz and Spiess 2008; Spiess and
Neumeyer 2010). Additionally, lack-of-fit test at the 95% level com-
paring the nonlinear regressionmodels toANOVAwas conducted to
test appropriateness of model fit (Ritz and Streibig 2005). Differences
among parameters and estimates were compared using standard
errors, t-tests, and F-tests at the 5% significance level (Knezevic
et al. 2007).

Results and Discussion

Interactions between experimental runs and main effects were not
detected; therefore, data were pooled across runs. Nonsignificant
(P > 0.05) results of lack-of-fit tests indicated appropriateness of
model fit for all herbicides and species except for clopyralid,
for which data were unable to be fitted to the log-logistic model.
Plant response to clopyralid was relatively low for all three species
compared to responses to the other herbicides, and not even the
highest doses resulted in a 50% reduction in aboveground biomass
(Table 1). This may have been due to the doses used in this study; a
greater range of responses may have been observed had a different

rate of titration been used. However, it is also possible that clopyr-
alid has limited activity on the three study species, as has been
reported by previous research on canola and closely related species
(Blackshaw 1989; Geronimo 1978). Here, it was found that clopyr-
alid at the highest dose (512 g ae ha−1) reduced canola and okra
biomass by only 29%, and squash biomass by 32%, compared to
the nontreated controls (Table 1).

Aminopyralid and triclopyr had the greatest effect on canola bio-
mass, followed by AMCP and picloram (Table 2; Figure 2). AMCP
(ED50= 112.9 g ae ha−1) was roughly twice as active as picloram
(ED50= 227.7 g ae ha−1). However, canola was 1.9-fold and 3.1-fold
more sensitive to aminopyralid (ED50= 60.3 g ae ha−1) and triclopyr
(ED50= 37.3 g ae ha−1) than AMCP, respectively. The slope at the

Table 1. Effect of clopyralid dose on aboveground biomass of canola, squash,
and okra (2- to 3-leaf stage) in greenhouse conditions.a

Dose Canola Squash Okra

g ae ha−1 ————————— % of NTCb
—————————

0.25 89 (±29)a 87 (±28) 103 (±26)
1 89 (±24) 98 (±26) 96 (±25)
4 88 (±17) 104 (±29) 126 (±30)
16 95 (±15) 85 (±23) 116 (±31)
64 77 (±17) 75 (±14) 102 (±33)
256 92 (±18) 77 (±20) 73 (±19)
512 71 (±16) 69 (±19) 71 (±15)

aValues represent means (± standard error) pooled across experimental runs, expressed as a
percent of the nontreated controls.
bAbbreviation: NTC, nontreated controls.

Table 2. Log-logistic regressiona parameter estimates (± standard error) for
aboveground biomass of canola, squash, and okra (2- to 3-leaf stage), based
on from whole-plant, dose-response experiments comparing herbicides under
greenhouse conditions.

Parameter estimates

Plant species Herbicide b d ED50
b

Canola AMCPc 0.40 (±0.05) 100.4 (±3.6) 112.9 (±23.0) b
aminopyralid 0.40 (±0.04) 98.4 (±3.9) 60.3 (±18.6) a
picloram 0.38 (±0.05) 101.3 (±3.5) 227.7 (±38.5) c
triclopyr 0.51 (±0.06) 99.4 (±3.9) 37.3 (±9.8) a

Squash AMCP 0.48 (±0.08) 98.6 (±6.5) 6.6 (±2.9) a
aminopyralid 0.47 (±0.09) 97.7 (±6.5) 21.1 (±10.0) bc
picloram 0.43 (±0.08) 99.1 (±6.4) 23.3 (±11.4) c
triclopyr 0.44 (±0.07) 100.8 (±6.6) 7.8 (±3.5) ab

Okra AMCP 1.30 (±0.34) 115.1 (±4.9) 14.6 (±3.1) ab
aminopyralid 0.81 (±0.18) 116.8 (±5.9) 10.3 (±2.7) a
picloram 1.26 (±0.33) 120.3 (±5.0) 17.3 (±3.5) b
triclopyr 0.63 (±0.09) 114.4 (±6.3) 88.2 (±27.0) c

aLog-logistic model: Y= d/1 þ exp[b(logx – loge)], where Y is the response (aboveground
biomass as a percent of the nontreated controls), x is the triclopyr rate, b is the slope of the
inflection point, d is the upper limit of the curve, and e is the inflection point of the fitted line.
The parameter e is also the effective dose rate (ED50), defined as the herbicide dose (g ae ha−1)
required to cause 50% response (i.e., 50% reduction in aboveground biomass).
bED50 estimates followed by the same letter within each species are not different according to
t-tests and F-tests at the 5% significance level.
cAbbreviation: AMCP, aminocyclopyrachlor.

Figure 2. Aboveground biomass of canola 20 d after treatment with one of three pyri-
dine carboxylic acid herbicides or aminocyclopyrachlor. Aminocyclopyrachlor, amino-
pyralid, and picloram were applied at 0, 0.25, 1, 4, 16, 64, 256, and 512 g ae ha−1.
Triclopyr was applied at 0, 1, 4, 16, 64, 300, 650, and 1,300 g ae ha−1. Data were fitted
to a three-parameter log-logistic regression model: Y = d/1 þ exp[b(logx – loge)],
where Y is the response (% aboveground dry biomass reduction), x is the triclopyr rate,
b is the slope of the inflection point, d is the upper limit of the curve, and e is the
inflection point of the fitted line (equivalent to the herbicide dose [g ae ha−1] required
to cause 50% reduction in aboveground biomass [ED50]).
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inflection point (b) was higher for triclopyr compared to that for
aminopyralid and picloram but not AMCP (Table 2); this suggests
that canola was more sensitive to increases in dose of triclopyr than
of aminopyralid and picloram near their respective ED50 values
(Table 2).

Squash was most sensitive to AMCP and triclopyr, followed
by aminopyralid and picloram (Table 2; Figure 3). AMCP and
triclopyr had similar activities on squash, with ED50 values
of 6.6 and 7.8 g ae ha−1, respectively (Table 2). Picloram
(ED50= 23.3 g ae ha−1) and aminopyralid (ED50= 21.1 g ae ha−1)
also had similar activities on squash, and both were approximately
3.5 times less active than AMCP. However, although squash was
less sensitive to aminopyralid than triclopyr across application
rates, the ED50 values of those herbicides were not significantly
different (Table 2; Figure 3). The inflection point slopes between
herbicides did not differ, indicating a similar sensitivity to increases
in dose near their respective ED50 values.

Aminopyralid had the greatest activity in okra, followed by
AMCP, picloram, and triclopyr (Table 2; Figure 4). Aminopyralid
produced the lowest ED50 value in okra (10.3 g ae ha−1) but it
was not different from that of AMCP (ED50= 14.6 g ae ha−1).
The ED50 value resulting from picloram (ED50= 17.3 g ae ha−1)
was roughly 1.7-fold greater than that caused by aminopyralid but
it was also not different from that of AMCP (Table 2). Triclopyr
had the least activity on okra, with an ED50 value that was 8.6-fold
greater than aminopyralid and 5.1-fold greater than picloram. The
inflection point slopes were greater for AMCP and picloram than
for triclopyr, indicating a higher sensitivity to changes in dose near
the ED50 value (Table 2).

In this study, canola was more sensitive to aminopyralid than
to AMCP and picloram, whereas okra was more sensitive to
aminopyralid than picloram and triclopyr. Greater sensitivity
to aminopyralid compared to AMCP, picloram, and triclopyr
has been observed in other species such as soybean (Solomon
and Bradley 2014). Interestingly, both canola and okra were more
tolerant of picloram than aminopyralid, despite the two molecules
differing by only one chlorine group (Figure 1). Russian knapweed
[Acroptilon repens (L.) DC.] has also been shown to be more

sensitive to aminopyralid than picloram (Enloe et al. 2008;
Enloe and Kniss 2009a, 2009b). In contrast, picloram and
aminopyralid behaved similarly in squash, and are reported to
have similar activity in other species such as tropical soda apple
and Canada thistle [Cirsium arvense (L.) Scop.; Enloe et al.
2007; Ferrell et al. 2006]. AMCP was highly active in squash
and okra, suggesting that it may provide effective control of weeds
or increased risk to crops in the Cucurbitaceae andMalvaceae fam-
ilies. Conversely, AMCP had little activity in canola (Table 2).
Flessner et al. (2012) also found differential AMCP activity
among plant families, reporting that cotton was more sensitive
to AMCP than cantaloupe (Cucumis melo L.) or eggplant (Solanum
melongena L.).

Despite multiple cases of differential synthetic auxin herbicide
sensitivity among plant species, causal mechanisms are not well
understood because evidence in the literature is conflicting.
For example, canola’s tolerance to picloram and sensitivity to
2,4-D has been shown to be caused by differential translocation
(Hallmen 1974). Similarly, differential sensitivity to AMCP was
reported for members of Asteraceae and was linked to differences
in absorption, translocation, and metabolism (Bell et al. 2011).
However, herbicides such as picloram and aminopyralid that have
similar structures should exhibit comparable absorption and
translocation according to a mathematical model combining the
weak acid and intermediate permeability theories (Kleier 1988).
For instance, differential activity of canola to picloram and clopyr-
alid was not due to differences in translocation, absorption, or
metabolism (Hall and Vanden Born 1988). Similarly, Israel et al.
(2015) reported that absorption and translocation of AMCP were
similar among species such as water lettuce (Pistia stratiotes L.),
alligatorweed [Alternanthera philoxeroides (Mart.) Griseb.], and
water hyacinth [Eichhornia crassipes (Mart.) Solms], despite
their differential response to this herbicide. Whereas differential
metabolism of synthetic-auxin herbicides is a commonmechanism
of differential activity, target-site sensitivity (transport inhibitor
response 1 [TIR1]) is also a possible mechanism that is species-
specific (Grossmann 2010). Despite the possible mechanisms for
differential plant response, the current level of understanding of

Figure 3. Aboveground biomass of squash 20 d after treatment with one of three
pyridine carboxylic acid herbicides or aminocyclopyrachlor. Aminocyclopyrachlor,
aminopyralid, and picloram were applied at 0, 0.25, 1, 4, 16, 64, 256, and 512 g ae
ha−1. Triclopyr was applied at 0, 1, 4, 16, 64, 300, 650, and 1,300 g ae ha−1. Data were
fitted to a three-parameter log-logistic regression model: Y= d/1þ exp[b(logx – loge)],
where Y is the response (% aboveground dry biomass reduction), x is the triclopyr rate,
b is the slope of the inflection point, d is the upper limit of the curve, and e is the inflec-
tion point of the fitted line (equivalent to the herbicide dose [g ae ha−1] required to
cause 50% reduction in aboveground biomass [ED50]).

Figure 4. Aboveground biomass of okra 20 d after treatment with one of three
pyridine carboxylic acid herbicides or aminocyclopyrachlor. Aminocyclopyrachlor, ami-
nopyralid, and picloram were applied at 0, 0.25, 1, 4, 16, 64, 256, and 512 g ae ha−1.
Triclopyr was applied at 0, 1, 4, 16, 64, 300, 650, and 1,300 g ae ha−1. Data were fitted
toa three-parameter log-logistic regressionmodel: Y= d/1þ exp[b(logx – loge)], where Y
is the response (% aboveground dry biomass reduction), x is the triclopyr rate, b is the
slope of the inflection point, d is the upper limit of the curve, and e is the inflection point
of the fitted line (equivalent to the herbicide dose [g ae ha−1] required to cause 50%
reduction in aboveground biomass [ED50]).
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PCA herbicides and AMCP does not allow for confident prediction
of an undocumented species’ sensitivity.

Although the responses of plants under greenhouse conditions
may not directly correspond to plant growth in the field, green-
house studies are useful for exploring plant responses to herbicides
(Mangla et al. 2011; Novoplansky and Goldberg 2001). These
results support the need for additional research among the
AMCP and PCA herbicides to understand the potential differences
in herbicide selectivity. Clarifying these issues would benefit prac-
titioners in selecting themost appropriate product for weed control
operations as many of these herbicides have similar use patterns.
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