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Activity-induced propulsion of a vesicle
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Modern biomedical applications such as targeted drug delivery require a delivery system
capable of enhanced transport beyond that of passive Brownian diffusion. In this work,
an osmotic mechanism for the propulsion of a vesicle immersed in a viscous fluid is
proposed. By maintaining a steady-state solute gradient inside the vesicle, a seepage flow
of the solvent (e.g. water) across the semipermeable membrane is generated, which in turn
propels the vesicle. We develop a theoretical model for this vesicle–solute system in which
the seepage flow is described by a Darcy flow. Using the reciprocal theorem for Stokes
flow, it is shown that the seepage velocity at the exterior surface of the vesicle generates
a thrust force that is balanced by the hydrodynamic drag such that there is no net force on
the vesicle. We characterize the motility of the vesicle in relation to the concentration
distribution of the solute confined inside the vesicle. Any osmotic solute is able to
propel the vesicle so long as a concentration gradient is present. In the present work, we
propose active Brownian particles (ABPs) as a solute. To maintain a symmetry-breaking
concentration gradient, we consider ABPs with spatially varying swim speed, and ABPs
with constant properties but under the influence of an orienting field. In particular, it
is shown that at high activity, the vesicle velocity is U ∼ [K⊥/(ηe�m)]

∫
Π swim

0 n dΩ ,
where Π swim

0 is the swim pressure just outside the thin accumulation boundary layer on
the vesicle interior surface, n is the unit normal vector of the vesicle boundary, K⊥ is
the membrane permeability, ηe is the viscosity of the solvent, and �m is the membrane
thickness.
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1. Introduction

Targeted drug delivery is an important goal of modern nanomedicine. Recent advances
in the design, manufacture and control of nanocarriers have enabled the delivery of
such cargoes into single cells for the purpose of imaging, diagnostics and therapeutics
(West & Halas 2003; Gao et al. 2005; Rao, Dragulescu-Andrasi & Yao 2007; Torchilin
2012). Commonly used pharmaceutical nanocarriers include liposomes, micelles,
nanoemulsions, polymeric nanoparticles and many others (Torchilin 2012). In particular,
liposomes have become an important class of carriers for the encapsulation and transport
of medical cargoes because of several advantages, including their biocompatibility with
human cells, the improved solubility of drugs, and versatility for chemical targeting (Pattni,
Chupin & Torchilin 2015), among others.

A liposome is a vesicle that has an aqueous solution core encircled by a hydrophobic
membrane (lipid bilayer); hydrophilic solutes dissolved in the core cannot pass readily
through the membrane, while lipophilic chemicals tend to associate with the bilayer. As a
result, a liposome can be loaded with hydrophilic, lipophilic and/or amphiphilic cargoes
in the context of drug delivery. Recently, the Moderna vaccine developed to prevent
coronavirus disease 2019 (COVID-19) has utilized a lipid-based nanovesicle to encapsulate
the mRNA vaccine that encodes the SARS-CoV-2 spike glycoprotein (Jackson et al. 2020).

The liposome-encapsulated medical cargo is transported passively, via either diffusion
or advection due to local fluid flow, which limits its ability to overcome biological
barriers. To mitigate such limitations of passive drug delivery, active drug delivery
platforms using motile microrobots (or microswimmers), either synthetic or biohybrid,
have been proposed (Medina-Sánchez, Xu & Schmidt 2018; Erkoc et al. 2019; Singh et al.
2019; Bunea & Taboryski 2020). By attaching nanoparticle cargoes to the surface of a
motile microswimmer, the delivery system can navigate actively, access regions that are
unreachable to passive drug delivery, and be directed to the desired site using chemotaxis
or an external magnetic field (Felfoul et al. 2016; Park et al. 2017). Due to self-propulsion
of the microswimmer, the effective dispersion of the attached cargo is greatly enhanced,
sometimes by a few orders of magnitude, compared to the long-time self-diffusivity of the
passively transported cargo (Singh et al. 2017).

Instead of attaching a cargo to the surface of a microswimmer, one can also encapsulate
both the cargo and the microswimmer inside the vesicle. Encapsulated microswimmers
have been studied in previous works. For example, biological microswimmers and
self-propelled Janus particles have been encapsulated successfully inside engineered
giant unilamellar vesicles (GUVs) (Trantidou et al. 2018; Takatori & Sahu 2020;
Vutukuri et al. 2020). The encapsulated microswimmer provides the vesicle with
enhanced super-diffusive motion mediated through hydrodynamic interactions between
the microswimmer and the vesicle provided that the fluid is allowed to pass through the
membrane of the vesicle (Marshall & Brady 2021).

In the present work, we consider a system that combines the benefits of the vesicle for
cargo encapsulation and the self-propulsion of microswimmers for enhanced transport.
We propose an alternative model system in which the vesicle is propelled by an osmotic
flow that is induced by an actively maintained concentration gradient of a solute inside the
vesicle. This kind of osmotic propulsion has been proposed as an alternative mechanism
for tumour cells to migrate under strong confinement, in which case other modes of
motility, such as contractility, are inhibited. Stroka et al. (2014) showed that through
physical and biochemical processes, the tumour cell establishes a spatial gradient of solute
(ions), which creates a net inflow of water at the cell leading edge and a net outflow at the
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Figure 1. (a) A rigid spherical vesicle with a semipermeable membrane immersed in an otherwise quiescent
viscous fluid. Active Brownian particles (ABPs) are confined inside the vesicle. (b) Schematic of the
semipermeable membrane with a permeability tensor K and thickness �m. The seepage velocity in the
membrane is us, which in general depends on the local position vector.

cell trailing edge. As a result, this water permeation process enables the cell to migrate
through narrow channels. We are interested specifically in studying the motility of the
vesicle as a result of a prescribed concentration gradient of a solute that is confined inside
the vesicle. Because the solute particles are not allowed to pass through the membrane, an
osmotic flow of water is generated, which in turn propels the vesicle immersed in water.

The main question that we wish to address in this work is: what is the motility of the
vesicle system in relation to the concentration gradient of the solute? More interestingly,
does the vesicle move in the same or opposite direction of the concentration gradient?

We show by explicit calculation that for a weakly permeable membrane, the translational
velocity of a rigid spherical vesicle becomes

U = 1
4π

K⊥
ηe�m

∫
S2

Πosmo
0 n dΩ, (1.1)

where Πosmo
0 = nwkBT is the osmotic pressure of the solute at the interior wall, nw is the

local number density of the solute in the absence of internal fluid flow, kBT is the thermal
energy, K⊥ is the membrane permeability, ηe is the viscosity of the solvent (water), and
�m is the thickness of the membrane. In (1.1), n is the unit outward normal vector (see
figure 1) and the integration is over the solid angle in three dimensions. In this limit,
the translational velocity of the vesicle is linearly proportional to the driving force – the
osmotic pressure. As expected, a number density at the interior wall that breaks front–back
symmetry is required in order to have a non-zero translational velocity of the vesicle.

Equation (1.1) applies generally for any osmotic solute in the weak permeability limit
so that the interior fluid flow perturbs the solute distribution only slightly. For example, a
linear solute gradient n0 = n0(0) + x · ∇n0 results in

U = 1
3

K⊥
ηe�m

(R − �m)kBT ∇n0, (1.2)

where ∇n0 is a constant vector, and R is the exterior radius of the vesicle. Therefore, for
the simple prescribed linear-density gradient, the vesicle translates in the same direction
as the gradient in number density.

942 A32-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

39
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.398


Z. Peng, T. Zhou and J.F. Brady

The above discussion reveals that the vesicle is able to exhibit net motion when an
interior solute concentration gradient is given. A separate, but important, question is: how
can such a solute gradient be maintained? For a biological cell, this is achieved by its
internal physical and biochemical processes (Stroka et al. 2014). For a synthetic vesicle
system for the purpose of enhanced transport, alternative methods need to be implemented
in order to generate such a concentration gradient.

In this work, leveraging recent advances in the understanding of the dynamics of active
matter, we propose to use active Brownian particles (ABPs) as the solute. In addition
to normal thermal Brownian motion with translational diffusivity DT , ABPs self-propel
with an intrinsic ‘swim’ speed Us in direction q. The orientation of the swimming
direction q changes on a reorientation time scale τR that results from either continuous
random Brownian rotations or the often-observed discrete tumbling events of bacteria. One
important intrinsic length scale due to activity is the run or persistence length � = UsτR.
Previous works have shown that a spatial variation in the swim speed leads to a spatial
variation in the concentration (or number density) of active particles (Schnitzer 1993;
Tailleur & Cates 2008; Row & Brady 2020). By tuning the swim speed distribution
of ABPs confined inside the vesicle, a spherically asymmetric density distribution can
emerge and lead to net motion of the vesicle.

For active particles with slow spatial variation in swim speed in one dimension,
Schnitzer (1993) and later Tailleur & Cates (2008) showed that the local number
density n is inversely proportional to the local swim speed Us, i.e. nUs = const. This
simple prediction has been validated experimentally using bacteria that swim with an
intensity-dependent speed when illuminated by a spatial light pattern (Arlt et al. 2019).
Row & Brady (2020) generalized this result and showed that the spatial variation in activity
(e.g. swim speed) can be utilized as a pump mechanism in which fluid flows from regions
of high concentration of particles to low. Employing this spatial variation, we show that
encapsulated ABPs with spatially varying activity can be used to propel the vesicle.

In (1.1) and (1.2), the vesicle velocity appears to be linearly proportional to kBT .
However, this does not imply that the driving force is necessarily thermal in origin (in
thermodynamic equilibrium no density gradient is present). In the case of ABPs as solute,
the active (non-equilibrium) dynamics provides such a density gradient. Analogous to the
Stokes–Einstein–Sutherland relation kBT = ζDT , where ζ is the Stokes drag coefficient,
an active energy scale ksTs = ζ D̃swim can be defined for active matter systems (Takatori,
Yan & Brady 2014), where D̃swim = Ũ2

s τR/6 is the swim diffusivity. We note that for ABPs
with spatially varying swim speed, a characteristic swim speed Ũs is used in the definition
of the swim diffusivity; the local active energy ksTs(x) can also be defined by using the
local swim speed Us(x) and/or local reorientation time τR(x). An important parameter
that quantifies the activity of ABPs is the ratio ksTs/(kBT) = D̃swim/DT . For many active
matter systems, this ratio is very large, often exceeding 103 (Takatori et al. 2016). In this
high-activity limit, the ABPs exhibit a thin accumulation boundary layer at the interior
surface of the vesicle. As we will show in § 3.2, the local density at the interior wall of
the vesicle can be related to the density just outside the boundary layer via the equation
nwkBT = n0ksTs(x) f = Π swim

0 (x) f , where Π swim
0 is the swim pressure just outside the

boundary layer, and f is a factor that depends on the ratio of the run length to the size of
the vesicle. (This factor is unity for the case of ABPs on one side of an infinite planar wall;
Yan & Brady 2015.) For highly active (ksTs � kBT) ABPs, (1.1) becomes

U = 1
4π

K⊥
ηe�m

∫
S2

n0ksTs(x) f n dΩ = 1
4π

K⊥
ηe�m

∫
S2

Π swim
0 nf dΩ, (1.3)
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Activity-induced propulsion of a vesicle

showing that the velocity of the vesicle is proportional to the swim pressure. More
precisely, it is the variation of the swim pressure (due to the variation in swim speed
or run length �(x)) that gives rise to net motion.

Instead of using ABPs with spatially varying swim speed or run length, one can also
consider using an external field that orients constant-property ABPs towards a certain
direction. External fields such as chemical gradients or magnetic fields can affect the
swimming behaviour of microorganisms to facilitate their movement towards a favourable
region. In the laboratory, an externally applied magnetic field has been used to guide
nanocarriers for the purpose of targeted drug delivery (Pattni et al. 2015; Felfoul et al.
2016). In the presence of an external orienting field, even for ABPs with constant
properties, the front–back symmetry is broken, and net motion of the vesicle is generated.
The balance of the strength of the orienting field and the random reorientation due to rotary
diffusion is characterized by the Langevin parameter χR = ΩcτR, where Ωc is the strength
of the angular velocity induced by the field (Takatori & Brady 2014). Noting that the force
exerted by the active particles on the wall is F w = kBT

∫
nwn dS (Yan & Brady 2015), we

rewrite (1.1) as U = K⊥F W/(4πR2ηe�m). In other words, we need to know the net force
that the active particles exert on the wall to determine the net vesicle motion. The force on
the wall scales as NwζUs, where Nw is the total number of particles at the wall, and each
particle pushes against the wall with at most its swim force ζUs. The balance of this force
due to the ABPs with the drag force of the porous vesicle moving through an external
viscous fluid gives the net motion. Of particular interest is the strong-field limit, where
the number of particles on the wall is of the same order as the total number of particles,
Nw/N = O(1), and the net speed of the vesicle is the largest, U ∼ K⊥NζUs/(R2ηe�m).

This last example, where we argued that the vesicle motion can be deduced from the
net swim force of the ABPs balancing the drag of the vesicle, also applies to the so-called
‘dry’ active matter (Marchetti et al. 2013). Dry active matter describes bacteria (or other
organisms) that crawl (or even walk) on a surface of a medium of resistivity ζ . Active
particles confined to a ‘container’ that is able to slide along the surface in response to
a lateral force will be able to push the container via their ‘swim’ force if there is an
asymmetric distribution of ABPs. The net swim force would scale as NwζUs, and the
container would translate with speed Uc ∼ NwζUs/ζc, where ζc is the resistivity for sliding
the container along the surface. For dry active matter there is no fluid, thus one does
not have the notion of a semipermeable membrane or a seepage velocity driven by an
osmotic pressure difference. Nevertheless, the mechanics are the same: like the seepage
velocity, the substrate surface must move across the container boundary as it slides along
the surface, and the ABPs achieve their propulsive ‘crawling’ force by pushing off the
substrate just like swimmers push off the fluid. Thus at least at high activity, the results
derived here apply equally well to dry active matter with an appropriate change in notation.

In the case of a spherical vesicle, its net motion is induced by an asymmetric number
density distribution on the vesicle interior surface. An alternative route for the generation
of net motion is to use a vesicle with an asymmetric shape. Because the accumulation of
ABPs at the interior surface depends on the local curvature of the boundary, a vesicle that
has a front–back asymmetry in its shape is able to exhibit net motion. Indeed, the exterior
version of the problem, where a passive object is immersed in a bath of active particles,
has been studied. It has been shown in experiments and simulations that for an object with
shape asymmetry, net motion can be achieved (Sokolov et al. 2010; Kaiser et al. 2014; Yan
& Brady 2018).

To obtain the results for the vesicle motility, in § 2 we describe the model and derive
a theoretical formulation that governs the dynamics of the vesicle, the interior solute
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suspension and the exterior fluid flow. A Darcy-like constitutive law that models the
response of the fluid seepage velocity in relation to the fluid stress differences across the
membrane is used. This formulation is at the continuum level, where the vesicle is large
compared to the size of the ABPs so that the interior (fluid and ABPs) is treated as a
suspension; the suspension stress includes the fluid stress and the osmotic pressure of the
ABPs. The exterior flow field satisfies the boundary condition that the fluid velocity at the
exterior surface of the vesicle consists of the rigid-body motion and a seepage velocity.
Because the vesicle is force- and torque-free, we can relate the rigid-body motion to the
seepage velocity distribution at the exterior surface using the reciprocal theorem. This
approach is similar to treatments of the swimming of microorganisms using the squirmer
model (Stone & Samuel 1996), where the boundary velocity at the surface of the swimmer
is decomposed into rigid-body motion and the slip velocity distribution.

In situations relevant for the vesicle model considered here, the interior fluid flow is
often weak compared to the active self-propulsion. In § 3, by neglecting the interior fluid
flow, we show that the total (fluid and osmotic) pressure inside the vesicle is constant, and
the leading-order translational velocity of the vesicle is driven by the difference in the fluid
pressure across the membrane. As a result, one needs only to compute the distribution of
ABPs in the absence of flow, and the resulting number density distribution at the interior
wall is used to obtain the translational velocity. The effect of an external orienting field on
the dynamics of confined ABPs and the motion of the vesicle is considered in § 3.4. The
behaviour of ABPs with slow spatial variation in their swim speed where fluid motion is
considered explicitly is discussed in § 4. Finally, we conclude in § 5 with a discussion of
the limitations and extensions of this vesicle–ABPs propulsion system.

2. Problem formulation

Consider a rigid vesicle or cell consisting of a thin membrane and a solution core immersed
in an otherwise quiescent viscous fluid (see figure 1). The interior of the vesicle is a
suspension of potentially active elements, which we model as ABPs. The boundary or
membrane of the vesicle is permeable to the solvent (i.e. water) but not to the solute
(ABPs). In other words, the membrane is an osmotic membrane and serves as a confining
boundary for the ABPs. Relative to the vesicle, the fluid domain is partitioned into interior,
exterior and thin porous (in the membrane) regions. The solvent in all regions is identical.

The ABPs encapsulated inside the vesicle swim with a prescribed spatially varying
swim speed, which is the driving mechanism for a spatially varying number density.

At small scales relevant to the vesicle–ABPs system proposed here, the inertia of the
fluid, the ABPs and the vesicle are negligible. In particular, for motile bacteria such as
E. coli, which has characteristic size ∼1 μm and swim speed ∼30 μm s−1, the Reynolds
number in water is 3 × 10−5. The resulting speed of the vesicle, and the Reynolds number
based on the size of the vesicle and its speed, are also small. In this low-Reynolds-number
limit, the dynamics of the fluid is governed by the Stokes equations and there is no external
force/torque on the vesicle.

2.1. The exterior flow
The exterior domain consists of solvent alone and its dynamics is governed by

∇ · σ e
f = ηe ∇2ue − ∇pe

f = 0, ∇ · ue = 0. (2.1a,b)
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Activity-induced propulsion of a vesicle

Here, σ e
f is the stress tensor, ηe is the dynamic viscosity of the solvent, pe

f is the pressure
field, and ue is the velocity field. Far from the vesicle, the fluid is undisturbed and there is
no background flow:

pe
f → 0 and ue → 0 as r → ∞. (2.2a,b)

At the exterior surface of the vesicle, we have

ue(x ∈ Se) = U + Ω × x + us(x), (2.3)

where Se denotes the exterior surface of the vesicle, U (Ω) is the rigid-body linear
(angular) velocity of the vesicle, and us is the local seepage velocity at the exterior surface.
The definition of us is deferred to § 2.4. We note that (2.3) is similar to the squirmer model
where the closely packed cilia tips of a microorganism are modelled as a distribution
of radial and tangential velocities on the cell body, often taken to be of spherical shape
(Lighthill 1952; Blake 1971).

2.2. The interior suspension
The particles and solvent in the interior of the vesicle are treated as a continuum and
governed by

∇ · σ i = ηi ∇2ui − ∇P = 0 and ∇ · ui = 0, (2.4a,b)

where σ i is the stress tensor, ηi is the dynamic viscosity of the suspension, and ui is the
velocity field. Here, the total pressure is given by

P = pi
f + nkBT, (2.5)

where pi
f is the fluid pressure, n is the number density of the ABPs, and kBT is the thermal

energy. In our model, the only contribution to the suspension stress from the ABPs is the
osmotic pressure nkBT .

Here, the swim pressure introduced by Takatori et al. (2014) does not enter the
analysis directly. Regardless of activity, the particle contribution to the stress is σ p =
−nkBT I . In the high-activity limit, however, as shown in (1.3), the vesicle motion results
ultimately from the swim pressure variation. Furthermore, we note that additional stress
contributions, such as the active hydrodynamic stresslet of ABPs (Saintillan & Shelley
2015), can be incorporated readily into our model. Since the osmotic pressure is present
regardless of activity, in this paper we focus on the osmotic pressure and neglect additional
stress contributions.

At the interior wall of the vesicle, we have

ui(x ∈ Si) = U + Ω × x + us(x), (2.6)

where Si is the interior surface of the vesicle.

2.3. Dynamics of ABPs
The distribution of ABPs confined inside the vesicle is described by the probability density
Ψ (x, q, t) as a function of space x, orientation q (|q| = 1), and time t. The conservation of
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ABPs is governed by the Smoluchowski equation. At steady state, this is given by

∇ · jT + ∇R · jR = 0, (2.7)

where the translational and rotational fluxes are given by, respectively,

jT = uiΨ + Us(x) qΨ − DT ∇Ψ, (2.8)

jR = 1
2ωiΨ − DR ∇RΨ. (2.9)

Here, DT is the thermal diffusivity of ABPs, ωi = ∇ × ui is the vorticity vector, DR is the
rotary diffusivity, ∇R = q × ∇q is the rotary gradient operator, and Us(x) is the intrinsic
swim speed of ABPs. The prescribed spatial variation of Us is the key ingredient of our
model, and is responsible for the generation of a concentration gradient of ABPs inside
the vesicle.

The conservation of ABPs requires that∫
Vi

n dx = N, (2.10)

where n = ∫
Ψ dq is the number density, N is the total number of ABPs, and Vi is the

volume of the interior of the vesicle. At the interior surface of the vesicle, the flux relative
to the rigid-body motion must vanish. This no-flux condition can be written as

n · jT = n · (U + Ω × x) Ψ, x ∈ Si, (2.11)

where n is the unit normal vector as shown in figure 1. We note that as a model of
active elements inside a cell, the rotary diffusivity DR is biological rather than thermal
in origin. As a result, DR is independent of DT (which is assumed to be thermal in origin).
The rotary diffusivity defines a reorientation time scale τR = 1/DR that characterizes the
relaxation of the swimming direction. The ABPs take a step of magnitude � = UsτR, which
is often called the run (or persistence) length �, before its swimming direction changes
significantly. Note that one might have a reorientation time τR(x) that is a function of
position in addition to a spatially varying swim speed, as we show below that the important
quantity is the run length �(x).

In contrast to passive Brownian particles, the self-propulsion of active particles
introduces a coupling between their rotational and translational dynamics via the
swimming motion. That is, even for an isolated active Brownian sphere (which
is geometrically isotropic), one must track both its orientation and position. One
manifestation of such a coupling is the enhanced long-time self-diffusivity beyond the
thermal diffusivity DT , which for an ABP with constant properties in free space is Deff =
DT + Dswim, where Dswim = U2

s τR/6 (in three dimensions) is the swim diffusivity. In the
Smoluchowski equation (2.7), the orientation dynamics is described by the rotational
flux – the active particle exhibits rotary Brownian motion and is rotated by the fluid
vorticity.

2.4. Transport in the membrane
We treat the fluid transport in the membrane using a macroscopic approach similar to
Darcy’s law; however, the porous region is modelled ultimately as a thin permeable
interface. To this end, we first consider the membrane as having a network stress σ net
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and a fluid stress σm
f . The defining characteristic of the semipermeable membrane is that

the fluid stress in the membrane balances the seepage velocity (Durlofsky & Brady 1987):

∇ · σm
f − ηeRm · us = 0, (2.12)

or us = K · ∇ · σm
f /ηe, where K = R−1

m is the permeability tensor, and Rm is the
membrane resistivity. The remaining network stress is responsible for maintaining the
osmotic pressure difference across the membrane. That is, we have the force balance on
the exterior and interior surfaces, respectively,

σ e
f · n = σm

f · n, x ∈ Se, (2.13)

σ i
f · n = σm

f · n, x ∈ Si. (2.14)

Note, importantly, that at the interior surface, σ i
f is the interior fluid stress (it does not

contain the osmotic pressure).
We model the membrane as a tangentially isotropic material with the permeability tensor

K(n) = K⊥nn + K‖(I − nn), (2.15)

where K⊥ is the normal permeability, and K‖ is the tangential one. For a thin membrane,
the gradient in (2.12) can be approximated by a finite difference in the normal direction,
which after applying the boundary conditions (2.13) and (2.14) leads to

us(n) = K

ηe�m
·
(
σ e

f |Se − σ i
f |Si

)
· n. (2.16)

Here, �m is the thickness of the membrane, and the thin membrane condition is �m 
 R,
with R being the radius of the exterior surface. It is understood that in (2.16), us is a
function of the local outward normal vector n (see figure 1). Equation (2.16) is a linear
relation that specifies how a seepage velocity is generated in response to a jump in the
fluid stress across the membrane.

In the absence of deviatoric stress, (2.16) reduces to

us = − K⊥
ηe�m

(
pe

f |Se − pi
f |Si

)
n, (2.17)

which is the more familiar Darcy’s law in terms of the fluid pressure difference. In general,
the normal flow is driven by the fluid pressure difference as well as the shear stress.

We remark that different boundary conditions across membranes and macroscopic
transport equations exist in the literature. For example, an empirical boundary condition
was proposed by Beavers & Joseph (1967) and later rationalized by Saffman (1971). This
boundary condition was then generalized to a curved surface (Jones 1973). Recently,
using multiscale homogenization and matched asymptotic expansions between the near
membrane and the far region, Zampogna & Gallaire (2020) developed a macroscopic
condition to simulate the interaction between an incompressible fluid flow and a permeable
thin membrane. For the purpose of the present work, (2.16) is sufficient.

Because the vesicle is rigid, the preservation of its volume dictates that∫
Se

us · n dS = 0. (2.18)

Henceforth, for simplicity we will assume that the membrane is not permeable in the
tangential directions (K‖ = 0), in which case the seepage velocity is normal to the vesicle
surface.
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Z. Peng, T. Zhou and J.F. Brady

In the above consideration, the vesicle membrane is treated as a rigid and thin porous
region. To understand the material response of the vesicle, a proper treatment taking into
consideration the constitutive law of the vesicle membrane is needed (Lebedev, Turitsyn &
Vergeles 2007; Vlahovska & Gracia 2007). In particular, the bending elasticity and local
incompressibility give rise to a surface force density in the membrane, which is balanced
by the jump in the traction from the fluid inside and the fluid outside the vesicle membrane.
When such effects are included, the shape of the membrane is not known a priori and must
be determined as part of the solution. If the departure from the spherical shape is small,
then a perturbative approach can be adopted for both the membrane dynamics (Lebedev
et al. 2007; Vlahovska & Gracia 2007) and the fluid mechanics of a nearly spherical
particle moving in a viscous fluid (Brenner 1964).

2.5. Dynamics of the vesicle
The rigid-body translational and rotational velocities of the vesicle are determined by the
force/torque-free conditions given by∫

Se

σ e
f · n dS = 0,

∫
Se

x × σ e
f · n dS = 0. (2.19a,b)

We can relate the rigid-body velocities U and Ω to the seepage velocity us at the exterior
surface using the reciprocal theorem for Stokes flow (Masoud & Stone 2019). The formula
for a general body shape is given in Elfring (2015). For the case of a spherical particle, the
rigid-body translational and rotational velocities are given by, respectively,

U = − 1
4πR2

∫
Se

us dS, Ω = − 3
8πR3

∫
Se

n × us dS. (2.20a,b)

In the study of the rigid-body motion of micro-swimmers with prescribed kinematics
(gaits), such as squirmers, the reciprocal theorem allows one to bypass the calculation
of the unknown flow field, provided that one can solve the resistance/mobility problem for
the swimmer shape. For the problem considered here, the seepage velocity of the vesicle
is not known a priori; we need to determine the rigid-body motion, the exterior/interior
flow fields and the distribution of ABPs simultaneously.

2.6. Non-dimensional equations for a spherical vesicle
For a spherical vesicle, the angular velocity vanishes (Ω = 0) and the torque balance is
automatically satisfied. We define a characteristic swim speed Ũs such that

Us(x) = Ũs Ûs(x). (2.21)

For a spatially homogeneous swim speed, Ûs(x) = 1. The average density of ABPs inside
the vesicle is n̄ = N/Vi, where Vi = 4π(R − �m)3/3 is the volume of the interior. We use
this average density to scale the probability density such that

Ψ = n̄g, (2.22)

where g is the non-dimensional probability density. To render the governing equations
non-dimensional, we scale pressures and stresses by n̄ksTs, length by R, and fluid/vesicle
velocities by n̄ksTsK⊥/(ηe�m). Recall that the activity is ksTs = ζ Ũ2

s τR/6.

942 A32-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

39
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.398


Activity-induced propulsion of a vesicle

Using the characteristic swim speed, we define the swim Péclet number as

Pes = ŨsτD

R
= ŨsR

DT
, (2.23)

which compares the swim speed to the diffusive speed R/τD, where τD = R2/DT is a
diffusive time scale. Another dimensionless parameter for ABPs is defined as

γ =
√

τD

τR
= R

δ
, (2.24)

where δ = √
DTτR is a microscopic length that quantifies the distance travelled by

translational diffusion on the time scale of τR. Alternative parameters, including �/δ and
�/R, are often used in the literature. These parameters are direct comparisons between
different length scales. We note that they are related to Pes and γ by Pes = (�/δ)2(�/R)−1

and γ = (�/R)−1�/δ.
The non-dimensional exterior problem is given by

Da ∇2ue = ∇pe
f , (2.25)

∇ · ue = 0, (2.26)

ue → 0 and pe
f → 0 as r → ∞, (2.27a,b)

ue = U + us at r = 1, (2.28)
where

Da = K⊥
R�m

, (2.29)

is a Darcy number that compares the permeability of the membrane to its characteristic
cross-sectional area.

In the interior, the rigid-body translation U has no effect on the fluid dynamics and we
need to consider only the deviation u′ = ui − U . Thus the non-dimensional flow problem
in the interior is governed by

β Da ∇2u′ = ∇P, (2.30)

∇ · u′ = 0, (2.31)

|u′|, P < ∞ at r = 0, (2.32)

u′ = us at r = Δ. (2.33)
Here,

β = ηi

ηe
(2.34)

is the interior-to-exterior viscosity ratio, and

Δ = R − �m

R
(2.35)

is the radius ratio between the interior and the exterior surfaces of the membrane. For a
thin membrane, �m/R 
 1, Δ is O(1). The non-dimensional total pressure is given by

P = pi
f + kBT

ksTs
n = pi

f + 6γ 2

Pes
2 n, (2.36)

where we have used the relation kBT/(ksTs) = DT/(Ū2
0τR/6) = 6γ 2/Pes

2.
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The non-dimensional deviatoric stress tensors in the exterior and interior are,
respectively,

τ e = Da
[
∇ue + (∇ue)T

]
, τ i = β Da

[
∇u′ + (∇u′)T

]
. (2.37a,b)

The seepage velocity is given by

us = nn ·
(
σ e

f |Se − σ i
f |Si

)
· n, (2.38)

where σ e
f = −pe

f I + τ e and σ i
f = −pi

f I + τ i. The volume conservation of the vesicle is∫
Se

us · n = 0. (2.39)

The rigid-body translational velocity of the vesicle is then

U = − 1
4π

∫
S2

us dΩ. (2.40)

The non-dimensional Smoluchowski equation and its fluxes, boundary condition and
particle conservation are, respectively,

∇ · jT + ∇R · jR = 0, (2.41)

jT = α Da u′g + Pes Ûs(x) qg − ∇g, (2.42)

jR = 1
2α Da ω′g − γ 2 ∇Rg, (2.43)

n · jT = 0 at r = Δ, (2.44)∫
g dq dx = 4π

3
Δ3, (2.45)

where we have introduced three non-dimensional parameters, α, Pes and γ . The first
parameter is a reduced osmotic pressure given by

α = n̄ksTsτD

ηe
. (2.46)

Physically, this is a comparison between the active driving pressure (n̄ksTs) and a viscous
resistive ‘pressure’ (ηe/τD ) on the time scale τD.

In the equations above, variables {ue, pe
f , x, r, U, us, P, u′} and gradient operators

are non-dimensional even though the same symbols as their dimensional counterparts
are used. This is to avoid inconvenience in notation, and henceforth we will work
with non-dimensional quantities unless otherwise noted. In table 1, we summarize the
independent non-dimensional parameters and their physical implications.

It is convenient to consider the orientational moments of the probability density
function. The zeroth-order moment, or the number density, is given by

n(x) =
∫

S2
g dq, (2.47)

where S2 is the surface of the unit sphere in R
3, which represents all possible orientations

that q takes. Integrating the Smoluchowski equation over all orientations, we obtain a
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Activity-induced propulsion of a vesicle

Non-dimensional parameter Mathematical definition Physical description

α n̄ksTsτD/ηe Reduced osmotic pressure
β ηi/ηe Viscosity ratio
γ R/δ Comparison of R and δ

Da K⊥/(R�m) Darcy number
Pes ŨsτD/R Swim Péclet number
Δ (R − �m)/R Radius ratio

Table 1. Independent non-dimensional parameters.

conservation equation for the number density:

∇ · jn = 0, (2.48a)

jn = α Da u′n + Pes Ûs(x) m − ∇n. (2.48b)

This equation is coupled to the first moment, or polar order,

m(x) =
∫

S2
qg dq. (2.49)

The no-flux condition (2.11) becomes n · jn = 0 for x ∈ Si. Multiplying the Smoluchowski
equation by q and integrating over S2, we obtain a governing equation for the polar order:

∇ · jm − 1
2α Da ωi × m + 2γ 2m = 0, (2.50a)

jm = α Da u′m + Pes Ûs(x)
(

Q + 1
3 nI

)
− ∇m, (2.50b)

where

Q =
∫

S2

(
qq − 1

3 I
)

g dq (2.51)

is the trace-free nematic order tensor, and I is the identity tensor of rank 2. The no-flux
condition at the interior surface for the polar order becomes n · jm = 0. Different from the
conservation of the total number of ABPs, the polar order is not conserved, as indicated
by the presence of the sink term 2γ 2m in (2.50a) even in the absence of flow. This sink
term describes the randomization, due to rotary diffusion, of any polar order.

As can be inferred from the above discussion, there is an infinite hierarchical structure
to the moment equations. To truncate this infinite set of equations, a closure model such as
Q = 0 is often considered in the literature (Saintillan & Shelley 2015; Yan & Brady 2015).
A closure leads to a set of closed equations that can be solved as an approximation to
the Smoluchowski equation. We note that a closure approximation is often not uniformly
accurate across different regimes of physical parameters or different spatial/time domains,
and care must be taken when interpreting results obtained from such methods (Burkholder
& Brady 2020; Dulaney & Brady 2020; Peng & Brady 2020). A systematic approach
to derive low-order closure models that are able to approximate the full solution of the
Smoluchowski equation is still lacking.

In the context of active nematic (apolar) suspensions, the Bingham closure (Chaubal
& Leal 1998) has been shown to agree well with the full kinetic theory, and recently, a
numerical scheme has been developed to evaluate efficiently the Bingham closure (Weady,
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Shelley & Stein 2022). With this closure, simulations with high spatial resolution are
performed for active nematics. As note by Weady et al. (2022), their closure is formulated
for apolar suspensions, and the generalization to polar active matter remains (e.g. ABPs)
to be considered. Furthermore, a comparison of the accuracy of different closure models
for ABPs is largely unexplored.

The mechanism for an induced concentration gradient from a prescribed activity
gradient in the absence of flow has been studied in previous works (Schnitzer 1993;
Tailleur & Cates 2008; Row & Brady 2020). To illustrate this mechanism and motivate
later discussions, we summarize the simple one-dimensional result here. In the absence of
external linear or angular velocities, such as due to flow or orienting field, the governing
equation in one dimension for highly active ABPs is ∇ · (Ûsm) = 0, where the diffusive
term is neglected. The solution in one dimension is simply m = 0. Then (2.50a) reduces
to nÛs = const. Further, Row & Brady (2020) showed that this spatial variation of activity
and concentration can drive a reverse osmotic flow, i.e. fluid flow from regions of high
concentration to low. In this work, we exploit this spatial variation to propel a vesicle that
is able to maintain an activity gradient in the swim speed of ABPs confined inside.

3. Vesicle motion in the limit of weak interior flow

In many situations, the advection due to the interior fluid flow is much weaker compared
to the self-propulsion of the ABPs or its active swim diffusion (small Péclet number), and
we may neglect the effect of the fluid velocity disturbance on the distribution of ABPs.

3.1. Governing equations
The behaviour of the system in this small-Péclet limit can be derived systematically by
considering a weakly permeable membrane, Da 
 1.

If the vesicle is non-permeable (Da = 0), then no external or internal flows can be
generated, and the vesicle remains stationary despite the non-uniform density distribution
and accumulation of the ABPs at the boundary. Due to the scaling of the dimensional
velocities by the permeability, the leading-order non-dimensional velocities are O(1)

as Da → 0. To study the motion of the vesicle in the Da 
 1 limit, we pose regular
expansions for all fields:

ue = ue
0 + Da ue

1 + · · · , (3.1)

pe
f = pe

f ,0 + Da pe
f ,1 + · · · , (3.2)

u′ = u′
0 + Da u′

1 + · · · , (3.3)

P = P0 + Da P1 + · · · , (3.4)

g = g0 + Da g1 + · · · . (3.5)

The dimensionless number density is given by n = ∫
g dq = n0 + Da n1 + · · · . Similarly,

the expansions for the translational and seepage velocities are, respectively,

U = U0 + Da U1 + · · · , (3.6)

us = us
0 + Da us

1 + · · · . (3.7)

From (2.37a,b), we know that the leading-order deviatoric stresses are O(Da), which does
not contribute to the O(1) seepage velocity. As a result, the seepage velocity at leading
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Activity-induced propulsion of a vesicle

order is driven by the fluid pressure difference across the membrane,

us
0 =

(
pi

f |Si − pe
f |Se

)
n. (3.8)

Inserting these expansions into the exterior Stokes equations (2.25) and (2.26) gives, to
leading order,

∇pe
f ,0 = 0, ∇ · ue

0 = 0. (3.9a,b)

The kinematic boundary condition at the exterior surface is ue
0(r = 1) = U0 + us

0. Due
to the linearity of Stokes flow, we need only solve (3.9a,b) using the seepage velocity
condition (ue

0(r = 1) = us
0); the rigid-body translation is determined from the reciprocal

theorem given by (2.40). Because us
0 is in the radial direction, the exterior flow is radial

and given by

pe
f ,0 = 0, ue

0 = us
0

r2 . (3.10a,b)

Similarly, the leading-order equation governing the interior flow is given by

∇P0 = 0, ∇ · u′
0 = 0. (3.11a,b)

At the interior surface, the flow field satisfies the condition u′(r = Δ) = us. We note that
the interior flow field is not analytically tractable, but it is not required in order to determine
the vesicle motion. The total pressure at leading order is a constant, consisting of spatially
varying fluid pressure and osmotic pressure:

pi
f ,0 + 6γ 2n0/Pes

2 = P0 = const. (3.12)

Inserting the expansions into the Smoluchowski equations (2.41)–(2.45), we obtain, at
leading order,

∇ ·
(

Pes Ûs(x) qg0 − ∇g0

)
− γ 2 ∇2

Rg0 = 0, (3.13)

n ·
(

Pes Ûs(x) qg0 − ∇g0

)
= 0 at r = Δ, (3.14)∫

g0 dq dx = 4π

3
Δ3. (3.15)

Using (2.40), (3.8) and (3.12), we obtain

U0 = 3γ 2

2π Pes
2

∫
S2

n0(r = Δ)n dΩ. (3.16)

It is more intuitive to examine the above expression in its dimensional form

U0 = 1
4π

K⊥
ηe�m

∫
S2

Πosmo
0 n dΩ, (3.17)

where Πosmo
0 = nwkBT is the dimensional osmotic pressure of ABPs in the absence of

flow.
To sum up, one needs to solve (3.13)–(3.15) to obtain the density distribution of ABPs

in the absence of flow, and then use (3.16) to calculate the vesicle motion. In the remainder
of § 3, the subscript ‘0’ (e.g. g0, U0) will be dropped for notational convenience.
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In general, one can represent the number density distribution at the spherical interior
wall by the complete spherical harmonic expansion

n0(Δ, θ, φ) =
∞∑

l=0

m=l∑
m=−l

Cl,m Ym
l (θ, φ), (3.18)

where Ym
l = √

(2l + 1)(l − m)!/[4π(l + m)!] Pm
l (cos θ) exp(imφ), and Pm

l is the
associated Legendre polynomial of degree l and order m. Using (3.16), a direct integration
shows that only the l = 1 modes contribute to the translational velocity of the vesicle. This
is similar to the tangential spherical squirmer model in which only the ‘B1’ mode – the
coefficient of P1

1(cos θ) – contributes to the velocity of the squirmer.

3.2. High activity

We now explore the limit of high activity, ksTs/(kBT) = D̃swim/DT = �2/(6δ2) � 1,
which is often observed in active matter systems (Takatori et al. 2016). Equivalently, we
define ε = 1/γ 2 (note that Pes = γ 2�/R) and consider the limit ε → 0. Expanding the
probability density function g = g(0) + εg(1) + · · · , we obtain, at leading order,

�

R
∇ ·

[
Ûsqg(0)

]
− 1

τ̂R
∇2

Rg(0) = 0, (3.19)

where we have included the spatial variation of τR(x) and defined τR = τ̃Rτ̂R, similar to
the case of spatially varying swim speed. Integrating over the orientation space leads to an
equation for the polar order:

∇ ·
(

Ûsm(0)
)

= 0. (3.20)

Equation (3.19) is incompatible with the no-flux boundary condition and thus is valid
only in the bulk of the interior. At the interior membrane surface, the swimming flux is
balanced by the diffusive flux, which implies the existence of an accumulation boundary
layer of thickness O(ε). In this high-activity limit, the number of particles in the boundary
layer is still finite, which suggests that the probability density is O(1/ε) as ε → 0.
Therefore, the probability density in the boundary layer admits an expansion of the form
g( y, θ, φ, q) = g(−1)/ε + g(0) + · · · . Defining a stretched boundary-layer coordinate in
the radial direction y = (Δ − r)/ε, the Smoluchowski equation, to leading order, is

�

R
Ûs

∣∣
Si

q · er
∂g(−1)

∂y
+ ∂2g(−1)

∂y2 = 0, (3.21)

�

R
Ûs

∣∣
Si

q · erg(−1) + ∂g(−1)

∂y
= 0 at y = 0, (3.22)

g(−1) → 0 as y → +∞. (3.23)

Here, the Taylor expansion Ûs(r, θ, φ) = Ûs|Si − εy(dÛs/dr)|Si + · · · is used. The
solution is obtained readily as

g(−1) =
⎧⎨
⎩A1(θ, φ, q) exp

(
− �

R
Ûs|Siq · ery

)
, q · er > 0,

0, otherwise.
(3.24)

This singular accumulation occurs only for particles with orientation pointing towards the
wall (q · er > 0) because otherwise they would swim away. In (3.24), A1 is an unknown
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Activity-induced propulsion of a vesicle

function that can be determined only from the next-order solution. The boundary-layer
solution g(0)( y, θ, φ, q) in the limit y → ∞ needs to be matched with the solution in the
bulk as r → Δ.

At the interior surface of the vesicle (y = 0), the leading-order density is large and given
by γ 2 ∫

q·er>0 A1 dq. Just outside the boundary layer (i.e. y → ∞), the density is O(1) as
γ 2 → ∞. This boundary-layer structure allows us to relate the osmotic pressure at the
interior surface of the vesicle to the swim pressure outside the boundary layer. To this end,
we consider the ratio nwkBT/(n0ksTs), where all quantities are dimensional. The density
at the wall nw and the density outside the boundary layer n0 are defined locally along the
interior surface and are functions of the local surface normal vector n. From the above
analysis, we have

nwkBT
n0ksTs

=
γ 2 ∫

q·er>0 A1 dq∫
g(0)( y → ∞, θ, φ, q) dq

kBT
ksTs

= f (�/R, Δ), (3.25)

where γ 2kBT/(ksTs) = 6R2/�2 is not a function of the thermal diffusivity DT (or �/δ).
Because in general A1 is not tractable analytically, the factor f (�/R, Δ) in the preceding
equation cannot be obtained explicitly. Nevertheless, (3.25) reveals the important fact that
at high activity,

Πosmo = nwkBT = Π swim
0 f (�/R, Δ), (3.26)

where Π swim
0 = n0ksTs. In other words, the osmotic pressure at the wall is equal to the

swim pressure in the bulk of the interior just outside the boundary layer, but modified by a
scale factor that is a function of �/R and Δ. We emphasize that in (3.26), all quantities are
defined locally along the interior surface of the vesicle. This is a generalization of the result
of Yan & Brady (2015) for ABPs outside an infinite planar wall, where nwkBT = n0ksTs in
the limit γ 2 → ∞ because of the absence of curvature of the geometry.

Equation (3.26) allows us to obtain the dimensional speed of the vesicle:

U = 1
4π

K⊥
ηe�m

∫
S2

Π swim
0 f (�/R, Δ) n dΩ. (3.27)

We note that this relation holds for ABPs with spatially varying swim speed or
reorientation time.

To understand the dependence of the motion of the vesicle on �/R, we approach the
problem from a micromechanical perspective using Brownian dynamics simulations that
resolve the Langevin equations of motion governing the stochastic dynamics of an ABP
in its physical and orientation space. The details of the simulation method are given in
Appendix A. The ABPs are treated as point particles, and their hard-particle interaction
with the vesicle interior boundary is implemented using the potential-free algorithm
(Heyes & Melrose 1993). In this approach, the force exerted on the wall due to the collision
with ABPs is obtained readily. Consider a simulation of N ABPs that interact only with the
boundary independently, but not among themselves. After a time step Δt, some particles
might have moved outside the interior wall. For particle i that is now outside, we add a
displacement Δxi to the particle such that after the move, the particle is in contact with
the boundary. The total force exerted on the wall is then F w = −ζ

∑
i∈I Δxi/Δt, where

I is the set of all particles that are outside the boundary before the hard-sphere move. As
seen in (3.17), the net speed of the vesicle is proportional to the net force F w.

In figure 2, we show the dimensionless net force exerted on the interior vesicle surface
by the ABPs, F w/(4πR2

i n̄ksTs), as a function of �/Ri for ABPs with no DT (infinitely
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Figure 2. The magnitude of the dimensionless net force on the interior vesicle surface F w/(4πR2
i n̄ksTs) as a

function of �/Ri for ABPs with spatially varying swim speed. The speed profile is a step function where the
swim speed in one of the hemispheres is half of that in the other. The reorientation time τR is a constant. The
net force points towards the side with a higher swim speed.

active, �/δ = ∞) and a spatially varying swim speed. The swim speed profile is a step
function given by

Ûs =
{

1, x < 0,

1/2, x > 0.
(3.28)

The net force points to the side with a larger swim speed, and only the force magnitude
is shown in figure 2. As �/Ri increases, the net force decreases. For large �/Ri, the ABPs
spend most of their time pushing against and sliding along the interior vesicle surface
until rotary Brownian motion reorients them towards the bulk of the interior. In this limit,
the number of particles pushing against the interior surface on the side of slow speed is
comparable to the side of high speed.

As discussed earlier, in one dimension the relation nUs = const holds for ABPs with
spatially varying properties. In the interior of a vesicle, this relation is still useful for the
qualitative understanding of the distribution of ABPs and the motion of the vesicle. Taking
the step function given by (3.28) as an example, n0Us = const means that in the bulk of
the interior the density on the right side (x > 0) is higher than that on the left (x < 0),
n0

R > n0
L. Because nw ∼ n0ksTs/(kBT) ∼ n0Usζ�/(kBT) and n0Us = const, we have nw ∼

Us for ABPs with constant τR. Therefore, the density at the interior vesicle surface on the
right side is lower than that on the left (nw

R < nw
L ), which is opposite to the behaviour of the

bulk density. Because only the ABPs at the interior surface contribute to the net force, and
they can push only against the boundary, this leads to the fact that the net force is in the
negative x-direction (to the left). If one had only observations of the number density in the
bulk, one would conclude that the vesicle moves in the direction of a lower concentration –
a ‘reverse’ osmotic propulsion (cf. (1.2)).

The number density profile in the bulk and the boundary layer is sketched in figure 3
(red line) for a general swim speed profile that decreases from the left to the right. The
variation of the swim speed leads to a gradient in the number density in the bulk of
the interior. Two thin accumulation boundary layers are established at the left and right
sides of the interior vesicle surface. Because the density at the wall on the right is smaller
than that on the left, nw

R < nw
L , the dimensional version of (3.12) then leads to a larger
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U

Flow

Figure 3. Schematic of the number density profile (red) and the flow direction (blue) in the high-activity limit
for a swim speed profile that decreases from the left to the right. A weak density gradient is present in the bulk
of the interior due to the variation of the swim speed. Two accumulation boundary layers are established at the
left and right sides of the interior wall, with the density at the wall on the left larger than that on the right. The
vesicle–ABPs system as a whole moves by way of jet propulsion.

fluid pressure on the low-density side (right), pi
f ,R > pi

f ,L. Since the fluid pressure in
the exterior is homogeneous, the fluid is pushed out of the vesicle from the right and
drawn in from the left by conservation of mass. For the vesicle–ABPs system as a whole,
it effectively moves by way of jet propulsion. This kind of non-inertial jet propulsion
has been proposed and studied in detail by Spagnolie & Lauga (2010) as an alternative
mechanism for the locomotion of microswimmers. In their paper, the jetting velocity
distribution of a microswimmer (us) is prescribed, and then the swim speed is determined
from the reciprocal theorem.

Using the approximation n0Us = const and the relation Π swim
0 = n0ksTs = n0Usζ�/6,

we see that it is the variation of run length �(x) that is responsible for the net force
on the vesicle interior surface and ultimately the vesicle motion. Using (3.27), a Taylor
series expansion about the centre of the vesicle leads to the scaling relation U ∼
K⊥Rζn0Us∇�/(ηe�m), where ∇� is the gradient of the run length at the centre of the
vesicle.

3.3. A large vesicle
When the vesicle is large, the confinement is weak, �/R 
 1, and ABPs exhibit a thin
accumulation boundary layer at the wall and a uniform distribution in the bulk of the
interior to leading order. To study this large-vesicle limit of �/R 
 1, we first write (3.13)
equivalently as

∇ ·
[

�

R
Ûs(x) qg −

(
�

R

)2 (
�

δ

)−2

∇g

]
− ∇2

Rg = 0. (3.29)

In this subsection, we use the definition ε = �/R and consider the limit as ε → 0. In the
bulk of the interior, we have the expansion g = g(0) + εg(1) + · · · and the leading-order
equation ∇2

Rg(0) = 0. The solution in the bulk is then g(0)(x, q) = n(0)(x)/(4π). The
boundary-layer thickness is determined by a balance between the swimming and diffusive
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fluxes, which leads to the leading-order equation

− ∂

∂ρ

(
�

δ
Ûs|Si q · erg(0) + ∂

∂ρ
g(0)

)
− ∇2

Rg(0) = 0, (3.30)

�

δ
Ûs|Si q · erg(0) + ∂

∂ρ
g(0) = 0 at ρ = 0. (3.31)

Here, we have used the stretched coordinate ρ = (Δ − r)/ε. Since � 
 R, curvature of
the domain has no effect at O(1), and the boundary-layer equation is similar to that in a
planar domain. The O(1) probability density in the boundary layer does not contribute to
the O(1) conservation because the boundary-layer thickness is O(ε). This means that the
total conservation is given by the density outside the boundary layer alone,

∫
n(0)(x) dx =

4πΔ3/3. In the absence of curvature terms, just like the problem of ABPs on one side of
an infinite planar wall (Yan & Brady 2015), the number density at the interior wall of the
vesicle at O(1) can be determined analytically; the result is given by

nw

n0 = 1 + 1
6

(
�

δ

)2

Û2
0 |Si . (3.32)

In dimensional terms, this means that the osmotic pressure at the wall is Πosmo
0 =

nwkBT = n0kBT + n0ksTsÛ2
s , where n0 is the density outside the boundary layer. To

determine n0, one needs to solve (3.30) and then match the boundary-layer solution to
that in the bulk.

The dimensional translational velocity in the large-vesicle limit is written as

U = 1
4π

K⊥
ηe�m

∫
S2

[
n0kBT + n0ksTs Û2

s |Si

]
n dΩ. (3.33)

For a large vesicle, the accumulation boundary layer has a structure similar to that obtained
in the high-activity limit. Even for weakly active ABPs, this accumulation boundary layer
exists so long as �/R 
 1. As expected, (3.33) reduces to a form of (3.27) if the activity is
high.

3.4. Vesicle motion due to an external orienting field
Another way to achieve motion is to apply an external orienting field, which affects the
orientational dynamics but not the swim speed of the ABPs. Takatori & Brady (2014)
showed that net directed motion of ABPs in free space can be achieved due to the fact that
the external field can orient particles to move in the same direction. Instead of having ABPs
with spatially varying swim speed, we consider the same orienting field as in Takatori &
Brady (2014), but now with ABPs confined inside the vesicle. The only change to the
orientational dynamics is that the orienting field exerts an external torque that depends
on the orientation of the particle relative to the field direction; the dimensional rotary flux
now becomes jR = Ωcq × Ĥg − DR ∇Rg, where Ωc characterizes the rate of reorientation
due to the field, and Ĥ is the direction of the field. When an ABP is aligned with the field
direction (q ‖ Ĥ ), the external torque vanishes. The Smoluchowski equation (3.13) for
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Figure 4. (a) The magnitude of the dimensionless net force on the interior wall F w/(4πR2
i n̄ksTs) as a function

of the field strength χR for different values of �/Ri. (b) The rescaled net force F w�/(4πR3
i n̄ksTs) as a function

of χR for different values of �/R. All data collapse into one curve in (b). The values of �/Ri in both panels are
the same and are thus shown only in (b). In both panels, the translational diffusion is absent, i.e. DT ≡ 0. In
the weak-field limit χR 
 1, the net force is linearly proportional to χR, as shown by the dashed line.

ABPs with constant properties in the presence of an orienting field is then

∇ · (Pes qg − ∇g) + γ 2 ∇R ·
(
χRq × Ĥg − ∇Rg

)
= 0, (3.34)

while the no-flux boundary condition (3.14) and the total conservation (3.15) remain
unchanged. Here, we have defined the Langevin parameter χR = ΩcτR, which measures
the strength of the orienting field compared to rotary diffusion.

In the high-activity limit, an accumulation boundary layer is established at the interior
wall. The boundary-layer structure is identical to that obtained for ABPs with spatially
varying swim speed. At leading order, the probability density in the bulk of the interior is
governed by

�

R
q · ∇g(0) + ∇ ·

(
χRq × Ĥg(0) − ∇Rg(0)

)
= 0. (3.35)

Compared to (3.19) for spatial variation, the preceding equation has a constant swim speed,
and the orientational dynamics is affected by the orienting field. In the boundary layer, the
leading-order equation is identical to (3.21), and the density at the wall is large.

Because (3.34) together with its no-flux boundary condition is not analytically tractable,
we again make use of Brownian dynamics simulations. In figure 4(a), we show the
dimensionless net force exerted on the interior wall by the ABPs, F w/(4πR2

i n̄ksTs), as
a function of the field strength for different values of �/R. We note that the net force is in
the field direction Ĥ . In figure 4(b), the same data are plotted but with the dimensionless
net force multiplied by �/Ri. This rescaling allows us to collapse all data onto a single
curve. In the linear response regime, the net force is proportional to χR. On the other hand,
the net force asymptotes to a finite value in the strong-field limit. This is due to the fact
that at most all N particles are aligned with Ĥ and are pushing against the vesicle; further
increasing of the field strength beyond this limit has no effect.

In ‘wet’ active matter systems such as the vesicle problem, the fluid mechanics is
ultimately responsible for the motion of the vesicle and needs to be treated properly.
Nevertheless, the perspective offered by the dry active matter force balance as discussed
in § 1 gives the right answer for the speed of the vesicle. In particular, consider the case in
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which the vesicle is driven by an orienting field. The ratio Nw/N is a function of the
field strength χR, Nw/N = f (χR). As a result, we have the qualitative scaling relation
Fw ∼ NζUs f (χR). Noting that n̄ ∼ N/R3

i and ksTs ∼ ζU2
s τR, we have

Fw

4πR2
i n̄ksTs

∼ NζUs

R2
i n̄ksTs

f (χR) ∼ Ri

�
f (χR). (3.36)

In the weak-field limit, f (χR) ∼ χR. For large χR, f (χR) ∼ 1 (independent of χR). The
above scaling argument also explains the collapse of the data as shown in figure 4(b). The
maximum that Fw may achieve is NζUs, which gives the result that Fw�/(4πR3

i n̄ksTs) =
2, which is plotted as a horizontal dashed line in figure 4(b).

We note that in figure 4, the translational diffusion is absent (DT ≡ 0), which allows the
system to achieve the maximum in the net force on the wall. For finite thermal diffusion,
the net force is reduced and so is the speed of the vesicle.

4. Slow variation in activity

In the previous section, the dynamics of the vesicle is determined by the distribution
of ABPs in the absence of flow. To understand the effect of interior fluid flow on the
distribution of ABPs and the dynamics of the vesicle, we consider the case of slow
variation in activity. When the activity gradient is small, any smooth variation of the
swim speed can be approximated by a Taylor series expansion about the origin. Here,
we consider the first effect of a small gradient by keeping the linear term only. The
non-dimensional swim speed can be written as

Ûs(x) = 1 + εe · x, (4.1)

where ε = |∇Us| R/Us 
 1, and e = ∇Us/|∇Us| is a constant unit vector in the direction
of the gradient. If ε is identically zero, then we have a spatially homogeneous swim speed
and there is no vesicle motion due to spherical symmetry (see the discussion in § 5). In
this case of ε ≡ 0, the solution is u′

0 = ue
0 = us

0 = U0 = 0, pe
f ,0 = 0 and P0 = const. The

distribution of ABPs is governed by (3.13), (3.14) and (3.15) but with Ûs = 1, i.e. this
problem reduces to that of ABPs confined inside a fixed spherical domain. This spherical
symmetry means that the number density is a function of the radial coordinate only,
n0(x) = n0(r). As shown by Yan & Brady (2015), the number density is a monotonically
increasing function that obtains its maximum at the interior wall. Because the total
pressure P0 is a constant, this variation of number density (osmotic pressure) maintains a
fluid pressure gradient with its maximum at the centre of the interior domain. The fluid
pressure across the membrane is constant, and no seepage velocity is generated.

To probe the first effect of a small linear gradient, we pose regular expansions for all
fields and the translational velocity:

g = g0 + εg1 + · · · , (4.2)(
P, pe

f , pi
f

)
= (P0, 0, 0) + ε

(
P1, pe

1, p′
1
) + · · · , (4.3)(

u′, ue, us, U
) = 0 + ε

(
u′

1, ue
1, us

1, U1
) + · · · . (4.4)

At O(ε), the exterior fluid and the interior suspension are still governed by (2.25)–(2.28)
and (2.30)–(2.33). Similarly, the seepage velocity is related to the jump in the fluid stress
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across the membrane given by (2.38). The disturbance to the distribution of ABPs at this
order is governed by the inhomogeneous equation

∇ · (Pes qg1 − ∇g1) − γ 2 ∇2
Rg1 = −∇ · (

α Da u′
1g0 + Pes e · xqg0

)
− 1

2α Da ∇R · (
ω′

1g0
)
, (4.5)

with the boundary condition

n · (Pes qg1 − ∇g1) = −α Da n · u′
1g0 − Pes e · xn · qg0 at r = Δ. (4.6)

The net disturbance is zero,
∫

g1 dx dq = 0. As can be seen from (4.5), the disturbance
fields must be linear to the vector e, which allows us to write the number density in the
form

n1 = e · x h1(r), (4.7)

where h1(r) is a scalar function of the radial coordinate only.
Due to linearity of the Stokes equations, the interior flow problem at O(ε) admits a

solution of the form

P1 = A1e · x, (4.8)

u′
1 = A2e + A3e ·

(
xx − 1

3
r2I

)
+ 1

2β Da
P1x. (4.9)

Here, the momentum (2.30) is solved using a linear combination of the growing tensor
harmonic functions (Leal 2007). The continuity (2.31) gives a constraint

5A3 + 3A1

β Da
= 0. (4.10)

We can solve the external flow problem by considering two separate problems with
different boundary conditions: (1) ue

1 = us
1, and (2) ue

1 = U1 at r = 1. Instead of solving
the flow field due to the second boundary condition in terms of the yet unknown velocity
U1, it will be determined from the reciprocal theorem (2.40). As a result, one needs only to
compute the exterior flow field due to the seepage velocity us

1. The exterior flow problem
with the first boundary condition has a solution of the form

pe
1 = A4e · x

r3 , (4.11)

ue
1 = A5e

1
r

+ A6e ·
(

I

r3 − 3
xx
r5

)
+ 1

2 Da
pe

1x, (4.12)

where the decaying tensor harmonic functions are used. To satisfy the continuity (2.26),
we must have

A4 = 2 Da A5. (4.13)

The seepage velocity connects the interior and exterior flow field via

u′
1(x = Δer) = us

1 = ue
1(x = er), (4.14)

which reduces to

A2 − 1
3
Δ2A3 = A5 + A6 and A3Δ

2 + A1Δ
2

2β Da
= −3A6 + A4

2 Da
. (4.15a,b)
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The volume conservation (2.39) is satisfied. The velocity of the vesicle is obtained from
the reciprocal theorem, which gives

U1 = − 1
4π

∫
S2

us
1 dΩ = −

(
A2 + A1Δ

2

6β Da

)
e. (4.16)

Finally, to solve (2.38) at this order, we need to compute the fluid stress at the interior and
exterior walls. At the interior wall, we have

σ i
f ,1 · er = −Δ

(
A1 − h1(Δ)

kBT
ksTs

)
e · erer

+ Δ

(
7
3

A3β Da + 3
2

A1

)
e · erer + Δ

(
1
3

A3β Da + 1
2

A1

)
e. (4.17)

The traction at the exterior wall has two contributions. The first is due to the vesicle
translating at a constant speed U1, which is given by Guazzelli & Morris (2011, p. 44)
as

σ e
U1

· er = −3
2 Da U1. (4.18)

The second contribution is from the seepage velocity boundary condition us
1, which is

given by

−A4e · erer + Da
(

−A5 − 6A6 + A4

2 Da

)
e + Da

(
−A5 + 18A6 − 3A4

2 Da

)
e · erer.

(4.19)

Using (4.16)–(4.19), we can obtain the jump in the fluid stress across the membrane, which
then allows us to calculate the seepage velocity using (2.38). Equating this result with the
seepage velocity obtained from (4.12) by setting r = 1, we arrive at the following equations
for the coefficients:

A5 + A6 = 0, (4.20)

and

A4

2 Da
− 3A6 = A1Δ

(
−1 + Δ

4β

)
+ 3

2
Da A2 − 8

3
A3βΔ Da − 2A4

− 2A5 Da + 12A6 Da − Δ h1(Δ)
kBT
ksTs

. (4.21)

Equation (4.20) implies that us
1 is proportional to e · erer, and the component proportional

to e is zero, which is consistent with the fact that the seepage velocity is in the normal (er)
direction. At this stage, we have obtained six equations for the six unknown coefficients Ai
(i = 1, . . . , 6), which are given by (4.10), (4.13), (4.15a,b), (4.20) and (4.21). Using these
equations, one could express Ai in terms of the boundary value of h1 at the interior wall,
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i.e. h1(Δ). These relations are obtained as

A6 = Δ2

4
kBT
ksTs

h1(Δ)

Δ + Da (6β + 4Δ)
(4.22)

and

A1 = 40 Da β

Δ2 A6, A2 = −8A6, A3 = − 24
Δ2 A6, (4.23a–c)

A4 = −2 Da A6, A5 = −A6. (4.24a,b)

From (4.16), we have the net motion of the vesicle:

U1 = 4
3

A6e = Δ2

3
kBT
ksTs

h1(Δ)

Δ + Da (6β + 4Δ)
e. (4.25)

Equation (4.25) is the main result of this section. In obtaining (4.25), the only assumption
made is the small linear gradient in the swim speed; therefore it applies generally for all
ranges of the parameters α, β, Da, Pes and γ . In particular, no restriction on the activity of
the ABPs (e.g. �/δ) is made. We note that h1(Δ) depends parametrically on all the above
parameters.

To obtain h1(r), we need to solve (4.5), which governs the disturbance probability
density distribution of the ABPs. As an approximation, we consider the general solution
using the Q = 0 closure. At O(1), the spherical symmetry allows us to write the number
density and polar order in the forms

n0(x) = n0(r), (4.26)

m0(x) = xf (r), (4.27)

which, when inserted into (2.48a) and (2.50a), lead to a couple of ordinary differential
equations (ODEs) for n0(r) and f (r). The solutions for n0 and m0 under this assumption
are obtained by Yan & Brady (2015).

Next, we consider the disturbance distribution of ABPs at O(ε). At this order, the
number density distribution is governed by

∇ · jn,1 = 0 and jn,1 = α Da u′
1n0 + Pes m1 + Pes e · xm0 − ∇n1. (4.28a,b)

The no-flux boundary condition is n · jn,1 = 0 at r = Δ. Similarly, the governing equation
for the polar order (assuming Q1 = 0) is

∇ · jm,1 + 2γ 2m1 − 1
2α Da ω′

1 × m0 = 0, (4.29)

and
jm,1 = α Da u′

1m0 + 1
3 Pes (n0e · x + n1) I − ∇m1. (4.30)

No-flux at r = Δ is n · jm,1 = 0. Similar to (4.7), linearity and symmetry allow us to write
the solution to the polar order in the form

m1 = e h2(r) + e · xx h3(r), (4.31)

where h2(r) and h3(r) are functions of the radial coordinate only and satisfy a coupled set
of ODEs that can be found in Appendix B.
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Figure 5. The dimensionless speed of the vesicle U1 as a function of �/δ for different fixed values of �/R. All
other parameters are fixed: Δ = 0.98, α = 1, Da = 0.1 and β = 1.0.

In figure 5 we show the dimensionless speed of the vesicle (U1) as a function of �/δ for
�/R = {0.1, 1}. With other dimensionless parameters fixed, the increase of �/δ means the
decrease of the translational diffusivity and thus the increase of activity. The speed of the
vesicle vanishes as the activity approaches zero, �/δ → 0. As �/δ increases, the speed of
the vesicle increases and asymptotes to a finite value for large �/δ. The speed is larger for
a smaller �/R because a thin boundary layer near the interior wall develops that enhances
the front–back asymmetry of the density distribution.

5. Concluding remarks

In this paper, we have proposed a composite low-Reynolds-number propulsion system
made up of active Brownian particles encapsulated in a vesicle for the purpose of
enhanced transport beyond that of passive Brownian diffusion. Instead of using the
self-propulsion of a microswimmer directly, such as by attaching a cargo to its surface,
we considered an alternative mechanism in which the vesicle is propelled by a fluid
seepage velocity generated by a concentration gradient of these encapsulated particles.
In the present work, we considered the cases in which the concentration gradient is
generated by either a prescribed activity gradient in the swim speed of these ABPs or
an external orienting field. By tuning the spatial pattern of variation in the swim speed,
one could obtain a concentration profile that in turn propels the vesicle with a certain
speed or in a desired direction. Alternatively, the application of an external orienting
field can push the ABPs against the wall and generate net thrust for the vesicle. We
provided a continuum formulation governing the dynamics of the vesicle–ABPs system
and analysed its behaviour explicitly in the limits of weak interior flow and small activity
gradient. For the composite system as a whole, it moves by jet propulsion at low Reynolds
number, i.e. fluid is drawn in from one side of the vesicle and expels from the other.
The encapsulation of ABPs only provides a mechanism to generate such a seepage
flow.

We emphasize that in the present model, it is the concentration gradient rather than
the species of the solute particles that is ultimately responsible for vesicle locomotion.
Any osmotic solute, not necessarily active, is able to propel the vesicle so long
as a concentration gradient is maintained. For a passive solute, one can maintain a
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concentration gradient using chemical reaction, e.g. by placing a distribution of sources
and sinks. In this paper, we analysed how such a concentration gradient may be
generated by an activity gradient or by the application of an external orienting field. For
magnetotactic bacteria or synthetic active particles, an aligning magnetic field can be used
to control the direction of the concentration gradient and therefore the direction of motion
of the vesicle.

In an experimental setting, a spatial variation of the swim speed of photokinetic bacteria
can be achieved by exposing the bacteria to external light intensity gradients. These
light-powered bacteria exhibit a larger swim speed in regions of higher light intensity.
Under spatially patterned light fields, light-responsive bacteria can self-assemble into
reconfigurable structures – ‘painting’ with bacteria (Arlt et al. 2018; Frangipane et al.
2018). Another possible mechanism for inducing a spatially varying swim speed could be
the spatial modulation of ‘fuel’ (food sources).

For magnetotactic bacteria, instead of spatial modulation of swim speed, one can use
an external static magnetic field that tends to align the bacteria in a certain direction. For
static or slowly varying magnetic fields, the magnitude of the induced electric field in this
low frequency limit (
100 kHz) is small so that its effect on the membrane dynamics is
negligible (Ye & Curcuru 2015).

In obtaining the results, we assumed that the ABPs can be treated as a continuum and
contribute to the suspension stress only via the osmotic pressure. We note that additional
constitutive models at the continuum level for the suspension stress can be incorporated
readily into our model. The hydrodynamic interactions of the active particles with each
other or the confining vesicle boundary are neglected. These effects can be studied using
a colloidal approach by considering the detailed interactions among the active particles
and with the boundary. For example, this is considered in the study of a single squirmer
encapsulated in a porous container by Marshall & Brady (2021), and for the case of a
collection of squirmers inside a droplet that is immersed in another fluid by Huang, Omori
& Ishikawa (2020).

To achieve net motion of the spherical vesicle, a number density distribution at
the vesicle interior wall that breaks the front–back symmetry is required. Instead of
maintaining an asymmetric density distribution in a spherical vesicle using ABPs with
spatially varying properties or ABPs with constant properties but in an orienting field, one
can also consider an asymmetric vesicle. For ABPs with constant properties confined in
an asymmetric container, a symmetry-breaking density distribution will emerge because
the accumulation of ABPs at the wall depends on the local curvature. The effect of vesicle
shape on its net motion is left for a future study.

The enhancement of transport revealed by our study may be useful for the
development of synthetic microscale propelling systems for the purpose of delivery
of therapeutic payloads, penetrating complex media, or clearing clogged arteries.
We hope that our proposed theoretical designs can prompt new experimental
implementations.
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Appendix A. Brownian dynamics simulations

The dynamics of ABPs confined inside the vesicle in an external orienting field can be
resolved using Brownian dynamics (BD) simulations. Each ABP follows the Langevin
equations of motion given by

0 = −ζ(U − Usq) + F B + F w and 0 = −ζRΩ + LB + Le, (A1a,b)

where U (Ω) is the instantaneous linear (angular) velocity, F B is the Brownian force, F w

is the hard-sphere force due to collisions with the interior wall, ζR is the rotary Stokes drag
coefficient, LB is the Brownian torque, and Le is the external torque due to the field.

The Brownian force and torque satisfy the white noise statistics: F B = 0,

F B(0) F B(t) = 2kBTζ δ(t) I and LB = 0, LB(0) LB(t) = 2ζ 2
R δ(t) I/τR. Here, δ(t) is the

delta function. In the BD simulations, the particle orientations are represented using unit
quaternions. At each time step, the instantaneous particle velocities are computed and then
used to update the positions and orientations. The kinematic equation relating the angular
velocity and the rate of change of the quaternion is given by Delong, Balboa Usabiaga &
Donev (2015).

In figure 4, all data points are obtained by averaging over the long-time behaviour of the
system. In each simulation, 105 non-interacting ABPs are used, and the system is evolved
for a sufficiently long time such that the steady state is reached.

Appendix B. Equations for h1, h2 and h3

In this appendix, we provide the detail on the derivation of the ODEs for h1, h2 and h3.
Note that the conservation ∫

|x|≤Δ

n1 dx = 0 (B1)

is satisfied.
Note that

∇f (r) = x
1
r

f ′ (B2)

and

∇(e · xf ) = ef + e · xx
1
r

f ′. (B3)

Using the identity

∇ · (xx · · · x︸ ︷︷ ︸
k

f (r)) = [
(d + k − 1)f + rf ′] xx · · · x︸ ︷︷ ︸

k−1

, (B4)

we can obtain

∇ · [e · xx f (r)] = e · [∇ · (xx f (r))] = e · x (4f + rf ′), (B5)

∇ · [e · xxx f (r)] = e · [∇ · (xxx f (r))] = e · xx (5f + rf ′). (B6)
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Similarly, we have

∇2f = 2
r

f ′ + f ′′, (B7)

∇2(e · x f ) = e · x
(

4f ′

r
+ f ′′

)
, (B8)

∇2(e · xx f ) = 2ef + e · xx
(

6
r

f ′ + f ′′
)

. (B9)

The equation for h1 is given by

α Da
dn0

dr

(
1
r

A2 + 2
3

rA3 + r
2β Da

A1

)
+ Pes

(
1
r

dh2

dr
+ 4h3 + r

dh3

dr

)

+ Pes

(
4f + r

df
dr

)
− 4

r
dh1

dr
− d2h1

dr2 = 0. (B10)

The no-flux condition is given by

Pes (r2f + h2 + r2h3) − h1 − r
dh1

dr
+ A2α Da n0 + α

6β
r2n0(3A1 + 4A3 Da β) = 0,

(B11)

evaluated at r = Δ. The governing equation for h2 is

α Da
(

A2 − 1
3

r2A3

)
f + 1

3
Pes (n0 + h1) − 2

r
dh2

dr
− d2h2

dr2 − 2h3

+ 2γ 2h2 + 1
2

α Da
(

5
3

A3 + A2

2β Da

)
r2f = 0. (B12)

The no-flux condition at r = Δ is
dh2

dr
= 0. (B13)

The governing equation for h3 is

α Da
(

A3 + A1

2β Da

)
f + α Da

1
r

df
dr

(
A2 + 2

3
r2A3 + A1r2

2β Da

)

+ 1
3

Pes
1
r

(
dn0

dr
+ dh1

dr

)
− 6

r
dh3

dr
− d2h3

dr2

+ 2γ 2h3 − 1
2

α Da
(

5
3

A3 + A2

2β Da

)
f = 0. (B14)

The no-flux condition is

α Da rf
(

A2 + 2
3

r2A3 + r2A1

2β Da

)
+ 1

3
Pes r(n0 + h1) − 2rh3 − r2 dh3

dr
= 0, (B15)

evaluated at r = Δ. We solve these equations in MATLAB using a Chebyshev collocation
method (Trefethen 2000).
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