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SUMMARY
Several static and dynamic stability criteria have been defined
in the course of walking-robot history. Nevertheless, previous
work on the classification of stability criteria for statically
stable walking machines (having at least four legs) reveals
that there is no stability margin that accurately predicts
robot stability when inertial and manipulation effects are
significant. In such cases, every momentum-based stability
margin fails. The use of an unsuitable stability criterion
yields unavoidable errors in the control of walking robots.
Moreover, inertial and manipulation effects usually appear in
the motion of these robots when they are used for services or
industrial applications. A new stability margin that accurately
measures robot stability considering dynamic effects arising
during motion is proposed in this paper. The new stability
margin is proven to be the only exact stability margin when
robot dynamics and manipulation forces exist. Numerical
comparison has been conducted to support the margin’s
suitability. Stability-level curves are also presented on the
basis of a suitable stability margin to control the trajectory
of the center of gravity during the support phase.

KEYWORDS: Walking robot; Stability margin; Static
stability; Dynamic stability; Stability-level curves.

1. INTRODUCTION
There are more than one hundred and fifty walking machines
already developed all over the world. Most of them are
simple laboratory prototypes; however, there is a real need
for walking machines. Legged locomotion has advantages
on uneven terrain that make walking machines especially
suitable for industrial and non-industrial applications, such
as terrestrial and planetary exploration and humanitarian
de-mining. Nevertheless, in order for successful real
applications to be implemented, some problems must be
solved, and the current performance of walking machines
must be improved. In the last three decades legged locomo-
tion has evolved at a breathtaking pace, but still one of
the major shortcomings of walking robots is their poor
speed. Some effort has been made to improve legged-
locomotion speed by optimizing leg trajectories.1 However,
the optimization technique increases leg speed to close to the
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actuator-torque limits, and that proximity induces inertial
effects that destabilize the robot’s motion.

Walking robots that have been designed for industrial
purposes perform statically stable gaits.2−4 These robots are
complex mechanisms featuring heavy limbs and the control
of such limbs is challenging. The use of statically stable gaits
enables their control to be simplified. However, if statically
stable gaits are to be adopted, there must be no dynamic
effects during motion, and thus these machines are limited to
low, constant speeds to avoid inertial effects.

In the last two decades, the walking-robot community has
displayed an increasing interest in the field of biped robots.
Research on dynamic stability has focused on this particular
design.5−8 Although some dynamically stable quadrupeds
exist, they are based on very simplified mechanisms, having
only a few degrees of freedom, and adopt the stability criteria
designed for bipeds, extended to a couple of additional
legs.9−11 The motion of these quadrupeds is limited to an even
terrain, because the stability criterion used (Zero Moment
Point) is only valid for that kind of surface, as some authors
have demonstrated.12−14

Little effort has been made to cope with the dynamic effects
that limit statically stable machines’ performance.15−19

However, one of the main goals of research on legged
locomotion is the application of walking robots in industrial
processes and services, and such robots are not meant to trot
or gallop but to walk.

Recent research on the qualitative classification of stability
margins for walking robots with more than two legs
performing statically stable gaits has shown that currently
there is a lack of stability margins to measure robot stability
accurately when inertial and manipulation effects become
involved.20 These are precisely the dynamic effects that
usually exist during the motion of walking robots in real
services and industrial applications. Therefore, the main
goal of this paper is to propose a new stability criterion
for walking robots, performing statically stable gaits, whose
stability margin accurately measures robot stability when
inertial and manipulation effects exist. The proposed margin
is an extension of the Energy Stability Margin21 to the
consideration of robot dynamics and therefore has been
named Normalized Dynamic Energy Stability Margin,
NDESM.

This paper is structured as follows: First, those stability
criteria which are most related to the proposed one are
briefly reviewed in Section 2. Next, the Normalized Dynamic
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Energy Stability Margin is proposed in Section 3, and it
is numerically compared with other stability margins in
Section 4. The robot’s stability-level curves are defined and
plotted in Section 5, and finally, Section 6 presents some
conclusions.

2. DEFINITION OF STABILITY MARGINS
In this section, the stability margins most related to the herein
proposed one are defined. For a complete survey on static and
dynamic stability margins see reference [20].

2.1. The Energy Stability Margin, ESM
The Energy Stability Margin, ESM, was proposed by
Messuri21 as the minimum potential energy required to
tumble the robot around the edges of the support polygon,
that is:

SESM = ns

min
i

(mghi) (1)

where i denotes the segment of the support polygon
considered the rotation axis, ns is the number of supporting
legs, and hi is the variation of CG height during the tumble,
which comes from:

hi = |Ri|(1 − cos θ)cos ψ (2)

where Ri is the distance from the CG to the rotation axis, θ is
the angle that Ri forms with the vertical plane, and ψ is the
inclination angle of the rotation axis relative to the horizontal
plane.

The ESM is the most effective static stability measurement.
It gives a qualitative idea of the amount of impact energy the
vehicle withstands and also considers the height of the CG.
However, the ESM still does not consider any dynamic effects
that might disturb vehicle stability. Extensions of the ESM
were proposed by Nagy22 to consider foot sinkage on soft and
compliant terrain (the Compliant Energy Stability Margin,
CESM) and the stabilizing effect of a leg of a foot that is
in the air (the Tipover Energy Stability Margin, TESM). For
most walking machines, the ESM and the TESM coincide
because the non-supporting legs are too far from the floor
to enhance stability. Only frame-based vehicles will find this
stability margin an advantage.

2.2. The Normalized Energy Stability Margin, NESM
Hirose et al. normalized the ESM to the robot’s weight and
proposed the Normalized Energy Stability Margin, NESM,
defined as.23

SNESM = SESM

mg
= ns

min
i

(hi) (3)

The NESM was shown to be the most effective stability
margin for statically stable walking machines. However,
when dynamic effects arise during walking, machine stability
cannot be judged precisely. Such situations exist in real
walking robot applications, and therefore dynamic stability
margins are more suitable.

Ri
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α

Fig. 1. Geometric problem of the Force-Angle stability margin.

2.3. Dynamic Stability Margin, DSM
To solve the unusefulness of static stability margins when
robot dynamics are relevant some momentum-based stability
criteria have been defined. Lin and Song17 defined the
Dynamic Stability Margin, DSM, as the smallest of all
moments Mi around the edges of the support polygon caused
by robot/ground interaction forces, normalized by the weight
of the system, that is:

SDSM = mini

(
Mi

mg

)
= mini

(
ei · (FR × Pi + MR)

mg

)
(4)

where Pi is the position vector from the CG to the i-th support
foot, FR and MR are the resultant force and moment of
robot/ground interaction, and ei is a unit vector that revolves
around the support polygon in the clockwise sense. If all
moments are positive (if they have the same direction and
sense as ei), then the system is stable.

2.4. The Force-Angle Stability Margin, FASM
A different criterion was proposed by Papadopoulos and
Rey.18 The Force-Angle stability criterion finds the angle
αi between the resultant force acting from the CG on the
ground (the opposite to the reaction force FR) and the vector
Ri , normal to the rotation axis from the CG (see Figure 1).
The system becomes unstable when this angle becomes zero.
The stability margin is the product of the angle times the
resultant force FR , that is:

SFASM = min(αi) · ‖FR‖ (5)

These are the main stability criteria used for comparison
with the herein proposed one. Recent research20 has
demonstrated that none of the static stability margins are
suitable for measuring robot stability when robot dynamics
are relevant. The FASM seems to be the best of the existing
margins, because it accurately judges stability on flat terrain
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Fig. 2. Geometric outline for the computation of the NDESM.

in the presence of inertial effects. However, it loses accuracy
when manipulation effects arise or when the robot walks
over an uneven terrain. Furthermore, it shows that none of
the dynamic stability margins accurately measure stability
when there are manipulation forces and moments or dynamic
effects during the transfer of the legs.

The following section of this paper is devoted to coping
with this lack of accurate stability margins. A new margin is
defined, which is shown to be the most accurate.

3. NORMALIZED DYNAMIC ENERGY
STABILITY MARGIN
The optimum stability margin from the energy viewpoint is
the one that quantifies the maximum impact energy that the
machine can absorb without losing stability. Following this
definition, the ESM is optimum under static conditions, e.g.
when the only significant force acting on the robot is gravity,
as previously demonstrated.23 The ESM (see Section 2)
is computed from the increase of potential energy that
the machine’s CG experiences when pivoting around the
edges of the support polygon. Therefore, the extension of
the ESM to the presence of other robot dynamics, like
inertial forces or manipulation effects, must compute the
increase of mechanical energy that the CG experiences during
the tumble. This idea was proposed by Ghasempoor and
Sepehri24 to measure robot stability in the application to
wheel-based mobile manipulators. In this paper, Ghasempoor
and Sepehri’s idea has been extended to walking machines,
considering leg dynamics as a destabilizing effect.

Let us consider a walking robot during its motion, where
gravitational, inertial and manipulation forces and moments
become significant. At a given instant, an external impact
causes the robot to tumble around one edge of its support
polygon. The impact is caused by a force that interacts with
the robot during an infinitesimal interval of time. Therefore,
any joint motion during this interval is negligible and thus
the robot will be considered as a rigid body. Figure 2 depicts
the CG of a robot during the tumble around the edge of its

support polygon, given by the line connecting footprints i and
i + 1. This edge is inclined at an angle ψ from the horizontal
plane due to terrain inclination. If the moment around this
rotational axis caused by the resultant forces and moments of
robot/ground interaction, FR and MR, is able to compensate
for the destabilizing effect, the robot could maintain stability.
If, on the contrary, the effect cannot be compensated for,
the robot will lose stability. Therefore, the instant of critical
stability occurs when the moment of robot/ground interaction
forces and moments around the rotation axis vanishes. At that
time the CG is located inside a critical plane that forms an
angle φ with the vertical plane (see position (2) in Figure 2).

At the initial position (1) before the tumble, the CG is
subject to inertial forces and moments (FI and MI), gravita-
tional forces and moments (FG and MG), and manipulation
forces and moments (FM and MM). The perturbing effects of
a leg in transfer phase can be also considered as manipulation
terms. Assuming that the dynamics of the legs in the support
phase is negligible relative to the body dynamics, the re-
sultant force and moment of robot/ground interaction are
given by:

FR = FG + FM − FI (6)

MR = MG + MM − MI (7)

During the tumble from position (1) to position (2), the
gravitational force, FG, remains constant, while the rest of
forces and moments rotate with the robot reference frame.
Therefore, let us divide the resultant robot/ground interaction
forces, FR, into two components: one gravitational and the
other non-gravitational. Let us name the non-gravitational
component FRI, that is:

FRI = FR − FG (8)

The mechanical energy increase experienced by the CG
during the tumble from position (1) to position (2) is given
by the following energy balance:

Ei =V2 −V1 + K2 −K1 (9)

where V1 and K1 are the potential and kinetic energies of
the CG, respectively, before the tumble (1), and V2 and K2

are the potential and kinetic energy of the CG at the critical
plane. Inside the critical plane the resultant moment around
the rotation axis vanishes; thus the rotational speed of the CG
is zero at this time, therefore:

Ei =V2 − V1 −K1 (10)

The increase of potential energy, V2 −V1, is the sum of
potential energy due to gravity, FG, and the rest of forces and
moments, FRI and MR, that is:

V2 −V1 = �VG + �VF + �VM (11)

�VG = mgh (12)

�VF =
∫ θ2

θ1

(FRI × R) · ei dθ (13)
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�VM =
∫ θ2

θ1

(MR · ei) dθ (14)

To compute the kinetic energy of the system before the
tumble the following equation must be solved:

K1 = 1

2
Iiω

2
i (15)

where Ii is the moment of inertia around the rotation axis,
which is known, and ωi is the angular speed of the robot
before the tumble, which is obtained from:

ωi = Li

Ii

(16)

Let us consider the speed of the CG before the tumble (1),
vCG. Then, the angular momentum Li is computed from:

Li = (R × mvCG) · ei (17)

where m is the total mass of the robot and its manipulator
system. Then the kinetic energy of the system before the
tumble can be obtained by substituting equations (16) and
(17) in (15).

Thus the term Ei in equation (9) is the increase of
mechanical energy of the CG when pivoting around the edge i

of the support polygon. It is also the increase of the machine’s
stability level when the machine is rotating around that axis
due to an impulsive perturbation. Therefore let us propose
the following definition:

Definition 3.1 A walking machine is dynamically stable if
every moment Mi around the i-edge of the support polygon
due to robot/ground forces and moments is positive, with the
vector that goes around the support polygon in the clockwise
direction being positive, that is:

Mi > 0, i = 1 .. n− 1 (18)

where i is the edge of the support polygon, and n is the
number of supporting feet. Mi is the moment around the axis
i and comes from:

Mi = ((FRI + FG) × R + MR) · ei (19)

If equation (18) is true the robot is stable and then the
Normalized Dynamic Energy Stability Margin is defined
as:

Definition 3.2 The Normalized Dynamic Energy Stability
Margin, NDESM, is the smallest of the stability levels
required to tumble the robot around the support polygon,
normalized to the robot mass, that is:

SMEEDN = min(Ei)

mg
(20)

where Ei is the stability level, given by (9).
The next section shows through simulation the improve-

ment in stability margin measurement achieved using the

Fig. 3. The SILO4 walking robot.

proposed NDESM with different terrain profiles and dynamic
effects.

4. VALIDATION OF THE NDESM
After defining the NDESM, this section analyzes how
walking-robot stability measurement is improved using the
stability margin herein proposed. A comparison between the
NDESM and other classic stability margins is performed
through numerical simulation of a walking robot in the
following scenarios:

• Under static conditions.
• On inclined ground and subject to inertial and mani-

pulation effects.

A commercial Simulation Construction Set (SCS)25 was
chosen for this purpose because it provides suitable tools
for dynamic simulation. The SILO4 quadruped robot, shown
in Figure 3, was used as a comparative testbed,26 and the
stability margins were computed while the robot was walking
using a two-phase discontinuous gait.27 Using the Java-based
SCS library, robot kinematics and dynamics were defined as
well as the ground profile and ground contact model. The
integrator used for the simulation was based on the Runge-
Kutta 4th-order method with an integration period of 0.4 ms.
However, the data were collected for graphic comparison at
a sampling time of 0.02 seconds.

Previous work on the classification of stability margins for
walking machines20 reveals that the FASM and the DSM are
the most suitable stability margins when the robot is subject
to dynamic effects. Therefore, in this paper the proposed
NDESM is compared with the FASM and the DSM. Figure 4
shows numerical results, which are analyzed in the following
subsections.

4.1. NDESM under static conditions
Under static conditions, the only force acting on the robot is
gravity because FRI = 0 and MR = 0. Therefore the resultant
robot/ground interaction force becomes:

FR = FG (21)
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inertial and elastic effects arise and a 20-N manipulation force
opposes robot motion on terrain inclined 10◦ from the horizontal
plane.

Under such conditions, the critical plane coincides with
the vertical plane, and the NDESM becomes:

SNDESM = min
|R|(1 − cos θ)cos ψ

mg
(22)

The above expression of the NDESM matches the definition
of the NESM (see equation 3). Therefore, under static
conditions the NDESM and the NESM coincide. In such
conditions, the NESM has been proved to be optimum,23

therefore the NDESM is optimum too.

4.2. NDESM subject to inertial and manipulation effects
When the walking robot is subject to inertial effects due to
its own body motion and manipulation effects caused by leg-
transfer motion or robot-manipulator tasks, the NESM fails
to measure robot stability. However, as Figure 4 shows, the
NDESM is suitable for measuring robot stability under such
conditions even on inclined ground. The DSM, NDESM, and
FASM are represented during half a gait cycle, which consists
of the transfer of the rear leg, followed by the transfer of
the adjacent front leg, and lastly body propulsion. Figure 4
compares the three stability margins when the terrain is
inclined 10 degrees and there are inertial effects added to
a 20-N manipulation force perturbing the stability of a robot.
Joint elasticity has been also considered. The vertical dashed
line plotted inside the body support phase points to the instant
when the DSM is maximum, and it is used for comparison of
maximum-stability instants. Such instants of time have been
written inside the figure for the sake of clarity.

This figure shows that the NDESM undergoes oscillations
due to joint elasticity and reflects stability losses caused
by inertia on the motion of the body and the legs during
their transfer. The FASM and the DSM also undergo
such modifications. However, when the robot is subject to
manipulation forces the instant of maximum stability differs
from one criterion to the other. In such a scenario the instant
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Fig. 5. Difference between instants of maximum stability for several
terrain inclinations (α) and manipulation forces (FM ). (a) DSM vs.
NDESM. (b) FASM vs. NDESM.

of maximum NDESM precedes the instant of maximum
FASM and takes place after the instant of maximum DSM,
as shown in Figure 4. These differences between the three
stability margins persist for different terrain inclinations and
manipulation forces. This is shown in Figures 5(a) and (b),
where the instants of maximum DSM and FASM are
compared with the instant of maximum NDESM for different
terrain-inclination angles and different manipulation forces.

To determine which of the three stability margins is
the best, an unstable situation has been simulated and
stability margins have been computed. A 25-N external
force opposing the robot’s motion was simulated and the
robot tumbled down. Dimensionless stability margins have
been computed and scaled in order to permit numerical
comparison. For this purpose, the NDESM has been divided
by the robot height (H = 0.34 m), and the DSM has been
divided by half the stroke pitch (P/2 = 0.5 m). Afterwards,
the three dimensionless numbers have been scaled in such a
way that at the beginning of the motion (when no external
disturbances exist and the robot is stopped) they have the
same value. It seems reasonable that under such normal

https://doi.org/10.1017/S0263574704000487 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704000487


18 Walking machines

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.02

0.04

0.06

0.08

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
–3

–2

–1

0

1

NDESM
DSM
FASM

D
im

en
si

on
le

ss
st

ab
ili

ty
m

ar
gi

n
S

ta
bi

lit
y

m
ar

gi
n

de
riv

at
iv

e

Time (s)

(a)

(b)

Fig. 6. (a) Dimensionless DSM, NDESM and FASM when
instability takes place due to an external force of −25 N.
(b) Dimensionless DSM, NDESM and FASM derivatives when
instability takes place due to an external force of −25 N.

conditions all dimensionless stability margins yield the same
value. Figure 6(a) shows the three dimensionless stability
margins before and after the tumble occurs (at t = 0.1 s).
After the tumble the three stability margins become zero,
just because the robot becomes unstable, and that prevents
any stability margin to be computed. However, before the
tumble, the three stability margins behave differently. The
FASM reflects a delay in measuring the stability decrease
just before the tumble, while the DSM and the NDESM
show the stability decrease from the beginning of the motion.
Nevertheless, the DSM exhibits a discontinuity at the instant
of tumble. This is clarified in Figure 6(b), where derivatives
of the three stability margins are shown. An impulse on
derivatives of the DSM and FASM reveals an error in the
instability prediction. These discontinuities do not seem to
be so, due to the fact that the data shown in the figure has
been sampled at 0.02s from the simulation data. However,
stability margins become zero abruptly because when robot
gets unstable no stability margin is computed (the support
polygon disappears). However, if stability margins could
have been computed, the FASM and the DSM surely would
not have become zero, as shows the tendency of both curves
in Figure 6(a) at that instant of time. As Figures 6(a) and (b)
show, the NDESM becomes zero continuously, and thus no
prediction error exists. Therefore, the NDESM has no error in
the measurement of robot stability and can be used to predict
robot instability precisely. This shows clearly the advantage
of the NDESM which has been shown to be the only exact
stability measurement. Just before the instant t = 0.12 s when
the robot starts to fall, only the NDESM = 0. The rest of
stability margins would give a margin different from zero.
This is critical for robot control. If a robot gait is controlled
in such a way that the stability margin must be always over a
certain value, the use of other stability margin different from
the NDESM will impose an error in the monitoring of the
stability margin, and robot stability will be uncertain.
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Therefore, the NDESM herein proposed is an improved
stability measurement, that is able to predict robot stability
precisely for different ground profiles and different dynamic
effects perturbing motion, including robot inertia and
manipulation dynamics.

5. STABILITY-LEVEL CURVES
Based on definition 3.2, the NDESM determines the
maximum impact energy that the robot can absorb. If the
support pattern remains fixed this amount of impact energy
varies as the CG moves, e.g. during the body-support phase.
Controlling the CG motion so as to guarantee a given stability
level could be useful for the robot task because the maximum
impact energy that can be absorbed would then be a known
quantity.

In this section, stability-level curves are obtained inside
the body plane (see Figure 7(a)) which is defined by the
longitudinal and transverse robot axes (xc and yc) and the CG
position. The stability-level curves are given by the following
expression:

SNDESM(xc, yc) =C (23)

where xc and yc are CG coordinates with reference to a body
reference frame xc yc zc (see Figures 7(a) and (b)) and C is a
constant. The support polygon and the forces and moments
acting on the robot are known with reference to an external
reference frame x y z.
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Fig. 8. Stability-level curves (m) over terrain inclined 20◦ in the
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Let us name the position vector of the body reference frame
in the external reference frame G0, that is:

G0 = (
xG0 yG0 zG0

)T
(24)

Any point in the body plane can be mapped into
the external reference frame by means of the following
homogeneous transformation:




x

y

z

1


 =




cos α sin αsin β sin αcos β xG0

0 cos β −sin β yG0

−sin α cos αsin β cos αcos β zG0

0 0 0 1


 ·




xc

yc

0
1




(25)

where α is the angle between the xc- and x-axes, and β is the
angle between yc- and y-axes (see Figure 7(b)).

Let us name the variable CG coordinates inside the body
plane with reference to the external reference frame xG, yG,
zG:

G = (xG yG zG)T (26)

To solve equation (23) the NDESM must be expressed in
terms of variable CG coordinates xG, yG, and zG and later
mapped onto the body reference frame through equation (25).
As a result, the NDESM will be expressed in terms of body-
plane coordinates xc, yc.

The analytic solution of (23) yields a complex expression.
For the sake of clarity it has been solved numerically for
different situations and results are plotted in Figures 8
and 9, which show stability-level curves for a quadruped
in its support phase when dynamic effects are considered.
Footprint projections onto the body plane are marked with
an asterisk.
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Fig. 9. Stability-level curves (m) over terrain inclined 20◦ in the
x direction, horizontal body plane. The robot is subject to a 30-N
manipulation force along the y-axis and a manipulation moment of
20 Nm around the y-axis, and the initial body speed is 0.2 m/s.

Figure 8 shows stability-level curves for a robot subject
to a 30-N manipulation force along the y-axis and a 20-Nm
manipulation torque around the y-axis. The robot remains at
rest. The resultant force causes a moment around the xc-axis,
and therefore the critical plane forms an angle φ with the
vertical plane for the two robot sides parallel to the xc-axis.
The zero-stability curve shifts from the support polygon due
to this effect. Likewise, the manipulation torque around the
yc-axis causes the angle between the critical plane and the
vertical plane for the two robot sides parallel to the yc-axis.
Manipulation forces and torques also modify the gradient
between stability-level curves.

Also, stability-level curves are plotted for the same situ-
ation as in Figure 8 but while the robot is in motion, propel-
led by its four legs, that is, VCG �= 0. Under such conditions
an initial kinetic energy exists. Figure 9 shows an example
where the CG moves at a constant speed of 0.2 m/s along
the xc-axis. As a result, stability-level curves are squeezed
in the xc direction. Therefore robot stability decreases when
the body moves.

6. CONCLUSIONS
Several static and dynamic stability criteria have been defined
in the course of walking-robot history. Nevertheless, previous
work on the analysis and classification of stability margins
for walking machines with at least four legs has claimed
that none of the existing stability margins have succeeded in
measuring robot stability precisely when inertial and mani-
pulation effects perturb the robot’s motion. One of the main
goals of research into legged locomotion is the application
of walking robots in industrial processes and services, and
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such robots are usually subject to inertial and manipulation
effects perturbing robot performance. Therefore, there is a
need for accurate robot-stability measurement so that the
current walking-machine performance can be improved.

In this paper, a new stability margin named NDESM has
been proposed for walking robots with at least four legs. The
NDESM is an extension of the NESM to account for the
presence of inertial and manipulation effects acting on the
robot’s CG, and it determines the maximum impact energy
that the robot can absorb. In this paper, it has been shown
that the proposed NDESM is the only stability margin that
provides an accurate stability measurement in the presence
of robot dynamics and manipulation effects. This means that
the measure it provides is exact, that is, if the NDESM = 0
at instant t , then the robot will start to fall at instant t . The
advantage of using the NDESM for robot control has been
shown. At the instant of time when the robot starts to fall,
only the NDESM = 0. The rest of stability margins give a
margin different from zero and thus, the control of robot
stability will be uncertain.

Using the improved stability margin herein proposed,
stability-level curves have been obtained for a robot
in different dynamic situations on inclined terrain. The
computation of stability-level curves enables CG location
to be controlled inside the body plane such as to achieve a
certain stability level. The use of the NDESM and stability-
level curves for gait control will play a major role in the
successful generation of walking-robot tasks.
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