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Direct numerical simulation of a spatially
developing compressible plane mixing layer: flow
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The spatially developing compressible plane mixing layer with a convective Mach
number of 0.7 is investigated by direct numerical simulation. A pair of equal and
opposite oblique instability waves is introduced to perturb the mixing layer at the inlet.
The full evolution process of instability, including formation of 3-vortices and hairpin
vortices, breakdown of large structures and establishment of self-similar turbulence,
is presented clearly in the simulation. In the transition process, the flow fields are
populated sequentially by 3-vortices, hairpin vortices and ‘flower’ structures. This is
the first direct evidence showing the dominance of these structures in the spatially
developing mixing layer. Hairpin vortices are found to play an important role in the
breakdown of the flow. The legs of hairpin vortices first evolve into sheaths with
intense vorticity then break up into small slender vortices. The later flower structures
are produced by the instability of the heads of the hairpin vortices. They prevail
for a long distance in the mixing layer until the flow starts to settle down into
its self-similar state. The preponderance of slender inclined streamwise vortices is
observed in the transversal middle zone of the transition region after the breakup of
the hairpin legs. This predominance of streamwise vortices also persists in the self-
similar turbulent region, though the vortices there are found to be relatively very weak.
The evolution of both the mean streamwise velocity profile and the Reynolds stresses
is found to have close connection to the behaviour of the large vortex structures.
High growth rates of the momentum and vorticity thicknesses are observed in the
transition region of the flow. The growth rates in the self-similar turbulence region
decay to a value that agrees well with previous experimental and numerical studies.
Shocklets occur in the simulation, and their formation mechanisms are elaborated and
categorized. This is the first three-dimensional simulation that captures shocklets at
this low convective Mach number.

Key words: compressible turbulence, free shear layers, transition to turbulence

1. Introduction
Recently, the renewed interest in scramjets (supersonic combustion ramjets) has led

to extensive numerical and experimental investigations on the compressible shear layer.
The main restriction of the scramjet technique is the reduced growth rate of the
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mixing between fuel and oxidizer, which is still poorly understood. The work on the
compressible mixing layer will also benefit high-speed civil transport regarding noise
reduction (Moore 1978).

The first investigation of the mixing layer was performed by Liepmann & Laufer
(1947), demonstrating that the flow is self-preserving. Self-preservation is an important
property of the mixing layer. It implies that ‘a moving equilibrium is set up in
which conditions at the initiation of the flow are highly irrelevant’ (Townsend 1976,
p. 196). This property puts a limit on the influencing region of mixing enhancing
methods adopted upstream. Therefore, the present paper will not focus on pursuing a
forcing strategy that can increase the growth rate in the self-similar region. Instead,
we aim to understand in detail the typical evolution of the vortical structures in the
compressible mixing layer under the forcing of linearly unstable disturbances. The idea
of thickening the mixing layer before it evolves into the self-similar state will also be
examined.

Large quasi-two-dimensional coherent vortical structures in subsonic turbulent free
shear flows were first observed by Brown & Roshko (1974) experimentally, which
highlighted the significance of larger structures and markedly altered perceptions
of these flows. Ortwerth & Shine (1977) provided early experimental evidence
that large-scale structures exist in supersonic shear layers though they did not
explore the structures in detail. Bogdanoff (1983) and Papamoschou & Roshko
(1988) first used the concept of convective Mach number, Mc, to quantify the
compressibility in the compressible shear layer, which is based on the velocity
difference between the convection of the structures and the external flow. Through
a series of experiments, Clemens & Mungal (1992, 1995) found that, as convective
Mach number increases, the mixing layer becomes highly three-dimensional, with little
apparent two-dimensional large-scale organization. They claimed that this change was
due to the compressibility effect and was not a Reynolds number effect. Rossmann,
Mungal & Hanson (2002) observed that thin streamwise vortical structures dominated
the flow topology at the convective Mach number of 1.7. Recently, Watanabe &
Mungal (2005) reported that a pair of stationary counter-rotating streamwise vortices
was prevalent even in the fully developed region of the shear layers.

Through linear stability analysis, Sandham & Reynolds (1990) revealed that three-
dimensional modes are dominant in the high-speed mixing layer above a convective
Mach number of 0.6. The linear theory can be very useful for investigating the physics
of free shear layers because it has been demonstrated by Sandham & Reynolds (1991)
that simulations with purely random initial conditions give a structure very similar to
the structures developing from the linearly most unstable pair of equal and opposite
oblique waves obtained from the liner theory. Since then, instability waves have been
used to disturb the initial flow in temporal developing simulations by many researchers
(e.g. Vreman, Kuerten & Geurts 1995; Fu, Ma & Zhang 2000; Kourta & Sauvage
2002). In our spatially developing simulation, the linearly most unstable waves are also
used at the inlet to perturb the flow periodically since they can facilitate our simulation
without changing the basic physics.

Thanks to the recent advancements in high-order-accuracy schemes, high-speed
computers and interactive graphics tools over the past two decades, direct numerical
simulation (DNS) of the compressible temporal developing mixing layer has become
affordable. Most probably, Sandham & Reynolds (1991) were the first researchers who
identified the inclined 3-vortex in the temporal simulations at Mc = 0.8. Vreman et al.
(1995) and Kourta & Sauvage (2002) also observed inclined 3-vortices at Mc = 1.2 in
their numerical investigations. Fu et al. (2000) presented the whole evolution process
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of the mixing layer at Mc = 0.8. They found that the development goes from formation
of 3-vortices, through double horseshoe vortices and mushroom structures to the
final turbulent state with smaller vortices. They stressed that there is not the vortex
pairing in the transition process which usually happens in incompressible shear flows.
In comparison with the temporally developing flow, DNS of the spatially developing
flow is more computationally demanding. Recently, Fu & Li (2006) performed a
simulation of a spatially developing mixing layer and reported that oblique structures
are more prevalent in the flow with higher Mc. However, they also mentioned that their
computational mesh might not be fine enough to reveal the structure evolution more
closely since the residual of the Reynolds stress transport balance was not adequately
small in their simulations. One of the objectives of the present paper is to illustrate
the detailed development process of the vortical structures in the compressible mixing
layer. The more physically sound spatial frame for simulation is adopted. The grid
spacing is checked in several ways to make sure our results are of physical not
numerical origin.

Distortion of the mean streamwise velocity profile was observed by many
experimental investigators. To the best of our knowledge, Nygaard & Glezer (1991)
first reported an S-shaped velocity profile in the incompressible mixing layer. They
pointed out that this phenomenon was accompanied by the onset of streamwise
vortices. Later on, Foss & Zaman (1999) observed similar phenomenon in their study
of the incompressible flow perturbed by tabs. More recently, a profile with triple
inflections was observed by Watanabe & Mungal (2005) in a forced compressible
mixing layer of Mc = 0.62. They remarked that multiple inflection points appeared
to enhance shear-layer instability, leading to a mixing enhancement. Though the
distortion of the streamwise velocity profile has been observed many times, the reason
behind it has not been deeply explored. In our numerical work, this phenomenon
occurs and is understood with the help of vortical visualization.

It is well-recognized that the transversal Reynolds stress and the Reynolds shear
stress decrease as the convective Mach number increases. This was first observed
experimentally by Elliott & Samimy (1990), and later on by Goebel & Dutton
(1991), Gruber, Messersmith & Dutton (1993), Urban & Mungal (2001) and Olsen
& Dutton (2003). However, there are some controversies about the changing trends
of the streamwise and the spanwise Reynolds stresses. Elliott & Samimy (1990)
stated that all Reynolds stresses decrease significantly as Mc increases while Goebel
& Dutton (1991) claimed that the streamwise Reynolds stress only changed slightly.
Also, Gruber et al. (1993) reported a basically constant spanwise Reynolds stress
in their experimental investigation as Mc varied. This controversy also exists in the
computational community. Pantano & Sarkar (2002) and Fu & Li (2006) reported
the decrease of all Reynolds stress components as Mc increased while Freund, Lele
& Moin (2000) observed a constant streamwise Reynolds stress. In this study, the
transversal Reynolds stress and the shear stress agree well with previous results.
However, a deviation of the streamwise and spanwise Reynolds stresses from
experimental results is found. The possible underlying reasons are discussed carefully
in this study.

In compressible mixing layers, the occurrence of shocklets has been seen when
convective Mach number is higher than 0.7 in two-dimensional simulations (Lele
1989). For three-dimensional simulations, shocklets are also captured when the
convective Mach number reaches 1.2 (Vreman et al. 1995; Kourta & Sauvage 2002;
Fu & Li 2006). The existence of shocks has also been confirmed by powerful
visualization and measurement techniques (Papamoschou 1995; Rossmann et al. 2002).
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In most of the previous work, numerical simulations were done in the temporal
frame. This paper will report the occurrence of shocklets in a spatially developing
compressible mixing layer of Mc = 0.7. The reason why the shocklets are captured at
such a low Mc in three-dimensional flow is also addressed.

This paper is structured in the following manner. In § 2, the details of the simulation
are presented along with the validation of the results. Then, the visualizations of the
large structures are performed in § 3. The mechanism of the transition is also discussed
in this section. Section 4 addresses the spatial evolution of the mean streamwise
velocity and also pursues a discussion on the growth rate of the compressible mixing
layer. Section 5 provides the evolution of the Reynolds stresses. Section 6 presents the
occurrence of shocklets. The shocklet formation mechanisms are elucidated with the
aid of structure visualizations. Finally, we give concluding remarks in § 7.

2. Computation details
The unsteady, three-dimensional, compressible Navier–Stokes equations are solved

for the spatially evolving shear layer. The ideal gas law is used to relate the state
variables. The quantities in the high-speed stream (upper stream) and low-speed
stream (lower stream) are denoted by variables with subscript 1 and subscript 2,
respectively. All variables are non-dimensionalized by the initial vorticity thickness δω0

and the free-stream parameters of the high-speed stream, such as density ρ1, velocity
U1, and temperature T1. The pressure is non-dimensionalized by the product ρ1U2

1 .
The non-dimensional viscosity has a power-law dependence on the non-dimensional
temperature: µ = T0.768 (Morduchow & Libby 1949). The Prandtl number is set to
0.75.

The computational domain is defined as [0,mLx] × [−Ly/2,Ly/2] × [0, nLz], where
Lx = 2π/α = 11.58,Ly = 400,Lz = 2π/β = 17.45. The α and β correspond to the
streamwise and spanwise wavenumber of the most unstable oblique mode from linear
stability analysis (Sandham & Reynolds 1990). Our tests show that a surprisingly long
streamwise domain is needed to make the flow settle down to the fully developed
turbulence. The parameter m is set to 54; and we choose n = 2 to ensure that the
spanwise extent of the computational box is adequate in the sense that spanwise
two-point correlations decay sufficiently close to zero.

The computational domain is bounded by inflow and outflow boundaries in
the streamwise x-direction, two non-reflecting boundaries in the normal y-direction
(Thompson 1987), and two periodic boundaries in the spanwise z-direction. At the
inflow boundary, the unperturbed basic inflow profile is a time-independent laminar
compressible-boundary-layer similarity solution (Sandham & Reynolds 1990). The
mixing layer is periodically forced by a pair of the linearly most unstable oblique
waves of equal amplitudes (the amplitude is 0.2 relative to the mean profile). The
forcing frequency ω is 0.41, which is also determined through the linear stability
theory. Sandham & Reynolds (1991) have shown that simulations with forcing of
linear instability waves produced the development of large-scale structures similar to
a fully nonlinear computation with a random initial condition. In addition to oblique
waves, vortex disturbances with axis along the y-direction are also introduced at
the frequency ω. The vortex disturbances come from an isentropic vortex model
(Davoudzadeh, McDonald & Thompson 1995; Jiang & Shu 1996). We denote the
vortex disturbances with axis located at (xc, zc) by a prime: u′ = ετeσ(1−τ

2) sin θ ,
w′ = −ετeσ(1−τ

2) cos θ , T ′ = −(γ − 1)ε2e2σ(1−τ2)/4σγ , where ε = 0.05e−y2
, τ = r/rc,

and r =
√
(x− xc)

2+ (z− zc)
2. The γ in the formula for T ′ is the specific heat
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ratio, which has a value of 1.4. Note that ε = 0.05e−y2
controls the strength of the

disturbances. The exponential expression indicates that the disturbances decay very fast
away from the middle plane (the plane of y = 0) of the mixing layer. The decay rate
of the vortex is controlled by σ , and rc is the critical radius at which the disturbances
reach maximum strength. In this paper, we choose σ = 0.5 and rc = Lz/16.

At the inlet, four columns of vortex disturbances enter the computational domain
at the speed of ω/α, which is the same as the phase velocity of the linear instability
waves. The centres of vortices in the four columns lie on the same z-line. Note that
the total kinetic energy content of the vortex disturbances is relatively very weak, only
0.91 % of that of the added linear unstable waves. The introduction of the vortex
disturbances is only to break up the symmetry of the flow in the z-direction slightly,
which gives the inflow condition some natural asymmetric properties and helps the
flow develop into turbulence earlier. In the present simulation, Mach numbers of
the upper stream and the lower stream M1, M2 are set to 2.8 and 1.4, respectively.
Assuming equal specific heats and temperatures, gives Mc = (M1 − M2)/2 = 0.7. The
pressures of both free streams are the same and equal 1/(γM2

1). The Reynolds number
Re used in this simulation equals 800.

The finite-difference grid size is 4160 × 351 × 256 along the x-, y- and z-directions,
respectively. In the x-direction, the first 4000 grid points are uniformly spaced from
x = 0 to x = 50Lx, while the other 160 grid points are stretched from x = 50Lx to
x = 54Lx to make a buffer range. In the normal direction, in order to capture the
fine structures in the mixing layer, the grid is concentrated in the middle zone and
stretched to the far-field boundaries. In the spanwise direction, the grid is uniformly
spaced. Note that we do not perform simulations with difference grid spacings
to check the grid independence since this would be prohibitively computationally
demanding. The current mesh is indeed fine enough to compute all relevant scales.

We support this claim in the following four ways. First, using the initial vorticity
thickness as the characteristic length, the minimum mesh sizes in the x-, y- and
z-directions are 1x = 0.145, 1y = 0.167 and 1z = 0.136, respectively. They are
slightly smaller than those used in the previous DNS of a temporally developing
plane mixing layer (Pantano & Sarkar 2002), in which 1x = 1y = 1z = 0.167. Also,
the Reynolds number based on the velocity difference of the two sides is 400 in
our simulation. It is smaller than the value 640 adopted by Pantano & Sarkar (2002).
This difference further indicates that our mesh is finer. Second, the spanwise energy
spectrum of the streamwise velocity fluctuation is checked in the fully developed
turbulence region. It is shown (see figure 1) that the spectrum yields a significant
range with −7 slope in the high-wavenumber range. This result is consistent with
the theoretical analysis in the viscous subrange by Heisenberg (1948) and Batchelor
(1959), demonstrating that the finest scales in the turbulence have been resolved in
the simulation. We do not see an apparent range with −5/3 slope in the spectrum,
most likely due to the low Reynolds number of the DNS. Third, we show the residual
and the turbulent kinetic energy budget in figure 2. It can be seen that the numerical
dissipation is small and negligible compared to the physical dissipation, ensuring that
the turbulent flow we captured is of physical rather than numerical origin. Fourth, the
normalized growth rate of the momentum thickness of the mixing layer is compared
with published experimental, numerical and theoretical results (see figure 3). The
normalized growth rate is (δ̇θ/δ̇θ0)/((U1−U2)/(U1+U2)) (see Pantano & Sarkar 2002),
where (U1 − U2)/(U1 + U2) is the velocity ratio, and δ̇θ , δ̇θ0 denote the momentum
thickness growth rate in the present simulation and that of an incompressible mixing
layer, respectively. According to Pantano & Sarkar (2002), δ̇θ0 is set to 0.032, one

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

40
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.400


442 Q. Zhou, F. He and M. Y. Shen

k

10–2

10–4

10–6

10–8

10–10

10–12

10–14

10–16

10–18
100 101

FIGURE 1. (Colour online) The spanwise energy spectrum of the streamwise velocity
fluctuation in the self-similar turbulence region, where k is the spanwise wavenumber.

kC
kT

Resi
(d)
(e)
(c)

(× 10–4)

0

10

–10

5

–5

–4 –2 0 2 4–6 6

FIGURE 2. (Colour online) The turbulent kinetic energy budget in the self-similar turbulence
region, where kC, kT , (c), (e), (d) denote the convective, transport, production, pressure
dilatation and dissipation terms respectively. Resi denotes the residual error of the turbulent
kinetic energy transport equation. The δθ used to normalize y denotes the momentum
thickness of the mixing layer, defined (1/ρ11U2)

∫ Ly/2
−Ly/2

ρ̄(U1 − ũ)(ũ− U2) dy.

fifth of the corresponding growth rate of the vorticity thickness. The present result
fits well with the trend of the scattered experimental results (solid symbols) and the
prediction from linear stability analysis by Day & Reynolds (1998). So, we believe the
four results stated above have provided solid validation of the DNS results. In addition,
we also want to check if the computational domain is wide enough for the turbulence
simulation. This is done through the spanwise two-point correlations of pressure and
velocity components shown in figure 4, where the data are extracted from a z-line
located in the self-similar turbulence region. It can be seen that the correlations decay
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FIGURE 3. Comparison of the growth rate of the mixing layer in the self-similar turbulence
state. The curves show results from experimental fitting (Birch & Eggers 1973; Dimotakis
1991) or from a linear stability analysis (Day & Reynolds 1998). The solid symbols denote
experimental results, while the open symbols represent numerical results.
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FIGURE 4. The spanwise two-point correlations of pressure and velocity components in the
self-similar turbulence region.

sufficiently at the half-width of the computational box, indicating that the spanwise
span of the computational box is appropriate for the turbulence simulation.

We adopt finite-difference methods to solve the full Navier–Stokes equations. In
the Steger–Warming splitting building block (Steger & Warming 1981), the latest
developed high-order high-resolution hybrid scheme 7P7Om2 (Zhou et al. 2007) is
used for spatial discretization of convective flux terms. The explicit central eighth-
order scheme is adopted for viscous flux terms. The time integration is performed by
means of an eight-stage, fourth-order, strong-stability-preserving Runge–Kutta scheme
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(Spiteri & Ruuth 2003). The simulation is performed using 960 processors on Intel
Xeon E5450 nodes. The computational time step is fixed at 1t = 0.125, which is
∼1/120 of the forcing period T . It took 16 000 time steps to purge the transient
flow and establish statistically steady state. Another 28 000 time steps are used to
capture sufficient information in order to have unsteady data for statistical analysis.
Also, the statistical sample is enhanced by averaging in the spanwise direction. Two
types of averages are used in this paper. An overbar, ū, indicates a Reynolds average
and a tilde, ũ indicates a density-weighted or Favre average. Fluctuations from Favre
averages are indicated with u′′. Fluctuations from Reynolds averages are not defined
since they are not used in this paper.

3. Visualizations and discussion on instantaneous structures
It has been demonstrated by Zhou, Adrian & Balachandar (1999) that using the

iso-surface of swirl strength is a good method to visualize vortices. Therefore, this
paper adopts this method to show the vortex structures in the mixing layer.

Figure 5(a) shows the vortex structures in the mixing layer at some instant of
time. Iso-surfaces of swirl strength with a value of 0.025 are used. It can be
seen that several shear layers appear instantly near the inlet of the mixing layer.
These shear layers roll up into 3-shaped vortices quickly. 3-vortices then evolve
into hairpin vortices. Hairpin vortices are found to play a dominant role in the
breakdown of the mixing layer. The legs of hairpin vortices evolve into sheaths
with intense vorticity and then break up into small slender vortices. The heads of
hairpin vortices experience an instability that leads to previously unreported structures.
The new structures consist of many slender vortices and resemble flowers (see the
enlarged picture in figure 5b,c). We refer to them as flower structures hereafter. The
flower structures can sustain themselves over a long distance until the flow reaches
self-similar turbulence. In the later turbulence region, the aforementioned large-scale
structures disappear completely, whereas plenty of slender small vortices are identified
(see the later stages of figure 5a).

In addition, it is important to note that the preponderance of hairpin-like structures
has recently been reported in a DNS of a spatially developing incompressible boundary
layer by Wu & Moin (2009). Both their finding and ours demonstrate the striking
significance of hairpin vortices in the breakdown of shear flow transitions.

3.1. The roll-up of the 3-vortex

Figure 6(a) shows a three-dimensional view of the 3-vortices near the inlet. We can
see that a 3-vortex is rolled up from the initial high-shear layer at a short distance
of around two fundamental streamwise wavelengths. With careful observation, we can
also see that there is a small curved shear layer over the junction of the two legs of
the 3-vortex. For convenience, we call the curved shear layer a ‘hat’ structure since
it resembles a hat covering the 3-vortex. It is conjectured that the vorticity of the
hat is the residual vorticity of the main shear layer after the roll-up of the 3-vortex.
The physical connections between the hat and the legs provide clear and convincing
evidence for this conjecture. To the best of our knowledge, the hat structure has
not been reported in previous studies that identified 3-vortices (see e.g. Sandham &
Reynolds 1991; Fu et al. 2000; Kourta & Sauvage 2002). It will be demonstrated later
that this structure is the embryonic form of the head of the later hairpin vortex. In
addition, we note that the hat on the lower side seems to evolve slightly faster and has
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FIGURE 5. (a) An instantaneous overall three-dimensional view of the vortex structures in
the compressible mixing layer for Mc = 0.7. The vortices are shown using the iso-surfaces of
swirl strength with a value of 0.025. The colour changes from blue to red as y increases. (b)
A local enlarged view of (a). (c) A local enlarged view of the mixing layer from the lower
side.

already rolled up to a vortex. This difference of the evolution between the two sides
will be discussed below.

Figure 6(b) shows the instantaneous field of the spanwise vorticity on the plane
through the legs (see figure 6a). We can see clearly the roll-up process of the legs,
which has been demonstrated before by extensive two-dimensional simulations (e.g.
Lele 1989). We can also see that the cross-sections of the legs are evolving rapidly
from circular to elliptical due to the strong stretch of the main shear. Though the
cross-sections shown in figure 6(b) do not belong to one particular leg, every leg in
that area changes its shape spatially in that way.
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FIGURE 6. (a) A three-dimensional view of the 3-vortices in the streamwise (x) domain
[11, 35]. A two-dimensional slice is shown cutting through the legs of several 3-vortices.
(b) The instantaneous field of the spanwise vorticity on the slice denoted in (a).
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FIGURE 7. (a) A three-dimensional view of the 3-vortices in the streamwise domain
[23, 46]. A two-dimensional slice is shown cutting through the legs of a 3-vortex. (b) The
instantaneous field of the streamwise vorticity on the slice denoted in (a).

The hat in the upper layer also rolled up at a slightly farther distance, as we can see
in figure 7(a). The legs of the 3-vortices are all in an elliptical shape at this distance.
The streamwise vorticity field on a two-dimensional slice that cuts through the legs of
a 3-vortex is shown in figure 7(b), from which we can see the streamwise vorticity is
distributed almost uniformly in the flattened legs.
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3.2. The rise of the hairpin vortex and the formation of the sheath structure
The instantaneous vortex structures in the streamwise domain [46, 70] are shown
in figure 8(a). We can see that the head vortex has risen up high, indicating that
a hairpin vortex has formed. The instantaneous field of the spanwise vorticity on a
two-dimensional slice indicated in figure 8(a) is given in figure 8(b), from which we
can see that both the upper and the lower heads have strong concentrated negative
spanwise vorticity. The head vortex now looks like an inverted ‘U’ shape. For clarity
of description here, only the top part consisting primarily of spanwise vorticity will be
referred to as a hairpin head hereafter. The arms of the ‘U’ that connect the head and
the legs will be referred to as necks of the hairpin vortex (note that in the paper by
Zhou et al. 1999, necks denote only the small parts of kinks connecting the head and
the legs). Apparently, the necks are a pair of counter-rotating normal vortices. Their
rotation directions are consistent with that of the head since they belong to the same
vortex tube.

The legs of the hairpin vortices develop from the legs of the 3-vortex. As the
flow goes downstream, the head and necks lift up rapidly under the action of mutual
induction of the necks while the legs stay almost stationary in the middle of the
mixing layer. At this distance, the legs cannot sustain themselves and start to produce
small vortices in two ways. On one hand, the kinks between the necks and the
legs become unstable and produce smaller vortices. This instability comes from the
difference in rotation of the necks and the legs. On the other hand, the legs themselves
start to break up. Figure 8(c) shows a plane cutting through the legs and figure 8(d)
gives the field of the streamwise vorticity on this plane. We can see that almost
all the vorticity has approached the peripheries of the legs, leaving a low-enstrophy
bubble in each leg. We can also see that the legs expand slightly as they become
flattened (compare figure 8d to figure 7b). The entire process of this evolution can
be explained well by the theory of the core dynamic instability (CDI) proposed by
Schoppa, Hussain & Metcalfe (1995). They found that the expansion of a vortex
produces a meridional flow inside it. The meridional flow then moves the vorticity
spatially from the vortex centre to the core periphery, leaving the vortex as a thin
sheath with intense vorticity. The CDI theory predicts that the sheath would break
up finally. However, the breakup in this study does not completely follow the ideal
view described by Pradeep & Hussain (2000). They thought the sheaths might undergo
Kelvin–Helmholtz (K–H) instability and yield many smaller vortices near peripheries
with their axes perpendicular to that of the original sheaths. In figure 8(c), it can
be seen that the sheaths seem to split mainly into two slender parts in addition to
some other smaller parts. The differences in the breakup of the sheaths may be due
to the flattened shape and also the low Reynolds number of the current simulation.
Nevertheless, the breakup of leg vortices initiates the transition to the shear-flow
turbulence.

One of the important consequences of the breakup of the legs is that the connection
between the upper layer and the lower layer is lost. This phenomenon can be
observed clearly from the side view of the global structure shown in figure 9 at
the distance beyond x = 50. After the disconnection, the number of hairpin vortices in
the lower layer becomes slightly greater than that in the upper layer, indicating that
the structures are more compact in the lower layer. The disconnection actually breaks
point reflection symmetries between the two sides. It should be noted that the loss of
symmetries cannot be captured by the simulation in a temporal frame because several
plane and point reflection symmetries would be preserved by the Navier–Stokes
equations when simple linear unstable modes are used as initial perturbations (Rogers
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FIGURE 8. (a) The structure of a hairpin vortex in the streamwise domain [46, 70]. A two-
dimensional slice is shown cutting through the middle of the head of the hairpin vortex.
(b) The instantaneous field of the spanwise vorticity on the slice denoted in (a). (c) A
two-dimensional slice is shown cutting through the legs of the hairpin vortex. (d) The
instantaneous field of the streamwise vorticity on the slice denoted in (c).
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FIGURE 9. The side view of the global structure in the transition region. The relative
compactness of the protruded structures is noticeable in the lower layer after the breakup
of the inclined leg vortices at around x = 50. The colour changes from blue to red as y
increases. More vortices in blue are shown downstream, indicating the flow slightly deviates
towards the low-speed side (the lower layer).
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& Moser 1992; Moser & Rogers 1993). These symmetries can be observed even in the
simulation results for a convective Mach number as high as 1.2 (Vreman et al. 1995).
However, of course, laboratory mixing layers do not possess these symmetries, which
strongly suggests that a study on the time-dependent dynamics of the shear flow in the
spatial frame will be more physically sound and valuable.

From figure 9, we can see that, after the breakup of the legs, the hairpin vortices
on either side are starting to protrude into the free-stream flow on their side. These
two sets of hairpin vortices are separated by the small vortices in the middle zone
of the mixing layer. This phenomenon is different from that in an incompressible or
low compressible flow, where only one set of spanwise rollers resides at the middle
of the flow. Once the flow structures approach closer to the free-stream flow, their
transport speeds are influenced by the free-stream velocity on their side. The upper
set of flow structures will move faster than the lower set. Owing to this difference
of transport speeds, the interval between two adjacent structures in the lower layer
becomes smaller than that in the upper layer, indicating that the lower layer has
more structures in certain streamwise intervals. The larger number of structures on the
lower sides would be entraining more fluid as the flow goes downstream, considering
the flow structures on either side basically have the same ability to entrain flow
from the free stream. This explains the commonly recognized phenomenon that the
mixing layer deviates towards the side with lower speed. We can also see that the
seemingly faster evolution of the structures in the lower layer is mainly due to the
slightly smaller transport speed of the structures. Now the issue raised above that the
hat of the 3-vortex evolves faster than that in the upper layer (see figure 6a) can
be readily understood. In fact, experimentalists have earlier noticed the asymmetry
property in mixing layers of moderate and high convective Mach number through
different methods of measurement (see e.g. Papamoschou 1989; Clemens & Mungal
1995). It is noteworthy that Clemens & Mungal (1995) observed reduced magnitude
of the mixture-fraction fluctuation especially on the high-speed side of the layer as Mc

increases from 0.24 to 0.62 and 0.79. Here, in our case of Mc = 0.7, the relatively
sparse structures on the high-speed side are consistent with this observation.

3.3. The formation of the necklace vortex and the instability of the hairpin head
Figure 10(a) shows the vortex structures of the mixing layer in the streamwise domain
[69, 93]. In this figure, vortices of positive spanwise vorticity are rendered in red while
those of negative spanwise vorticity are rendered in blue. It can be seen that many
slender vortices have been produced in the transversal middle zone of the mixing layer
after the breakup of the legs. Specially, a semi-ring vortex develops just upstream of
the necks. The instantaneous field of spanwise vorticity on a slice cutting through the
head is displayed in figure 10(b) (the position of the slice is shown in figure 10a).
It can be seen that two very small red points with strikingly strong positive vorticity
appear just upstream of the head, indicating that there are actually two semi-ring
vortices. They are very close to each other, making only one clearly identifiable from
figure 10(a). Close examination shows that these semi-ring vortices originate from the
K–H instability of the shear layer produced by the main flow and the pump flow of
the hairpin necks. This phenomena may be very common since there exist many strong
vortices that could produce mini-shear layers with surrounding flows in the transition
region. The semi-ring vortices are referred to as necklaces in this paper because they
are around the hairpin necks (see figure 5b for a global view).

Here, another question arises: why do the necklaces have a middle segment curved
towards upstream, not downstream? It is believed that the orientation of the necklaces
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is a consequence of the competition between the hairpin vortices of the upper and
the lower layers. As pointed out earlier, the evolution in the lower layer proceeds
slightly faster. Therefore, at this distance, the pump flow induced by the upper hairpin
necks is more energetic since the hairpin structure in the lower layer has already lost
stability and is about to break down. The upper pump flow moves both upstream and
upwards against the main flow. It bends the necklaces upstream while lifting them up.
Actually, once the middle of the necklace starts to protrude upstream, the necklace
itself also induces the entire body to move upwards. Generally, the necklaces are the
collaborative products of the hairpin structures on both sides but lifted upwards by
the strong pump flow of the upper side. This also explains why necklaces are rarely
observed in the lower layer of the flow (see figure 5c).

From figure 10(a), we can also see that the middle segment of the upper head
starts to bend upstream. This is because both the necklaces and the necks induce
the middle segment of the head to move upstream. This induction is strong enough
to dominate over the main flow that tries to push the middle segment of the head
downstream. Once the middle segment of the head moves upstream, even very slightly,
the movement will proceed further rapidly. This is because even stronger induction can
be felt by the head in the new position. The further bending of the middle segment
stretches the head into two almost parallel slender vortices, which soon twist around
each other under the mutual induction. The necks, which are physically connected with
the head, will also be stretched and twisted as the head experiences the fast developing
instability. This evolution will produce lots of small slender vortices and hence quickly
yields a new kind of structure, which will be illustrated in the next section.

In addition, many inclined slender streamwise vortices can be observed in
figure 10(a), which primarily come from the splitting of legs of the hairpin vortices.
As the flow goes downstream, the vortices attain even more-slender bodies while
their population increases. Some of them come from the stretching of the existing
larger vortices while the others are newly generated by the interaction between the
main shear and the existing vortices. The striking conclusion is that the slender quasi-
streamwise vortices increasingly dominate the transversal middle zone of the mixing
layer after the breakup of hairpin legs. We can get a integral view of this from the
global picture in figure 5(b,c). This phenomenon, though first shown in this paper, has
been reported earlier by Rossmann et al. (2002) in the experimental investigation of
the mixing layer at Mc = 1.7. The dominance of the slender quasi-streamwise vortices
is expected to contribute significantly to the mixing of the fluid from both sides of the
mixing layer.

3.4. The evolution of the flower structure
The necklaces have the capacity to sustain themselves with intense vorticity after
their formation. Figure 11(a) shows the vortex structures of the mixing layer in the
streamwise domain [92, 115]. It can be seen that many slender vortices are encircled
by the necklaces now. Some of the slender vortices are lifted up from the middle
zone of the mixing layer by the induction of the necklaces, while most of them
have evolved from the head and the necks following the head instability. Figure 11(b)
gives the field of the spanwise vorticity on the slice cutting though the middle of
the necklaces (refer to figure 11a). We can see that the upper red point (near x = 95
now) has risen up even more (refer to figure 10b for the previous position), which
is caused by the continuous self-induction of the necklaces. From figure 11(a), we
can see that those necklaces still keep their shape basically unchanged. They now
look like ribbons tying up the small vortices encircled by them. The entire structures,
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FIGURE 10. (a) The vortex structures of the mixing layer in the streamwise domain
[69, 93]. Vortices of positive spanwise vorticity are rendered in red, negative in blue. A
two-dimensional slice is shown cutting through the head of the hairpin vortex. (b) The
instantaneous field of the spanwise vorticity on the slice denoted in (a). Two red points
with strong positive vorticity denote the semi-rings illustrated in (a).
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FIGURE 11. (a) The vortex structures in the streamwise domain [92, 115]. Vortices of
positive spanwise vorticity are rendered in red, negative in blue. The semi-ring vortices
together with the slender vortices they embrace form the ‘flower’ structure. A two-
dimensional slice is shown cutting through the middle of the semi-ring vortices. (b) The
instantaneous field of the spanwise vorticity on the slice denoted in (a).

including the necklaces and the encircled small vortices, actually resemble a bundle
of flowers. Therefore, we refer to this as a flower structure. For a global view of the
flower structures, refer to figure 5. At this stage, the necklaces basically do not interact
with other vortices. The relatively independent evolution and the intense vorticity make
them attain long lifespans.
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y

x

z

FIGURE 12. Vortex structures in the fully developed turbulence region in the streamwise
domain [493, 580]. The vortices are shown using the iso-surfaces of swirl strength with a
value of 0.006. The colour changes across the mixing layer from blue to red as y increases.

3.5. Vortex structures in the self-similar turbulence

The mixing layer starts to settle down to the fully developed turbulence after the
breakup of flower structures. The computed Reynolds stresses data indicate that the
flow establishes its self-similar state only when the streamwise distance is beyond
400. Vortex structures in the self-similar region are shown in figure 12. Swirl strength
with a value of 0.006 is adopted to fully visualize the small vortices in this region.
The colour is rendered from blue to red across the mixing layer for a clear picture
of the vertical positions of these vortices. We can see clearly that the middle zone
of the mixing layer is still dominated by slender quasi-streamwise vortices. They are
much weaker than those appearing in the transition region because most of them will
disappear if the swirl strength is tuned up to 0.025, which is the value used for the
visualizations in all other regions. Some smaller vortices with random directions can
also be identified in the middle zone. The red vortices in the upper layer and the
blue ones in the lower layer are mainly the residuals of the flower structures. The
vortices in the lower layer seem more abundant and disorganized, which is due to
the more compact distribution and the earlier breakup of the vortex structures in the
lower layer (see the discussions in § 3.2). Generally, in the self-similar region, all
the structures are highly three-dimensional; no organized large-scale two-dimensional
structures are observed. This is consistent with previous experimental reports (e.g.
Clemens & Mungal 1992; Rossmann et al. 2002).
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FIGURE 13. Profiles of the mean streamwise velocity across the mixing layer, where uF
denotes (ũ− U2)/1U (note 1U = (U1 − U2)); (a–d) show the profiles at different increasing
streamwise positions from the inlet to the fully developed self-similar turbulence region. The
apparent distortions of the profiles in (a,b) are found to have close connections with the vortex
structures in the flow.

4. The evolution of the mean properties
4.1. The distortion of the mean streamwise velocity profile across the shear layer

Recently, Watanabe & Mungal (2005) have shown experimentally that the streamwise
velocity profile across the shear layer had triple inflection points in a forced
compressible mixing layer of Mc = 0.62 (see figure 18a in their paper). They also
reported that the triple inflection points appeared to enhance shear-layer instability,
leading to a mixing enhancement. However, the reason for the appearance of inflection
points was not discussed in any detail. In our simulation, we also find that the
transverse profile of the mean streamwise velocity changes quickly from the typical
profile with one inflection point to a shape with triple inflection points. The triple-
inflection profile evolves, then is distorted and becomes a quintuple-inflection profile
not very far from the inlet (see figure 13a). We also refer to the quintuple-inflection
profile as a double-S-shaped profile since the new inflection point in the middle of
either side makes the local curve look like an ‘S’. To the best of our knowledge, S-
shaped profiles were first reported by Nygaard & Glezer (1991) and followed by Foss
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FIGURE 14. (a) The evolution of the vorticity thickness of the mixing layer, defined by
δω = 1U/|dũ/dy|max. (b) The evolution of the momentum thickness of the mixing layer,
defined by δθ = (1/ρ11U2)

∫ Ly/2
−Ly/2

ρ̄(U1 − ũ)(ũ− U2) dy.

& Zaman (1999), both based on their experimental studies of incompressible mixing
layers. Moreover, Nygaard & Glezer (1991) noted that the distortion was accompanied
by the onset of streamwise vortices.

It would be easier to understand the mechanism of the shape change of the profile
with the help of visualization. At the very beginning of the development of the mixing
layer, the profile actually keeps its initial form. This is because no vortices have rolled
up and the influence of the regular periodic disturbances on the profile is almost totally
cancelled after being averaged in both the temporal and spanwise directions. Then,
3-vortices roll up and start to dominate the flow. The oblique legs of 3-vortices
develop very quickly. They form completely and reach their maximum radius at a
short distance from about x = 10 to x = 40 (see figures 6a,b and 7a). As the vorticity
in the original thin layer is collected into the vortices with cylindrical shape, the
roll-up of 3-vortices yields a rapid increase of the thickness of the mixing layer. From
figure 14(a,b), the increase can be seen clearly in both the vorticity thickness and the
momentum thickness of the mixing layer in the early spatial span. Note that the rapid
increase of the vorticity thickness of the mixing layer actually indicates the decrease
of the main shear rate, which means that the velocity gradient becomes smaller. From
figure 13(a) it can be seen that the velocity gradient of the middle part of the profile
of x = 31.1 does become smaller than that of the profile of x = 15.5. It is also worth
noting that these two profiles almost collapse onto each other at both ends.

Geometrically speaking, if one smooth curve is close to a one-inflection curve at
the two ends but with a less steep middle part, it will produce at least one additional
inflection point on each side of the curve to maintain its smoothness. Here, the reader
may be also wondering why the ends of the two profiles almost coincide with each
other during the vortex roll-up. This issue would be clearer if one considered that the
influences of the flow structures are confined in the downstream Mach cone in the
supersonic flow and cannot reach the transversal sides instantly. Now, we have fully
understood why the profile of x = 31.1 has become slightly triple inflectional (see
figure 13a). Actually, the triple-inflection profiles found in Watanabe & Mungal (2005)
had basically the same shape as the profile of x = 31.1 in this case. The mechanism
of the formation of this kind of shape is also essentially similar since they claimed
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that there was a pair of counter-rotating streamwise vortices existing even in the later
stages of the flow. However, the triple-inflection profile in the current simulation does
not survive for as long a time as that in the experiment of Watanabe & Mungal (2005),
which is because in our case the flow structures are still evolving vigorously.

After the roll-up process, legs of 3-vortices start to flatten under the action of
the main shear. The flattened legs, in turn, help make the main shear layer much
thinner and stronger by intensifying the vorticity during the flattening process. As
mentioned in § 3.2, the legs will experience core dynamic instability. The instability
makes the flatten legs and the main shear layer even more intense by accumulating
the vorticity in the peripheries of the legs. As a result, the main shear becomes
extraordinarily strong in this stage of the development. The strengthening of the main
shear can be reflected in the plot of the vorticity thickness versus the streamwise
position (figure 14a), in which a sudden decrease of the vorticity thickness in the
spatial interval [40, 80] can be seen clearly. The decrease indeed corresponds to the
increase of the main shear because the vorticity thickness is inversely proportional to
the maximum shear rate of the mixing layer (δω = 1U/|dũ/dy|max). We also notice
that the momentum thickness does not reveal this dramatic main shear strengthening
trend. This is no surprise because the momentum thickness is based on an integration
formula and not very sensitive to the rapid change of flow structures.

From figure 13(a), we can see that the slope of the middle part of the profile at the
location x = 62.4 steepens much more in comparison with the single-inflection profile
at x = 15.5. We can also see that both ends of the middle steep part of the profile at
x = 62.4 have become S-shaped. Each ‘S’ has one inflection point in its middle, plus
the pre-existent one in the centre and the other two near each end of the entire curve,
making the profile at x = 62.4 quintuple inflectional. Observing figure 13(a) closely,
we can see that the profile at x = 46.7 has already become quintuple inflectional,
though the S-shape is not as profound as that in the profile at x = 62.4. This is
because the vortical legs just start to flatten at the location of x = 46.7. From the
profile at x = 62.4, we can see clearly that the ‘S’ on both sides of the profile gives
negative velocity gradient. It would be natural for us to relate this phenomenon to
hairpin vortices since both the heads and necks of hairpin vortices pump the flow
against the main flow.

To make this clear we present some quantitative data on the transversal positions of
hairpin vortices. Going back to figure 8(b), we can see that the vortex centres of the
hairpin heads on the upper and lower sides are located at around y = 4 and y = −5
respectively (the streamwise position of the considered heads is roughly between
x = 55 and x = 62). The head vortices induce the surrounding fluid to rotate around
them and thus change the flow directions in the local reference frame. This effect
is reflected as an inflection point on each side of the mean velocity profile. From
careful observation of the profile of x = 62.4 in figure 13(a), we can see that the
highest inflection point, between the upper S and the upper end of the profile, is
located at around y/δθ = 2.3. The inflection point near the lower end is located at
around y/δθ = −3. Since δθ∼1.54 at this streamwise position (see figure 14b), the
actual transversal positions of the two inflection points can be easily obtained as
y= 3.5 and y=−4.6 respectively. These two points are comparable with the positions
of the corresponding head vortices, indicating that the head vortices do affect the
mean profile. The energetic necks of the hairpin vortices on both sides pump the flow
against the main flow and also outside of the mixing layer. The direct consequence of
this action is to decrease or even invert the velocity gradient across that transversal
span. The two S-shapes in the profile are produced in this way. As the flow proceeds,
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the positions of the head vortices continue to rise away from the middle of the mixing
layer. This will cause the inflection points near the two ends of the profile to attain
even higher positions, which can be clearly seen from the profile at x= 78.0.

The S-shaped velocity profile starts to abate quickly after x= 78.0 (see figure 13a,b).
This is caused by the behaviour of the hairpin vortices, which become unstable and
evolve into flower structures in the downstream flow region. The flower structures are
composed of small slender vortices and do not have the capacity to induce strong
pump flow that the former hairpin vortices did. From figure 13(b) we can see that the
S-shape has almost disappeared at the streamwise position x = 141, where the flower
structures start to decay rapidly (see the global view in figure 5a). From that position
on, the velocity profile starts recovering its single-inflection form. We notice that there
are still some slight irregular undulations on each side of the profiles from x = 172
to x = 234 (see figure 13c). It is believed these are caused by the nearly chaotic
movements of small vortices in the later transition stages. The velocity profile recovers
the single-inflection shape far downstream where the flow has finally evolved into its
self-similar turbulent state (see figure 13d).

4.2. The growth rate in the transition region
Watanabe & Mungal (2005) showed experimentally that their mixing enhancement
technique increased shear-layer growth rate by ∼50 % at Mc = 0.62, and the enhanced
rate stayed almost constant in the streamwise direction. Their results might not be
so conclusive if we consider that all previous studies have shown that it is extremely
hard to increase the growth rate in the late self-similar stage of mixing layer flow.
Our simulation results support this generally recognized view. From figure 14(a,b),
we can see that the growth rates of both vorticity thickness and momentum thickness
in the region of x > 300 have lower constant values than in x < 300. This indicates
that the higher growth rates are only achieved in the stages of linear instability and
nonlinear transition. Papamoschou & Roshko (1988) presented a criterion to estimate
the distance needed for mixing layers to reach their fully developed states, which is
xeff /θ1 > 500, where xeff is an effective length with the definition xeff = x(1−U2/U1), in
which U2 and U1 are the velocities on the low-speed and high-speed sides respectively,
and θ1 is the momentum thickness of the boundary layer in the high-speed side. In
our case, the total length of the computational box is ∼625 (non-dimensionalized
by initial vorticity thickness), and the initial momentum thickness is around 0.2.
Assuming the momentum thickness on the high-speed boundary layer side is around
half of the momentum thickness of the initial mixing layer, we obtain xeff /θ1 ≈ 3125,
which apparently satisfies the criterion. From the curves of both the momentum and
vorticity thickness and also the evolution of the flow structures we know that the fully
developed state of the flow roughly starts at x = 300, which gives xeff /θ1 ≈ 1500. The
settling down of the profiles of Reynolds stresses needs an even longer distance, which
is around x = 400, making xeff /θ1 ≈ 2000. This suggests that the distance needed for a
forced mixing layer to reach the fully developed state might be much longer compared
with unforced one (which is xeff /θ1 > 500 as aforementioned).

In the experiments performed by Watanabe & Mungal (2005), we can see that
the length of the test tunnel is 220 mm; the momentum thickness of the high-speed
boundary layer is 0.12 mm; the velocity ratio is 0.318. These data yield xeff /θ1 ≈ 1250.
We should also notice that the thicknesses of the triangular devices mounted on the
splitter are at least twice the momentum thickness of the high-speed boundary layer,
which would thicken the initial momentum thickness and give an even smaller ratio of
xeff /θ1, probably less than 600. This means that the tunnel length in the experiments
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of Watanabe & Mungal (2005) probably was not long enough for the flow to enter
its self-similar state. Thus, all the data they obtained might actually indicate that the
forced compressible mixing layer could attain a larger growth rate in the nonlinear
transition process, which is consistent with our simulation results.

Our simulation also confirmed the commonly recognized view that the mixing layer
will finally reach the fully developed state with a constant growth rate and it is hard
to enhance this growth rate by adding the disturbance upstream (Townsend 1976, p.
196). However, this does not mean that a disturbance added upstream has virtually no
impact on the evolution of the flow. The high growth rate induced by the disturbance
in the transition region can increase the thickness of the mixing layer significantly,
though the transition process cannot be sustained for a very long period of time. From
the momentum thickness curve shown in figure 14(b), we can see that the average
growth rate from x = 0 to x = 100 is roughly four times that in the self-similar
turbulence region. The tremendous growth rate in the early stages is evidently caused
by the vigorous evolution of large structures, including the roll-up of the 3-vortex
and the formation of the hairpin vortex. The high growth rate makes it possible for
the mixing layer to attain a large thickness in a shorter distance. This has important
practical meaning in the application of supersonic combustion ramjets.

It is noted that the higher growth rate in the early stages has been reported by
Liou, Lien & Hwang (1995) through two-dimensional simulations of turbulent free
shear layers. They stated that the growth rate of supersonic/supersonic free shear layers
increased markedly when the forced layers move up and down with time instead of
forming vortex roll-up and pairing. They did not see the recovery of the growth rate
in their simulations. The reason might be either that the computational domain was not
adequately long, or that the two-dimensional simulations inherently have no capacity
to resolve the fully developed turbulence in a physically sound way.

5. The evolution of the Reynolds stresses
The Reynolds stresses in the mixing layer are found to be closely associated with

the flow structures. Figure 15 shows the distribution of streamwise Reynolds stress
ρ̄ũ′′u′′/ρ11U2 at different streamwise positions. (Note that , for convenience, the
positions are indicated using fractions of the total length in the streamwise direction.
The total length is denoted by L1. For the exact values of those positions, refer to
figure 13.) It can be seen from figure 15(a) that the magnitude of ρ̄ũ′′u′′/ρ11U2

is relatively high at the positions not far from the inlet where the large structures
dominate the flow. The peak value at x = 0.1L1 is about six times that in the self-
similar domain (see figure 15d). It is interesting to point out that a double-peak
profile appears at around x = 0.075L1 and persists at x = 0.1L1. Similar phenomena
have been observed by Wygnanski, Oster & Fiedler (1979) and Oster & Wygnanski
(1982) in experiments on incompressible shear flow. They conjectured that this kind
of phenomenon was caused by a large vortex with violent peripheries but an inactive
centre. Here, based on the clear visualizations of the flow structures presented in the
above sections, we can relate the double-peak profile directly to the rise of the head of
the hairpin vortex on both sides, which instantly induces strong pump flow against the
main flow (see figures 7a and 8a). We can also see that the peak of ρ̄ũ′′u′′/ρ11U2 on
the lower side is obviously higher than that on the upper side. This is due to the fact
that the hairpin head on the lower side rises up earlier and becomes relatively stronger
in that streamwise area. Careful observation shows that, at x = 0.075L1 and x = 0.1L1,
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FIGURE 15. The profiles of the streamwise Reynolds stress across the mixing layer, where
R11F denotes ρ̄ũ′′u′′/ρ11U2; (a–d) show the profiles at different streamwise positions from
the inlet to the fully developed self-similar turbulence region. The different peak properties
of the profiles in (a,b,c) are found to have close connections with the vortex structures in the
flow.

the peaks are basically in the same transversal areas as the S-shaped curves in the
mean streamwise velocity profiles. This confirms the connection between the double
peaks and the behaviour of the hairpin vortex.

As the flow goes downstream, the double peaks evolve into triple peaks at
x = 0.125L1 (see figure 15a). To understand this, we recall the evolution of the
structures in the flow. The reason is twofold. First, the two peaks attenuate after
the instability of the hairpin vortex. Second, the newly generated quasi-streamwise
vortices in the middle zone of the mixing layer still have a strong ability to induce
fluid motion around them. The combination of these two factors makes the peak in
the middle of the profile appear at around x = 0.125L1. After x = 0.125L1, many
small vortices are produced in the middle of the mixing layer. The pronounced peaks
in the Reynolds stress profile are smeared out since those small vortices undergo
viscous dissipation as the flow continues. One can see multi-peaks with smaller
amplitude appearing at further downstream positions in figure 15(b). From x = 0.15L1

to x = 0.3L1 in figure 15(b,c), it can be seen that the magnitude on the lower side
decreases significantly while that on the upper side still keeps a high value. This is
because the flower structure on the upper side can survive a relatively long distance
(for clarity, refer to figure 9 at that streamwise span). The profile with a single peak
is established as the flow reaches its self-similar state at the very late stages (see
figure 15d).
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FIGURE 16. Profiles of the Reynolds shear stress across the mixing layer, where R12F
denotes ρ̄ũ′′v′′/ρ11U2; (a–d) show the profiles at different streamwise positions from the
inlet to the fully developed self-similar turbulence region.

The spatial evolution of ρ̄ũ′′v′′/ρ11U2, ρ̄ṽ′′v′′/ρ11U2 and ρ̄w̃′′w′′/ρ11U2 is
displayed in figures 16, 17 and 18 respectively; ρ̄ũ′′w′′/ρ11U2 and ρ̄ṽ′′w′′/ρ11U2 are
not displayed here because they are relatively too small and therefore do not bear any
significance. From those figures, we can see that the development of ρ̄ũ′′v′′/ρ11U2

and ρ̄ṽ′′v′′/ρ11U2 is similar to that of ρ̄ũ′′u′′/ρ11U2. This is easy to understand if the
Reynolds stress transport mechanisms are considered. Though the details of this topic
are beyond the scope of the current paper, we point out that ρ̄ṽ′′v′′/ρ11U2 dominates
the production terms of ρ̄ũ′′v′′/ρ11U2 while ρ̄ũ′′v′′/ρ11U2 is the only Reynolds stress
that appears in the production terms of ρ̄ũ′′u′′/ρ11U2. The spanwise Reynolds stress
term ρ̄w̃′′w′′/ρ11U2 does not have as close relations with other Reynolds stresses.
This is why the double or triple peaks in ρ̄w̃′′w′′/ρ11U2 are not as pronounced
as those in ρ̄ũ′′u′′/ρ11U2, ρ̄ũ′′v′′/ρ11U2 and ρ̄ṽ′′v′′/ρ11U2 (compare figure 18a to
figures 15a, 16a and 17a).

Moreover, we can see that the magnitudes of the three normal Reynolds
stresses in the self-similar region have the relation: ρ̄ũ′′u′′/ρ11U2 > ρ̄w̃′′w′′/ρ11U2 >

ρ̄ṽ′′v′′/ρ11U2, representing that the turbulence in the mixing layer possesses the
characteristics of strong three-dimensionality. This is consistent with the findings of
Gruber et al. (1993) (experimentally) and Pantano & Sarkar (2002) (numerically).

Comparisons between our results and some experimental results are made in
figure 19. We can see that only ρ̄ṽ′′v′′/ρ11U2 of the present simulation agrees very
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FIGURE 17. Profiles of the transversal Reynolds stress across the mixing layer, where R22F
denotes ρ̄ṽ′′v′′/ρ11U2; (a–d) show the profiles at different streamwise positions from the
inlet to the fully developed self-similar turbulence region.

well with the experimental results for Mc = 0.69 from Goebel & Dutton (1991).
Other Reynolds stresses are apparently smaller than those from Goebel & Dutton
(1991) and Gruber et al. (1993). However, we can also see that ρ̄ũ′′u′′/ρ11U2,
ρ̄ṽ′′v′′/ρ11U2 and ρ̄ũ′′v′′/ρ11U2 are close to, though still slightly lower than, the
experimental results obtained by Elliott & Samimy (1990) at Mc = 0.86. The low
value of the Reynolds number adopted in the present simulation could be a possible
reason for the relatively small Reynolds stresses. Besides, as stated in the Introduction
section, there are still some controversies regarding ρ̄ũ′′u′′/ρ11U2 and ρ̄w̃′′w′′/ρ11U2

in previous investigations. We conjecture that these two Reynolds stresses can
be influenced easily by the particular evolution procedure before the flow enters
the self-similar state. This speculation could explain why controversies regarding
ρ̄ũ′′u′′/ρ11U2 and ρ̄w̃′′w′′/ρ11U2 occur both experimentally and numerically. To
explore the intrinsic reason behind this phenomenon, carefully designed numerical
or experimental investigations are needed. Though there are some discrepancies in the
absolute magnitudes of the Reynolds stresses, very good agreement on the Reynolds
stress anisotropy is found between the present simulation and previous investigations.

The peak Reynolds stresses ratios, (ρ̄ṽ′′v′′/ρ̄ũ′′u′′)
1/2

and (ρ̄ũ′′v′′/ρ̄ũ′′u′′)
1/2

, are found
to be 0.652, 0.566 respectively. The corresponding data are 0.648, 0.543 in Elliott &
Samimy (1990), and 0.673, 0.568 in the numerical work of Pantano & Sarkar (2002).
The consistent Reynolds stress anisotropy indicates that the turbulence structure
captured in this paper is similar to those in previous investigations. An extensive

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

40
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.400


DNS of a spatially developing compressible mixing layer 461

R33F

0

0.08

0.06

0.04

0.02

–4 –2 0 2 4–6 6

R33F

0

0.015

0.010

0.005

0

0.010

0.008

0.006

0.004

0.002

–4 –2 0 2 4–6 6–4 –2 0 2 4

(c) (d )

(a) (b)

–4 –2 0 2 4–6 6

0

0.04

0.03

0.02

0.01

–6 6

FIGURE 18. Profiles of the spanwise Reynolds stress across the mixing layer, where R33F
denotes ρ̄w̃′′w′′/ρ11U2; (a–d) show the profiles at different streamwise positions from the
inlet to the fully developed self-similar turbulence region.

comparison of Reynolds stress anisotropy has been conducted by Barre et al. (1997),
showing that it is almost constant up to convective Mach number close to unity. The
peak Reynolds stress ratios computed from Goebel & Dutton (1991) are different from
those consistent data (see figure 6 in Barre et al. 1997). This is because their reported
ρ̄ũ′′u′′/ρ11U2 does not decrease much as Mc increases.

6. Shocklets in the mixing layer
To our best knowledge, shocklets were first captured in the simulations of three-

dimensional decaying compressible turbulence performed by Kida & Orszag (1990).
The appearance of shocklets in simulations of three-dimensional compressible mixing
layers was first reported by Vreman et al. (1995). However, until now, there has been
no universally accepted criterion for the identification of shocklets. In most numerical
applications (e.g. Kourta & Sauvage 2002; Fu & Li 2006), shocklets are visualized
in two-dimensional slices, which can only provide limited information on the flow
field near the shocklets. In this paper, we will adopt the method employed by Vreman
et al. (1995) and Freund et al. (2000), which visualizes shocklets in three-dimensional
space using the iso-surface of negative dilatation. Rankine–Hugoniot jump conditions
are checked to make sure the iso-surfaces are actual shocklets. The most important
advantage of this method is that it shows straightforwardly three-dimensional shapes of
shocklets. In the framework of this three-dimensional visualization, extra information
such as vortical structures can easily be furnished to help understand the generation
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FIGURE 19. Comparisons of the Reynolds stresses in the self-similar region between the
present results and some experimental results, where Gruber stands for the results for
Mc = 0.8 by Gruber et al. (1993), Elliott for Mc = 0.86 by Elliott & Samimy (1990), and
Goebel1, Goebel2 and Goebel3 those by Goebel & Dutton (1991) for Mc = 0.46, 0.69,
0.99 respectively. (a) Streamwise, (b) transverse, (c) spanwise, (d) shear. Note, Gruber et al.
(1993) is the only source we can find for R33F (ρ̄w̃′′w′′/ρ11U2).

mechanisms of these shocklets. In the following, shocklets will be identified by the iso-
surface of ∇ ·u=−0.1, rendered in red. Generally, shocklets have a finite thickness in
viscous flow and in our case the shock thickness is approximately twice the grid size.

Figure 20(a) shows the shocklets near a 3-vortex. Two kinds of shocklets can be
identified from this figure. The first kind appears in strips, attaching to the legs of
the 3-vortex. To illustrate their generation mechanism clearly, figure 20(b) shows the
instantaneous pressure information on a two-dimensional slice cutting through the legs
(see figure 20a). We can see that the fluid around every leg is rotating due to the
induction of the legs. The shocklets are generated instantly when the fluid encounters
the relatively high-pressure zone around the leg. Another kind of shocklet is located
on the head of the 3-vortex. It has been captured by Rossmann et al. (2002) in
their schlieren experiments. They stated that their formation mechanism shows good
agreement with the scenario of flow around a bluff body with the vortex protruding
to the free stream acting as the bluff body (see figure 21a, which is figure 15
in Rossmann et al. 2002). Here, in our case, the rotating head of the 3-vortex
improves the formation process by inducing the fluid around the head to attain a
higher velocity (see figure 20d for a better understanding). So, the mechanism here
is twofold, including bluff-body effects and the vortex-head induction. For clarity, a
simple diagram is also presented for the mechanism illustrated in this paper (see
figure 21b). The pronounced difference between the two diagrams in figure 21 is
that the shocklets are located at the trailing edge of the large structures in our study
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FIGURE 20. (a) The shocklet structures in the mixing layer when 3-vortices dominate the
flow. The shocklets are rendered in red. The two-dimensional slice cuts through the legs
of a 3-vortex. (b) The pressure field on the two-dimensional slice denoted in (a) with the
cross-sections of the shocklets shown in white. (c) The two-dimensional slice cuts through the
head of the 3-vortex. (d) The pressure field on the slice denoted in (c) with the cross-sections
of the shocklets shown in black. On (b) and (d), streamlines are shown in the local frame
moving with vortex structures.

Curved
bow
shock

Mixing layer Mixing layer

Free stream Free stream(a) (b)

FIGURE 21. (a) Schematic diagram of the occurrence of shocklets at Mc = 1.7 by Rossmann
et al. (2002). (b) Schematic diagram of the occurrence of shocklets at Mc = 0.7 in this paper.
The prominent difference is that the vortex induction mechanism is considered in (b).
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Counter-rotating-vortex shocklet
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FIGURE 22. (a) The shocklet structures in the mixing layer when hairpin vortices dominate
the flow. The shocklets are rendered in red. The two-dimensional slice cuts through the head
of a hairpin vortex. (b) The pressure field on the slice denoted in (a) with the cross-sections
of the shocklets shown in black. (c) The two-dimensional slice cuts through the necks of the
hairpin vortex. (d) The pressure field on the slice denoted in (c) with the cross-sections of the
shocklets shown in black. The streamlines are shown in the local frame moving with vortex
structures.

while they are attached at the leading edge in the investigation by Rossmann et al.
(2002). This difference is reasonable if we consider that the convective Mach number
(Mc = 1.7) in their work is much larger and that larger Mc would give stronger
shocklets and move their positions forward. Through the three-dimensional view of
figure 20(a), we can have a clear look at the shape of this kind of shocklet. They
much resemble the peak of a cap with a curved body in the spanwise direction. This
is because the spanwise middle section of the vortex head possesses stronger intensity
and the stronger intensity can make the fluid around it reach a high relative supersonic
velocity sooner. For convenience, the first and second kinds of shocklets will be
referred to as single-vortex shocklets and vortical-bluff-body shocklets based on their
formation mechanism.

After a hairpin vortex forms, another kind of shocklet appears. Figure 22(a) shows
a shocklet located between the necks. In order to elucidate the formation mechanism,
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the pressure fields on two slices are extracted and displayed in figures 22(b) and
22(d). From these figures, we can learn that both the head and the necks contribute
in the formation process. Most of the contribution comes from the counter-rotating
necks since the shocklet fills the entire space between them. This shocklet attains
quite a flat body with the middle part bending slightly in the direction of the pump
flow between the necks (see figure 22d). This kind of shocklet is referred to as
a counter-rotating-vortex shocklet according to its generation mechanism. Observing
closely, we can also see a small piece of the second kind of shocklet on the hairpin
head on figure 22(a). Here, the hairpin head is located closer to the free stream. The
free stream furnishes a smaller pressure difference across the hairpin head (see the
pressure fields around hairpin heads in figures 22b and 20d). This is believed to be the
reason for the shocklet shrinkage. It should also be noted that we do not see first kind
of shocklet here. This is understandable, since the hairpin legs are undergoing breakup
at this streamwise position. The newly generated small vortices have no capacity of
inducing the surrounding fluid to reach a relative supersonic speed.

All the shocklets identified above move along with the vortices that give birth to
them as long as those vortices are strong enough to sustain them. No shocklets are
found after the head of the hairpin vortex loses its stability and evolves into the
flower structure. Generally speaking, the vortical-bluff-body shocklet and single-vortex
shocklet are relatively weaker than the counter-rotating-vortex shocklet. In this study,
the pressure ratio of the first two kinds of shocklets is around 1.20 while that of
the third kind reaches around 1.35. This is not surprising since the collaboration of
counter-rotating vortices produces stronger inducing effects. Besides, we notice that
Rossmann et al. (2002) did not report any shocklets located inside the mixing zone
of the mixing layer other than the ones protruding into the free streams. Based on
the illustrations above, one can see that the bodies of the single-vortex and counter-
rotating-vortex shocklets do not all extend in the spanwise direction. This would smear
out the sharp boundaries of the shocklets since the schlieren method integrates through
the spanwise direction. Therefore, in order to observe the shocklets in the mixing zone,
more advanced devices are needed.

In previous three-dimensional simulations, shocklets were observed at Mc = 1.2
(Vreman et al. 1995; Kourta & Sauvage 2002; Fu & Li 2006). In particular, Freund
et al. (2000) reported that they did not observe shocklets until Mc = 1.54. However,
we captured shocklets at Mc = 0.7 in a three-dimensional simulation, which is the
lowest convective Mach number reported. There are several possible explanations
for this. First, it might be due to the lack of a universal criterion for identifying
shocklets. Different criteria would bring different observations. Second, the resolution
of simulations depends on the grid spacing and also on the capacity of numerical
schemes. In our simulation, the grid spacing probably is the smallest among those
reported simulations. Also, the numerical scheme adopted here has better resolution
than other commonly used compact schemes. The reader can refer to Zhou et al.
(2007) for the details of the comparison between those schemes. Third, a relatively
larger disturbance is introduced through the inlet in our study, which leads to stronger
vortical structures. Based on the mechanisms elaborated above, this factor might
contribute greatly to the shocklet formation at convective Mach number as low as
Mc = 0.7.

7. Concluding remarks
This paper presents a direct numerical simulation of the spatially developing

compressible plane mixing layer at Mc = 0.7. The mixing layer is forced by a pair of
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equal and opposite oblique instability waves and also by relatively weak disturbances
from an isentropic vortex model. Flow visualizations show that the flow in early
stages is dominated first by 3 structures and then by hairpin vortices. In the present
simulation, all the hairpin vortices evolve into newly identified structures, referred to
as flower structures, after the hairpin head instability. The new structures are composed
of many slender small vortices and look like flower bouquets, with semi-ring vortices
as tying ribbons. They are observable until the flow starts to settle down into its
self-similar state. In addition, the preponderance of slender quasi-streamwise vortices
is observed in the transversal middle of both the transitional region and the self-similar
turbulent zone. This phenomenon, though first clearly shown in numerical results of
this paper, has been reported earlier by Rossmann et al. (2002) in their experimental
investigation at Mc = 1.7.

Both the evolution of the mean streamwise velocity profile and of the Reynolds
stresses is found to be related closely to the behaviours of the large vortex structures.
The streamwise velocity profile is found to have triple inflection points not far from
the inlet. It evolves quickly into a quintuple-inflection profile after that. It is illustrated
that all the distortion of the profile comes from the evolution of the large structures.
This was not previously well-explained owing to the restrictions of the experimental
devices. In addition, the profiles of all Reynolds stresses are also affected by the
vigorous development of vortex structures. Double-peak and triple-peak profiles are
observed and explained in the transition region.

Regarding mixing enhancement, it has been becoming a common view that it seems
extremely hard, if not impossible, to increase the growth rate in the self-similar
turbulence region since in that region ‘conditions at the initiation of the flow are
highly irrelevant’ (Townsend 1976, p. 196). From the simulation, we clearly see that
the growth rate in the transition region is much higher (roughly four times) than
that in the final self-similar region. This higher growth rate is contributed directly by
the energetic evolution of large-scale structures, and intrinsically by the disturbances
introduced at the inlet. Recent experiments performed by Watanabe & Mungal (2005)
also showed that the growth rate can be enhanced by 50 % by using proper disturbing
devices upstream. This demonstrates that the mixing layer thickness can be increased,
probably very dramatically, before the flow achieves the final fully developed state.
This finding has important practical meaning. Researchers can focus on looking for
strategies to increase the thickness of the flow in the transition region and focus less
on the slow-growing thickened layer in the self-similar region, where the fluid in the
thickened layer can be well mixed at small scales.

Shocklets are observed in the simulation. This is the first three-dimensional
simulation that captures the shocklets at this low convective Mach number. The
large vortex structures are found to play a significant role in the occurrence of
the shocklets. The shocklets are categorized into single-vortex shocklets, vortical-
bluff-body shocklets and counter-rotating-vortex shocklets based on their formation
mechanisms. No shocklets are found in the fully developed turbulence where the flow
is populated by small slender vortices.
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