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Abstract Let (X, d) be a quasi-convex, complete and separable metric space with reference probability
measure m. We prove that the set of real-valued Lipschitz functions with non-zero pointwise Lipschitz
constant m-almost everywhere is residual, and hence dense, in the Banach space of Lipschitz and bounded
functions. The result is the metric analogous to a result proved for real-valued Lipschitz maps defined
on R

2 by Alberti et al .
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1. Introduction

In the context of metric spaces, say (X, d), it is possible to look at the pointwise variation
of a real-valued map by considering

Lip f(x) := lim sup
y→x,y �=x

|f(x) − f(y)|
d(x, y)

, (1.1)

which is called the pointwise Lipschitz constant. In the smooth framework, Lip f cor-
responds to the modulus of ∇f : if (X, d) is an open subset of R

d endowed with the
Euclidean norm and f is locally Lipschitz, then Lip f = |∇f | almost everywhere with
respect to the Lebesgue measure. Or, more generally, if (X, d, m) is a metric measure
space admitting a differentiable structure in the sense of Cheeger (see [4,6] for the def-
initions) and f is Lipschitz, then Lip f = |df | m-almost everywhere, where df is the
Cheeger differential of f .

Once the pointwise information is given, we are interested in looking at those points
where the ‘differential’ vanishes. Define the singular set of f as

S(f) := {x ∈ X : Lip f(x) = 0}.

The classical Sard theorem states that if f : R
n → R is sufficiently smooth, then the

Lebesgue measure of f(S(f)) is 0. As soon as the regularity assumption on f is dropped,
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the conclusion of Sard’s theorem does not hold anymore and one may look for weaker
properties to hold.

The question, inspired by a similar problem in [3, § 6], is whether it is possible to
approximate any Lipschitz function with functions having negligible S(f) with respect
to a given reference measure.

For real-valued Lipschitz functions defined on R
2 with the Lebesgue measure playing

the role of the reference measure, a positive answer is contained in [1, Proposition 4.10].
We prove the following theorem.

Theorem 1.1. Assume that (X, d) is a quasi-convex, complete and separable metric
space and let m be a Borel probability measure over it. The set of those f ∈ D∞(X)
such that m(S(f)) = 0 is residual, and therefore dense, in D∞(X).

The Banach space D∞(X) will be the space of bounded functions, with bounded
pointwise Lipschitz constant, endowed with the uniform norm. (See below for a precise
definition.) Recall that a set in a topological space is residual if it contains a countable
intersection of open dense sets. By Baire’s category theorem, a residual set in a complete
metric space is dense.

2. Setting

Let (X, d) be a metric space and let m be a Borel probability measure over X so that X

coincides with its support. For f : X → R, the Lipschitz constant of f is defined as usual
by

LIP(f) := sup
x,y∈X,x �=y

|f(x) − f(y)|
d(x, y)

and we say that f is Lipschitz if LIP(f) is a finite number. Accordingly, denote by
LIP∞(X) the space of bounded Lipschitz functions. The natural norm on LIP∞(X) is
given by

‖f‖LIP∞(X) = ‖f‖∞ + LIP(f),

where ‖ · ‖∞ is the uniform norm. The space of bounded Lipschitz functions endowed
with ‖f‖LIP∞(X) turns out to be a Banach space. The pointwise version of LIP(f) is
given by the pointwise Lipschitz constant, as defined in (1.1). The corresponding space
of bounded functions with bounded pointwise Lipschitz constant can be considered:

D∞(X) := {f : X → R : ‖f‖∞ + ‖Lip f‖∞ < ∞}.

A study of D∞(X) and LIP∞(X) can be found in [5]. The following results are taken
from [5].

It is straightforward to note that LIP∞(X) ⊂ D∞(X) and for a general metric space
this is the only valid inclusion. Examples of metric spaces and functions in D∞(X) not
satisfying a global Lipschitz bound can be constructed (see [5]). If (X, d) is quasi-convex,
the other inclusion also holds and LIP∞(X) = D∞(X) and the two semi-norms are
comparable, i.e. there exists C � 1 such that

‖Lip f‖∞ � LIP(f) � C‖Lip f‖∞.
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Hence, D∞(X), or equivalently LIP∞(X), endowed with the norm ‖ · ‖∞ + ‖Lip(·)‖∞ is
a Banach space. We will denote this norm by ‖ · ‖D∞(X).

Recall that a metric space (X, d) is quasi-convex if there exists a constant C � 1 such
that for each pair of points x, y ∈ X there exists a curve γ connecting the two points such
that l(γ) � Cd(x, y), where l(γ) denotes the length of γ defined with the usual ‘affine’
approximation: for γ : [a, b] → X its length l(γ) is defined as

l(γ) := sup
{ n∑

i=1

d(xi, xi+1) : a = x1 < x2 < · · · < xn+1 = b, n ∈ N

}
.

Associated with the length l(γ) there is the distance obtained from minimizing it:

dL(x, y) = inf{l(γ) : γ0 = x, γ1 = y}.

Indeed, the function dL is a distance on each component of accessibility by rectifiable
paths, i.e. those paths having finite l. By quasi-convexity it follows that

d(x, y) � dL(x, y) � Cd(x, y)

with C > 1. Hence, (X, dL) is a complete and separable metric space that is also a length
space. Clearly, (X, dL) has the same open sets as (X, d). For a more detailed discussion
on length spaces see [2].

We will use the following notation. For r > 0 and z ∈ X, we will denote by Br(z) the
ball of radius r centred on z. The complement in X of a set A will be denoted by Ac

and ∂A denotes the topological boundary of A. The closure of A is cl(A) and the interior
part int(A). Given a set we can consider the distance from it: for x ∈ X and A ⊂ X

d(x, A) := inf
w∈A

d(x, w).

3. The result

Lemma 3.1. For any Borel function f : X → R, the function Lip f : X → R̄ is uni-
versally measurable.

Proof. In order to prove the claim we just have to show that the set {x ∈
X : Lip f(x) � a} is Souslin for any a ∈ R. Since f is a Borel map, it follows that

⋂
n∈N

{
(x, y) ∈ X × X : 0 < d(x, y) � 1

n
,

|f(x) − f(y)|
d(x, y)

� a

}

is a Borel set. Note that

{x ∈ X : Lip f(x) � a}

= P1

( ⋂
n∈N

{
(x, y) ∈ X × X : 0 < d(x, y) � 1

n
,

|f(x) − f(y)|
d(x, y)

� a

})
,

where P1 : X × X → X denotes the projection on the first element. It follows from the
definition of Souslin sets that {x ∈ X : Lip f(x) � a} is Souslin and the claim follows. �
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After Lemma 3.1 it then makes sense to look at those functions f such that
m(S(f)) = 0. We will need the following lemma.

Lemma 3.2. Let K ⊂ X be a closed set and consider the length distance function
from K, that is g(x) := dL(x, K). Then

1 � Lip g(x) � C for x ∈ Kc.

Proof.

Step 1. Assume that d = dL so that (X, d) is a length space and g = d(x, K). Then
fix x ∈ Kc: for any z ∈ K and y ∈ Kc it holds that

d(x, z) − d(y, z) � d(x, y),

and hence trivially Lip g(x) � 1.
Consider now a minimizing sequence zn ∈ K for x, that is g(x) � d(x, zn)−1/n. From

the length structure it follows that for any n there exists γn : [0, 1] → X, a rectifiable
curve starting in x and arriving in zn, such that d(x, zn) � l(γn) − 1/n. So for any yn in
the image of γn,

g(x) − g(yn)
d(x, yn)

� l(γn) − d(yn, zn) − 2/n

d(x, yn)
.

Since l(γn) � d(x, yn) + d(yn, zn) it follows that

g(x) − g(yn)
d(x, yn)

� d(x, yn) − 2/n

d(x, yn)
.

Since the only constraint made on yn was to belong to the image of γn, we can choose yn

such that the previous ratio converges to 1. Hence Lip g(x) = 1.

Step 2. We now drop the assumption on the length structure of the space. Let (X, d)
be quasi-convex and g(x) = dL(x, K). Since (X, dL) is a length space for any x ∈ Kc,

lim sup
y→x,y �=x

|g(x) − g(y)|
dL(x, y)

= 1.

Since (X, dL) and (X, d) have the same open sets, Kc does not depend on the metric.
Since d � dL � Cd, the claim follows. �

We can now prove Theorem 1.1. The proof uses the ideas contained in [1, Proposi-
tion 4.10].

Theorem 3.3. Assume that (X, d) is a quasi-convex, complete and separable space
and let m be a Borel probability measure over it. The set of those f ∈ D∞(X) such that
m(S(f)) = 0 is residual in D∞(X) and is therefore dense.

Proof. Consider the sets

G := {f ∈ D∞(X) : m(S(f)) = 0} and Gr := {f ∈ D∞(X) : m(S(f)) < r}.

The claim is then to prove that G is a residual set. Since G =
⋂

Gr, where the intersection
runs over a sequence of r converging to 0, the claim is proved once it is proved that each Gr

is open and dense in D∞(X).
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Step 1. The set Gr is open in D∞(X). Fix f ∈ Gr. Then there exists δ > 0 such that

m({x ∈ X : Lip f(x) � δ}) < r.

Since for any g ∈ D∞(X) it holds that

Lip f(x) � Lip g(x) + Lip(f − g)(x),

for any g ∈ D∞(X) such that ‖g − f‖D∞(X) � δ it holds that

S(g) ⊂ {x ∈ X : Lip f(x) � δ}.

Therefore, m(S(g)) < r and consequently g ∈ Gr.

Step 2. The set Gr is dense in D∞(X). Given f ∈ D∞(X) and δ > 0, we have to
find g ∈ Gr such that ‖f − g‖D∞(X) � δ. Without loss of generality, we can assume that
m(S(f)) � r.

For every ε > 0 denote by S(f)ε the ε-neighbourhood of the set of singular points of f ,
i.e.

S(f)ε = {z ∈ X : d(z, S(f)) < ε}.

The set S(f)ε is open and denote by K its complementary in X. Associated with K we
consider the distance function ĝ as defined in Lemma 3.2, that is ĝ(x) := dL(x, K). A
rough bound on ĝ(x) can be given in terms of the ‘diameter’ of S(f):

ĝ(x) � C sup{d(x, z) : cl(S(f)ε)},

where cl(S(f)ε) stands for the closure of S(f)ε. Since, in approximating with functions
in Gr, we can make an error in measure strictly less than r and since m is a probability
measure, we can assume S(f) to have finite diameter and by inner regularity we can even
assume it to be closed. Therefore,

‖ĝ‖∞ � M, M > 0.

From Lemma 3.2 we have Lip ĝ(x) > 0 for x ∈ S(f)ε and clearly Lip ĝ(x) = 0 for
x ∈ int(K), where int(K) stands for the interior part of K.

Note that the boundary of S(f)ε is contained in the set {z : d(z, S(f)) = ε}. Indeed,
z ∈ ∂S(f)ε if and only if d(z, S(f)) � ε and for every η > 0 there exists a point w ∈ X

such that
d(z, w) � η and d(w, S(f)) < ε.

Let ηn be a sequence converging to 0 and let wn be the corresponding sequence converging
to z. With each wn associate xn ∈ S(f) such that d(wn, xn) < ε. Then

d(z, xn) � d(z, wn) + d(wn, xn) < ηn + ε.

Passing to the limit, d(z, S(f)) � ε and therefore necessarily d(z, S(f)) = ε.
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Moreover, for ε �= ε′

{z : d(z, S(f)) = ε} ∩ {z : d(z, S(f)) = ε′} = ∅,

and hence there exists at most countably many ε so that m({z : d(z, S(f)) = ε}) > 0.
Hence, for any r > 0 there exists ε > 0 such that

m({z : d(z, S(f)) = ε}) = 0 and m(S(f)ε \ S(f)) < r,

where the second expression holds because S(f) is closed. From what has been said so
far, we define g := f + (δ/2M)ĝ such that

‖f − g‖D∞(X) � δ.

To conclude the proof, observe that S(g) ⊂ S(f)ε \ S(f), and hence by construction
g ∈ Gr. �

References

1. G. Alberti, S. Bianchini and G. Crippa, Structure of level sets and Sard-type prop-
erties of Lipschitz maps, Annali Scuola Norm. Sup. Pisa 12(4) (2013), 863–902.

2. D. Burago, Y. Burago and S. Ivanov, A course in metric geometry, Graduate Studies
in Mathematics, Volume 33 (American Mathematical Society, Providence, RI, 2001).

3. F. Cavalletti, Decomposition of geodesics in the Wasserstein space and the globalization
property, Geom. Funct. Analysis 24(2) (2014), 493–551.

4. J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom.
Funct. Analysis 9 (1999), 428–517.

5. E. Durand-Cartegna and J. A. Jaramillo, Pointwise Lipschitz functions on metric
spaces, J. Math. Analysis Applic. 363 (2010), 525–548.

6. B. Kleiner and J. Mackay, Differentiable structures on metric measure spaces: a
primer, preprint (arXiv:1108.1324, 2011).

https://doi.org/10.1017/S0013091514000261 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091514000261

