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The dynamics of the velocity gradient tensor in turbulence is governed in part by the
anisotropic pressure Hessian, which is a non-local functional of the velocity gradient
field. This anisotropic pressure Hessian plays a key dynamical role, for example in
preventing finite-time singularities, but it is difficult to understand and model due to its
non-locality and complexity. In this work a symmetry transformation for the pressure
Hessian is introduced, such that when the transformation is applied to the original
pressure Hessian, the dynamics of the invariants of the velocity gradients remains
unchanged. We then exploit this symmetry transformation to perform a dimensional
reduction on the three-dimensional anisotropic pressure Hessian, which, remarkably, is
possible everywhere in the flow except on zero-measure sets. The dynamical activity of
the newly introduced dimensionally reduced anisotropic pressure Hessian is confined to
two-dimensional manifolds in the three-dimensional flow, and exhibits striking alignment
properties with respect to the strain-rate eigenframe and the vorticity vector. The
dimensionality reduction, together with the strong preferential alignment properties, leads
to new dynamical insights for understanding and modelling the role of the anisotropic
pressure Hessian in three-dimensional turbulent flows.

Key words: turbulence theory, intermittency

1. Introduction

The small-scale dynamics of turbulent flows is governed by highly nonlinear and
non-local dynamical processes, whose statistics are strongly intermittent in space and
time (Yeung, Donzis & Sreenivasan 2012; Buaria et al. 2019). Moreover, the strong
and intermittent small-scale dynamics can generate coherent structures at larger scales
(Majda & Bertozzi 2001; Ibbeken, Green & Wilczek 2019). Such small-scale dynamics
is effectively characterized by the velocity gradient field, rather than the velocity field
itself (Tsinober 2001). Consequently, understanding and modelling the velocity gradient
dynamics is of singular importance in the study of turbulence, and has been the subject
of many works in the literature. In particular, the Lagrangian description of the velocity
gradient dynamics has proven to be especially fruitful for understanding and modelling
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the statistical geometry of turbulence, the rate of deformation of fluid material volumes
and intermittency (Meneveau 2011).

The equation governing the velocity gradient tensor dynamics along a fluid particle
trajectory is easily derived from the Navier–Stokes equation (NSE) but, the equation
is unclosed because of the anisotropic/non-local pressure Hessian and viscous terms.
Developing closure models for these complex terms requires insight, and this work
concentrates on the properties of the anisotropic pressure Hessian.

The pressure field can be expressed as a linear, non-local, functional of the second
invariant of the velocity gradient tensor. Therefore, a strategy to infer the statistical
properties of the pressure field consists in analysing how the velocity gradient organizes
in space. A quantitative investigation of the correlation length of the velocity gradient
magnitude shows that, in rotation-dominated regions, the pressure field is governed by
a dissipation-scale neighbourhood while, in strain-dominated regions, the pressure is
determined by an inertial-scale neighbourhood (Vlaykov & Wilczek 2019). However,
many works in the literature have shown that the pressure statistics can be described
reasonably well by quasi-local approximations (Chevillard et al. 2008; Lawson & Dawson
2015). Indeed, the long-range contributions to the pressure field are much smaller than
expected due to partial cancellation of the competing contributions of the strain rate and
vorticity magnitude to the second invariant of the velocity gradient (Vlaykov & Wilczek
2019).

Information about the statistics of the pressure field can be employed to develop closure
models for the Lagrangian dynamics of the velocity gradient in turbulence. In the inviscid
case, an early closure model by Vieillefosse (1982) was constructed by neglecting the
non-local/anisotropic part of the pressure Hessian, while retaining its local/isotropic part.
This model is usually referred to as the restricted Euler (RE) model. The RE model led
to important insights, showing the tendency for the intermediate eigenvalue of the strain
rate to be positive, and also the preferred alignment of the vorticity with the intermediate
strain-rate eigenvector (Cantwell 1992) as observed in direct numerical simulation (DNS)
of isotropic turbulence and homogeneous shear flows (Ashurst et al. 1987). However, the
RE flow exhibits a finite-time singularity for almost all initial conditions, indicating that a
realistic model for the velocity gradient should take into account the anisotropic pressure
Hessian, in addition to viscous contributions. Indeed, the anisotropic pressure Hessian is
considered to play a major role in preventing such finite-time singularities, even for ideal
fluids, and it has been analysed in detail in several works (Ohkitani 1993; Nomura & Post
1998; Chevillard et al. 2008; Vlaykov & Wilczek 2019).

In an early work, the anisotropic pressure Hessian was modelled as a stochastic process,
independent of the gradient dynamics, and the stochastic differential equations for the
velocity gradient were constructed to satisfy isotropy and empirical constraints, such
as log-normality of the dissipation rate (Girimaji & Pope 1990). A more advanced
phenomenological and stochastic model was constructed in Chertkov, Pumir & Shraiman
(1999) by analysing the Lagrangian dynamics using four tracer trajectories, forming a
tetrad. The tetrad can be used to construct a scale-dependent filtered velocity gradient
(Naso & Pumir 2005) and the closure of the model involves a direct relation between
the local pressure and the velocity gradient on the tetrad. The tetrad model provided a
phenomenological basis for understanding how the anisotropic pressure Hessian acts to
reduce nonlinearity in the flow, a property that also emerges in more systematic closures
for the pressure Hessian based on Gaussian random fields (Wilczek & Meneveau 2014).

The deformation history of a fluid particle in the flow has been employed to model
the anisotropic pressure Hessian and viscous terms using Lagrangian coordinate closures
(Chevillard & Meneveau 2006). In this model, only information on the recent fluid
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deformation is retained, that is, the dynamics is affected by times up to the Kolmogorov
time scale, τη, in the past. A phenomenological closure is then constructed assuming that
at a time τη in the past, the Lagrangian pressure Hessian was isotropic. This model does
not exhibit the singularity associated with the RE, and was shown to capture many of the
non-trivial features of the velocity gradient dynamics that are observed in experiments and
DNSs of the NSE. However, it displays unphysical behaviour for flows at large Reynolds
number. A critical comparison with DNS data (Chevillard et al. 2008) showed that while
the closure model presented in Chevillard & Meneveau (2006) can reproduce some of the
non-trivial velocity gradient dynamics, it misses some important features of the pressure
Hessian dynamics and statistical geometry in the flow.

Wilczek & Meneveau (2014) proposed a closure for the Lagrangian velocity gradient
equation by assuming that the velocity is a random field with Gaussian statistics.
Closed expressions for the pressure Hessian and viscous terms conditioned on the
velocity gradient are obtained by means of the characteristic functional of the Gaussian
velocity field. The model produces qualitatively good results but, owing to the Gaussian
assumption, it leads to quantitative predictions that are not in full agreement with DNS
data. Therefore, to correct this aspect, the authors modified the closure such that the
mathematical structure was retained, but the coefficients appearing in the model were
prescribed using DNS data. This led to significant improvements, and the model provides
interesting insights into the role of the anisotropic pressure Hessian in preventing the
singularities arising in the RE. However, the enhanced model did not satisfy the kinematic
relations for incompressible and isotropic flows (Betchov 1956).

Another model has been developed by Johnson & Meneveau (2016), who combined the
closure modelling ideas by both Chevillard & Meneveau (2006) and Wilczek & Meneveau
(2014). This model leads to improvements compared with the two models on which it is
based, and it is formulated in such a way that by construction the model satisfies the
kinematic relations of Betchov (1956). However, a quantitative comparison with DNS
data revealed some shortcomings in the ability of the model to properly capture the
intermittency of the flow. Moreover, it runs into difficulties for high Reynolds number
flows, like that of Chevillard & Meneveau (2006) from which it has been partly derived.
The capability to reproduce intermittency and high Reynolds number flow features is a
major challenge for velocity gradient models. A recent development of velocity gradient
models, based on a multiscale refined self-similarity hypothesis, proposed by Johnson &
Meneveau (2017), seems to remove the Reynolds number limitations.

In summary, while significant progress has been made since the initial modelling efforts
of Vieillefosse (1982, 1984), much remains to be done. A major difficulty in developing
accurate closure approximations for the Lagrangian velocity gradient equation is that the
dynamical effects of the anisotropic/non-local pressure Hessian on the flow are not yet
fully understood and are difficult to approximate using simple closure ideas. This fact
is the motivation behind the present work which aims to improve the understanding of
the anisotropic pressure Hessian, and in particular, its statistical geometry relative to
the strain-rate and vorticity fields. In the following, we present what appears to be a
previously unrecognized symmetry transformation for the pressure Hessian, such that
when this transformation is applied to the pressure Hessian, the invariant dynamics
of the velocity gradient tensor remains unchanged. We then exploit this symmetry
transformation to perform a dimensional reduction on the anisotropic pressure Hessian.
Remarkably, this dimensional reduction can be performed everywhere in the turbulent
flow, except on zero-measure sets, and produces the newly introduced dimensionally
reduced anisotropic pressure Hessian which lives on a two-dimensional manifold and
exhibits striking alignment properties with respect to the strain-rate eigenframe and
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the vorticity vector. This dimensionality reduction, together with evident preferential
alignments of the dimensionally reduced anisotropic pressure Hessian has significant
implications for understanding and modelling the anisotropic pressure Hessian in turbulent
flows.

2. Theory

In this section the symmetry transformation for the dynamics of the velocity gradient
invariants is derived from the velocity gradient equations written in the eigenframe of the
strain-rate tensor. The symmetry transformation is then exploited to reduce the rank of
the anisotropic pressure Hessian, leading to a dimensionally reduced anisotropic pressure
Hessian, that is, to a two-dimensional object embedded in a three-dimensional space.

2.1. Equations for the velocity gradient in the strain-rate eigenframe
The three-dimensional flow of a Newtonian and incompressible fluid is described by the
Navier–Stokes equations

∇ · u = 0, (2.1a)

Dtu ≡ ∂tu + (u · ∇)u = −∇P + ν∇2u, (2.1b)

where u(x, t) is the velocity field, P(x, t) = p(x, t)/ρ is the ratio between the pressure
p and the density ρ and ν is the kinematic viscosity. By taking the gradient of (2.1), the
equations for the velocity gradient tensor A ≡ ∇u are obtained:

Tr(A) = 0, (2.2a)

DtA = −A · A − H + ν∇2A, (2.2b)

where Tr(·) indicates the matrix trace and H ≡ ∇∇P is the pressure Hessian. With respect
to the standard basis of the three-dimensional space {ei}, the velocity gradient and pressure
Hessian are A = ∂juieie�

j and H = ∂j∂iPeie�
j , where ·� indicates transposition and repeated

indexes are contracted. Here and throughout, ‘·’ denotes the standard inner/matrix–matrix
product, e.g. A · A = AijAjkeie�

k , while ‘:’ denotes a double inner product, e.g. A : A =
Tr(A · A) = AijAji.

The velocity gradient is decomposed into its symmetric part, the strain-rate tensor S ≡
(A + A�)/2 = (Aij + Aji)eie�

j /2, and anti-symmetric part, the rotation-rate tensor R ≡
(A − A�)/2 = (Aij − Aji)eie�

j /2, which is associated with the vorticity, ω ≡ ∇ · u. The
vorticity components in the standard basis are ωi = εikjRjk, where εijk is the permutation
symbol. The equations for the strain rate and vorticity are derived from the symmetric and
anti-symmetric parts of (2.2):

Tr(S) = 0, (2.3a)

DtS = −S · S + R · R� − H + ν∇2S, (2.3b)

Dtω = S · ω + ν∇2ω. (2.3c)

It is insightful to write (2.3) in the strain-rate eigenframe. The strain rate in its eigenframe
is S = Λijviv

�
j , where Λij is a diagonal matrix containing the strain-rate eigenvalues λi

on its diagonal, and vi are the strain-rate eigenvectors. The strain-rate eigenvectors vi
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are orthogonal with unit length, and they form an orthonormal and right-oriented basis
for the three-dimensional Euclidean space, that is v�

i · vj = δij where δij is the Kronecker
delta. The basis {vi} is related to the standard basis {ej} by the rotation matrix V , whose
ith column contains the components of the ith strain-rate eigenvector with respect to the
standard basis,

V ji ≡ e�
j · vi, (2.4)

so that vi = V jiej. The strain-rate eigenframe undergoes a rigid body rotation with angular
velocity w. The eigenvectors {vi} remain orthonormal and right-oriented for all times and
therefore the angular velocity w is the same for all the eigenvectors, which evolve according
to a pure rotation defined by Dtvi ≡ w × vi. The components of w in the strain-rate
eigenframe are w̃i = εijkv

�
j · Dtvk/2, where here and throughout, the tilde on a variable

denotes its components in the strain-rate eigenframe. The components of the strain-rate
angular velocity, w̃i, are associated with the components of the anti-symmetric tensor
W̃ ij = εikjw̃k, with W̃ ij defined in terms of the strain-rate eigenvectors as

W̃ ij ≡ v�
i · Dtvj, (2.5)

so that Dtvi = W̃ jivj. The full anti-symmetric tensor whose components are defined by
(2.5) is denoted by W = W̃ ijviv

�
j .

The time derivative of the strain rate S = Λijviv
�
j can be expressed in the strain-rate

eigenframe using (2.5)

DtS = (
DtΛij

)
viv

�
j + (

W̃ ikΛkj −ΛikW̃ kj
)
viv

�
j . (2.6)

The variation of the strain-rate tensor is due to two contributions. The first term on the
right-hand side of (2.6) is diagonal and is generated by the variation of the strain-rate
eigenvalues. The second term on the right-hand side of (2.6) is generated by the rotation of
the strain-rate eigenframe. The part in parentheses is equal to the eigenframe components
of the commutator of W and S:

[W ,S] = W · S − S · W . (2.7)

The components of the commutator [W ,S] in the strain-rate eigenframe can be rewritten
as

v�
i · [W ,S] · vj = W̃ ikΛkj −ΛikW̃ kj = (

λ( j) − λ(i)
)

W̃ ij, (2.8)

where indexes enclosed by parentheses are not contracted. This result shows that the
commutator [W ,S] has no diagonal components in the eigenframe, so that (2.6) may be
decomposed into a diagonal part due only to the variation of the strain-rate eigenvalues,
and a off-diagonal part due only to the rotation of the strain-rate eigenvectors.

Just as for the strain-rate equation, (2.5) can also be used to write the vorticity equation
in the strain-rate eigenframe

Dtω = (Dtω̃i) vi +
(
W̃ ijω̃j

)
vi, (2.9)

where ω̃i = v�
i · ω are the vorticity components in the strain-rate eigenframe. In (2.9),

W̃ ijω̃j corresponds to the vortex tilting term and quantifies the rate of change of the
components of vorticity in the strain-rate eigenframe because of the rotation of the
strain-rate eigenframe with time.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

47
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.470
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Using (2.6) and (2.9) we may express the velocity gradient dynamics (2.3) in the
strain-rate eigenframe

3∑
i=1

λi = 0, (2.10a)

Dtλi = −λ2
i + 1

4

(
ω2 − ω̃2

i

)− H̃ i(i) + ν∇̃2Si(i), (2.10b)

(λ( j) − λ(i))W̃ ij = −1
4
ω̃iω̃j − H̃ ij + ν∇̃2Sij, for i > j, (2.10c)

Dtω̃i = λ(i)ω̃i − W̃ ijω̃j + ν∇̃2ωi, (2.10d)

where λi are the strain-rate eigenvalues, ω2 ≡ ω̃iω̃i is the enstrophy and indexes in
parentheses are not contracted. The tilde indicates tensor components in the strain-rate
eigenframe, so that

H̃ ij = v�
i · H · vj, ∇̃2Sij = v�

i · (∇2S
) · vj, ∇̃2ωi = v�

i · (∇2ω
)
. (2.11a–c)

Equation (2.10a) is simply the eigenframe form of the continuity equation (2.3a).
Equation (2.10b) describes the evolution of the strain-rate eigenvalues, and emerges from
the diagonal part of (2.3b) in the strain-rate eigenframe: the terms on the right-hand side
of (2.10b) describe the rate of variation of the eigenvalues due to strain self-amplification,
the centrifugal force due to the rotation of the fluid element about its vorticity axis, and
the contributions of the diagonal components of the pressure Hessian and viscous stress,
respectively. Equation (2.10c) describes the rotation of the strain-rate eigenvectors, and
emerges from the off-diagonal part of (2.3b) in the strain-rate eigenframe. The terms on
the right-hand side of (2.10c) describe the rotation of the strain-rate eigenframe due to
the misalignment between the vorticity and the strain-rate eigenvectors (in the sense that,
if ω were perfectly aligned with vi, then ω̃iω̃j = 0 for i > j), the off-diagonal terms of
the pressure Hessian and of the viscous stress, respectively. The eigenvalue difference
λ( j) − λ(i) that appears on the left-hand side of (2.10c) represents the resistance of the
strain-rate eigenframe to rotation (Vieillefosse 1982), acting as a moment of inertia.

Equation (2.10d) describes the evolution of the vorticity components in the strain-rate
eigenframe, and is obtained from (2.3c). The terms on the right-hand side of (2.10d)
describe the rate of variation of the vorticity components due to vortex stretching, vortex
tilting caused by the rotation of the strain-rate eigenframe, and due to the anti-symmetric
part of the viscous stress. It should be noted that, as shown in Nomura & Post (1998), the
viscous contribution from (2.10c) to the vortex tilting term W̃ ijω̃j cancels out with part of
the contribution coming from ν∇̃2ωi. Due to this cancellation, the viscous forces do not
ultimately contribute explicitly to the vortex tilting process, and in view of this, Nomura &
Post (1998) re-express (2.10d) in terms of an effective rotation-rate of the eigenframe that
is independent of viscosity. We choose to retain the equations in the form stated above,
which makes clear that the rotation rate of the eigenframe does depend on the viscous
stress in the fluid, even if viscous effects do not ultimately contribute to the process of
vortex tilting.

The eigenframe equations (2.10) provide an insightful tool to analyse the velocity
gradients in turbulence, allowing to disentangle various processes, and their properties
have been studied in detail by Vieillefosse (1982), Dresselhaus & Tabor (1992) and
Nomura & Post (1998).
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2.2. A new symmetry for the dynamics of the velocity gradient invariants
The eigenframe equations satisfy a number of symmetries. They are naturally invariant
under the transformation ω̃i → −ω̃i, since the eigenvectors are only defined up to an
arbitrary sign. The inviscid equations are also formally invariant under time reversal
t → −t. In addition, the equations possess another kind of symmetry that does not appear
to have been previously recognized. This new symmetry arises from the fact that in the
equation governing ω̃i, namely (2.10d), the angular velocity of the strain-rate eigenframe
w only enters through the cross-product w × ω = W̃ ijω̃jvi, and therefore the component
of w along the vorticity direction, w · ω, does not affect the dynamical evolution of the
eigenframe variables.

In order to introduce the new symmetry we first define the transformation

W → W + γR, (2.12)

where γ (x, t) is a non-dimensional, real scalar field. Transformation (2.12) corresponds to
w → w + γω/2, and therefore adds to the angular velocity of the strain-rate eigenframe an
additional rotation rate about the vorticity axis with magnitude γ ‖ω‖/2. Equation (2.12)
implies a transformation of the time derivative of the velocity gradient tensor, which we
analyse in detail in the following.

When transformation (2.12) is introduced into the strain-rate time derivative (2.6), the
strain-rate time derivative transforms as

DtS → DtS + γ
(
R̃ikΛkj −ΛikR̃kj

)
viv

�
j , (2.13)

or, equivalently,

DtS → DtS + γ [R,S], (2.14)

where [R,S] = R · S − S · R is the commutator between the anti-symmetric and
symmetric parts of the velocity gradient. Since the diagonal components of the
commutator [R,S] are zero in the strain-rate eigenframe, then the equations for the
strain-rate eigenvalues ((2.10a) and (2.10b)) are not affected by the additional term
in (2.13). Therefore, when the transformation (2.12) is introduced into the eigenframe
equations (2.10), the equations governing the strain-rate eigenvalues ((2.10a) and (2.10b))
remain unchanged. However, the transformation (2.12) does affect the off-diagonal part
of the strain-rate equation since the off-diagonal components of [R,S] are in general
non-zero in the strain-rate eigenframe. As a result, under the transformation (2.12), (2.10c)
becomes

(
λ( j) − λ(i)

)
W̃ ij = −1

4
ω̃iω̃j − H̃ ij − γ R̃ij

(
λ( j) − λ(i)

)+ ˜ν∇2Sij, i > j. (2.15)

The transformation from (2.10c) to (2.15) results in a time-dependent modification of the
orientation of the strain-rate eigenframe with respect to a fixed reference frame. However,
this change of orientation of the strain-rate eigenvectors, introduced by (2.12), is not
relevant for the dynamics of the velocity gradient invariants, that are independent of the
orientation of the strain-rate eigenframe with respect to a fixed basis.
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υ1

υ3

υ2

x(t)

ω

FIGURE 1. Schematic to illustrate the symmetry transformation. At any point along a fluid
particle trajectory x(t) (or equivalently, at any fixed point in space), the rotation rate of the
strain-rate eigenframe (formed by the blue lines) may be modified by adding an arbitrary
rotation about the vorticity axis (red line), without affecting the dynamical evolution of either
the eigenvalues λi or the vorticity components in the eigenframe ω̃i.

When the transformation (2.12) is introduced into the vorticity time derivative (2.9),
then the vorticity time derivative transforms as

Dtω → Dtω + γ
(
R̃ijω̃j

)
vi = Dtω, (2.16)

since, by definition, R · ω = 0. Therefore, (2.10d) remains unchanged

Dtω̃i = λ(i)ω̃i −
(
W̃ ij + γ R̃ij

)
ω̃j + ν∇̃2ωi = λ(i)ω̃i − W̃ ijω̃j + ν∇̃2ωi. (2.17)

In view of this, transformation (2.12) does not affect the dynamics of either λi or ω̃i, that
is, the transformation W → W + γR is a symmetry transformation for λi and ω̃i. This
symmetry arises because the rotation rate of the eigenframe about the vorticity axis is a
redundant degree of freedom as far as the dynamical evolution of λi and ω̃i is concerned.
In figure 1 we provide a schematic to illustrate the symmetry transformation.

Before proceeding further, it is worth mentioning how the dynamical symmetry just
introduced also relates to the dynamics of other invariants of the velocity gradient A. As
discussed in Meneveau (2011), for an incompressible flow, A may be described in terms of
the three strain-rate eigenvectors v1, v2, v3 and five invariant quantities (Cantwell 1992)

Q ≡ −AijAji/2, R ≡ −AijAjkAki/3,

QS ≡ −SijSij/2, RS ≡ −SijSjkSki/3, V2 ≡ ωiSijSjkωk. (2.18a–e)

These five invariants can be written in terms of λi and ω̃i (which are five independent
quantities due to incompressibility), e.g.

Q = −
∑

i

λ2
i /2 +

∑
i

ω̃2
i /4, R = −

∑
i

λ3
i /3 −

∑
i

λiω̃
2
i /4. (2.19a,b)

Therefore the symmetry transformation for λi and ω̃i also implies the same symmetry
transformation for Q,R,QS,RS,V2. That is, the dynamical evolution of the set of
invariants Q,R,QS,RS,V2 is unaffected by the transformation W → W + γR.

It is important to note that, while the dynamical evolution of the single-time/single-point
invariants Q,R,QS,RS,V2 is not affected by the symmetry transformation (2.12),
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multi-time/multi-point invariants are in general affected. For example, the invariant
Tr(S(x, t) · S(x ′, t′)) is affected by the transformation (2.12) since in general the
transformation arbitrarily modifies the relative orientations of the eigenframes of S(x, t)
and S(x ′, t′). Nevertheless, the dynamical evolution of multi-time or multi-point products
of λi, ω̃i is not affected by the symmetry transformation. Multi-time statistics are relevant
in a number of fundamental research areas, for example in the framework of Lagrangian
refined similarity hypothesis (Yu & Meneveau 2010) or Lagrangian chaos (Johnson &
Meneveau 2015), and also in applied research areas, as for sub-Kolmogorov droplet
deformation (Biferale, Meneveau & Verzicco 2014) and rod/disk spinning and tumbling
(Chevillard & Meneveau 2013). In those contexts, it is important for models to reproduce
multi-time statistics. The new symmetry presented in this work may preserve some
multi-time statistics for appropriate choices of the multiplier γ since that additional degree
of freedom may be fixed in the most convenient way, based on the field of application. In
which way, and to what extent, the presented symmetry carries over to situations in which
multi-time statistics are important deserves further investigation, but it is left for future
work. In this paper we focus on single-point and single-time quantities.

2.3. Symmetry transformation for the anisotropic pressure Hessian
The anisotropic/non-local pressure Hessian is defined as

H ≡ H − Tr(H)
I

3
, (2.20)

which satisfies Tr(H) = 0, and contains all of the non-local part of H . The property that
the dynamical evolution of λi and ω̃i is not affected by the transformation (2.12) can be
interpreted as a symmetry transformation for H. To see this, we note that, under the
transformation W → W + γR, the equation for A becomes

DtA = −A · A − H − γ [R,S] + ν∇2A. (2.21)

We may then group together γ [R,S] and H to define a transformed anisotropic pressure
Hessian

Hγ ≡ H + γ [R,S]. (2.22)

The crucial point is that introducing the transformation H → Hγ corresponds to
introducing the transformation W → W + γR into the velocity gradient dynamics, which
leaves the dynamical evolution of λi and ω̃i unchanged. The additional term [R,S] in
(2.22) is symmetric and traceless, such that Hγ preserves the properties of the original
anisotropic pressure Hessian H. Moreover, the symmetry transformation (2.22) holds for
all real and finite values of γ (x, t), which at this stage is still undetermined.

It is interesting to note that the commutator between the anti-symmetric and symmetric
parts of the velocity gradient [R,S] also arises in the expression for the pressure Hessian
obtained in closure models assuming a random velocity field with Gaussian statistics
(Wilczek & Meneveau 2014). In the framework of the Gaussian closure, the coefficient
of [R,S] is the only one that requires specific knowledge of the spatial structure of the
flow and must be prescribed by phenomenological closure hypothesis, while all other
coefficients of the model can be determined exactly. However, our analysis implies that the
ability of the Gaussian closure to predict the dynamics of λi and ω̃i will not be impacted
by the phenomenological closure hypothesis.
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2.4. Using the symmetry transformation for dimensionality reduction
While any finite and real γ in (2.22) provides a suitable Hγ , there may exist certain
choices of γ that generate configurations of the transformed pressure Hessian Hγ that
reside on a lower-dimensional manifold in the system, in the sense that some of its
eigenvalues are zero. If such configurations exist and are common, this could significantly
aid understanding and modelling the complexity of the anisotropic pressure Hessian. To
seek for lower-dimensional configurations is equivalent to seeking for configurations in
which a rank-reduction on Hγ can be performed. We denote the dimensionally reduced
form of Hγ by H∗

γ . Notice that H∗
γ cannot have rank one since Tr(Hγ ) = 0, and therefore

either rk(H∗
γ ) = 2 or H∗

γ = 0.
In seeking for lower-dimensional configurations of the anisotropic pressure Hessian,

when H is singular (i.e. its rank is less than three and it has at least one zero eigenvalue)
the additional term involving [R,S] in (2.22) is not needed, since H already lives on
a lower-dimensional space and we take H∗

γ = H, which corresponds to γ = 0. On the
other hand, when H is not singular we seek for a non-zero vector z2 such that H∗

γ · z2 = 0,
where z2 corresponds to the eigenvector of H∗

γ associated with its zero (and intermediate)
eigenvalue. This is equivalent to the generalized eigenvalue problem det(H∗

γ ) = 0,
that is,

det
(
I + γH−1 · [R,S]

) = 0. (2.23)

Notice that H can be safely inverted in (2.23), since the case of singular H has been
already taken into account and corresponds to γ = 0. If there exist finite and real values
for γ that solve (2.23), then those values of γ generate a rank-two H∗

γ . Defining E ≡
H−1 · [R,S], the characteristic equation for γ is

aγ 3 + bγ 2 + cγ + 1 = 0, (2.24)

with real coefficients a, b, c given by

a ≡ det(E), b ≡ 1
2

(
Tr(E)2 − Tr(E · E)) , c ≡ Tr(E). (2.25a–c)

The properties of the roots of (2.24) are determined by the discriminant of the polynomial

Δ ≡ b2c2 − 4ac3 − 4b3 − 27a2 − 18abc. (2.26)

When Δ = 0, all of the roots of (2.24) are real and at least two are equal, when Δ > 0
there are three distinct real roots, and when Δ < 0 there is one real root and two complex
conjugate roots. In every case, provided that a /= 0, there is at least one real root since all
the coefficients are real and the degree of the characteristic polynomial is odd. When
a = 0, a real and finite root γ may or may not exist according to the value of the
discriminant Δ. This shows that configurations where a rank-two Hγ does not exist,
that is, the pressure Hessian is intrinsically three-dimensional, may only occur when a =
0. Interestingly, a ≡ det H−1 det[R,S] (by hypothesis det H /= 0) and the dimensional
reduction of the anisotropic pressure Hessian may not be performed where det[R,S] = 0.
The determinant of this commutator can be expressed in terms of the eigenframe variables
as

det[R,S] = 1
4
(λ2 − λ1)(λ3 − λ2)(λ1 − λ3)ω̃1ω̃2ω̃3, (2.27)
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so that, when either one or more of the vorticity components in the strain-rate eigenframe
is zero, and/or the strain-rate configuration is axisymmetric, a singular Hγ may not exist.
However, since λi and ω̃i have continuous probability distributions, then the probability
that det[R,S] = 0 is in fact zero. Therefore, the dimensional reduction of Hγ is possible
everywhere in the flow except on sets of zero measure.

When (2.24) admits more than one real and finite solution then multiple dimensionally
reduced anisotropic pressure Hessians can be defined at the same point, that is, there
exist more than a single real and finite multiplier γ such that Hγ has rank less than
three. In this configuration, different H∗

γ can generate the same dynamics of the velocity
gradient invariants. We fix this additional degree of freedom by choosing the value of
γ that provides the maximum alignment between the intermediate eigenvector of the
dimensionally reduced anisotropic pressure Hessian and the vorticity. As it will be shown
in § 3, this is justified on the basis of the numerical results, which indicate a marked
preferential alignment of the intermediate eigenvector of the dimensionally reduced
anisotropic pressure Hessian with the vorticity.

The dimensional reduction of the anisotropic pressure Hessian, defined through
(2.23), allows for a noticeable reduction of the complexity of the anisotropic pressure
Hessian leading to a better understanding of its dynamical effects. Indeed, the fully
three-dimensional anisotropic pressure Hessian is specified by five real numbers, being
a square matrix of size three. In particular, it takes two numbers to specify the
normalized eigenvector y1, one additional number for y2 (then y3 is automatically
determined) and two more numbers for the independent eigenvalues ϕ1 and ϕ3
(since

∑
i ϕi = 0). Therefore, the anisotropic pressure Hessian can be expressed in its

eigenframe as

H =
3∑

i=1

ϕi yi y�
i . (2.28)

We keep the standard convention ϕ1 ≥ ϕ2 ≥ ϕ3. On the other hand, the dimensionally
reduced anisotropic pressure Hessian is specified by only four real numbers. Indeed
it is a traceless and singular square matrix of size three. In particular, it takes two
numbers to specify the plane orthogonal to the normalized eigenvector z2 an additional
number to specify the orientation of z1 on the plane orthogonal to z2 (then z3 is
determined) and a number for the single independent eigenvalue ψ . Therefore, the
dimensionally reduced anisotropic pressure Hessian can be expressed in its eigenframe
as

H∗
γ = ψ

(
z1z�

1 − z3z�
3

)
, (2.29)

since the intermediate eigenvector is identically zero and the others satisfyψ1 = −ψ3 = ψ

with ψ ≥ 0. The pressure Hessian H∗
γ resides locally on the plane �2 orthogonal to z2,

which is the tangent space to a more complex manifold. Indeed, the tensor H∗
γ acts on a

generic vector q amplifying its component along z1, cancelling its component along z2 and
amplifying and flipping its component along z3. The dimensionally reduced anisotropic
pressure Hessian is effective only on the plane �2. The eigenvalue of the dimensionally
reduced anisotropic pressure Hessian can be related to the full anisotropic pressure Hessian
and the vorticity since ωiHijωj = ωiH∗

γ,ijωj, which implies

ψ =
∑

i ϕi( y�
i ·ω)2

(z�
1 · ω)2 − (z�

3 · ω)2
. (2.30)
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−[S · S − (S : S)I]/3
−[R · R − (R : R)I]/3

υ3

υ1 υ2

z2

z1z3

ω

ω
− *

γ

Π2

Πω

z3 z1

υ1

υ3

(a)
(b)

(c)

(d)

FIGURE 2. Schematic representation of contribution of the terms on the right-hand side of
(2.32). (a) Strain-rate term −[S · S − Tr(S · S)I/3] for the typical configuration λ1 = λ2 =
−λ3/2. (b) Rotation term −[R · R − Tr(R · R)I/3] which isotropically produces stretching rate
along the plane orthogonal to ω and a compression parallel to ω. (c) Dimensionally reduced
anisotropic pressure Hessian −H∗

γ which stretches the fluid element along the z3 direction
and compresses it along the z1 direction. (d) Typical configuration for the relative orientation
of strain-rate eigenframe, vorticity and dimensionally reduced anisotropic pressure Hessian
eigenframe.

Moreover, the tensors H and H∗
γ satisfy the relation ωiSijHjkωk = ωiSijH∗

γ,jkωk which
yields another equation for the eigenvalue ψ :

ψ =
∑

i ϕi(ω
� · S · yi)( y�

i · ω)

(ω� · S · z1)(z�
1 · ω)− (ω� · S · z3)(z�

3 · ω)
. (2.31)

Equation (2.30) shows that a perfect alignment between z2 and ω would result in an
infinitely large ψ , unless the anisotropic pressure Hessian fulfils the condition ω� ·
H · ω = 0. For example, such a peculiar configuration occurs when the flow is exactly
two-dimensional, for which H∗

γ = H. In general, a large eigenvalue ψ corresponds to
strong alignment between z2 and ω, as will be discussed in § 3.
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This dimensionality reduction brings two-dimensional features into three-dimensional
flows, and it is interesting to note that the equations for the velocity gradient already
contain another two-dimensional flow feature. In particular, the term (ω2 − ω̃2

i )/4 in
(2.10b) arises from the eigenframe representation of R · R = −ω2Pω/4, where Pω is
the projection tensor on the plane �ω orthogonal to the vorticity vector ω. This term
describes the straining motion in the plane orthogonal to ω that is associated with
the centrifugal force produced by the spinning of the fluid particle about its vorticity
axis. As we will discuss later, this two-dimensional effect can be compared with the
two-dimensional effect of H∗

γ on the velocity gradient evolution, leading to interesting
insights into their respective dynamical roles. Moreover, H∗

γ is a two-dimensional object
in a three-dimensional space which opens the possibility to effectively compare pressure
Hessian statistics between two-dimensional and three-dimensional flows. However, the
tangent space to the manifold defined by H∗

γ varies in space and time, therefore the flow
on �2 cannot be directly compared with Euclidean two-dimensional turbulence but with
flows in more complex geometries (Falkovich & Gawȩdzki 2014).

Using the dynamical equivalence of H and H∗
γ , we may re-write the equation governing

λi (2.10b) as (ignoring the viscous term)

Dtλi = −
(
λ2

i − 1
3

∑
j

λ2
j

)
− 1

4

(
ω̃2

i − 1
3

∑
j

ω̃2
j

)
− H̃∗

γ,i(i), (2.32)

and in figure 2 we provide a schematic to illustrate the role of each of the terms on the
right-hand side of (2.32).

3. Numerical results: dimensionally reduced anisotropic pressure Hessian

We now turn to assess the properties of H∗
γ , using data from a DNS of statistically

stationary, isotropic turbulence. The DNS data used are those by Ireland, Bragg &
Collins (2016a,b), at a Taylor microscale Reynolds number Rλ = 597. The data have
been obtained through a pseudo-spectral method to solve the incompressible NSE on a
three-dimensional, triperiodic cube discretized with 20483 grid points. A deterministic
forcing method that preserves the kinetic energy in the flow has been employed. A detailed
description of the numerical method used can be found in Ireland et al. (2013).

In addition to the DNS results, we also present some of the results obtained by using a
surrogate Gaussian field, which has been generated by randomizing the phases of the DNS
velocity field while retaining the Fourier amplitudes from the DNS. Constructed in this
way, the actual and surrogate velocity fields have the same dissipation rate, characteristic
time scale τη and energy spectrum as the DNS field. The comparison between this
Gaussian surrogate field and the DNS dataset can provide insights into the extent to
which the observed behaviour is kinematic (i.e. found even in the surrogate field) or truly
dynamical in origin. Where appropriate, some of the surrogate field results are discussed
in the main paper, while others are shown in the Appendix.

3.1. Pressure Hessian dimensional reduction
We first consider the properties of real and finite multipliers γ , as determined by the
numerical solution of (2.24). At each grid point we solve the generalized eigenvalue
problem (2.23) to determine real and finite multipliers γ for which H∗

γ is singular.
In particular, the LAPACK dggev subroutine (Anderson et al. 1999) has been used to
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FIGURE 3. Probability of multiplicity of real and finite roots of (2.24).

solve the characteristic equation (2.24). The roots of the characteristic equation are in
general complex numbers γ̃ = (αR + √−1αI)/β, where αR, αI and β are real numbers.
The numerical solution of (2.24) is ill-conditioned when det H−1 det[R,S] is very small
and the division by β should be performed carefully. Therefore, at each grid point we
first check that |β| > T1 (threshold T1 = 10−6 has been used for the present results) and
then we check that |αI/αR| < T2 (threshold T2 = 10−10 has been employed). The tolerance
thresholds Ti are absolute numbers since γ is non-dimensional. We confirmed that the
results are only weakly sensitive to these small tolerance values and we monitored that
det H∗

γ is actually zero up to the numerical roundoff error.
Figure 3 shows the probability of the multiplicity of real and finite values of γ obtained

by solving (2.24). All the statistics have been computed by averaging the flow over space
and time, a total of ten snapshots spanning six eddy turnover times have been used. The
dimensionally reduced anisotropic pressure Hessian exists at the vast majority of the grid
points, the configurations with no real and finite multipliers is observed at only about
0.1 % of the grid points and corresponds to very small values of det H−1 det[R,S] in
the numerical simulation. The most common case (∼60 % of the data) corresponds to
three real multipliers γ , that is, three dynamically equivalent pressure Hessians which
generate the same dynamics of the velocity gradient invariants. The next most common
case (∼40 % of the data) is a single real root γ and a single rank-two H∗

γ . The case with
two real and finite roots (and the third root asymptotically small compared with these) is
rare (∼0.15 % of the data) and corresponds to det[R,S] close to zero. In the configurations
in which there exist multiple values of γ , the multiplier which gives the highest alignment
between the vorticity vector and the intermediate eigenvector of the dimensionally reduced
anisotropic pressure Hessian is selected. Indeed, that preferential alignment is a clear
feature of the dimensionally reduced anisotropic pressure Hessian, as we will see below.

In figure 4 we show a two-dimensional snapshot of the multiplier field γ (x, t) for which
Hγ has rank two, for both the DNS and the surrogate field. As expected, the field γ (x, t)
exhibits a much greater spatial structure in the DNS as compared with the surrogate field,
showing how the dimensionality reduction of the anisotropic pressure Hessian depends
upon the local structure of the flow. Indeed, since γ (x, t) is obtained through the solution
of (2.24), the spatial variation of γ (x, t) will reflect the spatial variation of the coefficients
of its polynomial equation, and these coefficients depend upon the velocity gradient field.

The probability density function (PDF) of the multiplier γ for which Hγ has rank
two is shown in figure 5(a). The PDF of γ is highly non-Gaussian and γ can be very
large, even if with a small probability. This may be due to the intermittency of the
velocity gradient field, however, since γ is obtained from a polynomial equation that
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FIGURE 4. Two-dimensional snapshot of the multiplier field γ (x, t) for (a) the actual DNS
field and (b) for the surrogate Gaussian field. Colours correspond to the values of γ (x, t).

depends nonlinearly on the velocity gradients, this nonlinear dependence may also be a
cause of the observed non-Gaussianity. As shown in the Appendix, the PDF of γ is also
non-Gaussian even for the surrogate field; however, the non-Gaussianity is much weaker
than in the DNS. Therefore, a substantial source of the non-Gaussianity observed for the
PDF of γ in the DNS does indeed arise for the dynamical intermittency in the velocity
gradients. Another possible source of the strong non-Gaussianity of γ would be the high
probability of small values of det[R,S]. In such a case, the matrix used for the reduction,
[R,S], would span the whole three-dimensional domain but with a very small eigenvalue
in a certain eigendirection. As a consequence, in order to perform the dimensionality
reduction on Hγ ≡ H + γ [R,S], the multiplier γ must be large enough so that γ [R,S]
can compensate the component of H in that eigendirection, and that component may be
large. The PDF of det[R,S] is shown in figure 5(b). The results show that det[R,S] is
highly intermittent, being small throughout the vast majority of the flow, but exhibiting
extreme fluctuations in very small regions. Indeed, det[R,S] is a sixth-order moment of
the velocity gradient field. Moreover, the tendency for small values of det[R,S] can also
be understood in terms of the well-known fact that ω tends to misalign with v3 (Meneveau
2011), leading to small values for ω̃3 and therefore to small values of det[R,S] via (2.27).
Both of these explanations are supported by the fact that, as shown in the Appendix, the
PDF for det[R,S] obtained from the surrogate field is almost Gaussian, and there is no
preferential alignment of ω with v3 in the surrogate field.

We now turn to investigate flow features conditioned on det[R,S]. The high probability
of observing small values of det[R,S] is consistent with the average of the strain rate and
rotation magnitude conditioned on the local value of det[R,S], the results for which are
shown in figure 5(c). The values of τ 2

η ‖S‖2 and τ 2
η ‖R‖2 when det[R,S] → 0, where τη is

the Kolmogorov time scale, are both slightly less than 1/2, where 1/2 is the precise value
of the unconditioned averages τ 2

η 〈‖S‖2〉 = τ 2
η 〈‖R‖2〉 in isotropic turbulence. For larger

values of det[R,S], ‖R‖2 has a well-defined power law scaling, ‖R‖2 ∼ | det[R,S]|1/3, as
shown in the inset of figure 5(c). The power law exponent 1/3 is consistent with simple
dimensional analysis. On the other hand, while ‖S‖2 also depends on det[R,S] as a power
law, the exponent is less than 1/3, and cannot be predicted by simple dimensional analysis.
This is somewhat reminiscent of the results in Buaria et al. (2019) for 〈‖R‖2|‖S‖2〉 and
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FIGURE 5. (a) Probability density function of the real multiplier γ . (b) The PDF of the
determinant of the commutator of anti-symmetric and symmetric part of the velocity gradient,
det[R,S], the blue curve refers to the blue labels and represents the same PDF over a smaller
range. (c) Strain-rate magnitude ‖S‖2 and rotation magnitude ‖R‖2 conditioned on det[R,S],
the same plot in logarithmic scale is in the inset. (d) Second invariant of the velocity gradient
tensor Q conditioned on det[R,S].

〈‖S‖2|‖R‖2〉, where they found that the former was well described by dimensional analysis
(i.e. by Kolmogorov’s 1941 theory, see Pope 2000), while the latter was not. The average
of the second invariant of the velocity gradient tensor Q conditioned on the local value
of det[R,S] is shown in figure 5(d). Interestingly, the region where det[R,S] is small
is slightly strain-rate dominated (i.e. Q < 0). On the other hand, in the regions where
| det[R,S]| is relatively large, the dynamics is clearly rotation-dominated (i.e. Q > 0).
When the conditioned average of Q is weighted with the PDF of det[R,S] and integrated
over all det[R,S] it yields 〈Q〉 = 0 for isotropic turbulence, which indicates the very large
relative weight of regions of the flow contributing to 〈Q| det[R,S]〉 being negative and
very small.

3.2. Dimensionally reduced anisotropic pressure Hessian eigenvalue
Figures 6(a) and 6(b) show that, whereas H is in general a fully three-dimensional object
with three non-zero eigenvalues ϕi that satisfy

∑3
i=1 ϕi = 0, H∗

γ is a two-dimensional
object with only two active eigenvalues that satisfy ψ1 = −ψ3 = ψ , the intermediate
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FIGURE 6. Probability density function of the eigenvalues of (a) H and (b) eigenvalues of
H∗
γ , normalized with the Kolmogorov time scale τη. (c) Magnitude of the anisotropic pressure

Hessian eigenvalues ϕ =
√∑

i ϕ
2
i and anisotropic pressure Hessian eigenvalue, ψ , conditioned

on the local strain-rate magnitude and (d) on the rotation-rate magnitude.

eigenvalue being by construction identically zero, ψ2 = 0. Note that here and throughout,
all eigenvectors are unitary, and are ordered so that ϕ1 ≥ ϕ2 ≥ ϕ3. The PDFs of the
eigenvalues ϕ1 ≥ 0 and ϕ3 ≤ 0 of the anisotropic pressure Hessian display marked tails
and are almost symmetric with respect to each other. On the contrary, the PDF of ϕ2 has
moderate tails and it is positively skewed. The eigenvalue of the dimensionally reduced
anisotropic pressure Hessian, ψ , exhibits very large fluctuations. Its PDF has wide tails
which show that ψ , even if with small probability, can take extremely large values. This is
in part due to the large intermittency of the flow, giving rise to large values of [R,S] and γ
(although with small probability). The large values observed for ψ are also closely related
to the statistical geometry in the system. Indeed, the denominator in (2.30) can be very
small because, as it will be shown in the next section, the vorticity tends to strongly align
with z2, inducing large values of ψ . Therefore, the geometrical simplification obtained by
replacing the three-dimensional H with the two-dimensional H∗

γ also comes with the cost
that the eigenvalue of H∗

γ is far more intermittent than those of H.
Next, we condition the eigenvalues of H and H∗

γ on the magnitude of the local
strain rate and vorticity ‖S‖2 and ‖R‖2. For the anisotropic pressure Hessian we define
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FIGURE 7. Results for (a) 〈ϕ|R,Q〉, where ϕ =
√∑

i ϕ
2
i , and (b) 〈ψ |R,Q〉 as functions of

R,Q. Colours denote the magnitude of the terms, and black lines denote the Vieillefosse tails.

ϕ =
√∑

i ϕ
2
i and compute the conditional averages

〈
ϕ|‖S‖2

〉
and

〈
ϕ|‖R‖2

〉
. Similarly,

for the dimensionally reduced anisotropic pressure Hessian we look at
〈
ψ |‖S‖2

〉
and〈

ψ |‖R‖2
〉
. The results from the DNS are shown in figures 6(c) and 6(d). The results reveal

a simple scaling
〈
ϕ|‖S‖2

〉 ∼ ‖S‖2, as dimensional analysis suggests. This lends support to
models such as Wilczek & Meneveau (2014), in which the pressure Hessian is a linear
combination of S2, R2 and [R,S]. The scaling

〈
ϕ|‖S‖2

〉 ∼ ‖S‖2 is evident especially
for large values of ‖S‖2. This may reflect the idea that during large fluctuations, the
length scale associated with S is smaller as compared to situations where S is small or
moderate. If true, then the pressure Hessian is more localized during large fluctuations,
giving rise to the scaling

〈
ϕ|‖S‖2

〉 ∼ ‖S‖2 that reflects a local relationship between ϕ
and ‖S‖2. On the other hand, for the dimensionally reduced anisotropic pressure Hessian
eigenvalue we find

〈
ψ |‖S‖2

〉 ∼ ‖S‖2ζ with ζ > 1 (in particular ζ between 4/3 and 5/4).
Nevertheless,

〈
ψ |‖S‖2

〉
maintains a well-defined power law trend, which has positive

implications for modelling the anisotropic pressure Hessian using information inferred
by the dimensionally reduced anisotropic pressure Hessian. Moreover, the scalings of the
conditioned eigenvalue magnitudes are the same whether conditioned on either ‖S‖2 or
‖R‖2, for both H and H∗

γ .
In figure 7 we plot the conditioned averages 〈ϕ|R,Q〉 and 〈ψ |R,Q〉. The results

show that 〈ϕ|R,Q〉 is quite large everywhere except for small R,Q and its shape shares
similarities with the sheared drop shape of the joint PDF of the invariants R,Q, that
is in figure 12(d). In contrast, 〈ψ |R,Q〉 is largest in the quadrants Q > 0,R < 0 and
Q < 0,R > 0 (especially below the right Vieillefosse tail) corresponding to regions of
enstrophy and strain-rate production. Therefore, it is not only that the magnitudes of H
and H∗

γ differ significantly, but also that they are most active in different regions of the
flow. Indeed, H∗

γ is most active in the regions where the velocity gradients are also most
active, while H is active and strong in many regions where the velocity gradients display
relatively little activity (e.g. the quadrant Q < 0, R < 0). In this sense then, one might
say that H∗

γ is more closely tied to the dynamics of the velocity gradients than H.
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4. Numerical results: statistical geometry

We now turn to consider the statistical geometry of the system. In figure 8 we show
the alignment between the vorticity ω and the eigenframes of H and H∗

γ . While there
is a strong preferential statistical alignment of the intermediate strain-rate eigenvector v2
with ω (Meneveau 2011), the preferential statistical alignment between ω and the pressure
Hessian eigenvectors yi is very weak. There is only a moderate tendency for alignment
between y2,3 and ω (Chevillard et al. 2008). This constitutes an obstacle for understanding
the role of the anisotropic pressure Hessian in turbulence.

On the other hand, the results in figure 8 show a striking alignment between ω and
the dimensionally reduced anisotropic pressure Hessian eigenvectors zi. Indeed, there is
a remarkable tendency for z2 to align with ω, that is consistent with the preferential
alignment between v2 and ω and between z2 and v2 (figure 9). In the Appendix we
show results for these alignments based on the surrogate Gaussian field, and the results
show that even for this case there is a strong tendency for z2 to align with ω. However,
the alignment of z2 with ω is about four times stronger in the DNS. Therefore, while
part of the striking alignment behaviour is kinematic in origin, arising due to the nature
of the dimensionality-reduction process used to construct H∗

γ , a significant contribution
also comes from the turbulence dynamics itself. It is not immediately obvious why this
preferential alignment should occur even for the Gaussian field. Although the term used
to perform the dimensionality reduction γ [R,S] consists of a rotation of the strain-rate
eigenframe about the vorticity axis, it does not trivially follow from this that z2 should
exhibit preferential alignment with respect ω.

As discussed in § 2.4, the contribution of the vorticity and dimensionally reduced
anisotropic pressure Hessian to the straining motion in the fluid is confined to planes.
In particular, the straining associated with the centrifugal force produced by the spinning
of the fluid particle about its vorticity axis acts in the plane �ω, orthogonal to ω, while
the contribution from H∗

γ acts on the plane �2, orthogonal to its intermediate eigenvector
z2. The results shown in figure 8(b) indicate that these two planes tend to almost coincide.
However, the effects of ω and H∗

γ on the strain-rate dynamics are radically different. The
rotation of the fluid element generates a stretching rate of magnitude ω2/4 on the plane
�ω and its contribution is isotropic, since the eigenvalue of the projection tensor Pω is the
same for all the eigenvectors that belong to the plane �ω, as in figure 2(b). On the other
hand, the dimensionally reduced anisotropic pressure Hessian causes a stretching rate of
magnitude ψ in direction z3 and an equal and opposite compression in the direction z1,
orthogonal to z3, as in figure 2(c). This results in a marked anisotropy of the effect of H∗

γ

on the plane �2. Since the planes �ω and �2 tend to be almost parallel, the anisotropic
pressure Hessian can be understood to be the source of the anisotropy, which is absent
in the centrifugal contribution, that plays a key role in the prevention of the blow-up that
occurs in the RE system.

Interestingly, the additional term proportional to [R,S] used in the definition of H∗
γ ,

(2.22), arises from a rotation of the strain-rate eigenframe about ω and the results show
that H∗

γ lays on a two-dimensional manifold that statistically has a strong, but imperfect
tendency to be orthogonal to ω. The dynamical significance of the slight misalignment is
that it allows the anisotropic pressure Hessian to contribute to the eigenframe dynamics
of the vorticity components. To see this we note that while the pressure Hessian does not
explicitly contribute to the vorticity equation Dtω, it does explicitly contribute to D2

t ω.
By neglecting the viscous term and using the dimensionally reduced anisotropic Hessian
(since we are here only concerned with the single-time dynamics of the system), we may
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FIGURE 8. The PDF of the orientation between the vorticity vector and (a) the eigenframe
of the pressure Hessian, (b) the eigenframe of the dimensionally reduced anisotropic pressure
Hessian. The alignment is expressed by inner product between the normalized vorticity ω̂ ≡
ω/‖ω‖ and normalized eigenvectors of H ( yi) and H∗

γ (zi).

write

D2
t ω = −2

3
Qω − ψ

[
(z�

1 · ω)z1 − (z�
3 · ω)z3

]
. (4.1)

This shows that if z2 is parallel to ω, then H∗
γ does not contribute to D2

t ω. It is known
that in the inviscid case, the neglect of the anisotropic pressure Hessian in the eigenframe
dynamics leads to a finite time singularity (Vieillefosse 1982). Therefore, assuming that
the slight misalignment between H∗

γ and ω is not solely due to viscous effects, then this
misalignment must also play a role in regularizing the eigenframe dynamics thus hindering
the onset of singularities in the inviscid Euler system.

Figures 9(a), 9(c) and 9(e) present the statistical alignment of the eigenvectors yi of
H, with the strain-rate eigenvectors vj. The alignments between the pressure Hessian
eigenframe and the strain-rate eigenframe do not reveal any strong preferences, with weak
alignment tendencies to y1 · v1 � 0.71 and y1,3 · v3 � 0.71. Therefore, there is a very mild
tendency for y1 to form a π/4 angle with v1 and v3 and for y3 to form a π/4 angle with
v3. These weak alignments make it difficult to model the directionality of H in any simple
way in terms of the eigenframe of the strain-rate tensor.

Figures 9(b), 9(d) and 9( f ) show the alignments between the eigenvectors zi of H∗
γ , with

vj. The results show, in striking contrast to the corresponding plots for the alignment of H,
that the eigenframe H∗

γ exhibits remarkable alignment properties with a strong tendency
to have z1,3 · v1,3 ≈ 0.71, z2 · v2 ≈ 1 and z2 · v3 ≈ 0. This means that the tangent space
�2 to the two-dimensional manifold on which H∗

γ acts tends to be orthogonal to v2. On
that plane the eigenvectors z1 and z3 of H∗

γ tend to be inclined at an angle of π/4 relative
to both v1 and v3. This evidence makes the dimensionally reduced anisotropic pressure
Hessian suitable for modelling, since there is a well-defined most probable configuration
for the orientation of H∗

γ with respect to S. Those clear preferential alignments between
ω and S with H∗

γ also help to understand how the anisotropic pressure Hessian prevents
blow-up, as we will discuss in the next section.

Results for the alignment between zi and vi based on a Gaussian surrogate field are
reported in the Appendix, and show a similar striking alignment behaviour to the DNS
results. However, the alignments are much weaker than the ones in the DNS. Furthermore,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

47
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.470


Dimensionality reduction of the anisotropic pressure Hessian 900 A38-21

 0

 1

 2

 0.5  1.0

y1 · υ1
y1 · υ2

y1 · υ3

z1 · υ1
z1 · υ2
z1 · υ3

z2 · υ1
z2 · υ2
z2 · υ3

z3 · υ1
z3 · υ1

z3 · υ3

y2 · υ1
y2 · υ2

y2 · υ3

y3 · υ1
y3 · υ2
y3 · υ3

PD
F

 0

 10

 20

 30

 0.5  1.0

 0  0.5  1.0  0  0.5  1.0

 0  0.5  1.0  0  0.5  1.0

 1

 2

 1

 2

PD
F

 5

 10

cos θ cos θ

PD
F

 10

 20

 30

(a) (b)

(c) (d)

(e) ( f )

FIGURE 9. The PDF of the relative orientation between the pressure Hessian eigenframe and
the strain-rate eigenframe (a, c, e) and relative orientation between the dimensionally reduced
anisotropic pressure Hessian eigenframe and the strain-rate eigenframe (b, d, f ). The orientation
is expressed by inner product of the eigenvectors of the strain-rate tensor vi with the eigenvectors
of H ( yi) and the eigenvectors of H∗

γ (zi).

while the alignments involving v1 and v3 are significantly different in the DNS, they are
identical in the Gaussian field, which is most likely due to the reversibility of the latter.
Therefore, just as for the alignments with vorticity, the striking alignments between zi
and vi is partially a kinematic effect due to the form of the tensor γ [R,S] used for the
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dimensionality reduction, but there is also a strong and particular contribution that arises
from the turbulence dynamics itself.

5. Numerical results: conditioned statistical geometry

The simpler geometry of the dimensionally reduced anisotropic pressure Hessian
together with its well-defined preferential alignments can aid understanding of the role
of the pressure Hessian on the dynamics of the velocity gradients. In particular, the role
of the anisotropic pressure Hessian in preventing the blow-up of the RE system can be
analysed by considering how the statistical alignment properties of H∗

γ depend on S and
ω. The finite-time singularity prevention mechanism can be safely tackled by using H∗

γ

instead of H since this regularity problem is associated with the behaviour of the velocity
gradient invariants, and the orientation of the strain-rate eigenframe does not play any
role. The equations governing λi, namely (2.10b), shows that there is a local stabilizing
effect on the dynamical evolution of λi due to the centrifugal force produced by the fluid
particle rotating about its vorticity axis. In particular, this term opposes the growth (in
magnitude) of the compressive eigenvalue λ3. However, it is known that this mechanism
alone is not sufficient to prevent blow-up of the RE system (Meneveau 2011), and the
anisotropic pressure Hessian is required to stabilize the dynamics. This can be understood
more easily when the dimensionally reduced anisotropic pressure Hessian is used instead
of the full anisotropic pressure Hessian. Indeed, H∗

γ is effective only on a plane which has
a clear tendency to preferentially align with S and ω, in striking contrast with the mild
preferential alignments of H with S and ω.

5.1. Dimensionally reduced anisotropic pressure Hessian–strain-rate alignment
The components of the dimensionally reduced anisotropic pressure Hessian, H∗

γ , in the
strain-rate eigenframe can be more conveniently expressed as

H̃∗
γ,ij = V kiH∗

γ,kmV mj = V kiZ kpΨpqZ mqV mj, (5.1)

where the matrices V and Z contain the components of the strain-rate eigenvectors and
dimensionally reduced pressure Hessian eigenvectors in the Cartesian basis, that is,

V ij ≡ e�
i · vj and Z ij ≡ e�

i · zj. The diagonal and singular matrix Ψ has on its diagonal
the eigenvalues of the dimensionally reduced anisotropic pressure Hessian, (ψ, 0,−ψ).
The components of H∗

γ in the strain-rate eigenframe (5.1) can be written as

[H̃∗
γ,ij

] = ψ

⎡⎣ z̃2
11 − z̃2

13 z̃11z̃21 − z̃13z̃23 z̃11z̃31 − z̃13z̃33

z̃11z̃21 − z̃13z̃23 z̃2
21 − z̃2

23 z̃21z̃31 − z̃23z̃33

z̃11z̃31 − z̃13z̃33 z̃21z̃31 − z̃23z̃33 z̃2
31 − z̃2

33

⎤⎦ , (5.2)

where z̃ij ≡ v�
i · zj is the ith strain-rate eigenframe component of the jth eigenvector zj and∑

i z̃2
ij = 1. Since H∗

γ acts only on the plane �2, spanned by z1 and z3, the expression
for H∗

γ in the strain-rate eigenframe is much simpler than that for H, in that it allows
for separation of variables between the magnitude and orientation contributions. The
magnitude of H∗

γ is described solely by ψ while the orientation depends on the inner
products z̃ij. The factorization into the product of a function only of the eigenvalue and a
function only of the alignment of the eigenframes is a feature of two-dimensional traceless
tensors, while in three dimensions such separation of variables is in general not possible
(Ballouz & Ouellette 2018).
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By introducing the representation (5.2) into (2.32) one obtains

Dtλi = −
(
λ2

i − 1
3

∑
j

λ2
j

)
− 1

4

(
ω̃2

i − 1
3

∑
j

ω̃2
j

)
+ ψ

(
z̃2

i3 − z̃2
i1

)
. (5.3)

It is known that the blow up of the RE model occurs in the quadrant R > 0,Q < 0 where
the invariants R and Q are defined in (2.18). In particular, the blow-up is associated
with the limit R → +∞ and Q ∼ −(27R2/4)1/3 → −∞ (Vieillefosse 1982). In this
quadrant the straining field is in a state of bi-axial extension, with λ1 > 0, λ2 > 0, λ3 < 0.
Therefore, to explore how H∗

γ prevents blow-up, we must consider its effects on the states
where λ1 > 0, λ2 > 0, λ3 < 0. From (5.3) we see that the contribution from H∗

γ , namely
ψ(z̃2

i3 − z̃2
i1), will act to prevent blow-up in the quadrant Q < 0,R > 0 if z̃2

13 − z̃2
11 < 0,

z̃2
23 − z̃2

21 < 0 and z̃2
33 − z̃2

31 > 0.
Figure 10 shows the average alignments between the dimensionally reduced anisotropic

pressure Hessian and the strain-rate eigenframe conditioned on the principal invariants of
the velocity gradient, 〈z̃2

i3 − z̃2
i1|R,Q〉. The data confirm that, when Q < 0 and R > 0,

〈z̃2
23 − z̃2

21|R,Q〉 < 0 and 〈z̃2
33 − z̃2

31|R,Q〉 > 0, showing that H∗
γ acts to reduce |λ2| and

|λ3|. However, contrary to expectation, they also show that 〈z̃2
13 − z̃2

11|R,Q〉 > 0, such
that H∗

γ explicitly acts to increase λ1 when Q < 0,R > 0. Nevertheless, since
∑

i λi = 0,
if H∗

γ acts to reduce |λ3| when Q < 0,R > 0, then it also indirectly acts to reduce λ1,
since λ1 → ∞ is not possible unless |λ3| → ∞ (noting −λ3 ≥ λ2). This indirect effect is
mediated via the local pressure Hessian due to the incompressibility constraint. Therefore,
the effect of H∗

γ is somewhat subtle, directly acting to prevent blow-up of λ2 and λ3, and
only indirectly acting to prevent the blow-up of λ1. Interestingly, the direct amplification
of λ1 due to H∗

γ becomes very small in a narrow region along the right Vieillefosse tail, as
the colours in figure 10(b) show. Therefore, this amplification mechanism is not effective
in the phase space region in which the RE system blows up.

The scalar products z̃ij preferentially lie in a very narrow interval around a few
well-defined values, as clearly indicated by the results in figure 9. In particular, the
eigenvectors z1 and z3 of H∗

γ tend to form an angle of π/4 with the eigenvectors v1 and v3

of S. Therefore, a typical configuration for the relative orientation between H∗
γ and S is

[
V kiZ kj

] =
⎡⎣cos (π/4 + ε11) sin (ε12) cos (π/4 + ε13)

sin (ε21) cos (ε22) sin (ε23)
cos (π/4 + ε31) sin (ε32) cos (π/4 + ε33)

⎤⎦ , (5.4)

where the quantities εij represent the deviations of the angles from the idealized
configuration considered, and there is a dependence of the sign on the angle between v1
and z1, which can be π/4 or 3π/4 (depending upon the chosen sign of the eigenvectors).
That sign does not change the discussion below. Considering only small deviations from
the most probable alignment, that is, considering |εij| � 1, the elements of the rotation
matrix in (5.4) can be Taylor expanded and, at first order in εij, the expression for the
dimensionally reduced anisotropic pressure Hessian in the strain-rate eigenframe (5.2)
reduces to [H̃∗

γ,ij

] ∼ ψ

⎡⎣−2ε11 ε32 ±1
ε32 0 ε12
±1 ε12 2ε11

⎤⎦ , (5.5)
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FIGURE 10. Results for 〈z̃2
i3 − z̃2

i1|R,Q〉, (a) i = 1, (c) i = 2, (e) i = 3. The colour range has
been truncated to [−0.3, 0.3] in order to highlight the trend of the variables around the most
probable values. Results for 〈|z̃2

i3 − z̃2
i1||R,Q〉 in logarithmic scale, (b) i = 1, (d) i = 2, ( f ) i =

3. Black lines denote the Vieillefosse tails.
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FIGURE 11. Results for 〈−H̃∗
γ,i(i)|R,Q〉, the average of the diagonal components of −H∗

γ in
the strain-rate eigenframe conditioned on the principal invariants R,Q. (a) i = 1, (b) i = 2,
(c) i = 3. Black lines denote the Vieillefosse tails.

where the orthonormality constraint, V · V � = I , has been used to relate the small
perturbation angles. It is the diagonal components of H∗

γ that contribute directly to the rate
of change of the strain-rate eigenvalues, as in (5.3), and the anisotropic pressure Hessian
has no direct effect on the strain-rate eigenvalues when the most probable alignments,
εij = 0, occur. At the level of this first-order approximation, the effect of H∗

γ on the first
and third eigenvalue always has the opposite sign, which is consistent with the stabilizing
effect of the pressure Hessian. Therefore, according to this first-order approximation,
the pressure Hessian tends to counteract both λ1 and λ3 by imposing a negative rate
of change of λ1 and a positive rate of change of λ3, such that both the most positive
and negative eigenvalues are pulled toward smaller magnitudes. The results in figure 10
confirm this prediction in the Q > 0,R > 0 quadrant, where it is seen that H∗

γ acts to
suppress the magnitudes of both λ1 and λ3. That the linearized prediction fails in the
region Q < 0,R > 0 is perhaps not surprising since that is the region of most intense
nonlinear activity, and where H∗

γ must be sufficiently large (and by implication εij cannot
be too small) in order to counteract the blow-up associated with the RE dynamics. The
linearization also predicts that the influence of H∗

γ on λ2 is only a second-order effect
when εij is small. However, this prediction is in general not supported by the DNS, since
the results in figure 10 show that in most of the Q,R plane, H∗

γ strongly hinders the
growth of positive λ2.

In order to fully quantify the effect of H∗
γ , its magnitude should also be considered

together with its orientation. The average of the diagonal components of −H∗
γ in the

strain-rate eigenframe conditioned on the invariants R,Q is shown in figure 11. Despite
the large magnitude of the eigenvalue of H∗

γ , the contribution of H∗
γ to the strain-rate

eigenvalue dynamics is moderate on average. Figure 7 shows that the eigenvalue of H∗
γ ,

namely ψ , is very large along the right Vieillefosse tail and in the quadrant Q > 0,R < 0.
Figures 10(a)–10(c) show that 〈|z̃2

i3 − z̃2
i1||R,Q〉 is small along the right Vieillefosse tail,

and these small values of |z̃i3 − z̃i1| compensate the large magnitude of ψ in the same
region. In particular, the orientational contribution of H∗

γ to the dynamics of λ1, namely
|z̃13 − z̃11|, is very small along the right Vieillefosse tail. This indicates how the direct
amplification of λ1 due to H∗

γ does not lead to blow up, since this amplification is strong
for R < 0, but is very weak along the right Vieillefosse tail where RE blows up, as
shown in figure 11(a). As observed above, the dimensionally reduced anisotropic pressure
Hessian tends to suppress positive values of λ2 in the R > 0,Q < 0 quadrant, as displayed
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FIGURE 12. Results for 〈(ω̂ · vi)
2|R,Q〉, the statistical alignment between vorticity and

eigenvectors of the strain-rate tensor, conditioned on the principal invariants R,Q. (a) i = 1,
(b) i = 2, (c) i = 3. Panel (d) shows the joint probability density of the principal invariants R
and Q. Black lines denote the Vieillefosse tails.

in figure 11(b). Interestingly, however, H∗
γ contributes to the growth of positive λ2 in

the region Q > 0,R < 0, where ω and v2 are also strongly aligned (see figure 12b).
As such, H∗

γ indirectly contributes to vortex stretching. The results in figure 11(c) show
that, the dimensionally reduced anisotropic pressure Hessian strongly hinders λ3 along
the right Vieillefosse tail, contributing to its amplification only in a small region where
R < 0 and Q > 0. This is a key way in which H∗

γ acts to prevent blow-up in the region
R > 0,Q < 0.

5.2. Dimensionally reduced anisotropic pressure Hessian–vorticity alignment
As shown earlier, H∗

γ exhibits remarkable alignment properties with respect to the
vorticity ω. In view of this, we now consider how this alignment impacts the way that
H∗

γ competes with the centrifugal term produced by vorticity to control the growth of
the strain rates. This can be explored by considering the strain rates along the vorticity
direction.
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FIGURE 13. Statistical alignment between vorticity and eigenvectors of the dimensionally
reduced anisotropic pressure Hessian, conditioned on the principal invariants R,Q. Results
for (a) 〈(ω̂ · z3)

2 − (ω̂ · z1)
2|R,Q〉 and (b) 〈|(ω̂ · z3)

2 − (ω̂ · z1)
2||R,Q〉 in logarithmic scale.

Black lines denote the Vieillefosse tails.

The statistical alignments of the vorticity vector with the strain-rate eigenvectors,
quantified by (vi · ω̂)2, conditioned on the invariants R and Q, are shown in figure 12.
The vorticity tends to align with the most extensional strain-rate eigenvector in the region
R < 0 and also, to a lesser extent, between the Vieillefosse tails. Alignment between
the vorticity and the most compressional strain-rate eigenvector takes place in the region
R > 0 only, above the right Vieillefosse tail. The vorticity vector strongly aligns with the
intermediate strain-rate eigenvector in the region Q > 0, close to the R = 0 axis and along
the right Vieillefosse tail. The half-plane Q > 0 and the vicinity of the right Vieillefosse
tail correspond to the bulk of probability on the Q,R plane (Meneveau 2011), as shown in
figure 12(d), and therefore preferential alignment between vorticity and the intermediate
strain-rate eigenvector is observed. In the Q > 0 region where the alignment between
vorticity and the intermediate strain-rate eigenvector is strong, the contribution of H∗

γ to
the dynamics of λ2 is also strong and positive (see figure 11b). Therefore, H∗

γ plays an
important indirect role in the stretching of vorticity by the intermediate eigenvalue in this
region.

We now turn to the combined effects of H∗
γ and ω on the strain-rate dynamics. The

evolution equation for S may be written as (ignoring the viscous term)

DtS = −
(

S · S − 1
3

Tr(S · S)I

)
− 1

4

(
ωω� − 1

3
ω2I

)
− H. (5.6)

When we consider the projection of this equation along the instantaneous vorticity
direction ω̂ ≡ ω/ω, the contribution of the last two terms on the right-hand side of (5.6)
is

ω̂
� ·
(

−1
4
ωω� + 1

12
ω2I − H

)
· ω̂ = −1

6
ω2 + ψ

(
(ω̂ · z3)

2 − (ω̂ · z1)
2) , (5.7)

where the properties of H∗
γ have allowed us to replace H with H∗

γ on the right-hand side
of (5.7). Note that the term −ω2/6 comes entirely from the contribution of vorticity to the
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isotropic part of the pressure Hessian, since the centrifugal contribution does not act along
the direction of vorticity, but only in directions orthogonal to it. Equation (5.7) shows that
(notice that ψ ≥ 0) when the vorticity is more aligned with the extensional/compressional
direction of H∗

γ , then H∗
γ acts with/against the contribution from vorticity to oppose/aid

the production of strain rate along the vorticity direction. In figure 13 we consider the
DNS data for 〈(ω̂ · z3)

2 − (ω̂ · z1)
2|R,Q〉. The results show that, in Q > 0 regions, the

vorticity vector preferentially aligns with the most compressional eigenvector of H∗
γ , so

that 〈(ω̂ · z3)
2 − (ω̂ · z1)

2|R,Q〉 > 0. On the contrary, in Q < 0 regions 〈(ω̂ · z3)
2 − (ω̂ ·

z1)
2|R,Q〉 < 0. This striking behaviour means that in vorticity dominated regions, the

dynamical effect of H∗
γ is to increase the strain rate along the vorticity direction, and the

opposite in strain-rate-dominated regions.

6. Conclusions

In this paper a new symmetry for the dynamics of the velocity gradient invariants
has been presented, and it has been interpreted as a symmetry transformation for the
anisotropic pressure Hessian. This symmetry transformation arises because the dynamics
of the strain-rate eigenvalues and vorticity components in the strain-rate eigenframe are
unaffected by the angular velocity of the eigenframe along the vorticity direction. Using
this symmetry, we have introduced a transformed pressure Hessian, Hγ , that is the sum
of the standard pressure Hessian and the additional term [R,S], which is the commutator
between the rotation-rate and strain-rate tensors. We then sought for lower-dimensional
representations of the pressure Hessian by performing a dimensionality reduction on Hγ ,
allowed by the additional degree of freedom provided by the symmetry transformation.
Remarkably, this dimensional reduction is possible everywhere in the flow except on sets
of zero measure, and consequently almost everywhere in the flow a two-dimensional
form of Hγ may be defined, which we denote by H∗

γ , that generates exactly the
same eigenframe dynamics as the full three-dimensional pressure Hessian H. We also
showed that H∗

γ exhibits remarkable alignment properties with respect to the strain-rate
eigenframe and vorticity, that are not possessed by H. In particular, the plane on which H∗

γ

acts tends to be almost orthogonal to the vorticity vector. Consistently, the intermediate
eigenvector of H∗

γ strongly aligns with the strain-rate intermediate eigenvector. Also, the
most compressional/extensional eigenvectors of H∗

γ preferentially form an angle of π/4
with the most compressional/extensional eigenvectors of the strain-rate tensor. We showed
that these alignments may be partially observed even in a Gaussian surrogate field formed
by randomizing the Fourier phases in the DNS velocity field. This indicates that part of
the cause of the alignments is the mathematical structure of the symmetry transformation
used in constructing H∗

γ . However, the alignments are much stronger in the DNS than for
the Gaussian field, and there are several important qualitative differences. This shows that
the genuine dynamical properties of turbulence are playing a strong role in the striking
alignments observed.

The dimensionally reduced anisotropic pressure Hessian offers promising applications.
For example, the reduction in dimensionality, provided by replacing H with H∗

γ in the
eigenframe equations, is a step towards more efficient modelling, since the dimensionally
reduced anisotropic pressure Hessian can be specified by only four scalar quantities instead
of five required by the fully three-dimensional H. The eigenvalues of H∗

γ are also shown
to be strongly related to the local strain rate and vorticity in the flow, suggesting relatively
simple ways to model these eigenvalues in Lagrangian models for the velocity gradient
tensor. This property, together with the reduction in dimensionality and the remarkable
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FIGURE 14. (a) Joint probability density function of the second and third principal invariants
of the velocity gradient in the Gaussian surrogate field. (b) Alignment between strain-rate
eigenvectors vi and normalized vorticity ω̂ ≡ ω/‖ω‖ in the DNS (red, green and blue curves)
and surrogate (black curves) fields.

alignment properties of H∗
γ , offer promising insights into ways in which the anisotropic

pressure Hessian and its effects on the eigenframe dynamics can be modelled. The
development of such a model will be the subject of a future work.
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Appendix. Dimensionally reduced pressure Hessian in a Gaussian field

In § 4 we presented the statistical alignment of the dimensionally reduced pressure
Hessian H∗

γ with the vorticity and the strain-rate eigenvectors in a DNS of homogeneous
and isotropic turbulence. In this appendix, we compute the same results using a Gaussian
surrogate field in order to compare with the DNS results. The aim is to understand the
extent to which the remarkable alignments observed are due to the turbulence dynamics,
and how much might have a kinematic origin (i.e. may be observed even for a Gaussian
field).

A surrogate Gaussian field is built from a DNS field by randomizing the Fourier phases
of the velocity field, while retaining the Fourier amplitudes from the DNS. In figure 14 we
show the PDF of Q,R, highlighting the symmetry about R = 0 for this surrogate field,
and also the PDFs of the alignments between vorticity and the strain-rate eigenvectors,
confirming that there is no preferential alignment in this Gaussian field.

In figure 15 the PDFs of det[R,S] and γ are shown. The distribution of det[R,S]
remains narrow for the surrogate field, as expected. The PDF of γ is quite strongly
non-Gaussian even for the surrogate field, but the non-Gaussianity is much smaller than for
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FIGURE 15. (a) Probability density function of det[R,S], in the surrogate field and DNS.
(b) The PDF of the real and finite multipliers γ in the surrogate field and DNS.
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the DNS observed in figure 15, with very large γ being much more probable in the DNS
turbulent field than in the surrogate field. Therefore, large values of γ are in part produced
by the nonlinear dependence of the polynomial defining γ on the velocity gradients, but
also by the intermittency of the turbulent field.

In figure 16 we show the alignments between the eigenvectors of the dimensionally
reduced pressure Hessian zi and the normalized vorticity ω̂ ≡ ω/‖ω‖, and between zi and
the strain-rate eigenvectors vi for the surrogate field. Comparing with the corresponding
DNS results in figures 8 and 9, we find that while some of the striking alignment observed
in the DNS can also be seen for surrogate field, the alignments in the surrogate field are
considerably weaker than in the DNS. In addition to these strong quantitative differences,
there are also some important qualitative differences. For example, in the DNS results,
z2 shows almost no preferential alignment with v1, but strong misalignment with v3. In
the surrogate field, however, the alignments between z2 and v1, and z2 and v3 appear
identical. This is most likely due to the reversibility of the surrogate field, in contrast to
the irreversible turbulent flow in the DNS. Therefore, part of the reason why H∗

γ lives
on a two-dimensional manifold that is almost orthogonal to both ω̂ and v2 is simply
due to the mathematical structure of the symmetry transformation used in constructing
H∗

γ . However, a strong contribution to the striking alignment observed in the DNS does
genuinely arise from the actual turbulence dynamics.
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