

The X-ray powder diffraction data for CeCo₃Ni₂

Degui Li,¹ Ming Qin,^{1,a)} Liuqing Liang,¹ Zhao Lu,¹ Shuhui Liu,¹ Caimin Huang,¹ Bing He,¹ and Lingmin Zeng²

¹Department of Physics and Communication Engineering, Baise University, Baise, Guangxi 533000, China ²College of Materials Science and Engineering, Guangxi University, Nanning, Guangxi 530004, China

(Received 13 February 2014; accepted 29 April 2014)

The CeCo₃Ni₂ compound was synthesized by arc melting under argon atmosphere. High-quality powder X-ray diffraction (XRD) data of CeCo₃Ni₂ have been collected using a Rigaku SmartLab X-ray powder diffractometer. The refinement of the XRD pattern for the CeCo₃Ni₂ compound shows that the CeCo₃Ni₂ is a hexagonal structure, space group *P6/mmm* (No.191) with a = b = 4.9081(2) Å, c =4.0034(2) Å, V = 83.52 Å³, Z = 1, and $\rho_x = 8.6347$ g cm⁻³. The Smith–Snyder FOM $F_{30} = 112.7$ (0.0089, 30) and the intensity ratio RIR = 0.48. © 2014 International Centre for Diffraction Data. [doi:10.1017/S0885715614000463]

Key words: CeCo₃Ni₂, X-ray powder diffraction

I. INTRODUCTION

The AB₅-type hydrogen storage alloy is widely used in nickel-metal hydride batteries as anode material because of its good comprehensive performance, such as easy activation, dynamic performance, moderate capacity, relatively low price, etc. Researchers have done a lot of work with experimental and theoretical studies since LaNi₅ hydrogen storage alloy was found in the 1960s of the past century, resulting in the development of a large number of AB₅-type hydrogen storage alloys using the method of element substitution. At present, the structure of AB₅ alloy materials has been investigated, and several AB₅-type alloys have been confirmed, such as LaNi_{4.5}Si_{0.5}, LaMn₃Ni₂, LaMnNi₄, LaNi_{4.25}Al_{0.75}, FeLaNi₄, LaNi_{4.75}Sn_{0.25}, Cu₃LaNi₂, $Ga_{1,2}LaNi_{3,8}$, La_{0.5}Ni₅Y_{0.5}, Ce_{0.5}La_{0.5}Ni₅, Co_{2.5}LaNi_{2.5}, Cr_{0.5}Cu_{1.5}LaNi₃, CuFeLaNi₃, Al_{0.3}Co_{0.75}LaMn_{0.4}Ni_{3.55}, and others. The X-ray diffraction (XRD) patterns of a new phase in the Ce-Co-Ni ternary system have not been extensively studied, and there are very few reports about the structure of a CeCoNi phase from inorganic crystal structure database (Da et al., 1983) and ICDD's PDF4+ database (Klyamkin et al., 2005).

So far, the experimental X-ray power diffraction data of the $CeCo_3Ni_2$ phase have not been included in the ICDD's Master Database. We report here the high-quality powder XRD data for the compound $CeCo_3Ni_2$.

II. EXPERIMENTAL

A. Synthesis

The sample of $CeCo_3Ni_2$ was generated from the melt of stoichiometric amounts of elemental constituents (99.9 wt% Ce, 99.99 wt% Co, and 99.99 wt% Ni by China New Metal Materials Technology Co. Ltd.) under high-purity argon atmosphere in a vacuum arc furnace, which has a tungsten

electrode and a water-cooled copper tray. During the melting process, titanium was used as an oxygen capture agent. In order to ensure fused together and uniform composition, multiple melting processes (three times in this experiment) have been executed. Weight losses of the sample were <1 wt% with a total mass of 2 g. After melting, the sample was enclosed in an evacuated quartz tube and annealed at 1173 K for 480 h, and then cooled down to room temperature at a rate of 18 K h⁻¹. Finally, the sample was ground to powder with a particle size smaller than 20 µm, in an agate mortar.

B. Data collection

The X-ray powder diffraction data for CeCo₃Ni₂ compound were collected at room temperature using a Rigaku SmartLab X-ray powder diffractometer, using Cu*K* α radiation and a diffraction beam graphite monochromator. The diffractometer was operated at 40 kV and 150 mA, the scan range of 2θ was from 10° to 100° with a step size of 0.02° and a counttime of 10 s step⁻¹.

X-ray powder diffraction data for the mixture of $CeCo_3Ni_2$ and an internal standard material (SRM Si) were

Figure 1. The X-ray powder diffraction pattern of CeCo₃Ni₂.

^{a)}Author to whom correspondence should be addressed. Electronic mail: qm6327@sohu.com

TABLE I. X-ray powder diffraction data for CeCo₃Ni₂ (CuK α_1 , with $\lambda = 1.5406$ Å).

No.	h	k	l	$2\theta_{\rm obs}$	$2\theta_{\rm cal}$	$\Delta 2\theta^{\rm a}$	<i>I</i> / <i>I</i> ₀	$d_{ m obs}$	$d_{ m cal}$	Δd^{b}
1	1	0	0	20.864	20.882	-0.018	2.9	4.2541	4.2505	0.0036
2	0	0	1	22.180	22.187	-0.007	12.7	4.0045	4.0034	0.0011
3	1	0	1	30.645	30.652	-0.007	75.4	2.9149	2.9143	0.0006
4	1	1	0	36.573	36.587	-0.014	32.4	2.4549	2.454	0.0009
5	2	0	0	42.499	42.500	-0.001	46	2.1253	2.1253	0
6	1	1	1	43.201	43.205	-0.004	100	2.0924	2.0922	0.0002
7	0	0	2	45.260	45.265	-0.005	29	2.0019	2.0017	0.0002
8	2	0	1	48.460	48.453	0.007	6.8	1.8769	1.8771	-0.0002
9	1	0	2	50.340	50.346	-0.006	0.6	1.8111	1.8109	0.0002
10	2	1	0	57.319	57.301	0.018	0.5	1.6061	1.6065	-0.0004
11	1	1	2	59.559	59.550	0.009	16.4	1.5509	1.5511	-0.0002
12	2	1	1	62.221	62.213	0.008	27	1.4908	1.491	-0.0002
13	2	0	2	63.839	63.825	0.014	17.6	1.4568	1.4571	-0.0003
14	3	0	0	65.879	65.866	0.013	6.9	1.4166	1.4168	-0.0002
15	3	0	1	70.428	70.438	-0.010	13.1	1.3358	1.3357	0.0001
16	0	0	3	70.510	70.511	-0.001	8	1.3345	1.3345	0
17	1	0	3	74.459	74.458	0.001	7.5	1.2732	1.2732	0
18	2	1	2	75.880	75.873	0.007	0.9	1.2528	1.2529	-0.0001
19	2	2	0	77.760	77.771	-0.011	13.7	1.2272	1.227	0.0002
20	3	1	0	81.580	81.597	-0.017	0.1	1.1791	1.1789	0.0002
21	2	2	1	82.065	82.081	-0.016	6	1.1733	1.1732	0.0001
22	1	1	3	82.140	82.150	-0.010	18.2	1.1725	1.1723	0.0002
23	3	0	2	83.539	83.529	0.010	5.9	1.1563	1.1565	-0.0002
24	3	1	1	85.857	85.865	-0.008	4.8	1.131	1.1309	0.0001
25	2	0	3	85.918	85.934	-0.016	5	1.1303	1.1301	0.0002
26	4	0	0	92.920	92.918	0.002	1.7	1.0626	1.0626	0
27	2	2	2	94.855	94.838	0.017	17.6	1.046	1.0461	-0.0001
28	4	0	1	97.183	97.178	0.005	1.9	1.027	1.0271	-0.0001
29	2	1	3	97.250	97.247	0.003	3.7	1.0265	1.0265	0
30	3	1	2	98.625	98.628	-0.003	0.2	1.0158	1.0158	0

 $^{^{}a}\Delta 2\theta = 2\theta_{obs} - 2\theta_{cal}$

collected. The obtained values of the Bragg angle, 2θ , were calibrated for instrumental errors using a parabolic fit with reference material SRM Si. Once the 2θ values were corrected, precise lattice parameters were obtained by a least-squares refinement (Zeng *et al.*, 2007). The observed intensity (peak heights) of each diffraction peak was determined from the XRD data of a pure CeCo₃Ni₂ sample. The RIR value was calculated from the XRD data that were collected from a mixture of 50 wt% CeCo₃Ni₂ and 50 wt% corundum.

III. RESULTS

The experimental XRD pattern for the pure CeCo₃Ni₂ compound is shown in Figure 1. All peaks were successfully indexed by Jade 6.0 (2002, Materials Data Inc.) software with a hexagonal structure. It was found that CeCo₃Ni₂ and LaNi₅ (Kisi *et al.*, 1992) have the same structure type (*P6/mmm*, No.191) by comparing the X-ray powder diffraction pattern of CeCo₃Ni₂ with that of LaNi₅. The accurate lattice parameters were obtained with a = b = 4.9081(2) Å, c = 4.0034 (2) Å, V = 83.52 Å³, Z = 1, and the density is 8.6347 g cm⁻³ by indexing and refining for the corrected X-ray powder diffraction data of CeCo₃Ni₂. The figure of merit for indexing F_N (Smith and Snyder, 1979) is $F_{30} = 112.7(0.0089, 30)$ and the intensity ratio RIR value is 0.48. The observed and the

calculated X-ray powder diffraction data for $CeCo_3Ni_2$ are listed in Table I.

ACKNOWLEDGMENTS

This work was supported by the Guangxi Natural Science Foundation (Grant No. 2011GXNSFA018034) and the scientific foundation of Guangxi high education (Grant No. 2013ZD070).

- Da, J. M., Brochado Oliveira, C., and Harris, I. R. (**1983**). "Valency compensation in the Laves system, Ce (Co_{1-x}Ni_x)₂," J. Mater. Sci. **18**, 3649–3660.
- JADE Version 6.0 (2002). XRD Pattern Processing (Materials Data Inc., Livermore, CA).
- Kisi, E. H., Buckley, C. E., and Gray, E. M. (1992). "The hydrogen activation of LaNi₅," J. Alloys Compd. 185, 369–384.
- Klyamkin, S. N., Zakharkina, N. S., and Tsikhotskaya, A. A. (2005). "Hysteresis and related irreversible phenomena in CeNi₅-based intermetallic hydrides: effect of substitution of Co for Ni," J. Alloys Compd. 398, 145–151.
- Smith, G. S. and Snyder, R. L. (1979). "FN: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing," J. Appl. Crystallogr. 12, 60–65.
- Zeng, L. M., He, J. J., Qin, P. L., and Wei, X. Z. (2007). "Powder diffraction data of a new compound Al_{0.35}GdGe₂," Powder Diffr. 23, 934–937.

 $^{^{\}rm b}\Delta d = d_{\rm obs} - d_{\rm cal}.$