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SUMMARY

We propose a new model for the Stumpy Induction Factor-induced slender to stumpy transformation of Trypanosoma

brucei gambiense cells in immunosuppressed mice. The model is a set of delay differential equations that describe the time-

course of the infection. We fit the model, using a maximum-likelihood method, to previously published data on para-

sitaemia in four mice. The model is shown to be a good fit and parameter estimates and confidence intervals are derived.

Our estimated parameter values are consistent with estimates from previous experimental studies. The model predicts the

following. Slender cells can be classified as uncommitted, committed and dividing, and committed and non-dividing. A

committed slender cell undergoes about 5 divisions before exiting the cell-cycle. Committed slender cells must produce

SIF, and stumpy cells must not produce SIF. There are two mechanisms for differentiation, a background differentiation

rate, and a SIF-concentration-dependent differentiation rate, which is proportional to SIF concentration. SIF has a half-

life of about 1.4 h in mice. We also show, with suitable changes in the parameter values, that the model reflects behaviours

seen in other host species and trypanosome strains.
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INTRODUCTION

African trypanosomes cause widespread disease in

humans and livestock. They are transmitted be-

tween mammalian hosts by the bite of the tsetse fly.

When first transmitted to a mammal, trypanosomes

have a long, slender morphology and these forms are

not infectious to the tsetse. Slender cells divide rap-

idly in the bloodstream andother organs before trans-

forming into non-dividing stumpy forms. Stumpy

cells are infectious to the tsetse.

Within a host, successive waves of parasitaemia

are observed. As the host’s immune system fights off

one wave, trypanosomes change their antigenic coat

and escape to start a new wave (Barry & Turner,

1991). However, the host’s immune system is not

the only mechanism that causes parasitaemic waves.

Trypanosomes are able to regulate their own density

by slender to stumpy cell differentiation when their

density passes a critical threshold. It has been specu-

lated that this is an evolved trait in order to keep the

host alive for prolonged periods – a necessity when

tsetse bites are infrequent (Vassella et al. 1997).

Black et al. (1985) and Seed & Sechelski

(1989b) first proposed that the slender to stumpy

transformation is triggered by a cell density-sensing

mechanism, and further work has supported this idea

(Seed & Black, 1997; Reuner et al. 1997; Vassella

et al. 1997; Seed & Black, 1999; Tyler et al. 2001).

Hesse et al. (1995) first suggested that a trypanosome-

derived factor or metabolite is the mediator of the

density-sensing mechanism. Then, in a set of elegant

experiments, Vassella et al. (1997) demonstrated that

the factor is produced by the trypanosomes and that

it acts via the cAMP pathway. They termed this

factor SIF, short for stumpy induction factor. They

also demonstrated that cell-cycle arrest precedes

morphological change.

Several mathematical models have been pro-

posed to describe slender to stumpy differentiation

(Turner, Aslam & Dye, 1995; Seed & Black, 1997,

1999; Tyler et al. 2001). However, none has per-

formed a rigorous statistical analysis on their fit to

data. That is, they have not been tested for goodness-

of-fit. Nor have their parameters been tested for

significance and, in some cases, no confidence limits

determined.

In this paper we propose a new model, based on

elements of the previous models and extended to

include SIF-induced differentiation. The model is

fitted to data from previous experiments with im-

munosuppressed mice (Seed & Sechelski, 1988,

1989a ; Seed & Black, 1997). By removing the effects

of the immune system we can get a better under-

standing of the density-sensing mechanism.
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Ourmodel is fitted, using themaximum-likelihood

method, to reconstructed data from the experiments.

This gives quantitative estimates of the model par-

ameters. Such estimates give our model strong pre-

dictive capacity and the potential to be rigorously

tested.

MATERIALS AND METHODS

Previous experiments

Five mice of strain C3HeB/FeJ were irradiated to

suppress their immune systems (more details are

available in Seed & Black (1997)). Each mouse was

infected with 1000 or 5000T. brucei gambiense cells of

clone NCTat-1.36. At various times, the tail of each

mouse was snipped and a drop of blood obtained.

The blood was diluted in 1% glucose phosphate-

buffered saline plus 1% sodium citrate (GPBS+C)

as an anticoagulant. Whole blood was diluted 1 part

blood to 49 parts GPBS+C. If the number of try-

panosomes in this suspension was too high to read,

further dilutions were made. Two aliquots from each

mouse were analysed in a haemacytometer. A second

drop of tail blood was smeared on a glass slide,

stainedwithGiemsa, and aminimumof 100 trypano-

somes were examined for their morphological type.

One mouse died prematurely so we will not use its

data in this paper.

Reconstructing the original data

Unfortunately, the original cell counts from the

haemacytometer and staining experiments have

been lost. To do a statistical analysis based on the

maximum-likelihood method we need to reconstruct

these lost cell counts. Fortunately, this is possible

because we know the experimental procedure.

The data consist of total cell concentrations and

three cell-type concentrations – slender, intermedi-

ate and stumpy – at various times. The concen-

trations are measured in units of number of cells per

millilitre of blood. Due to problems of distinguish-

ing between intermediate and stumpy cells we com-

bine these two classes into a single stumpy class.

To reconstruct the total cell counts let us define d

to be the dilution made, vs to be the volume of the

dilution counted in the haemacytometer and r to be

the number of aliquots. The total volume of blood

analysed is, therefore, v=rvs/d. If nt is the total

number of cells counted then the expected total con-

centration of cells in the blood is Ĉt=nt/v. We want

to find nt having been given v and Ĉt. Therefore

nt=vĈt, (1)

where nt is rounded to the nearest integer.

To reconstruct the counts for the two cell-types let

us define mt to be the total number of cells counted.

Let nl and ns be the counts of slender and stumpy

cells respectively. The expected frequencies of the

cell-types are f̂l=nl/mt and f̂s=ns/mt. The expected

concentrations of the two types are, therefore,

Ĉl=f̂lĈt and Ĉs=f̂sĈt. We want to find nl and ns
having been given mt, Ĉl, Ĉs and Ĉt. Therefore

ni=mt

Ĉi

Ĉt

, (2)

where i is l or s, and ni is rounded to the nearest

integer.

As well as reconstructing the cell counts we can

calculate the standard errors in the expected total

cell concentrations and the cell-type frequencies and

concentrations. Although these are not needed for

the statistical analysis, they are instructive when

plotting the data.

There are two main sources of error in the exper-

iments. The first is due to the difficulty of counting

highly motile cells in a haemacytometer. Cells may

be counted more than once or not at all if they mi-

grate into adjacent squares. This source of error was

minimized by counting a slide 2 or 3 times and tak-

ing an average count, and by the same experienced

person examining all the slides. In our analysis, we

assume that this error is negligible. The second

source of error is a sampling error, which we can

calculate as follows.

Table 1. Model variables and parameters

Definition Dimensions

Variable
l1 Concentration of dividing slender

cells not committed to differentiate
Cells/ml

l2 Concentration of dividing slender
cells committed to differentiate

Cells/ml

l3 Concentration of non-dividing
slender cells committed to
differentiate

Cells/ml

l Concentration of all slender cells
(l1+l2+l3)

Cells/ml

s Concentration of stumpy cells Cells/ml
f Concentration of SIF No unit

Parameter
t1 Time of first differentiation event h
t2 Period from commitment to

cell-cycle exit
h

t3 Period from cell-cycle exit
to stumpy morphology

h

a1 Slender cell birth rate hx1

a2 Slender cell background
differentiation rate

hx1

a3 Slender cell, SIF-induced
differentiation rate

hx1

a4 Stumpy cell death rate hx1

a5 SIF degradation rate hx1

c1 Uncommitted slender cell
concentration at time t1

Cells/ml

c2 Michaelis–Menten constant No unit
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The standard error of the estimated total cell

concentration is

eCt
=

Ĉtffiffiffi
n

p
t

: (3)

A detailed derivation of this equation, and the ones

that follow, are given in Appendix A. The standard

errors of the estimated frequencies are

efi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f̂i(1x f̂i)

mt

s
, (4)

where i is l or s. Thus the standard errors in the

estimated concentrations of the two cell-types are

eCi
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( f̂ieCt

)2+(Ĉtefi)
2

q
: (5)

The model

The model is a set of delay differential equations

(DDEs) that describe how the cell and SIF con-

centrations change over time. We define the model’s

variables and parameters in Table 1, and a schematic

representation of the model is shown in Fig. 1.

The model equations are

d

dt
l1(t)=a1l1(t)xw(t)l1(t), (6)

d

dt
l2(t)=a1l2(t)+w(t)l1(t)xea1t2w(txt2)l1(txt2), (7)

d

dt
l3(t)=ea1t2w(txt2)l1(txt2)

xea1t2w(txt2xt3)l1(txt2xt3), (8)

d

dt
s(t)=ea1t2w(txt2xt3)l1(txt2xt3)xa4s(t), (9)

d

dt
f(t)=l1(t)+l2(t)xa5 f (t), (10)

where

w(t)=a2+a3 f (t), (11)

is the differentiation rate of uncommitted slender

cells. The initial conditions are

l1(t1)=c1, (12)

l2(t1)=l3(t1)=s(t1)=f (t1)=0: (13)

Because we are assuming that no differentiation oc-

curs before time t1 (see below), we do not need to

specify conditions before this time.

The model is based on the following assumptions.

(1) The cells and SIF are well-mixed in the blood.

(2) The influx and outflux of cells between the blood

and any other organs infected by trypanosomes is in

equilibrium, that is, can be ignored. (3) The injected

slender cells do not immediately begin to differen-

tiate or grow exponentially. Only after t1 h does the

slender cell population begin to grow exponentially,

produce SIF and differentiate. The concentration of

uncommitted slender cells is set to c1 cells/ml at this

time. (4) Slender cell birth rate is proportional to the

instantaneous, dividing slender cell concentration

l1+l2. This gives exponential growth of the slender

cell population as observed experimentally.Thebirth

rate is a1, and the population doubling time, in the

absence of differentiation, is given by ln(2)/a1. (5) On

receiving the differentiation signal, the transitions

from one class to the next take fixed periods of time.

The uncommitted (L1) to committed slender cell

(L2) transition is instantaneous. The dividing com-

mitted to non-dividing committed slender cell (L3)

transition takes t2 h. The non-dividing slender cell

to stumpy cell (S) transition takes t3 h. So, once a

slender cell is committed to differentiate, it can take

several hours for it to become recognizable as a

stumpy cell. (6) Because there is a time lag between

receiving a differentiation signal and exiting the cell-

cycle, a committed slender cell may have many de-

scendants. We assume that all descendants are also

committed to differentiate. (7) Stumpy cell death

rate is proportional to the instantaneous stumpy cell

concentration. The death rate is a4 and the half-life

in h is given by ln(2)/a4. (8) SIF is produced at a

rate proportional to the instantaneous concentration

of dividing slender cells. We do not know the

production rate of SIF, nor do we know at what

Fig. 1. Schematic representation of the model. Slender cells, denoted L, are split into 3 subclasses: those not committed

to differentiate, denoted L1, those committed to differentiate but still dividing, denoted L2, and those committed to

differentiate and not dividing, denoted L3. Stumpy cells are denoted S. The parameters are defined in Table 1 and the

model details are given in the text.
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concentration it induces differentiation. Therefore,

we can normalize the production rate to 1, giving us

one less parameter to fit (seeAppendix B). (9) SIF de-

grades exponentially at a rate a5. Its half-life in hours

is given by ln(2)/a5. (10) There is a background level

of differentiation of slender cells, irrespective of SIF

concentration. This is necessary because we observe

stumpy cells at all times, in particular, during the

exponential growth phase. This background rate is

constant and occurs at a rate a2. (11) As cell concen-

tration reaches about 108 cells/ml there is a marked

increase in the differentiation rate. We must assume

something about the functional form for this differ-

entiation rate. The simplest form is linear: that is,

proportional to SIF concentration. Another, more

biologically motivated mechanism, is described by

Michaelis–Menten kinetics. This has the form

a3 f

c2+f
, (14)

where a3 is the maximum differentiation rate, and

c2 the Michaelis–Menten constant. A sketch of this

equation is shown in Fig. 2A (solid line). As f in-

creases, differentiation rate saturates at the value a3.

Biologically, this can be interpreted as a saturation

of membrane receptors by ligand (e.g., SIF) as the

ligand concentration increases.

Because the slender cell concentration and hence

SIF concentration, increases exponentially, differ-

entiation rate switches from background to above

background very rapidly. This is demonstrated by

the sketches in Fig. 2B by using a logarithmic x-axis.

Numerical schemes

A fourth-order Runge–Kutta scheme with fixed

time-step h was used to solve the equations. To use

this scheme we must convert our model from a

finite set of delay differential equations to an infinite

set of ordinary differential equations. The refor-

mulatedmodel is given in Appendix C. All numerical

solutions were done with h=0.25. This was checked

to make sure the solutions were stable and accurate.

Curve fitting

The model was fitted to the data using the maxi-

mum-likelihood method. For a particular set of par-

ameters and data we calculate the likelihood of these

parameters given the data. We then adjust the par-

ameters in order to maximize the likelihood, thus

giving us our maximum-likelihood parameter esti-

mates. The likelihood is found as follows.

We know that, if the total cell concentration is Ct

and if we analyse a volume v of blood in a haema-

cytometer then, the probability of counting nt cells is

given by a Poisson distribution

Prob(ntjCt; v)=
(vCt)

nt

nt!evCt
: (15)

We also know that, if the frequencies of the two cell-

types are fl and fs then, the probability of counting nl
and ns cells, given that we count mt cells in total, is

given by a binomial distribution

Prob(nl, nsjfl, fs,mt)=fnll f nss
mt!

nl!ns!
: (16)

The likelihood of a set of parameters given the

data is proportional to the product of all the prob-

abilities of the data given the simulated results of the

model. That is,

L /
Y7
j=1

(vjCt(tj))
ntj

ntj !e
vjCt(tj)

fl(tj)
nlj fs(tj)

nsj
mtj !

nlj !nsj !
: (17)

where j denotes a particular data point. Ct, fl and fs
are found by simulating the model for a particular

parameter set. vj, mtj
, ntj, nlj, nsj are the data at time tj.

For convenience the natural logarithm of the

likelihood is calculated. The maximum-(log)-

likelihood, lmax=ln(Lmax), is found using the

Marquis–Levenberg algorithm (Press et al. 1992)

with a tolerance of 10x6.

Statistical analysis

Goodness-of-fit. Once the best-fit parameters for a

particular data set have been found we want to test

the goodness-of-fit of these parameters. We do this

by comparing the observed maximum-likelihood

(lmax) to its expected distribution. The expected

distribution is found by simulating artificial data sets

from the best-fit model. We can do this because we

know the experimental procedure. We simulate 100

data sets and calculate their maximum likelihoods.

Fig. 2. Solid lines: (A) Michaelis–Menten kinetics of

slender cell differentiation rate. (B) As SIF concentration

is increasing exponentially, Michaelis–Menten kinetics

gives switch like behaviour in the differentiation rate. The

dotted lines represent differentiation rate proportional to

SIF concentration i.e., a3 f. For an exponentially increasing

population, such a rate also gives switch-like behaviour.
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These are then binned to create a distribution. The

observed lmax is compared to its expected distri-

bution. If the observed lmax falls above 5% of the

values in the expected distribution then the par-

ameters are considered a good fit. Otherwise they are

considered a poor fit.

Parameter significance. Parameter significance is

tested by setting each one to zero and recalculating

the maximum-likelihood. However, to test the sig-

nificance of the initial slender cell concentration, c1 is

set to 1000, otherwise there would be no cells in

the blood. Significance is determined by using the

likelihood-ratio test. If the difference between the

original and recalculated maximum-likelihoods is

greater than 1, then the parameter is significant at

the 5% level.

Parameter error estimates. To estimate the errors in

the parameter values we assume that the best fit

parameters to a particular data set are the true par-

ameters. Using these parameters, we simulate 100

artificial data sets and calculate their maximum-

likelihoods. This gives 100 sets of estimated

parameters from which we can construct a prob-

ability distribution for each parameter.

RESULTS

The reconstructed data

In Tables 2 and 3 we tabulate the original and re-

constructed data for each mouse. The total number

of cells counted to determine the frequency of each

type (mt) is unknown. Therefore, we assumed that

100 cells were counted for each case. The data and

error bars for the four mice are shown in Fig. 3.

Best-fit curves

The best-fit curves for all mice are shown in Fig. 4.

The maximum-likelihoods are tabulated in Table 4.

Goodness-of-fit

The goodness-of-fit of each mouse is given in

Table 4.

The fits are good for mice 1 and 2, but very poor

for mice 3 and 4. This might be caused by outliers in

Table 2. Given cell concentrations and experimental parameters

Time
(h)

Ĉt

(cells/ml)
Ĉl

(cells/ml)
Ĉs

(cells/ml) Haemacytometer vs (ml) d r v (ml)
mt

(cells)

Mouse 1
70.5 2.50r105 2.14r105 3.38r104 All 9r10x4 50 2 3.6r10x5 100
75.5 2.15r106 1.99r106 1.44r105 Central 1r10x4 50 2 4.0r10x6 100
96.0 3.93r107 3.43r107 4.83r106 5 small 2r10x5 50 2 8.0r10x7 100

124.5 7.26r108 3.59r108 3.64r108 5 small 2r10x5 2500 2 1.6r10x8 100
137.0 9.80r108 2.76r107 9.54r108 5 small 2r10x5 2500 2 1.6r10x8 100
148.0 1.14r109 3.19r107 1.11r109 5 small 2r10x5 2500 2 1.6r10x8 100
163.0 1.25r109 1.49r108 1.10r109 5 small 2r10x5 2500 2 1.6r10x8 100

Mouse 2
70.5 2.88r105 2.49r105 3.86r104 All 9r10x4 50 2 3.6r10x5 100
75.5 9.00r105 8.07r105 9.00r104 All 9r10x4 50 2 3.6r10x5 100
96.0 4.30r107 3.47r107 7.96r106 5 small 2r10x5 50 2 8.0r10x7 100

124.5 9.20r108 5.19r108 3.96r108 5 small 2r10x5 2500 2 1.6r10x8 100
137.0 1.72r109 2.41r107 1.69r109 5 small 2r10x5 2500 2 1.6r10x8 100
148.0 1.60r109 1.92r107 1.58r109 5 small 2r10x5 2500 2 1.6r10x8 100
163.0 8.24r108 3.79r107 7.86r108 5 small 2r10x5 2500 2 1.6r10x8 100

Mouse 3
70.5 6.25r105 5.19r105 1.04r105 All 9r10x4 50 2 3.6r10x5 100
75.5 2.15r106 2.06r106 8.17r104 Central 1r10x4 50 2 4.0r10x6 100
96.0 4.80r107 3.16r107 1.63r107 5 small 2r10x5 50 2 8.0r10x7 100

124.5 1.18r109 3.54r108 8.18r108 5 small 2r10x5 2500 2 1.6r10x8 100
137.0 1.32r109 9.24r106 1.31r109 5 small 2r10x5 2500 2 1.6r10x8 100
148.0 1.16r109 2.20r107 1.14r109 5 small 2r10x5 2500 2 1.6r10x8 100
163.0 8.00r108 5.68r107 7.41r108 5 small 2r10x5 2500 2 1.6r10x8 100

Mouse 4
70.5 5.75r105 4.93r105 8.05r104 All 9r10x4 50 2 3.6r10x5 100
75.5 5.75r105 5.29r105 4.60r104 All 9r10x4 50 2 3.6r10x5 100
96.0 2.36r107 1.53r107 8.28r106 5 small 2r10x5 50 2 8.0r10x7 100

124.5 7.72r108 4.26r108 3.45r108 5 small 2r10x5 2500 2 1.6r10x8 100
137.0 1.18r109 9.68r107 1.10r109 5 small 2r10x5 2500 2 1.6r10x8 100
148.0 1.54r109 5.24r107 1.48r109 5 small 2r10x5 2500 2 1.6r10x8 100
163.0 9.32r108 7.34r107 8.56r108 5 small 2r10x5 2500 2 1.6r10x8 100
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the data. For mouse 3, potential outliers are the

stumpy cell concentrations at 70.5 and 75.5 h. For

mouse 4, potential outliers are the slender and

stumpy cell concentrations at 70.5 and 75.5 h.

For mouse 3, removing the stumpy cell concen-

tration at 75.5 h gives a much better fit (see Table 5

and the dotted lines in Fig. 4C). Removing the

stumpy cell concentration at 70.5 h also gives a good

fit (result not shown). For mouse 4, removing all

data points at 75.5 h gives a much better fit (see

Table 5 and the dotted lines in Fig. 4D). Removing

all data points at 70.5 h also gives a good fit (result

not shown). We denote these modified fits as corre-

sponding to mouse 3k and mouse 4k.

Parameter significance of the best-fit model

The maximum-likelihoods of the model with

constrained parameters for all mice are shown in

Table 6. Parameter significance for a particular

mouse is denoted by a tick.

Parameters t1 and c1 set up the initial conditions.

Parameter t1 is marginally significant, which prob-

ably implies that differentiation does not begin

immediately at the start of the experiment, but it can

be compensated for by changes in c1 during the fit-

ting procedure. Parameter c1 is not significant: set-

ting it to 1000 cells/ml can be compensated for by

changes to t1. Parameter a1, the slender cell birth

rate, is clearly significant. Parameter a2, the back-

ground slender cell differentiation rate is significant.

This is because differentiation is taking place even

before SIF concentration has reached levels high

enough to limit the parasitaemia after 124.5 h. Par-

ameter a3, the above-background slender cell dif-

ferentiation rate, is highly significant. Without this

parameter there would be no self-limitation of the

parasitaemia, that is, only exponential growth. Par-

ameter a4, the stumpy cell death rate, is only mar-

ginally significant in mouse 3k. This is because the

drop in stumpy cell concentration is only captured

by the last data point at 163 h. Parameter t2 is sig-

nificant as without it there are no oscillations in

slender cell concentration (see below). Parameter t3
is marginally significant as removing it only has a

small effect on the dynamics. Parameter a5 is sig-

nificant, as without SIF degradation the slender cell

concentration would not recover after its drop.

Table 3. Reconstructed raw data

Time
(h) f̂l f̂s

nt
(cells)

nl
(cells)

ns
(cells)

eCt

(cells/ml)
eCl

(cells/ml)
eCs

(cells/ml)

Mouse 1
70.5 0.86 0.14 9 86 14 8.33r104 7.25r104 1.42r104

75.5 0.93 0.07 9 93 7 7.33r105 6.86r105 7.32r104

96.0 0.88 0.12 31 88 12 7.01r106 6.28r106 1.56r106

124.5 0.50 0.50 12 50 50 2.13r108 1.12r108 1.13r108

137.0 0.03 0.97 16 3 97 2.47r108 1.76r107 2.41r108

148.0 0.03 0.97 18 3 97 2.67r108 2.03r107 2.60r108

163.0 0.12 0.88 20 12 88 2.80r108 5.26r107 2.49r108

Mouse 2
70.5 0.87 0.13 10 87 13 8.94r104 7.81r104 1.55r104

75.5 0.90 0.10 32 90 10 1.58r105 1.45r105 3.14r104

96.0 0.81 0.19 34 81 19 7.33r106 6.19r106 2.16r106

124.5 0.57 0.43 15 57 43 2.40r108 1.43r108 1.13r108

137.0 0.01 0.99 28 1 99 3.28r108 2.08r107 3.24r108

148.0 0.01 0.99 26 1 99 3.16r108 1.78r107 3.13r108

163.0 0.05 0.95 13 5 95 2.27r108 2.02r107 2.17r108

Mouse 3
70.5 0.83 0.17 23 83 17 1.32r105 1.12r105 3.20r104

75.5 0.96 0.04 9 96 4 7.33r105 7.06r105 4.98r104

96.0 0.66 0.34 38 66 34 7.75r106 5.59r106 3.48r106

124.5 0.30 0.70 19 30 70 2.72r108 9.83r107 1.97r108

137.0 0.01 0.99 21 1 99 2.87r108 1.12r107 2.85r108

148.0 0.02 0.98 19 2 98 2.69r108 1.66r107 2.65r108

163.0 0.07 0.93 13 7 93 2.24r108 2.60r107 2.09r108

Mouse 4
70.5 0.86 0.14 21 86 14 1.26r105 1.10r105 2.67r104

75.5 0.92 0.08 21 92 8 1.26r105 1.17r105 1.86r104

96.0 0.65 0.35 19 65 35 5.43r106 3.70r106 2.22r106

124.5 0.55 0.45 12 55 45 2.20r108 1.27r108 1.05r108

137.0 0.08 0.92 19 8 92 2.72r108 3.90r107 2.52r108

148.0 0.03 0.97 25 3 97 3.10r108 3.00r107 3.01r108

163.0 0.08 0.92 15 8 92 2.41r108 3.15r107 2.24r108
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Parameter estimates

The parameter estimates for each mouse are given in

Table 7. In Fig. 5 we show boxplots of the parameter

distributions. The median is shown as a horizontal

line contained within a box that bounds 50% of

the values. Small circles show outliers in the dis-

tributions. Even though the stumpy cell death rate is

not a significant parameter, it is included because

there is strong evidence that stumpy cells do die

(Black, Hewett & Sendashonga, 1982; Turner et al.

1995).

Many of the parameters show discrepancies be-

tween mice 1 and 2 and mice 3k and 4k. This is most

likely due to the removal of the outliers at 75.5 h for

mice 3k and 4k. Parameter a4 is much smaller for

mouse 1 than for the other mice. This is because the

stumpy cell concentration in this mouse does not

fall near the end of the experiment as it does in the

others.

There is quite a large variation in parameters a3

and a5. By de-dimensionalizing the model we can

show that the differential equation describing SIF

rate of change can be written as

df

dt
=l1+l2x

a5

a3
f : (18)

Thus, changing a3 and a5 by an equal factor does not

change the solution. For the best-fit model, a5/a3

varies from 3 to 5r108 across the four mice. This is a

much smaller variation than when the parameters are

treated separately. This suggests that the variations

in the separate parameters are an artifact of the fitting

procedure and not true variations between the mice.

Having found our best-fit model we can now make

some further predictions. We can calculate differ-

entiation rate, extrapolate the simulations forward in

time, and change parameter values and observe their

effects on the dynamics.

Differentiation rate

We can determine the instantaneous differentiation

rate of slender cells from class L1 to L2. This is given

by a2+a3 f(t). In Fig. 6 we plot these curves for the

four mice. Even though there is large variation in the

SIF-concentration-dependent differentiation rate

(a3), there is very little variation in the overall rates

shown in Fig. 6. This is due to the large variation in

the amount of SIF produced – which is a function of

the slender cell concentration. This again suggests

that the variation in parameters a3 and a5 is a conse-

quence of the fitting procedure and not a true indi-

cation of variation between the mice.

Fig. 3. Experimental results (circles) with error bars (¡1 S.E.M.). One error bar extends to zero. The x-axis gives the

time since the start of the experiment, and the y-axis the number of cells/ml on a log scale.
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Peak differentiation rate is 3–5 times higher than

background differentiation rate. Which are both sev-

eral orders of magnitude higher than stumpy cell

death rate.

Extrapolating the simulations

The mice experiments were halted at 163 h. The

solid line in Fig. 7 shows what happens when we

extrapolate the model past this time using the best-

fit parameters for mouse 3. The oscillations continue

indefinitely, and the total cell concentration plateaus

at around 2r109 cells/ml. Numerical analysis (not

shown) suggests that the dynamics undergo a Hopf

bifurcation as t2 is increased, that is, an abrupt

change from stable to decaying oscillations. The

dotted line in Fig. 7 demonstrates this when t2 is

increased by 40%.

Which cells produce SIF?

To determine which cells produce SIF we calculated

the maximum-likelihood for each mouse with differ-

ent combinations of cells producing SIF. We assume

Fig. 4. Best-fit curves. Circles are observed values, lines are best fits. The x-axis shows time since beginning of

experiment, the y-axis shows cell concentration in cells/ml on a log scale. Dotted lines for mouse 3 shows best-fit where

cell type concentrations at 75.5 h have been omitted from the fit. Dotted lines for mouse 4 shows best-fit where total

and cell type concentrations at 75.5 h have been omitted from the fit.

Table 4. The maximum-likelihoods and

goodness-of-fits for each mouse

Mouse lmax gof

1 x36 15
2 x36 15
3 x45 0
4 x45 0

Table 5. The maximum-likelihoods and

goodness-of-fits for mouse 3k and 4k

Mouse lmax gof

3k x29 72
4k x30 36
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that each cell-type produces the same amount of

SIF. The results are given in Table 8. For all mice,

when stumpy cells produce SIF, there is a significant

decrease in the maximum-likelihood compared to

the best-fit model. In Fig. 8 the dashed line shows

that when stumpy cells produce SIF, too much is

produced and the slender cell concentration drops

too low. When only uncommitted slender cells pro-

duce SIF, there is a significant decrease in the

maximum-likelihood compared to the best-fit model

(Table 8). In Fig. 8 the dotted line shows that when

only uncommitted cells produce SIF, too little is

produced and the slender cell concentration does

not drop far enough. Whether or not non-dividing

slender cells produce SIF is inconclusive (Table 8).

Michaelis–Menten kinetics

We have assumed that the SIF-concentration-

dependent differentiation rate is proportional to SIF

concentration i.e. a3 f. Although this is the simplest

assumption we could make, it is not necessarily

correct. As mentioned above, a more biologically

motivated example is Michaelis–Menten kinetics,

modelled by equation 14. Note that equation 14 ap-

proximates a linear differentiation rate if c2 is very

much larger than peak SIF concentration.

We tested the significance of Michaelis–Menten

kinetics (Table 6, last row). It did not give a sig-

nificantly better fit to the data for any mouse. We

conclude, therefore, that a linear SIF-concentration-

dependent differentiation rate gives the best fit to

the data.

Effects of changing parameter values

By changing individual parameter values we can

understand how these parameters influence the

dynamics.

In Fig. 9A the solid lines are the best-fit curves of

mouse 2. The dotted lines demonstrate what hap-

pens when slender cell birth rate is increased by

20%. As expected, the slender cell population in-

creases more rapidly. More interestingly, this causes

a higher parasitaemia, which leads to a huge pro-

duction of SIF and consequently a massive decline

in slender cell concentration. Stumpy cell concen-

tration is, therefore, greatly increased. The dashed

line demonstrates the case when birth rate is reduced

by a factor of 2. The oscillatory dynamics are lost,

both cell types increase less rapidly and stumpy cells

dominate much earlier.

Changing the background differentiation rate

(a2) has a similar but opposite effect to changing

Table 6. Parameter significance

Constrained
parameter(s)

lmax Significant

1 2 3k 4k 1 2 3k 4k

None x36 x36 x29 x30
t1 x40 x37 x33 x34 [ [ [

c1 x36 x37 x30 x30
a1 x1380 x685 x1311 x794 [ [ [ [

a2 x153 x189 x147 x143 [ [ [ [

a3 x240 x292 x165 x150 [ [ [ [

a4 x36 x37 x31 x30 [

t2 x44 x48 x40 x42 [ [ [ [

t3 x46 x39 x30 x34 [ [ [

a5 x80 x57 x96 x51 [ [ [ [

M–M x36 x36 x29 x30

Table 7. Estimated parameter values for best-fit model

Parameter

Value

1 2 3k 4k

t1 46 48 53 52
a1 0.33 0.32 0.42 0.38
a2 0.15 0.15 0.26 0.24
a3 5.6r10x10 8.6r10x10 1.5r10x9 2.8r10x9

a4 1.2r10x7 1.2r10x2 1.6r10x2 1.2r10x2

t2 8.1 11 12 12
t3 7.9 6.4 2.9 3.6
a5 0.17 0.40 0.62 1.4
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parameter a1. This is not unexpected because com-

mitted slender cell growth rate is proportional to

both (see equation 6). The only major difference is

that when a2=0, stumpy cells appear a little later in

the simulation.

The dotted line in Fig. 9C shows the case when

parameter a3 has been increased 500-fold over the

best-fit model. This is equivalent to slender cells

producing 500 times more SIF or being 500 times

more sensitive to SIF. Peak parasitaemia is reduced

to about 106 cells/ml. This is closer to peak para-

sitaemia seen in domestic cattle. The dashed line

represents a 5-fold decrease in parameter a3 com-

pared to the best-fit model. Peak parasitaemia is in-

creased and the peak is delayed for both slender and

stumpy cells.

The dotted line in Fig. 9D shows what happens

when the stumpy half-life is 1 h. Slender cell con-

centration is not affected, but because stumpy cells

die so rapidly, their concentration oscillates and

Fig. 5. Boxplots of the estimated parameter distributions. The horizontal line is the median, the box bounds 50%

of the values. Circles show outliers.

N. J. Savill and J. R. Seed 62

https://doi.org/10.1017/S0031182003004256 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182003004256


never passes slender cell concentration. When

stumpy cells do not die (dashed line) then their

concentration saturates. This is seen in the data of

mouse 1.

In Fig. 9E we have increased the L2 to L3 tran-

sition period (t2) by 100% (dotted lines) and set it to

zero (dashed lines). A longer transition period im-

plies more slender cells, hence the curves shifting

left. This also means more SIF is produced and the

slender population does not recover after its decline.

For instantaneous transition the slender cells do not

show oscillatory behaviour.

In Fig. 9F and G we have increased the L3 to

stumpy transition period (t3) by 10-fold (dotted

lines) and set it to zero (dashed lines). In Fig. 9F

only L1 and L2 cells produce SIF. In Fig. 9G L1,

L2 and L3 cells produce SIF. In both cases, an in-

creased transition period (dotted lines) prevents os-

cillations and delays the occurrence of stumpy cells.

These curves could be interpreted as arising from

monomorphic strains if the host died before peak

parasitaemia. Instantaneous transition (dashed lines)

causes a drop in peak parasitaemia and earlier oc-

currence of stumpy cells. Moreover, if L3 cells pro-

duce SIF then the amplitude and period of the

oscillations are reduced.

In Fig. 9H we increased SIF degradation rate (a5)

by 100% (dotted lines) and set it to zero (dashed

lines). This parameter affects the peak parasitaemia

and its timing, and the magnitude and period of

slender cell oscillations. When set to zero all slender

cells differentiate as one would expect.

DISCUSSION

From the best-fit model we can make the following

conclusions. Slender cells divide at a rate of ap-

proximately 0.33/h. This corresponds to a doubling

time of about 2.1 h. This is much shorter than pre-

viously reported: 4.18 h by Seed & Black (1997) and

about 5 h for ANTat-1.1 and MITat-1.2 cells by

Vassella et al. (1997). Part of this discrepancy may be

because these estimates were based on the growth

rate of slender cells. However, growth rate equals

birth rate minus differentiation rate. For example,

the birth rate of cells in mouse 1 is 0.33/h and the

differentiation rate, when cell concentration is low,

is 0.15/h. Thus the growth rate is 0.18/h giving a

Fig. 6. Instantaneous differentiation rate from L1 to L2

class (a2+a3 f(t)). Solid line: mouse 1; dotted line: mouse

2; dashed line: mouse 3k ; dot-dashed line: mouse 4k.

Fig. 7. Extrapolation of the best-fit model for mouse 3

(solid line) shows stable oscillations. Increasing the L2 to

L3 transition time by 40% causes the oscillations to decay

(dotted line).

Table 8. Maximum-likelihoods for different

combinations of cells producing SIF

Mouse L1 L1, L2 (best) L1, L2, L3 L1, L2, L3, S

1 x48 x36 x36 x100
2 x48 x36 x37 x101
3k x167 x29 x30 x77
4k x157 x30 x30 x92

Fig. 8. If stumpy cells produce SIF then too much is

produced and the slender cell concentration drops too low

(dashed line). If only uncommitted cells produce SIF then

too little is produced and the slender cell concentration

does not drop far enough (dotted line). The best-fit model

for mouse 1 was used.
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doubling time of 3.9 h. This is much closer to the

previously published 4–5 h. The other mice give

similar results.

There appear to be two mechanisms that can in-

duce slender cell differentiation. The first is what we

have termed a background rate. This rate is con-

stant (parameter a2 in the model) and is, therefore,

independent of SIF concentration. However, this

does not mean that this mechanism is independent of

the existence of SIF– just its concentration. The rate

of background differentiation is approximately 0.15/

h. The second is a SIF concentration-dependent

mechanism. We found that a linear dependence with

SIFconcentration is sufficient to explain the observed

data. The more complicated Michaelis–Menten

kinetics did not significantly improve the fits. This

second mechanism only becomes effective at high

slender cell concentrations. It acts somewhat like a

switch, causing a 3 to 5-fold increase in the differen-

tiation ratewhen the exponentially expanding slender

cell population passes 108 cells/ml. (Hence the need

for the background rate a2, otherwise we would not

observe differentiated, stumpy cells before this time.)

The nature of these two mechanisms is unknown.

We can speculate that background differentiation

is caused by an autocrine signal since slender cells

produce SIF which causes them to differentiate, and

that SIF concentration-dependent differentiation is

caused by a paracrine signal. More experimental

work is needed to test this hypothesis.

SIF is produced only by slender cells. We predict

that stumpy cells should not produce SIF. We also

predict that committed slender cells should produce

SIF. Whether or not non-dividing slender cells

produce SIF is inconclusive.

It has been shown that commitment to differen-

tiation precedes the final cell division (Tyler et al.

1997). Our best-fit model is consistent with this

view, as parameter t2 is significant. However, our

model predicts that the time-period from commit-

ment to cell-cycle exit is around 10 h. This implies

about 5 cell divisions between commitment and cell-

cycle exit. This is an unexpected result and requires

further theoretical and experimental analysis to test

its validity.

Once committed cells exit the cell-cycle we pre-

dict that they keep a slender morphology for about

another 6 h (parameter t3). This is slightly shorter

than that found by Vassella et al. (1997). They esti-

mated from data a period of 8–10 h from exit of the

cell-cycle to mitochondrion metabolic activity.

We predict that stumpy cells die at a rate of ap-

proximately 0.012/h (parameter a4). This is a half-

life of about 58 h; higher than the estimate of 24–36 h

reported by Black et al. (1982), and between the

estimates of 48 and 72 h reported by Turner et al.

(1995). However, the non-significance of this para-

meter, due to insufficient data, means that its esti-

mate should be used with caution. If data had been

collected after 163 h it may have increased the sig-

nificance of this parameter.

We predict that SIF decays at a rate of approxi-

mately 0.5/h. This is a half-life of about 1.4 h. This

is consistent with SIF being a pheromone-like factor

or a small catabolite (Vassella et al. 1997).

This, and previous models (Seed & Black, 1997,

1999; Tyler et al. 2001), predict oscillations in the

slender and stumpy cell concentrations past the end

Fig. 9. Effect of changing the parameter values for the

best fit model of mouse 2. (A) Dotted: a1r1.2, dashed:

a1/2. (B) Dotted: a2r2, dashed: a2=0. (C) Dotted:

a3r500, dashed: a3/5. (D) Dotted: a4=0.7, dashed: a4=0.

(E) Dotted: t2r2, dashed: t2=0. (F) Dotted: t3r10,

dashed: t3=0, L1 and L2 produce SIF. (G) Dotted: t3r10,

dashed: t3=0, L1, L2 and L3 produce SIF. (H)

Dotted: a5r2, dashed: a5=0.
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of the experiments. The Tyler et al. (2001) model

exhibits decaying oscillations, but phase-plane analy-

sis shows that it cannot exhibit stable oscillations.

Stable oscillations appear to be a consequence of a

finite delay between receiving the differentiation

signal and exiting the cell-cycle. Further exper-

imentsmay help to validate this prediction.Decaying

oscillations in in vitro experiments were observed by

Hesse et al. (1995). However, in those experiments

culture medium was replaced every 24 h. Therefore,

they cannot be compared to our results without

further analysis.

In this paper we have only shown results from a

single model. This is not to imply that this is the

only model we have studied. There are many models

that could be used to fit the data. Many of these can

be ruled out on biological grounds and many of these

will not give good fits. Hence, the process of finding

a good model is based partly on trial and error. For

example, the previous models by Turner et al.

(1995) and Tyler et al. (2001) assumed that the tran-

sition from slender to stumpy cells is proportional to

the instantaneous slender cell concentration. This is

a perfectly valid assumption and one we tested

against our data. We found that this type of model

gave poor fits to our data: the maximum-likelihoods

were at least 8 lower than our best-fit model. Thus

we tried the more realistic behaviour of a delay be-

tween commitment to differentiate and morpho-

logical change, which resulted in good fits to the

data. Our assumption can be relaxed even further to

allow for a distribution of transition times. This,

however, becomes much harder and slower to solve

numerically.

The model can be tested in various ways. Data

with more frequent observations would be an es-

pecially good test. Longer time series are also a

possibility, but these run the risk of being affected by

later stage processes in the host not taken into ac-

count in the model. Our parameter estimates can

also be tested. However, these will vary not only

between different strains and host species but also

between replicates of the same experiment. Some of

our predictions may also be used as tests for the

model. For example, observing multiple cell div-

isions between commitment and cell-cycle arrest

would be a strong validation of the model.

Although in the experiments, slender, intermedi-

ate and stumpy cells were counted, we choose to in-

clude intermediate cells in the stumpy class. Even

for experienced observers, distinguishing the inter-

mediate morphology is very difficult. In this analy-

sis, intermediate cells were classed as stumpy

because only a small percentage are dividing, as op-

posed to the 30% or so of slender cells that are

dividing at any given time. However, we have built

another model that incorporates intermediate cells as

a separate class. We assumed that cells remain in this

class for a fixed period (necessitating an additional

parameter). We got very good fits to the data if we

hypothesized two slender cell subpopulations. One

subpopulation that differentiated at the background

rate into intermediate cells but never fully developed

into stumpy cells. And another subpopulation that

differentiated at the SIF-concentration dependent

rate and developed into stumpy cells. Although an

intriguing finding, there is no evidence for 2 sub-

populations of cells. Thus we conclude that this re-

sult is an artifact of including an intermediate class

into the model.

Evidence for the existenceofSIF is strong (Vassella

et al. 1997), and thus we have assumed it to be the

differentiation signal. However, our model does not

verify its existence. This is because if we model the

differentiation signal as a response to slender cell

density instead of SIF concentration we get just as

good fits to the data as our best-fit model. This is be-

cause of two factors. Firstly, because we assume that

SIF production is proportional to slender cell con-

centration, and secondly, because SIF degradation

is fast. These two factors mean that the strength of

the differentiation signal is similar whether or not

the signal is SIF derived or slender cell derived.

Changes in single parameter values can cause

multiple, large and counter-intuitive changes in the

dynamical behaviour. This is not unexpected for a

non-linear model. Of particular interest is the ob-

servation that we can simulate behaviours of other

model systems with simple parameter value changes.

For example, increasing SIF production or sensi-

tivity to SIF reduces peak parasitaemia to levels seen

in cattle. And increasing slender to stumpy tran-

sition period causes behaviour similar to monomor-

phic trypanosome strains. However, just because our

model can replicate these behaviours does not imply

that the model is correct for these cases. More work

is needed to explore these predictions.

In conclusion, we have developed a simple model

that is consistent with the available experimental

data. It predicts many facets of slender to stumpy

transformation that are testable. Having found such

a model and determined some key parameter values,

the model can be used to predict the behaviour of

other systems (e.g. cattle and monomorphic strains).

Moreover, the model can be extended in the future

to include the interaction of the host immune system

with the trypanosomes, and to model in vitro ex-

periments, for example, those done by Hesse et al.

(1995).

Nick Savill is supported by SHEFC and The Wellcome
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APPENDIX A: DERIVATION OF EQUATIONS

1, 3, 4 AND 5

The likelihood of the total cell concentration being

Ct given that nt cells were counted in a volume of

blood v is proportional to the probability of counting

nt cells in a volume of blood v containing a concen-

tration of cells Ct. This probability has a Poisson

distribution, therefore

L(Ctjnt, v) /
(vCt)

nt

nt!evCt
: (19)

The most likely value of Ct, denoted Ĉt, is the value

of Ct that maximizes this equation. So, taking the

derivative of equation 19, setting it to zero and

solving for Ct we get

Ĉt=
ntv

v
: (20)

Rearranging gives equation 1. The standard error in

Ct, that is, the uncertainty around the expected value

Ĉt is given by

eCt
=x

d2L

dC2
t Ĉ t

�����
 !x1

: (21)

By solving the second derivative of equation 19 and

substituting in equation 20 we arrive at equation 3.

The expected values of the frequencies of the two

cell-types, f̂l and f̂s, are found in a similar fashion, but

now with the likelihood proportional to equation 16.

To find f̂l and efl, fs=1xfl and ns=mtxnl have to be

substituted into equation 16. Similarly for f̂s and efs.

The expected slender cell concentration, Ĉl, is

given by Ĉl=f̂lĈt. The standard error in Ĉl is given

by the relation (Squires, 1985)

eCl

Ĉl

� �2
=

efl

f̂l

� �2
+

eCt

Ĉt

� �2
: (22)

This is easily rearranged to give equation 5.

APPENDIX B: NORMALIZING SIF PRODUCTION

We assume that SIF is produced at a rate a11 and

degraded at a rate a5, that is

df

dt
=a11(l1+l2)xa5 f : (23)

SIF induces L1 differentiation

dl

dt
=a1l1x(a1+a3f )l1: (24)

Because we do not have any indication of SIF pro-

duction rate or its quantitative effect on L1 cells, we
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can manipulate the equations to subsume parameter

a11 into parameter a3 like so.

Let SIF concentration be composed of a constant

factor F that represents the units of measurement,

and a number f* that has no dimensions i.e., f=Ff*.

Substituting this into equations 23 and 24, setting

F=a11 and dividing through gives

df*

dt
=l1+l2xa5 f*, (25)

dl1

dt
=a1l1x(a2+a3a11f*)l1: (26)

For convenience we write f* as f, and subsume par-

ameter a11 into a3 with no loss of generality.

APPENDIX C: CONVERTING THE DDE MODEL

TO AN ODE MODEL

To convert the DDE model into an ODE model we

have to have two classes of cells : an uncommitted

class and a differentiated class. The former is just L1

of the DDEmodel. The latter includes classes L2, L3

and S. The concentration of the uncommitted class

is just l1, as before. However, cells in the differ-

entiated class must be traced back from when they

differentiated. We do this by defining the variable

y(t, t)dt, which is the concentration of differentiated

cells, at time t, that differentiated between the times

t and t+dt. Depending on how long in the past a

cell differentiated it will be a dividing slender cell, an

arrested slender cell, or a stumpy cell. The model is

defined as follows

d

dt
l1(t)=a1l1(t)xw(t)l1(t); (27)

d

dt
y(t, t)dt=

w(t)l1(t) if t=t,

a1y(t, t)dt if txt2ft<t,

0 if txt2xt3ft<txt2,

xa4y(t, t)dt if a0ft<txt2xt3,

8>>><
>>>:

(28)

d

dt
f (t)=l1(t)+l2(t)xa5f (t), (29)

where

w(t)=a2+a3 f (t), (30)

l1(t)=
Z t

txt2

y(t, t) dt, (31)

l2(t)=
Z txt2

txt2xt3

y(t, t) dt, (32)

s(t)=
Z txt2xt3

a0

y(t, t) dt: (33)
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