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We report the detailed multi-scale and multi-directional geometric study of both
evolving Lagrangian and instantaneous Eulerian structures in turbulent channel flow
at low and moderate Reynolds numbers. The Lagrangian structures (material surfaces)
are obtained by tracking the Lagrangian scalar field, and Eulerian structures are
extracted from the swirling strength field at a time instant. The multi-scale and multi-
directional geometric analysis, based on the mirror-extended curvelet transform, is
developed to quantify the geometry, including the averaged inclination and sweep
angles, of both structures at up to eight scales ranging from the half-height δ of the
channel to several viscous length scales δν . Here, the inclination angle is on the plane
of the streamwise and wall-normal directions, and the sweep angle is on the plane of
streamwise and spanwise directions. The results show that coherent quasi-streamwise
structures in the near-wall region are composed of inclined objects with averaged
inclination angle 35◦–45◦, averaged sweep angle 30◦–40◦ and characteristic scale 20δν ,
and ‘curved legs’ with averaged inclination angle 20◦–30◦, averaged sweep angle 15◦–
30◦ and length scale 5δν–10δν . The temporal evolution of Lagrangian structures shows
increasing inclination and sweep angles with time, which may correspond to the lifting
process of near-wall quasi-streamwise vortices. The large-scale structures that appear
to be composed of a number of individual small-scale objects are detected using cross-
correlations between Eulerian structures with large and small scales. These packets
are located at the near-wall region with the typical height 0.25δ and may extend over
10δ in the streamwise direction in moderate-Reynolds-number, long channel flows. In
addition, the effects of the Reynolds number and comparisons between Lagrangian
and Eulerian structures are discussed.

Key words: boundary layer structure, turbulence theory, turbulent boundary layers.

1. Introduction
Coherent motions or structures with identifiable tube-like shapes that appear to

contain concentrated vorticity have been extensively observed and reported from
visualizations of laboratory experiments and numerical simulations of wall-bounded
turbulence. Although the role played by turbulent coherent, near-wall structures is
still not fully understood, over the past several decades many studies have provided
evidence supporting the hypothesis that these structures constitute, in some statistical
sense, basic elemental vortices that participate in the dynamics of near-wall turbulence

† Email address for correspondence: yy@caltech.edu
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68 Y. Yang and D. I. Pullin

and are important for drag reduction, turbulent control and other applications (see
Robinson 1991; Panton 2001). In addition, it has been argued that the scaling laws
and high-order statistics of the mean velocity and velocity fluctuations are influenced
by inclined, coherent structures in the near-wall region (see Adrian 2007) and large-
scale structures in the outer layer (see Hutchins & Marusic 2007). In what follows, we
will generally use the term ‘quasi-streamwise vortices’, which has been hypothesized
in the cited references, to denote individual inclined structures or objects that exist in
near-wall turbulence. In the present work, we describe geometry-based metrics that
further supports the existence of these structures.

Both Lagrangian- and Eulerian-based approaches have been used to study wall
turbulence. Lagrangian methods typically track trajectories of fluid particles, often
using visualization techniques. Particle tracers such as hydrogen bubbles (e.g. Kline
et al. 1967) or passive scalars such as smoke or dye (e.g. Head & Bandyopadhyay
1981) show evolving flow structures. These visual studies revealed rich geometries
in turbulent structures but remain mainly qualitative (Robinson 1991). Eulerian
methodologies benefited from the development of direct numerical simulation (DNS)
(e.g. Kim, Moin & Moser 1987) and experimental particle-image velocimetry (PIV)
(e.g. Liu et al. 1991) which provide full, two- or three-dimensional instantaneous
velocity fields. The Eulerian structures are usually extracted using either iso-surfaces
of vorticity magnitude or popular vortex identification criteria (e.g. Hunt, Wray &
Moin 1988; Chong, Perry & Cantwell 1990; Jeong & Hussain 1995).

Major observations on coherent structures in wall turbulence include that the
streamwise velocity field close to the wall is organized into alternating narrow
streaks of high- and low-speed velocity (Kline et al. 1967) and that candidate
hairpin- or Λ-like vortices may exist in the logarithmic region, while the turbulent
motion appears to be less active in the outer layer. The conceptual model of the
hairpin vortex was developed by Theodorsen (1952) and supported by experiment
(Head & Bandyopadhyay 1981) and computation visualizations (Moin & Kim 1982).
The modern model of the hairpin vortex is usually described as a combination
eddy composed of a hairpin body and two relatively short counter-rotating quasi-
streamwise vortices that create low-speed streaks in the buffer layer (Adrian 2007).
Furthermore, recent DNS and PIV studies provide evidence that hairpin-like structures
can autogenerate to form packets that occupy a significant volume fraction of the
boundary layer (e.g. Zhou et al. 1999).

Although observation of Eulerian structures can perhaps elucidate turbulence
flow physics at a time instant, the Lagrangian approach seems better suited for
investigation of the temporal evolution of turbulent coherent structures and their
dynamical role in turbulent transition and mixing. This issue was discussed by Green,
Rowley & Haller (2007) who showed the evolution of single vortex-like structures into
a packet of similar structures in turbulent channel flow by identifying ‘Lagrangian
coherent structures’ (Haller 2001). Yang, Pullin & Bermejo-Moreno (2010) illustrated
and quantified the evolutionary geometry in the breakdown of initially large-scale
Lagrangian structures in isotropic turbulence using a multi-scale geometric analysis.

Consensus on the accepted geometry of vortical structures in wall-bounded
turbulence remains elusive. From flow visualization studies of the turbulent boundary
layer, Falco (1977) showed that large-scale structures of the smoke concentration
field, with typical length scales from δ to 3δ, inclined to the wall at a characteristic
angle 20◦–25◦, while Head & Bandyopadhyay (1981) measured an inclination angle
40◦–50◦ for candidate hairpins. Using large-eddy simulation (LES) and correlation
studies, Moin & Kim (1985) obtained a most probable inclination angle of local
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Geometric study of structures in turbulent channel flow 69

vorticity vector as 45◦, while Honkan & Andreopoulos (1997) found that the vorticity
is inclined at 35◦ from multi-probe hot wire measurements. Using PIV experiments
and statistical tools Ganapathisubramani, Longmire & Marusic (2006) identified
individual vortex cores most frequently inclined at 45◦. The model developed by
Bandyopadhyay (1980) gives that the inclination angle of candidate hairpin packets
is 18◦. Christensen & Adrian (2001) found an inclination angle of 12◦–13◦ for the
envelope of a series of swirling motions. In contrast, contour-dynamics simulation
(Pullin 1981) of a two-dimensional, uniform vorticity layer adjacent to a wall showed
inclined structures that resemble flow features observed in the smoke visualization
(Falco 1977) of the interface between turbulent and non-turbulent fluid in the outer
part of a turbulent boundary layer. This suggests that at least these outer features
may not be generated entirely by three-dimensional effects. Open questions remain
whose resolution may depend on the scale of structures, Reynolds numbers and the
usage of Lagrangian or Eulerian methods in investigations.

The geometry of eddies is also of interest for structure-based models of near-
wall turbulence. Predictive models have been developed, based on the attached eddy
hypothesis (Townsend 1976), that utilize random superpositions of hierarchies of
either hairpins (Perry & Chong 1982; Perry, Henbest & Chong 1986; Perry & Marusic
1995) or hairpin packets (Marusic 2001). A particular geometry or shape of hairpin
or Λ-like vortices is assumed. Additionally, geometrical issues may inform near-wall,
subgrid-scale modelling for LES based on small-scale, vortical structures (Chung &
Pullin 2009). The existence of coherent structures with characteristic geometric features
may suggest a possible sparse representation for reconstructing a whole channel
flow with a greatly reduced number of optimal basis functions utilizing either a
wavelet- or curvelet-based extraction method (e.g. Okamoto et al. 2007; Ma et al.
2009).

In the present work, the multi-scale geometric analysis of both Lagrangian and
Eulerian structures (Bermejo-Moreno & Pullin 2008; Yang et al. 2010) in isotropic
turbulence is extended to turbulent channel flow by introducing the multi-directional
decomposition and mirror-extended data. The extended geometric analysis, which is
based on the mirror-extended curvelet transform (see Candès et al. 2006; Demanet &
Ying 2007), will include both multi-scale and multi-directional decompositions of
a specific scalar field with non-periodic boundary conditions in wall turbulence.
This provides quantitative statistics on the orientation of turbulent structures at
different locations, scales and Reynolds numbers. Phenomena in wall turbulence to
be investigated include the following: first, the detailed geometry of quasi-streamwise
vortices and other structures in the near-wall region (about 5δν to 0.3δ); second, the
structural evolution of near-wall vortices, with initially almost spanwise orientation
within the buffer region very close to the wall, into possible Λ-like or hairpin vortices
at a larger wall distance; third, the existence and geometry of packets, based on
statistical evidence obtained from multi-scale analysis.

We begin in § 2 by giving a simulation overview for the DNS, using a spectral
method, and the computation of Lagrangian fields with the backward-particle-
tracking method. In § 3, a systematic framework is introduced to quantify geometries
including averaged inclination and sweep angles of flow structures at multiple scales.
Section 4 shows the application of the multi-scale and multi-directional geometric
analysis to investigate the geometry of Lagrangian structures at different length scales
in time evolution. In § 5 we investigate the geometry of multi-scale, Eulerian structures
and provide statistical evidence supporting the formation of structure packets. Finally,
some conclusions are drawn in § 6.
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Figure 1. Diagram of the computational domain and definition of characteristic angles
of structures. Possible structures are sketched by dashed lines.

2. Simulation overview
2.1. Direct numerical simulation

For turbulent channel flow in a domain with sides Lx ×Ly ×Lz and grids
Nx ×Ny ×Nz, the incompressible Navier–Stokes equations are non-dimensionalized
by the channel half-height δ and the friction velocity uτ as

∂u
∂t

+ u · ∇u = −∇p + P0 +
1

Reτ

∇2u,

∇ · u = 0.

⎫⎬
⎭ (2.1)

Here, p denotes the pressure and Reτ = uτ δ/ν the Reynolds number, where the
friction velocity is uτ =

√
τw/ρ. The viscous, near-wall length scale is δν = ν/uτ , with

wall shear stress τw , density ρ and kinematic viscosity ν. In the present simulations,
we set δ =1 and uτ ≈ 1. A constant pressure gradient P0 in (2.1) is used to drive the
flow. A diagram of the computational domain is shown in figure 1, where U is the
mean velocity in the streamwise direction.

The DNS is performed using a spectral method (see Kim et al. 1987): Fourier
series in the streamwise x- and spanwise y-directions, and the Chebyshev polynomial
expansion in the wall-normal z-direction. Aliasing errors are removed using the two-
thirds truncation method. The low-storage third-order semi-implicit Runge–Kutta
method (Spalart, Moser & Rogers 1991) is applied for the temporal discretization
and the Courant–Friedrichs–Lewy number

�t max

(
|ux |
�x

,
|uy |
�y

,
|uz|
�z

)
(2.2)

was set to unity, where �t is the time step size and �x, �y and �z are the mesh sizes
in three directions. A summary of DNS parameters is listed in table 1, where Uc is the
mean centreline velocity at z = δ and the superscript ‘+’ denotes a non-dimensional
quantity scaled by δν . It is noted that the runs with Lx = 2πδ were mainly used to
investigate the geometric statistics of structures at intermediate and small scales in
the present study. On the other hand, large Lx in runs L1 and L2 were chosen for
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Run Reτ Lx/δ Ly/δ Lz/δ Nx Ny Nz δν Uc/uτ �x+ �y+

S1 180 4π 2π 2 192 192 193 0.00556 18.28 11.77 5.89
S2 395 2π π 2 384 192 193 0.00253 20.02 6.47 6.47
S3 590 2π π 2 384 384 385 0.00165 21.27 9.92 4.96
S4 950 2π π 2 768 576 385 0.00105 22.68 7.77 5.18

L1 180 16π 2π 2 768 192 97 0.00556 18.15 11.77 5.89
L2 395 16π 2π 2 1536 384 193 0.00253 19.93 12.93 6.47
L3 590 8π π 2 1152 384 385 0.00165 21.16 12.87 4.96

Table 1. Summary of DNS parameters.

100 101 102 103
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Reτ = 950

U +

z+

ln z+/0.41 + 5.2

Figure 2. Mean velocity profiles from the DNS. Symbols denote the results at Reτ = 950 in

del Álamo et al. (2004).

the investigation of hypothesized long structures that may extend over 10δ in the
streamwise direction (e.g. Kim & Adrian 1999; Jiménez, del Álamo & Flores 2004;
Guala, Hommema & Adrian 2006). Statistical steady-state, mean velocity profiles for
Reτ = 180, 395, 590, 950 are shown in figure 2, which agree with the results in Moser,
Kim & Mansour (1999) and del Álamo et al. (2004).

2.2. Lagrangian field

The three-dimensional Lagrangian field φ(x, t) is computed from the scalar convection
equation

∂φ

∂t
+ u · ∇φ = 0 (2.3)

by the backward-particle-tracking method (see Yang et al. 2010). Here, (2.3) is
converted to a set of ordinary differential equations to compute trajectories of fluid
particles as

∂X(x0, t0|t)
∂t

= V (x0, t0|t) = u(X(x0, t0|t), t), (2.4)

where X(x0, t0|t) is the location at time t of the fluid particle which was located at
x0 at the initial time t0, and V (x0, t0|t) is the velocity at time t of the fluid particle.
First, the Navier–Stokes equations (2.1) are solved numerically on the Nx ×Ny ×Nz
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72 Y. Yang and D. I. Pullin

grid in some time interval from t0 to t > t0, and the full Eulerian velocity field is
saved on disk in this simulation period. The time increment is selected to capture
the finest resolved scales in the velocity field. At time t at the end of the solution
period, particles are placed at the uniform grid points of NL

x ×NL
y ×NL

z . Presently,
the resolution of the Lagrangian field is two times that of the velocity field in order
to capture fine-scale Lagrangian structures in the evolution (Yang et al. 2010). Then,
particles are released and their trajectories calculated by solving (2.4) backwards in
time. A three-dimensional, fourth-order Lagrangian interpolation scheme was used
to calculate fluid velocity at the particle location. The trajectory of each particle was
then obtained using an explicit, second-order Adams–Bashforth scheme. For each
particle the backward tracking is performed from t to the initial time t0 with the
reversed Eulerian velocity fields saved previously. After the backward tracking, initial
locations of particles x0 can be obtained. From a given initial condition consisting of
a smooth Lagrangian field φ(x0, t0), we can then obtain φ(x, t) on the Cartesian grid
by a simple mapping with Lagrangian coordinates

φ(x, t) = φ(X(x0, t0|t), t)←→ φ(x0, t0). (2.5)

3. Multi-scale and multi-directional methodology
3.1. Multi-scale and multi-directional filter based on curvelet transform

When a scalar field has preferential orientations, e.g. streaks in an image, the Fourier
transform of the scalar field should have high intensities at some particular localized
regions in Fourier space. Thus, the directional decomposition of the scalar field can
be obtained by spectral directional/fan filters, which have been used in computer
vision, seismology and image compression (e.g. Bamberger & Smith 1992). Presently,
to obtain statistical, geometric information on preferential orientations in a three-
dimensional field at different scales, we apply a multi-scale directional filter based
on the curvelet transform (see Candès et al. 2006, and references therein) to a
sequence of two-dimensional plane-cuts and then compute the angular spectrum and
corresponding averaged angles.

An arbitrary two-dimensional scalar field ϕ(x) can be represented by the Fourier
expansion

ϕ(x) =
∑

k

ϕ̂(k) eik·x, (3.1)

where x = (x1, x2), k = (k1, k2) and the Fourier coefficient

ϕ̂(k) =
1

2π

∫
ϕ(x) e−ik·x dx. (3.2)

In the numerical implementation, ϕ(x1, x2) is discretized on a rectangular domain
of side L1×L2 using an N1×N2 grid with indices (n1, n2) in physical space. The
corresponding Fourier space can be discretized on the grid N1×N2 with indices
(m1, m2). The discrete Fourier transform (DFT) and inverse DFT of ϕ(x) are

ϕ̂(k1,m1
, k2,m2

) =
1

N1

1

N2

N1−1∑
n1=0

N2−1∑
n2=0

ϕ(x1,n1
, x2,n2

) exp[−i(k1,m1
x1,n1

+ k2,m2
x2,n2

)], (3.3)

ϕ(x1,n1
, x2,n2

) =

N1−1∑
m1=0

N2−1∑
m2=0

ϕ̂(k1,m1
, k2,m2

) exp[i(k1,m1
x1,n1

+ k2,m2
x2,n2

)], (3.4)
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Geometric study of structures in turbulent channel flow 73

respectively, with

ki,mi
= mi�ki, xi,ni

= ni�xi, �xi = Li/Ni, �ki = 2π/Li. (3.5)

A filtered ϕ(x) at scale j and along the direction l can then be extracted from ϕ̂(k)
in Fourier space by the frequency window function

Uj (r, θ) = 2−3j/4W (2−j r)V (tl(θ)), (3.6)

in polar coordinates (r, θ) with r =
√

k2
1 + k2

2 and θ = arctan(k2/k1). The frequency
window function Uj (r, θ) is based on the curvelet transform (Candès et al. 2006),
which is a combination of the radial window function (e.g. Ma et al. 2009)

W (r) =

⎧⎪⎪⎨
⎪⎪⎩

cos(πµ(5− 6r)/2), 2/3 � r � 5/6,

1, 5/6 � r � 4/3,

cos(πµ(3r − 4)/2), 4/3 � r � 5/3,

0, else,

(3.7)

and the angular window function

V (tl) =

⎧⎨
⎩

1, |tl |� 1/3,

cos(πµ(3|tl | − 4)/2), 4/3 � tl � 5/3,

0, else,

(3.8)

with the smoothing function µ(x) = 3x2 − 2x3 satisfying

µ(x) =

{
1, x � 0,

0, x � 1,
µ(x) + µ(1− x) = 1. (3.9)

Both radial and angular window functions satisfy the admissibility conditions:

∞∑
r=−∞

W 2(2j r) = 1, r > 0, (3.10)

∞∑
tl=−∞

V 2(tl) = 1, tl ∈ �. (3.11)

The frequency window functions in Fourier space are plotted in figure 3. Each is
supported on a region bounded by two neighbouring circular wedges in the range
of wavenumbers 2j−1 � r � 2j+1. The localization of Uj (r, θ) in Fourier space implies
that the corresponding spatial structure in physical space is a needle-shaped element
(curvelet), whose envelope has the geometric scaling relation (Candès et al. 2006)

length ≈ 2−j/2, width ≈ 2−j . (3.12)

From (3.12), the characteristic length scale is Lj ≈ 2−j at scale j , which is the
characteristic width of the ‘curvelet’ at scale j in physical space. The breakdown
of the normalized characteristic length scales of structures after the multi-scale
decomposition is given in table 2.

The frequency windows cover the whole Fourier domain at characteristic length
scales

2−j , j = −1, 0, 1, 2, 3, . . . , (3.13)
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Reτ Length 1 2 3 4 5 6 7 8

Lj /δ 0.5 0.25 0.125 0.0625 0.0313 0.0156 0.0078 0.0039
180 Lj /δν 90.0 45.0 22.50 11.25 5.625 2.813 1.406 0.703
395 Lj /δν 197.5 98.75 49.38 24.69 12.34 6.172 3.086 1.543
590 Lj /δν 295.0 147.5 73.75 36.88 18.44 9.219 4.609 2.305
950 Lj /δν 475.0 237.5 118.8 59.38 29.69 14.84 7.422 3.711

Table 2. Breakdown of characteristic length scales for the filtered scales j in terms of the
half-height δ and viscous length scale δν in turbulent channel flow.

–30 –20 –10 0 10 20 30

–30

–20

–10

0

10

20

30

k2

k1

Figure 3. Frequency window functions Uj (r, θ ) supported on circular wedges
in Fourier space.

and the equidistant sequence of rotation angles

θj,l ≡ πl2−�j/2�/2, l = 0, 1, . . . , 4 · 2�j/2� − 1, (3.14)

where �x� gives the smallest integer greater than or equal to x.

3.2. Multi-scale and multi-directional decomposition

By applying the radial window function W (r) on the Fourier coefficients ϕ̂(k) and
then using the inverse Fourier transform as

ϕj (x) =

∫
ϕ̂(k) W (2−j r) eik·x dx, (3.15)

for each scale j = j0, . . . , je, with j0 = 0 and je = log2(min(N1�k1, N2�k2)/2), we can
obtain a multi-scale decomposition of the original scalar field ϕ(x) into a total of
je − j0 + 1 scale-dependent fields. For convenience we will subsequently label scale-
dependent fields by the index j = 0, . . . , je, with j = 0 corresponding to the largest
scale field and j = je the smallest resolved-scale field. Subsequently, and according to
table 2, Lj > 0.2δ will be referred to as ‘large scale’, Lj < 10δν as ‘small scale’ and in
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x1 x1

x2

�θ

x2

〈�θ〉j
−

〈�θ〉j
+

(a) (b)

Figure 4. Diagram of the deviation angles away from the horizontal axis in physical space.
(a) Deviation angle and (b) averaged deviation angles.

between as ‘intermediate scale’. The filter for the largest scale is defined as

|W0(r)|2 = 1−
∑
j�1

|W (2−j r)|2. (3.16)

The characteristic direction l′ of ϕ(x) in physical space is orthogonal to that in
Fourier space. The discrete deviation angle away from the horizontal axis in physical
space

�θ = 2−�j/2�πl′

2
, l′ = −2�j/2�, . . . ,−1, 0, 1, . . . , 2�j/2�, (3.17)

is sketched in figure 4(a) for scale j . The multi-scale orientation information of ϕ(x)
can be defined as the normalized angular spectrum

Φj (�θ) ≡

∫
ϕ̂(k)Uj (r, θ) dk∫

Uj (r, θ) dk
, − π

2
� �θ �

π

2
(3.18)

at scale j and direction l, where tl = (π/2 − θ + θj,l′)/θj,1 for the angular window
function V (tl) in Uj (r, θ).

The averaged deviation angles away from the horizontal direction are sketched in
figure 4(b). They can be obtained as

〈�θ〉+j ≡

l′max∑
l′=0

Φj (�θ) �θ

l′max∑
l′=0

Φj (�θ)

and 〈�θ〉−j ≡

0∑
l′=l′min

Φj (�θ) �θ

0∑
l′=l′min

Φj (�θ)

(3.19)

where l′max = 2�j/2� and l′min = − 2�j/2�, which we take to define characteristic angles
of a two-dimensional scalar field in the statistical sense. As an example, the scale
decomposition of an image of a cross

ϕ(x ′, y ′) = exp(−100x ′2) + exp(−100y ′2)− exp(−100(x ′2 + y ′2)), (3.20)

with

x ′ = x cos 45◦ − y sin 45◦ and y ′ = x sin 45◦ + y cos 45◦, (3.21)
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(a) (b) (c) (d)

Figure 5. Scale decomposition of an image of the cross. (a) Original, (b) scale 1,
(c) scale 3 and (d) scale 5.
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Figure 6. Directional decomposition of an image of the cross at different scales.
(a) Angular spectrum and (b) average deviation angles (degrees).

is shown in figure 5. The angular spectrum from the directional decomposition
and averaged deviation angles defined in (3.19) are shown in figure 6, which show
characteristic angles ±45◦ of the image.

We remark that the multi-scale and multi-directional decomposition in the present
study is based on the continuous curvelet transform rather than the fast discrete
curvelet transform (see Candès et al. 2006). This is because we find that using the
frequency window functions in the continuous curvelet transform, e.g. (3.7) and (3.8)
supported on the circular wedges as shown in figure 3, gives more accurate multi-
scale angular spectra (3.18) than those from the window functions supported on the
sheared trapezoid wedges in the fast discrete curvelet transform algorithm.

When a scalar field has non-periodic boundaries, e.g. ϕ on the x–z plane in channel
flows, the DFT in (3.3) may result in numerical-oscillatory artefacts near boundaries.
This can be resolved by using the discrete cosine transform instead of the DFT in the
direction with non-periodic boundaries. This is equivalent to applying the DFT or
the fast Fourier transform (FFT) to the mirror-extended scalar field and corresponds
to the mirror-extended curvelet transform (Demanet & Ying 2007). Presently, before
the FFT, we copy and flip the two-dimensional scalar field by the one-dimensional
mirror extension in the wall-normal direction with non-periodic boundary conditions
as

{ϕ1, ϕ2, . . . , ϕN−1, ϕN} → {ϕ1, ϕ2, . . . , ϕN−1, ϕN, ϕN−1, . . . , ϕ2}. (3.22)
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4. Lagrangian structures in turbulent channel flow

4.1. Geometry of Lagrangian structures on the x–z

(streamwise and wall-normal) plane

By tracking the three-dimensional Lagrangian field φ(x, t) in turbulent channel flow,
Lagrangian structures are extracted as iso-contours of φ at different times. In this
section, we will use a time series of Eulerian velocity fields from runs S1 and S2
(see table 1) for two Reynolds numbers to solve the φ-equation (2.3). It is noted
that the investigation of Lagrangian structures is computationally intensive, requiring
storage of sequences of time-resolved Eulerian velocity fields for the backward-
particle-tracking method (Yang et al. 2010).

Previous studies showed that the important geometric feature of leaning or slanting
vortex structures is that they tend to incline at an angle to the streamwise direction
in the logarithmic law region (see Adrian 2007). For studying Lagrangian structures
on the x–z plane, we utilize an initial Lagrangian field φ0 ≡ φ(x, t =0)= sin 3x sin πz,
with length scale equal to the half-height δ =1. To distinguish turbulent dynamics
and kinematics (Yang et al. 2010), we choose the largest time tc =4 for tracking
the Lagrangian field φ according to the typical period of the ‘cyclic’ process of the
evolving near-wall turbulent structures (see Hinze 1975), where the large-scale, non-
dimensional time is tc = t Uc/δ. Since a large-scale Lagrangian structure is imposed
by the initial condition, next we investigate only structures with scales j � 3.

The temporal evolution of the Lagrangian field with colour intensity proportional
to φ ∈ [−1, 1] on the x–z plane in turbulent channel flow at Reτ = 395 is shown in
figure 7. We can see that the initial regular, periodical blob-like objects are stretched
into ramp-shaped structures by the mean shear and small-scale turbulent motions.
Unlike the scalar properties for previous smoke visualization in turbulent boundary
layer experiments (e.g. Head & Bandyopadhyay 1981), the Lagrangian scalar field is
non-diffusive, so we can visualize and analyse fine structures with a high-resolution
grid for φ. In figure 7 the vivid contrast evident between smooth and chaotic regions
illustrates the strong intermittency present in the Lagrangian field for the present
turbulent channel flow.

As shown in figure 1, we define the inclination angle α between an inclined structure
projected on the x–z plane and the x-direction. In terms of the variables in the multi-
scale and multi-directional method as shown in figure 4, we have φ(x, y = yp, z)↔ϕ,
x↔ x1, z↔ x2, α+↔〈�θ〉+ and α−↔〈�θ〉−. Evolution of individual components of
the Lagrangian field can be obtained following the scale decomposition of φ on the
x–z plane by (3.15). These are shown, at Reτ = 395, for the intermediate scale j =4
and small scale j = 6 in figures 8 and 9, respectively. The characteristic length scale
for each scale index j is quantified in table 2. Then, the orientation information of
φ(x, t) on the x–z plane at different scales can be obtained by the normalized angular
spectra Φj (�θ) defined in (3.18), which are shown in figure 10 at tc = 1 and tc = 4.
The increasing Φj (�θ) at scales j � 3 shows a cascade process from large scales to
small scales for φ in the temporal evolution. At each time, smaller scale structures
appear to show a greater tendency to ‘attach’ to the wall than larger structures in the
sense of the predominance of small deviation angles in Φ(�θ) for large j .

As shown in figure 10, the angular spectra are almost symmetric for all scales.
Therefore, assuming the symmetry of inclined structures with the centreline on the x–
z plane in the statistical sense, we define the averaged inclination angle 〈α〉= (〈α+〉+
〈α−〉)/2. Figure 11(a) shows the temporal evolution of 〈α〉 for Lagrangian structures
at intermediate and small scales (also refer figures 8 and 9). Here, the additional
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(a)

(b)

(c)

(d)

Figure 7. Evolution of Lagrangian structures on the x–z plane (0 � x � 2π, 0 � z � 2) in
turbulent channel flow for Reτ = 395 (run S2). (a) tc = 0.5, (b) tc = 1, (c) tc = 2 and (d) tc = 4.
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(a) (b)

(c) (d)

Figure 8. Evolution of Lagrangian structures at scale 4 on the x–z plane (0 � x � 2π, 0 � z � 2)
in turbulent channel flow for Reτ = 395 (run S2). (a) tc = 0.5, (b) tc = 1, (c) tc =2 and (d) tc = 4.

(a) (b)

(c) (d)

Figure 9. Evolution of Lagrangian structures at scale 6 on the x–z plane (0 � x � 2π, 0 � z � 2)
in turbulent channel flow for Reτ = 395 (run S2). (a) tc = 0.5, (b) tc = 1, (c) tc =2 and (d) tc = 4.

averaging on 〈α〉 was taken over 50 x–z planes at y = yp uniformly distributed
between y =0 and y = Ly . As shown in figure 9(a), the small-scale structures with
small 〈α〉 appear at early times, around tc = 0.5, produced by intense near-wall shear
motions. Then, the small-scale structures are uplifted as shown in figures 9(c) and
9(d ), which may signal ejections of low-speed fluid outward from the wall. Finally,
some small-scale structures are bent downwards to the wall, which may be imprints
of the sweeps of high-speed fluid towards the wall. In figure 11(a), 〈α〉 grows with
increasing time; the trend is slightly slower for tc > 3. These observations are consistent
with the conceptual ejection-sweep-burst-inrush process (Hinze 1975). At tc =1 and
tc = 4, 〈α〉 at different scales is shown in figure 11(a). We find that 〈α〉 of Lagrangian
structures at scales smaller than 20δν are higher for Reτ = 395 than for Reτ = 180,
which may imply stronger turbulent transport in higher-Reynolds-number flows by
coherent motions that eject more fluid from the viscous sublayer to the logarithmic
region.

In addition, from simulations using different initial fields, e.g. φ0 = sin 3x and
φ0 = πz (not shown), we find that the resulting Lagrangian structures produce
quantitatively similar averaged inclination angles at intermediate scales and small
scales for long times to those described above. This suggests that an attractor for
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Figure 10. Angular spectra of Lagrangian fields at different scales on the x–z plane in
turbulent channel flow for Reτ = 395 (run S2). The deviation angle �θ is illustrated in the
upper-right of (a). (a) tc = 1 and (b) tc = 4.
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Figure 11. Evolution of the averaged inclination angle (degrees) of Lagrangian structures
on the x–z plane in turbulent channel flow for Reτ = 180 (run S1) and Reτ =395 (run S2).
(a) Different times and (b) different scales.

geometries of Lagrangian structures, discussed by Yang et al. (2010) for forced
isotropic turbulence, may also exist in turbulent channel flow.

4.2. Geometry of Lagrangian structures on the x–y (streamwise and spanwise) plane

Quasi-streamwise vortices within candidate hairpin- or Λ-vortices show, in addition to
the wall inclination, another geometric feature that can be characterized by the sweep
angle β between the elongated structure and the x-direction on the x–y plane at z = zp

(see figure 1). In terms of the variables in the multi-scale and multi-directional method
as shown in figure 4, we have φ(x, y, z = zp)↔ϕ, x↔ x1, y↔ x2, β+↔〈�θ〉+ and
β−↔〈�θ〉−. Although an individual structure may have asymmetrical legs in low-
Reynolds-number flows (Robinson 1991), we find that the difference of 〈β+〉 and 〈β−〉
is typically less than 10 % for each plane. Hence, we assume statistically symmetry over
structures in the channel and define the averaged sweep angle 〈β〉=(〈β+〉+ 〈β−〉)/2.
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(a) (b)

(c) (d)

Figure 12. Lagrangian structures on the x–y plane (0 � x � 2π, 0 � y � π) at tc = 2 in turbulent
channel flow for Reτ = 395 (run S2). (a) z+ = 5, viscous sublayer, (b) z+ = 30, buffer layer,
(c) z+ = 60, logarithm law region and (d) z+ = 120, outer layer.

For investigating the evolutionary geometry of Lagrangian structures on the x–y

plane, the initial Lagrangian field is chosen as φ0 = sin 3x. Starting from streaks with
characteristic scale δ normal to the streamwise direction, at a typical time tc = 2,
figure 12 shows different geometries of Lagrangian structures on the x–y plane in
different regions as characterized by Pope (2000). In the viscous sublayer, spiky-like,
long narrow streaks in the x-direction are observed, which may be generated by the
shear motion from high- and low-speed alternating streamwise velocity streaks very
close to the wall. We can see that the structures are still relatively smooth, which shows
that turbulent fluctuations are relatively small in the viscous sublayer (Kline et al.
1967). In the buffer layer and the logarithmic region, we find obvious predominant
Λ-like structures, while structures in the buffer layer with active turbulent energy
production that exhibit the ‘bursting process’ (Kline et al. 1967) appear to be more
chaotic than those in the logarithmic region. In comparison, structures in the outer
layer are much smoother and less perturbed than those in the inner layer.

The averaged sweep angle 〈β〉 for two Reynolds numbers is plotted in figure 13.
We find that, in general, 〈β〉 at all scales increases with wall distance z+ as revealed
in figure 12. Using hot-wire measurements, Ong & Wallace (1998) found that the
sweep angle of vorticity vectors increased with distance from the wall, which is
consistent with our results for Lagrangian structures. The averaged sweep angle 〈β〉
of structures at several scales increases rapidly with increasing z+ in the buffer layer
with 5 � y+ � 30, and in the logarithmic law region with y+ � 30 and y/δ � 0.3, and
grows slower in the outer layer with y+ > 50. This might be related to active turbulent
production occurring in this region, with less activity in the outer layer (e.g. Adrian
2007). On the other hand, the growth of 〈β〉 at the intermediate scale around 50δν is
slower than those at smaller scales. The corresponding visual inspection is also shown
in figure 14.

The temporal evolution of Lagrangian structures on the x–y plane in the buffer layer
of turbulent channel flow at Reτ = 395 and at different times is shown in figure 15.
Starting with smooth tube-like shapes, we can see the Λ-shape structures induced
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Figure 13. Averaged sweep angle (degrees) of Lagrangian structures on the x–y plane at
tc = 2 in turbulent channel flow for Reτ =180 (run S1) and Reτ = 395 (run S2). (a) Reτ =180
and (b) Reτ = 395.

(a) (b)

(c) (d)

(e) ( f )

Figure 14. Lagrangian structures on the x–y plane (0 � x � 2π, 0 � y � π) at tc = 2 and
different scales in turbulent channel flow for Reτ = 395 (run S2). (a) Scale 3, z+ = 5, viscous
sublayer, (b) scale 6, z+ = 5, viscous sublayer, (c) scale 3, z+ = 30, buffer layer, (d) scale 6,
z+ = 30, buffer layer, (e) scale 3, z+ = 30, logarithm law region and (f ) scale 6, z+ = 60,
logarithm law region.

by the near-wall, low-speed streaks at early time followed by intense fluctuations at
later time, which shows active energy production and transfer in the buffer layer.
In figure 16, the corresponding temporal evolution of 〈β〉 in the channel flow at
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(a) (b)

(c) (d)

Figure 15. Evolution of Lagrangian structures at z+ = 45 on the x–y plane (0 � x � 2π,
0 � y � π) in turbulent channel flow for Reτ = 395 (run S2). (a) tc = 0.5, (b) tc =1, (c) tc = 2 and
(d) tc = 4.
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Figure 16. Evolution of the averaged sweep angle (degrees) of Lagrangian structures on
the x–y plane in the turbulent channel flow for Reτ = 395 (run S2). (a) Scale = 4 and
(b) scale = 6.

Reτ = 395 shows that the averaged sweep angle of Lagrangian structures grows with
time. Combined with the results shown in § 4.1, we show that, starting from initial
smooth large-scale blob- or tube-like shapes, Lagrangian structures may breakdown
and evolve into possible hairpin- or Λ-like shapes at intermediate and small scales.

5. Eulerian structures in turbulent channel flow
5.1. Geometry of Eulerian structures on the x–z plane or x–y plane

We extract Eulerian structures as iso-contours of the instantaneous swirling strength
field λci in turbulent channel flow. Here, λci is the imaginary part of the complex
eigenvalue of the velocity gradient tensor ∇u (see Zhou et al. 1999), which is often used
to identify vortical structures in wall turbulence. Similarities and differences between
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Figure 17. (Colour online available at journals.cambridge.org/FLM) Snapshots of Eulerian
structures (iso-surfaces at λci/λci,max =0.1) in turbulent channel flows. The colour on the
surfaces is coded by z. (a) Reτ = 395 (run L2) and (b) Reτ = 590 (run S3).

the swirling strength and other vortex identification criteria were discussed in
Chakraborty, Balachandar & Adrian (2005). Remarkably similar looking vortical
structures, obtained using their criteria with the given proposed usage of threshold,
were observed in a canonical turbulent flow example. The visualization of iso-surfaces
at λci/λci,max = 0.1 in turbulent channel flows is shown in figure 17. Numerous tube-like
structures extended in the streamwise direction and inclined to the wall can be seen.
Some appear to form complete or incomplete hairpin- or Λ-like structures. Similar
observations were also made by Adrian & Liu (2002) and Ganapathisubramani et al.
(2006).

After interpolating λci on a uniform grid with resolution 2Nx ×Ny ×Nz, the multi-
scale and multi-directional methodology described in § 3 is applied on a sequence of
λci-fields on the x–y or x–z planes. In this subsection, we will use Eulerian velocity
fields from runs L1, L2, S3 and S4 (see table 1) for four Reynolds numbers. The scale
decomposition of Eulerian structures on each plane is obtained by (3.15), where the
scalar field ϕ = λci(x, y = yp, z). For example, the scale decomposition of the λci-field
on the x–z plane for Reτ = 590 is shown in figure 18. Clearly evident are decreasing
characteristic length scales with increasing scale indices, as quantified in table 2.

The λci-field on the x–z plane with non-periodic boundaries is mirror-extended
as (3.22) for the purpose of further analysis. The averaged inclination angle 〈α〉 of
Eulerian structures on the x–z plane at different scales and Reynolds numbers is
shown in figure 19(a). Additional averaging on 〈α〉 was taken over 50 x–z planes
at y = yp uniformly distributed between y = 0 and y = Ly from five independent
realizations of the DNS. We can see that the averaged inclination angles, 〈α〉, of
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(a) (b)

(c) (d)

(e) ( f )

Figure 18. Scale decomposition of Eulerian structures on the x–z plane (0 � x � 2π, 0 � z � 2)
in turbulent channel flow for Reτ = 590 (run S3). (a) Original, (b) scale 2, (c) scale 3, (d) scale 4,
(e) scale 5 and (f ) scale 6.
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Figure 19. Averaged inclination angle (degrees) of Eulerian structures on the x–z plane.
(a) Scaled by scale indices and (b) scaled by viscous length scales.

large-scale Eulerian structures are small, while structures at intermediate scales have
maximum 〈α〉 in the range 40◦–45◦ while small-scale structures have moderate 〈α〉
around 30◦. In figure 19(b), the 〈α〉 profiles, in terms of the viscous scale δν , appear to
collapse for all four Reynolds numbers, in a way similar to inner-scaling for turbulent
velocity or vorticity profiles (e.g. Moser et al. 1999). The maximum 〈α〉 corresponds to
the scale around 20δν . Combined with the visualizations in figure 18, we conclude that
the quasi-streamwise vortices represented by iso-surfaces of λci exhibit an inclined
geometry with intermediate scale 20δν , 〈α〉≈ 45◦ and with ‘curved legs’ leading to
scale 5δν and 〈α〉≈ 30◦ near the wall.
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Figure 20. Averaged sweep angle (degrees) of Eulerian structures on the x–y plane at
different z+. (a) Scale 3 and (b) scale 5.

After averaging over results from five realizations of the DNS, the averaged sweep
angle 〈β〉 of Eulerian structures on the x–z plane as a function of the wall distance z+

for four Reynolds numbers is also shown in figure 20. This resembles the equivalent
results for Lagrangian structures shown in § 4. The rapid change of the sweep angle in
the near-wall region implies high curvature of three-dimensional small-scale Eulerian
structures (e.g. Adrian 2007).

5.2. Statistical evidence of structure packets

Recent DNS and PIV studies have provided evidence that near-wall vortices may
group together to form large-scale packets (Zhou et al. 1999; Christensen & Adrian
2001; Adrian & Liu 2002). We observed that similar long and narrow structures
appear to be organized by a number of individual small-scale structures in figure 17.
To investigate this issue by quantified statistics, we use the cross-correlation coefficients
between the λci fields on the x–z plane at scale i and scale j :

γij =
〈
(
|λ(i)

ci (x)| − 〈|λ(i)
ci (x)|〉

)(
|λ(j )

ci (x)| − 〈|λ(j )
ci (x)|〉

)
〉

σ (i)σ (j )
, (5.1)

where i < j and the standard deviation of each scalar field is

σ (j ) =

√
〈
(
|λ(j )

ci (x)| − 〈|λ(j )
ci (x)|〉

)2〉. (5.2)

In the multi-scale geometric methodology, the structures are represented by
fluctuations of λ(j )

ci . Thus, high γij means possible coincidence of structures at scales
i and j appearing within the same region. In figure 21, γij is computed by (5.1) on
the x–z plane in channel flows for four Reynolds numbers. We can see noticeable
cross-correlations between large-scale structures with the characteristic height 0.25δ

and small-scale structures with the length around 5δν in both long channel (runs L1,
L2 and L3) and short channel (runs S2, S3 and S4), which implies that candidate
structure packets may exist in the near-wall region of channel flows at a range
of Reynolds numbers. This feature can be observed from visualizations of the x–
z plane-cuts in figure 22. The small-scale structures presented by the fluctuations
of the background shading of λ(5)

ci for Reτ = 180 or λ
(6)
ci for Reτ = 395 are grouped in

large-scale packets presented by dashed contour lines of λ(2)
ci .
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Figure 21. Cross-correlation coefficients between Eulerian structures at scale i and scale j
from different runs. (a) i = 1 and (b) i =2.
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(a)

(b)

Figure 22. Interactions between Eulerian large-scale structures at scale i (contour lines:

λ
(i)
ci /λ

(i)
ci,max = 0.15, 0.2, 0.25) and small-scale structures at scale j (background shading) on the

x–y plane in a long channel. (a) Reτ =180 (run L1), i = 2, j =5, (b) Reτ = 395 (run L2), i = 2
and j = 6.

Additionally, in long channel flows with Lx ≈ 50δ at Reτ = 180 and Reτ = 395 (runs
L1 and L2), as shown in figure 23, large-scale structures in the higher-Reynolds-
number flow are much longer in the streamwise direction than those in the lower-
Reynolds-number flow. A characteristic length of structures at scale j in the x-
direction can be defined as the integral length scale

L(j )
x =

∫ Lx/2

0

R(j )
x (rx) drx, (5.3)

where the correlation in the streamwise direction is

R(j )
x (rx) =

〈
(
λ

(j )
ci (x)− 〈λ(j )

ci (x)〉
)(
λ

(j )
ci (x + rx, y = yp, z)− 〈λ(j )

ci (x)〉
)
〉

〈
(
λ

(j )
ci (x)− 〈λ(j )

ci (x)〉
)2〉

. (5.4)
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0 10 20 30 40 50

0 10 20 30 40 50

(a)

(b)

Figure 23. Eulerian structures (contour lines: λ
(j )
ci /λ

(j )
ci,max =0.2) at scale 2 on the x–z plane

(0 � x � 16π, 0 � z � 2) in long channel flows. (a) Reτ = 180 (run L1) and (b) Reτ = 395 (run
L2).

We find that the maximum L(j )
x are obtained when j =2 in both Reynolds-number

flows, while L(2)
x ≈ 4δ in the flow at Reτ = 180 and L(2)

x ≈ 14δ in the flow at Reτ = 395,
which might imply that it is easier to form very long structure packets in higher-
Reynolds-number flows than in low-Reynolds-number flows. The latter result is
reminiscent of that obtained from the streamwise spectra in the experiments of
turbulent pipe flow over a range of Reynolds numbers (e.g. Kim & Adrian 1999;
Guala et al. 2006).

5.3. Comparisons of Lagrangian and Eulerian structures

Eulerian structures show many geometric features that are qualitatively similar
to those of Lagrangian structures. This similarity also supports the existence of
quasi-streamwise vortices in turbulent channel flow. There are nonetheless notable
differences in our analysis of these two classes of fields. Some of these, for example
the averaged inclination and sweep angles of structures, may result from the
Lagrangian/Eulerian identification methods themselves, while other may have a
more physical basis. Lagrangian structures tend to be stretched by the persistent
shear motions thereby generating elongated, curved structures partially attached to
the wall as illustrated in figure 8. In Eulerian fields, the swirling-strength field appears
to identify vortex cores in the logarithmic region with relatively short geometry as
shown in figure 18. This can be expected to produce smaller averaged inclination
angles for Lagrangian objects than those seen for Eulerian structures at intermediate
scales.

Another notable difference is that, in contrast to the observation of structure packets
in terms of correlations for Eulerian structures (figure 21), we do not presently
find substantial cross-correlations between large- and small-scale components of
Lagrangian objects. This could be a consequence of the limited time over which we are
able to track the latter, which may not be sufficiently long for inter-scale Lagrangian
correlations to develop. An alternative is that the Eulerian correlations are in fact
a consequence of the collective vortex dynamics of near-wall flows. Presently we do
not have a suitable method available for the long-time tracking of a Lagrangian field
that is unambiguously related to identifiable vortex structures; see further discussion
below.

One clear distinction between Lagrangian and Eulerian fields is that the former are
the result of evolution from essentially arbitrary initial conditions, while the latter
follow from iso-surfaces of scalar quantities chosen at least in part based on vorticity
physics. Yang et al. (2010) found Lagrangian structures in isotropic turbulence that
were broadly independent of initial fields with blob-like, tube-like or sheet-like iso-
surfaces. Presently we find a similar trend for turbulent channel flow.
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A connection between Lagrangian and Eulerian field geometries could perhaps be
educed by choice of initial conditions for the Lagrangian simulation that correspond to
a physically interesting Eulerian field. In order to investigate Lagrangian mechanisms
and vortex dynamics in idealized flows with Taylor–Green or Kida–Pelz initial
conditions, Yang & Pullin (2010) introduced the vortex-surface field φ = φv satisfying
λω =0, where

λω =
ω · ∇φ

|ω||∇φ| . (5.5)

In strictly inviscid flow, the Helmholtz vorticity theorems show that φ(x, t = 0)
satisfying λω = 0 at t =0 will do so for t > 0. This fails for viscous flow. Further,
for a given ω field, there are open existence and uniqueness questions concerning the
determination of φ satisfying λω =0. A surrogate field may nevertheless be useful. For
the present turbulent channel flows, we find that the choice φ = λci or φ = |ω| obtained
from the instantaneous Eulerian velocity field gives 〈|λω|〉 ≈ 0.5. While neither of these
is then close to a vortex-surface field, they may nevertheless provide interesting initial
Lagrangian fields. Hence, in addition to the initial Lagrangian fields described in
§§ 4.1 and 4.2, we also performed simulations of Lagrangian structures evolving from
initial conditions defined by the three-dimensional filtered λci-field at scale 2. This
produced Lagrangian fields at a later time similar to those presented in §§ 4.1 and 4.2.

6. Conclusions
We have developed a general multi-scale, multi-directional methodology based on

the mirror-extended curvelet transform to investigate the geometry of Lagrangian and
Eulerian structures, extracted respectively from a time sequence of the Lagrangian
fields and from the instantaneous swirling-strength field in turbulent channel flow, for
low and moderate Reynolds numbers. This is used to quantify the statistical geometry,
including the averaged inclination and sweep angles, of both classes of structures over
a range of scales varying from the half-height of the channel to several viscous length
scales. Quasi-streamwise Lagrangian and Eulerian vortical structures were detected
in the near-wall region and their geometries quantified. These comprise inclined
objects, the averaged inclination angle of which is 35◦–45◦ principally within the
logarithmic region. The averaged sweep angle is 30◦–40◦ and the characteristic scale
is 20δν . ‘Curved legs’ are found in the viscous sublayer and buffer layer, for which
the averaged inclination angle is 20◦–30◦, the averaged sweep angle is 15◦–30◦ and the
scale is 5δν–10δν . The sweep angle of both structures increases rapidly in the buffer
and logarithmic regions and grows mildly in the outer layer. The temporal evolution
of Lagrangian structures shows increasing inclination and sweep angles with time.
The increasing magnitude in terms of both angles varies from 10◦ to 20◦ within the
typical ‘cyclic’ period from tc = 0.5 to tc = 4. This may quantify the lifting process of
quasi-streamwise vortices and the conceptional ejection-sweep-burst-inrush scenario.
Both structures have slightly different geometries in flows for different Reynolds
numbers. Although the averaged geometrical features of these objects are consistent
with the expected signatures of conceptual structures previously characterized as
hairpin or Λ-vortices, we remark that the current methodology cannot distinguish
between hairpin-like structures composed of two connected tubes and inclined tube-
like structures that are not connected to each other via vortex lines.

Evidence for the existence of large-scale, Eulerian structure packets, comprising
collections of individual small-scale geometrical objects, was obtained by finite
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cross-correlations between large- and small-scale Eulerian structures. The large-scale
packets are located within the near-wall region with the typical height 0.25δ and
may extend over 10δ in the streamwise direction in moderate-Reynolds-number, long
channel flows.

The current methodology is based on a sequence of plane-cuts normal or parallel to
the streamwise direction in channel flows and so may also be suitable and convenient
for analysing experimental PIV data. The extension to fully three-dimensional data
could be achieved using the three-dimensional curvelet transform (Ying, Demanet &
Candès 2005). The fast discrete curvelet transform algorithm with circular frequency
window functions may be required for this. In addition, combined with the mirror-
extension, the multi-scale geometric analysis (Bermejo-Moreno & Pullin 2008) using
the fast three-dimensional curvelet transform can in principle be applied to detect
coherent structures in wall turbulence in order to study alternative non-local geometry
signatures based on principal curvatures. This could provide a means of testing an
assumed structure in simplified models for wall turbulence (e.g. Perry & Chong 1982;
Perry et al. 1986), structure-based subgrid models for the LES of near-wall channel
(Chung & Pullin 2009) or boundary layer flows and the possible sparse representation
of wall turbulence with the curvelet-based extraction method.

While the data analysed in this study are from low- to moderate-Reynolds-number
channel flows, the present multi-scale and multi-directional methodology can easily be
applied to high-Reynolds-number data (e.g. Marusic et al. 2010) for turbulent channel
or boundary layer flows to explore more geometric features such as the superstructures
in the outer layer (e.g. Hutchins & Marusic 2007) and the structural evolution in the
turbulent transition (e.g. Wu & Moin 2009). Moreover, since high-Reynolds-number
wall turbulence exhibits scale separation, it would be interesting to investigate various
inter-scale interactions such as the large-scale modulation of small-scale motions and
Reynolds stresses using the curvelet multi-scale decomposition with quadrant analysis
(e.g. Wallace, Brodkey & Eckelman 1972).

The authors are grateful to P. Koumoutsakos for providing generous access on the
Brutus cluster at the ETH Zurich. The authors thank I. Bermejo-Moreno and D.
Chung for helpful comments. This work has been supported in part by the National
Science Foundation under grant DMS-1016111.
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